
PHYSICAL REVIEW B 15 NOVEMBER 1998-IVOLUME 58, NUMBER 19
Theory of fluctuations around a nonequilibrium state maintained by interband optical
and driving electric field in semiconductors
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Theory of fluctuations around a nonequilibrium state slowly varying in space and time in two-band semi-
conductors is developed. The derivation of kinetic equations for fluctuations within the framework of the
Keldysh formalism is given. The system is supposed to be under the action of a classic optical and external
driving electric field, which can displace the system substantially from equilibrium with a thermal bath, while
the carriers can interact also with phonons, with one another via the Coulomb potential, and with the thermal
photons causing interband recombination and generation. Matrix of correlation functions for Langevin random
forces is obtained. It is shown that in the nonequilibrium state there is an extra correlation contribution of
Coulomb and phonon scattering to the correlation functions of the Langevin forces.@S0163-1829~98!02939-7#
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I. INTRODUCTION.

Investigation of fluctuations around a nonequilibrium s
tionary or slowly varying state is important in many areas
physics. The equations for the time-displaced as well as o
time correlation functions were obtained by Lax.1–3 It has
been assumed that the basic stochastic process is a
particle transition probability and hence, the explicit resu
for the case of one-particle collisions have been obtaine

Fluctuations around a nonequilibrium stationary state t
ing into account the two-particle collisions were conside
theoretically by Gantsevich, Gurevich, Katilius4,5 and Kogan
and Shul’man6 in the framework of nondegenerate Bolt
mann statistics. Generalizations to the degenerate Ferm
tistics were obtained in Ref. 7. The many-particle dynamic
screening effect on the collisions between charged parti
was included in the fluctuation theory in Refs. 7 and 8. T
generation-recombination effects in the case of a single b
and trapping centers were taken into account in Ref. 9~Bolt-
zmann statistics!.

Although Lax’s method historically precedes the Ga
sevich et al. approach~method of moments! and has been
extensively employed by many authors in noise phenom
investigations,10,11 we will closely follow the latter. In our
opinion, it is reasonable to use the Gantsevichet al. method
not only because it gives deep insight into fluctuation p
nomena but also because the main equations of this appr
can be readily obtained in the framework of the Keldy
formalism,12 which is a great convenience in calculatio
while Lax’s method is less formal and requires some art
intuition.

Although Lax’s formulation includes multilevel atomi
transitions the results turn out to be far from being eas
applied in the investigation of noise phenomena in semic
ductor amplifiers and lasers. That is why, to our mind, so
authors prefer generalization of results of the theory of fl
tuations near the equilibrium state~in particular, fluctuation-
dissipation theorem or Callen-Welton relation! in their study
of intensity and phase noise in semiconductor optical am
fiers and lasers~see, e.g., Refs. 10, 11, and 13!. On the other
PRB 580163-1829/98/58~19!/12883~16!/$15.00
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hand, Gantsevichet al.’s usual concern was a single ban
case.

Recently a substantial number of works have been
voted to derivation of quantum kinetic equations describ
nonequilibrium optical properties of semiconductors.
mention only a few, let us note14–17 where such equation
were derived by different approaches in the form of effect
Bloch equations for the density matrix in the case of tw
band semiconductors. While quantum kinetic theory desc
ing the nonequilibrium state in semiconductors can be
garded as more or less developed, to our knowledge, a th
of fluctuations around such a nonequilibrium state is still n
available. In this paper we intend to fill this gap. One of t
problems in quantum electronics attracting the most atten
is investigation of noise in various semiconductor optic
amplifiers and generators. For instance, the noise power
erated by spontaneous emission in optical amplifiers requ
a correlation function of random Langevin forces that ent
the right-hand side of the quantum kinetic equation for
nondiagonal in the band indices density mat
component.10,11,13The same correlation function determin
the spectral linewidth of a semiconductor injection laser.11,18

Thus our purpose is to give an adequate description
fluctuation phenomena for the case of two-band semicond
tors near a nonequilibrium state slowly varying in space a
time. We present a first-principles derivation of the equatio
governing evolution of fluctuations. The essential differen
between the present treatment and that of Refs. 10 and
consists in the following main aspects: first, our treatm
naturally leads to the so-called extra correlation terms in
correlation functions, which are notd correlated ink space
and arise due to the simultaneous appearance of two elec
statesk andk8 ~and the disappearance of two other states! as
a result of many-body interactions while the approach
Refs. 10 and 11 has not taken into account these extra
relation sources.

The other main difference is due to a new dynami
variable—nondiagonal over band indices—density ma
component involved also in the scattering processes aga
contrast to Refs. 10 and 11 where the equation for the n
12 883 ©1998 The American Physical Society
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12 884 PRB 58M. I. MURADOV
diagonal component has been introduced phenomeno
cally.

The last difference exists due to our investigation of
nonequilibrium state slowly varying in space. Therefore,
present approach being more general than the previous
includes a theory of fluctuations in a single-band case~which
enables one to describe current noise! as well as optical
band-to-band transitions on the equal footing.

In Sec. II we introduce a correlation function matrix an
obtain an equation of motion for this matrix. We consid
quasiclassical fluctuations and discuss underlying appr
mations. The three subsections are devoted to interb
recombination-generation processes, electron-phonon
tering, and electron-electron scattering. For all the inter
tions explicit expressions for a relaxation operator are
rived that take into account the particle-particle scattering
well as the scattering on polarization. Section III gives
derivation of the differential equation, which determines
initial condition ~one-time matrix of correlation functions! of
the equation of motion derived in Sec. II for two-time corr
lation functions. In the first subsection we give expressio
for a source of fluctuations that enter the right-hand side
the equation for one-time correlation functions. Here we
the concept of Langevin random forces and the last sub
tion is devoted to a derivation of correlation functions f
these forces. The last section contains concluding remar

II. EQUATION FOR MATRIX OF CORRELATION
FUNCTIONS

Fluctuations are described by the time-displaced tw
particle correlation function in the mixed or Wigner repr
sentation

gabgd
iklm ~ t1t,kr ;t,k8r 8!5(

qq8
e2 iqr2 iq8r8gabgd

iklm

3~ t1t,k2 ;tk28 ;tk18 ;t1t,k1!,

~1!

where abgd are band indices (c for the conduction band
andv for valence band! andiklm are indices in the Keldysh
space~in our notationi ,k,l ,m51,2). Here shorthand nota
tion k6 stands for

k15k1
q

2
; k25k2

q

2
.

We closely follow Ref. 7 and definegabgd
iklm as

gabgd
iklm ~ t1t1d8,k1 ;t1d,k2 ;t,k3 ;t1t,k4!

5^Taak1
~ t1t1d8! iabk2

~ t1d!kagk3

† ~ t ! ladk4

† ~ t1t!m&,

d,d8→0, ~2!

where ^ & denotes taking the statistical average,T denotes
ordering over the Keldysh contour,aak and aak

† are the
Heisenberg annihilation and creation operators for an e
tron in the banda with a definite wave vectork.

In this section we derive the equation of motion for t
correlation functiongabgd

iklm (t,t)kk8 regarding it as a function
gi-
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of two independent time variablest and t. It is easily seen
that at the fixed Keldysh indiceslk for any im components
the following identity holds:

gabgd
iklm ~ t1t,t !kk85gabgd

kl ~ t1t,t !kk8 , t.0. ~3!

This correlation function obeys an integral equation of t
ladder type analogous to the pair Green’s function~GF!,
which can be represented diagrammatically in the usual w
~see, e.g., Ref. 7!, i.e., we represent it through the Keldys
Green’s functionsGi j and the kernelK. As is easily seen
from the diagrammatic representation one can write
equation forgabgd

iklm in the right-hand or the left-hand form
The equation in the right-hand form analytically reads

gabgd
iklm ~ t1t1d8,k2 ;t1d,k28 ;tk18 ;t1t,k1!

5Gag
i l ~ t1t1d8,k2 ;tk18 !Gbd

km~ t1d,k28 ;t1t,k1!

2Gad
im~ t1t1d8,k2 ;t1t,k1!Gbg

kl ~ t1d,k28 ;tk18 !

1 (
k1k2k3k4

E dt1dt2dt3dt4Gaa8
i i 8

3~ t1t1d8,k2 ;t1k1!Gd8d
m8m

~ t4k4 ;t1t,k1!

3Ka8b8g8d8
i 8k8 l 8m8 ~ t1k1 ,t2k2 ,t3k3 ,t4k4!gg8bgb8

l 8klk8

3~ t3k3 ;t1d,k28 ;tk18 ;t2k2!. ~4!

Here and henceforth we employ the Einstein summation c
vention.

First of all we identify the group of diagrams constitutin
a product of two unlinked Green’s functions, taking into a
count interaction to all orders. Since this group has noth
to do with correlation, we exclude this group from our de
nition of the correlation function, i.e., we consider equatio
for

gad
iklm~ t1t,r ;tr 8!kk8[gabgd

iklm ~ t1t,r ;tr 8!kk8

1Gadk
im ~ t1t,r !Gbgk8

kl
~ t,r 8!, ~5!

which can be rewritten in the form~this will become appar-
ent later!

gad
iklm~ t1t,r ;tr 8!kk85^@ n̂adk~ t1t,r !2nadk~ t1t,r !#

3@ n̂bgk8~ t,r 8!2nbgk8~ t,r 8!#&. ~6!

In the following we usually omit the redundant Keldyshkl
and bandbg indices if there is no likelihood of confusion.

For nonstationary problems it is convenient to convert o
integral equations into differential ones with respect to
time displacementt. Taking the time derivative of Eq.~4!,
and making use of the right-hand and left-hand~or conju-
gate! Dyson equations for the GF

iGab
i j ~kt,k8t8!5^Taak~ t ! iabk8

†
~ t8! j&

in the differential form
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i ] tGab
i j ~ tp,t8p8!

5dabd i j ~21! i 11d~ t2t8!dpp81«aa8
i i 8 ~p!Ga8b

i 8 j
~ tp,t8p8!

1~21! i 11(
k
E dt1Saa8

i i 8 ~ tp,kt1!

3Ga8b
i 8 j

~ t1k,t8p8! ~7!
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and an analogous equation for] t8Gab
i j (tp,t8p8), where we

have introduced the energy matrix

«ab
i j ~k!5dabd i j «a~k!; a5$c,v%, ~8!

we obtain
]tgad
im~ t1t1d8,k2 ;t1d,k28 ;tk18 ;t1t,k1!

5 i @«d~k1!2«a~k2!#gad
im~ t1t1d8,k2 ;t1d,k28 ;tk18 ;t1t,k1!

1 i (
k1k2k3

E dt1dt2dt3[ ~21! iGd8d
m8m

~ t3k3 ;t1t,k1!Kab8g8d8
ik8 l 8m8

3~ t1t1d8,k2 ,t1k1 ,t2k2 ,t3k3!gg8b8
l 8k8 ~ t2k2 ;t1d,k28 ;t,k18 ;t1k1!2~21!mGaa8

i i 8

3~ t1t1d8,k2 ;t1k1!Ka8b8g8d
i 8k8 l 8m

~ t1k1 ,t2k2 ,t3k3 ,t1tk1!

3gg8b8
l 8k8 ~ t3k3 ;t1d,k28 ;t,k18 ;t2k2!] 1(

p
E dt8@ i ~21! iSam

ir ~ t1t1d8,k2 ;t8p!

3gmd
rm~ t8p;t1d,k28 ;tk18 ;t1t,k1!2 i ~21!mgam

ir

3~ t1t1d8,k2 ;t1d,k28 ;tk18 ;t8p!Smd
rm~ t8p;t1t,k1!#. ~9!
the

ed:

is

at
-

as
of
Note that we have included the external driving scalar pot
tial w(r ) into the definition of the self-energy~SE! 2 iSab

i j as
well as the external classical optical field causing interba
transitions.

Equation~9! is formally exact, as is Eq.~4!. The reason
for the form of this equation is that the Feynman rules in
Keldysh space for calculating the self-energyS and kernelK
exist. Since the physical quantities such as densities and
ticle currents~including interband currents! should be ex-
pressed in terms of the equal-time, one-particle density
trix, Eq. ~9! is useless until it is closed.

Let us note that in the course of evaluation of integrals
encounter the correlation functions with more complica
dependence on the time variable thangad

im(t1t,r ;t,r 8)kk8 ;
they involve the annihilation and creation operators at diff
ent instants. The latter can be expressed through the fo
by the simple relation, they differ from the former only b
the exponential factor, corresponding to the free motion:

gad
im~ t1p,t1dk,tk,t2p!

5H gad
im~ t2 ,t !pke

2 i«ap~ t12t2!, d→0

gad
im~ t1 ,t !pke

i«dp~ t22t1!, d→0.

~10!

~11!

Later we will need also formulas relating the GF to the de
sity matrix. We make here an assumption similar to that
have just made. Since one-time Green’s functions are

Gabp
12 ~r t,t !5 inabp~ t,r !; Gabp

21 ~r t,t !5Gabp
12 ~r t,t !2 idab ,

~12!
-
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where we have used the relation betweenG12 andG21 at the
coincident instants and introduced the density matrix in
mixed representation by

nabp~ t,r !5E dxe2 ipxK cb
1S t,r2

x

2DcaS t,r1
x

2D L ;

nccp~ t,r ![ncp~ t,r !, ncvp~ t,r ![pp~ t,r !,

nvcp~ t,r ![pp* ~ t,r !,nvvp~ t,r ![nvp~ t,r !, ~13!

we have

Gabp
12 ~r t,t8!5 inabp~ t,r !ei«bk~ t82t !, ~14!

Gabp
12 ~r t,t8!5 inabp~ t8,r !ei«ak~ t82t !. ~15!

The notations we have just introduced are commonly us
nap stands for the distribution function within thea5c,v
bands whilepk describes a mixed electron-hole state and
closely related to the macroscopic polarization.

We will consider quasiclassical fluctuations; i.e., in wh
follows we will transform Eq.~9! to the Wigner representa
tion and use the gradient approximation. Spatial 1/q and time
1/v scales of quasiclassical fluctuations have to be large
compared with the de Broglie wavelength and the time
formation of the quantum state 1/«p having momentump
and kinetic energy«p :

q

p
!1,

v

«p
!1. ~16!
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Needless to say, in the course of derivation of kinetic eq
tions one has to impose constraints similar to Eq.~16!; e.g.,
see Ref. 7.

Performing a Taylor expansion one observes that the c
volution in the mixed representation

(
q

e2 iqr(
p

S~k2 ,k1p!g~k1p,k1! ~17!

is given by

(
q

e2 iqr(
p

S~k2 ,k1p!g~k1p,k1!

5expF2
i

2
~]k

S] r
g2]k

g] r
S!GS~k,r !g~k,r !. ~18!
r t
-

n-

Expanding the exponential in Eq.~18! and keeping the first
two terms one can get the gradient approximation, it is ea
seen that the second term is merely the Poisson brac
finally

(
q

e2 iqr(
p

S~k2 ,k1p!g~k1p,k1!

5S~k,r !g~k,r !1
i

2
@S,g#P , ~19!

where

@S,g#P5~] rS]kg2]kS] rg!.

Making use of Eq.~19! we take a Fourier transform of Eq
~9! over the ‘‘center-of-mass’’ coordinater and get
]tgad
im~ t1t,r ;tr 8!kk85 i @«dk2«ak#gad

im~ t1t,r ;tr 8!kk8 2
1

2

]~«ak1«dk!

]k

]gad
im~ t1t,r ;tr 8!kk8

]r
2e

]w

]r

]gad
im~ t1t,r ;tr 8!kk8

]k

2
e

mv0
~E0e2 iv0~ t1t!2c.c.!@paā~k!gād

im
~ t1t,r ;tr 8!kk82pd̄d~k!gad̄

im
~ t1t,r ;tr 8!kk8#

1
1

2E dt8$2~21! i@Samk
ir ~ t1t1d8,t8!,gmd

rm~ t8r ;t1d,r 8;t,r 8;t1t,r !kk8#P

1~21!m@gam
ir ~ t1t1d8,r ;t1d,r 8;tr 8;t8,r !kk8 ,Smdk

rm ~ t8,t1t!#P%

1(
pqs

e2 iqrUpFGad
im~ t1t1d8,k2 ;t1t,k12p!gmm

mm~ t1t1d8,s2p;t1t1d8,s!

2Gad
im~ t1t1d8,k21p;t1t,k1!gmm

i i S t1t1d8,s1
p

2
;t1t1d8,s2

p

2D G
1 i E dt8@~21! iSamk

ir ~ t1t1d8,t8!gmd
rm~ t8r ;t1d,r 8;t,r 8;t1t,r !kk82~21!mgam

ir

3~ t1t1d8,r ;t1d,r 8;tr 8;t8,r !kk8Smdk
rm ~ t8,t1t!#1 i(

p
E dt1dt2dt3@~21! iGd8dk

m8m

3~ t3 ;t1t!Kab8g8d8
ik8 l 8m8 ~ t1t1d8,k;t2p,t3p,t1k!2~21!mGaa8k

i i 8 ~ t1t1d8;t1!Ka8b8g8d
i 8k8 l 8m

3~ t1k,t2p,t3p,t1tk!#gg8b8
l 8k8 ~ t3p;t1d,k8;t,k8;t2p!. ~20!
ble
Here we have taken into account that the expressions fo
SE due to the instantaneous driving potentialw and the op-
tical field with interband frequencyv0

E5E0e2 i ~v0t2k0r !1c.c. ~21!

are

2 iSab
i j ~ tp;t8p8!5 i ~21! idabd i j d~ t2t8!~2ewp2p8!,

~22!
he
2 iSab

i j ~ tp;t8p8!52 i ~21! i 11d i j dab̄d~ t2t8!
e

mv0

3@2 i ^apueik0r p̂ubp8&E0e2 iv0t

1 i ^apue2 ik0r p̂ubp8&E0* eiv0t#, ~23!

where the matrix element of momentum is expressi
through the dipole momentdabp :

2
e

m
^apue6 ik0r p̂ubp8&5 ivabpdabpdp6k0 ;p8 ;vabp

5«ap2«bp ~24!
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and the field amplitude can be written in terms of the spa
density of photonsNv0

with the frequency v0 , uE0u
}(\v0Nv0

)1/2. Here and henceforth the bar over band in

ces means thatc̄5v and v̄5c.
The first term on the right-hand side of Eq.~20! describes

the free oscillation of the interband polarization providi
aÞd, the second term takes into account intraband mot
the third and fourth terms describe the interaction with
driving force and with the interband optical field. The term
constituting the Poisson brackets describe the self-consis
field produced by the inhomogeneity in the electron state
the renormalization of the velocity of intraband motion d
to interaction, which reflects the fact that electrons betw
collisions do not behave as noninteracting particles. The n
term describes the self-consistent field of fluctuations~SCF!,

U~r !5(
q

Uqe
iqr; Uq5

4pe2

«q2 ~25!

is the Coulomb potential,« being the dielectric constant. Th
corresponding expression forK is

Kabgd
iklm ~ t1k1 ,t2k2 ,t3k3 ,t4k4!

52 i ~21! idk11k2 ,k31k4
d ikd imd i l d~ t12t2!

3@dagdbdd~ t12t3!d~ t22t4!Uk32k1

2daddbgd~ t12t4!d~ t22t3!Uk42k1
#, ~26!

where the first term in the brackets accounts for the excha
contribution while the second describes direct Coulomb
teraction.

Our primary concern is a contribution from the direct i
teraction. We can easily take the Fourier transform and in
gradient approximation the term with the Coulomb poten
to the first order originated fromK is given by ~we put i
51 andm52)

2B̂ĝscf5
]

]k
nadk

]

]rE dr1U~r2r1!

3(
p

gmm~ t1t1d8,r1 ;tr 8!pk8 . ~27!

This expression clearly demonstrates the influence of
self-consistent fluctuation field. Here and henceforthnadk
will stand for nadk(t1t,r ), it will cause no confusion since
whenever we encounter the density matrix component w
the wave vectork(k8) it is obvious that the time and spac
arguments aret1t,r (t,r 8).

Let us calculate now the exchange contribution. The fi
term in Eq.~26! after substitution into Eq.~20! and evalua-
tion yields the following expression:

2B̂ĝex5 i(
q

Uq$gam~ t,t!k1q,k8nmdk

2namkgmd~ t,t!k1q,k8%. ~28!

Notice that in the single band case this contribution vanis
and the next exchange term in the gradient approxima
can be neglected.
l

-

n,
e

nt
d

n
xt

ge
-

e
l

e

h

t

s
n

The contribution of the self-consistent field due to e
change of a phonon is to be neglected since we have ta
into consideration a more efficient and stronger contributi
which stems from the Coulomb potential. In what follows w
will also neglect the contribution to the self-consistent ele
tron field produced by the exchange of a phonon since ag
we will take into account the stronger contribution arisi
from the Coulomb potential. Evaluating the analytical e
pression for the SE,

2 iSab
i j ~ tp2 ,t8p1!5 i ~21! id i j dabd~ t2t8!Uq

3(
mk

@2 iGmm
i i ~ t10~21! i ,k2 ,tk1!#,

~29!

and using it when evaluating the term with the Poiss
brackets in Eq.~20! we get for the self-consistent electro
~SCE! field

2B̂ĝSCE5
]

]k
gad~ t1t,r ;tr 8!kk8

]

]r

3E dr1U~r2r1!(
mp

nmp~r1!. ~30!

To take into account the charge of lattice ions one sho
subtract from(mpnmp the total number of carriers. The SC
field vanishes in the case of spatially homogeneous distr
tion of carriers.

The self-consistent electron field can be incorporated i
the effective scalar potential if one replacesw in Eq. ~20! by
weff according to

weff5w2
1

eE dr1U~r2r1!(
mp

nmp~r1!. ~31!

The last two terms in Eq.~20! take into account the scat
tering between states; they are out and in terms, respectiv

To complete this section let us write the expression for
term that gives the exchange contribution to the energy

2 iSab
i j ~ tp2 ,t8p1!5~21! id i j d~ t2t8!(

s
iU siGab

i i

3~ tp21s;t8p11s! ~32!

or in the mixed representation

2 iSabp
i j ~ tr ,t8r !5~21! id i j d~ t2t8!

3(
s

iU siGabp1s
i i ~ tr ;t8r !. ~33!

Inserting this expression into the seventh term in Eq.~20! we
get the following term in the right-hand side of Eq.~20!:

i(
s

Us@~2 i !Gamk1s
i i ~ t1t10!gmd

im ~ t,t,r ,r 8!kk8

2gam
im ~ t,t,r ,r 8!kk8~2 i !Gmdk1s

mm ~ t1t20!#. ~34!

Using Eq.~12! and for definiteness putting the Keldysh in
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dicesi 51 andm52 the last expression can be reduced

2B̂ĝenr5 i(
s

Us@namk1sgmd~ t,t!kk82gam~ t,t!kk8nmdk1s#.

~35!

The last expression can be incorporated into the definitio
effective energy matrix by

«abk
eff 5«akdab2(

s
Usnabk2q ~36!

and the first term in Eq.~20! can then be cast into the form

i @gamkk8«mdk
eff 2«amk

eff gmdkk8#. ~37!

We notice that a sum of exchange operators in Eqs.~28! and
~35! has a particle conserving property, i.e.,

(
k

@~Bk
abgkk8!ex1~Bk

abgkk8!enr#50. ~38!

A. Interaction with photons.
Interband generation and recombination

Let us return to Eq.~20! and consider the interaction wit
photons causing band-to-band transitions~interband
recombination-generation processes!. The electron-photon
interaction Hamiltonian has the form

Hel-phot5 (
ak;qÞ0

~Caq* baq
† avk

† ack1q1Caqbaqack
† avk2q!.

~39!

The photon one-time Green’s functionD̂ is related to the
number of photonsNaq by the expression

iD̂ aq
12~ t !5Naq~ t !;

iD̂ aq
21~ t !511 iD̂ aq

12~ t !, ~40!

which, in its turn, can be related to the two-time function

iD̂ aq
12~ t,t8!5Naq~ t !e2 ivaq~ t2t8!. ~41!

The electron-photon interaction brings about an additio
matrix over the band indicesdab̄ for the electron-photon
vertex and by virtue of Eq.~39! gives for the line represent
ing the exchange of photons between the valence-
conduction-band electrons

Daq
i j ~ t,t8!5D̂aq

i j ~ t,t8!1D̂a,2q
j i ~ t8,t !. ~42!

For the term that describes the lowest-order generation~gain!
term and is obtained from the kernelK we have
of

l

d

Kabgd
iklm ~ t1k1 ,t2k2 ,t3k2 ,t4k1!

5(
n

i ~21! i 1kd i l dmkdab̄dgāddb̄d~ t12t3!

3d~ t22t4!Dnk12k2

ik ~ t1 ,t2!. ~43!

Let us also specify the analytical expression for the S
which describes the lowest-order recombination~loss! term

2 iSabk
i j ~ t,t8!52~21! i 1 j(

nq
iG āb̄k2q

i j
~ t,t8!iD nq

i j ~ t,t8!.

~44!

Let us begin with the gain term. Inserting Eq.~43! into the
last term in Eq.~20! and performing integration overt2 and
t3 we get

(
np

E dt8@~21! i 8Gadk
i i 8 ~ t1t1d8,t8!Dnk2p

i 8m

3~ t8,t1t!gd̄ d̄
i 8m

~ t8,t1d,t,t1t!pk82~21!m8Gadk
m8m

3~ t8,t1t!Dnk2p
im8 ~ t1t1d8,t8!gāā

im8

3~ t1t1d8,t1d,t,t8!pk8#. ~45!

In accordance with causality principle here we can repl
the upper integration limit by the instantt1t although the
integration overt8 formally runs from2` to 1`. One can
easily verify that the future contribution vanishes due to
GF, SE, and kernel properties.

It is now straightforward, by employing Eq.~10! and Eq.
~14! to reduce the two-time correlation function and the G
in the first term in the brackets to the one-time functions a
Eq. ~11! together with Eq.~15! in the second term, to obtain

p(
np

@~21! i 8Gadk
i i 8 ~ t1t10!gd̄ d̄

i 8m
~ t,t!pk8

3$D̂nk2p
i 8m ~ t1t20!d2~«dk2«d̄p2vnk2p!1D̂np2k

mi8

3~ t1t20!d2~«dk2«d̄p1vnp2k!%2~21!m8Gadk
m8m

3~ t1t20!gāā
im8~ t,t!pk8$D̂nk2p

im8 ~ t1t10!d1

3~«ak2«āp2vnk2p!1D̂np2k
im8 ~ t1t10!d1

3~«ak2«āp1vnp2k!%#. ~46!

Here we have introducedd2(x) andd1(x) by the identities

E
2`

0

dteitx5
2 i

x2 i0
5pd~x!2P

i

x

5pd2~x!;d1~x!5d2~2x!, ~47!
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whereP is the Cauchy principle part. Now using Eqs.~12!
and~40! which express the electron and photon GF in ter
of nab andNq we have

2B̂ĝgen5p(
nq

uCnqu2$@nadk1Nnqdad#

3@gd̄ d̄~ t,t!k2q,k8d2~«dk2«d̄k2q2vnq!

1gāā~ t,t!k2q,k8d1~«ak2«āk2q2vnq!#

1@dad2nadk1Nnqdad#@gd̄ d̄~ t,t!k1q,k8d2

3~«dk2«d̄k1q1vnq!1gāā~ t,t!k1q,k8d1

3~«ak2«āk1q1vnq!#%. ~48!

Performing summation over band indices and retaining o
the resonant terms we obtain the following nonzero ope
tors:

2Bccggen52p(
nq

uCnqu2d~«ck2«vk2q2vnq!

3@nck1Nnq#gvv~ t,t!k2q,k8 , ~49!

2Bcvggen52ppk(
nq

uCnqu2$gcc~ t,t!k2q,k8d2~«vk2«ck2q

1vnq!2gvv~ t,t!k2q,k8d1~«ck2«vk2q2vnq!%.

~50!

Here we first encounter processes that do not conserve
ergy; this is explicitly displayed byd2 andd1 , which have
imaginary parts. This is not surprising since the quant
kinetic equation forpk includes terms that also do not hav
d-function structure and describe both interband transit
energy renormalization~imaginary parts ofd2 andd1) and
relaxation~real parts!,

2Bvcggen52ppk* (
nq

uCnqu2$gcc~ t,t!k2q,k8d1~«vk2«ck2q

1vnq!2gvv~ t,t!k2q,k8d2~«ck2«vk2q2vnq!%,

~51!

2Bvvggen52p(
nq

uCnqu2d~«vk2«ck1q1vnq!@12nvk

1Nnq#gcc~ t,t!k1q,k8 . ~52!

We should note here thatBk
ab are still operators since in th

gain ~or in–! terms they includes summation overq of ex-
pressions like (•••)gk2q describing how fluctuations with
k2q vanish and fluctuations with the wave vectork appear.
s

ly
-

n-

n

As for the loss~recombination! term, substituting the ex-
pression for the self-energy Eq.~44! into the next to the last
term in Eq.~20! and by the similar calculation as above w
obtain

2B̂ĝrec52p(
nmq

uCnqu2$gmd~ t,t!k,k8„@dām̄2nām̄k2q

1Nnqdām̄#d2~«m̄k2q2«mk1vnq!1@nām̄k1q

1Nnqdām̄#d2~«m̄k1q2«mk2vnq!…

1gam~ t,t!k,k8„@dm̄d̄2nm̄d̄k2q1Nnqdm̄d̄#d1~«m̄k2q

2«mk1vnq!1@nm̄d̄k1q1Nnqdm̄d̄#d1~«m̄k1q2«mk

2vnq!…%, ~53!

or after summation over band indices

2Bab
cc gab

rec522pgcc~ t,t!k,k8(
nq

uCnqu2@12nvk2q

1Nnq#d~«vk2q2«ck1vnq!, ~54!

2Bcvgrec52pgcv~ t,t!k,k8(
nq

uCnqu2$@12nvk2q

1Nnq#d2~«vk2q2«ck1vnq!1@nck1q

1Nnq#d1~«ck1q2«vk2vnq!%, ~55!

2Bvcgrec52pgvc~ t,t!k,k8(
nq

uCnqu2$@12nvk2q

1Nnq#d1~«vk2q2«ck1vnq!%1$@nck1q

1Nnq#d2~«ck1q2«vk2vnq!%, ~56!

2Bvvgrec522pgvv~ t,t!k,k8(
nq

uCnqu2@nck1q

1Nnq#d~«ck1q2«vk2vnq!, ~57!

B. Interaction with phonons

This subsection is devoted to calculation of the last t
terms in Eq.~20! for the case when the carriers scatter
collective excitations of the lattice. The Hamiltonian for th
electron-phonon interaction is

Hel-phon5 (
ak,qÞ0

~cqbqaak
† aak2q1cq* bq

†aak
† aak1q!,

~58!

wherebq
† andbq are the creation and annihilation operato

for phonons with dispersionvq . It is easily seen that the
electron-phonon interaction Hamiltonian~58! closely re-
sembles that for electron-photon interaction~39! except that
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for now the interaction vertex does not compromise the f
tor sab

x since the interaction~58! does not involve interband
transitions. As soon as such a resemblance has been e
lished one can process the above written expressions~48!,
~53! and simplify them to describe the electron-phonon
teraction. Now the photon GF is replaced by the phonon
and we have for the in-scattering term

2B̂ĝin5p(
mq

ucqu2
„$@namk1Nqdam#gmd~ t,t!k2q,k8d2

3~«mk2«mk2q2vq!1@nmdk1Nqdmd#

3gam~ t,t!k2q,k8d1~«mk2«mk2q2vq!%1$@dam

2namk1Nqdam#gmd~ t,t!k1q,k8d2

3~«mk2«mk1q1vq!1@dmd2nmdk1Nqdmd#

3gam~ t,t!k1q,k8d1~«mk2«mk1q1vq!%… . ~59!

Performing summation over band indices we have, e.g.,
Bccgin,

2Bccgin52p(
q

ucqu2gcc~ t,t!k2q,k8$@nck1Nq#d~«ck

2«ck2q2vq!1@12nck1Nq#d~«ck2«ck2q

1vq!%1p(
q

ucqu2$pkgvc~ t,t!k2q,k8@d2~«vk

2«vk2q2vq!2d2~«vk2«vk2q1vq!#

1pk* gcv~ t,t!k2q,k8@d1~«vk2«vk2q2vq!

2d1~«vk2«vk2q1vq!#%. ~60!

The remaining operatorsBad can be detailed in the sam
way and can be easily obtained from Eq.~59!.

Treating the out-scattering problem in the same way, w
the SE being given by an expression similar again to the
obtained for photons, we observe that the result can be
tained by merely removing overbars from the band indice
Eq. ~53!:

2B̂ĝout52p(
mq

ucqu2
„gmd~ t,t!k,k8$@dam2namk2q

1Nqdam#d2~«mk2q2«mk1vq!1@namk1q

1Nqdam#d2~«mk1q2«mk2vq!%

1gam~ t,t!k,k8$@dmd2nmdk2q1Nqdmd#d1~«mk2q

2«mk1vq!1@nmdk1q1Nqdmd#d1~«mk1q2«mk

2vq!%…. ~61!
-

tab-

-
F

r

h
e
b-
n

Again performing summation over dummy indices one c
easily obtain operatorsBad, for instance, forBcc we have

2Bccgout522pgcc~ t,t!k,k8(q
ucqu2$@12nck2q

1Nq#d~«ck2q2«ck1vq!1@nck1q

1Nq#d~«ck1q2«ck2vq!%

2p(
q

ucqu2$gvc~ t,t!k,k8pk2q@d2~«vk2q2«vk

2vq!2d2~«vk2q2«vk1vq!#

1gcv~ t,t!k,k8pk2q* @d1~«vk2q2«vk2vq!

2d1~«vk2q2«vk1vq!#%. ~62!

One can verify that the operators have the particle num
conserving property, indeed, summing Eqs.~59! and ~61!
over k and changing integration variablek→k1q in ~59!
and adding~59! and ~61! we get

(
k

@~Bk
adgkk8! in1~Bk

adgkk8!out#50. ~63!

C. Electron-electron scattering

Although within the framework of Keldysh’s GF formal
ism taking into account the screening does not present
difficulties ~see, e.g., Refs. 7 and 16! for the sake of brevity
in this section we will restrict ourselves to the unscreen
Coulomb interaction. We will take screening into accou
only in one of our final specific expression for correlatio
function of Langevin random forces~see Sec. III B!.

The second-order terms for the SE describe collisions
tween carriers and the exchange contribution to the sca
ing processes~this contribution is smaller than the contribu
tion of the direct Coulomb scattering due to phase sp
constraints!. We evaluate here only direct scattering and t
corresponding expression for the SE reads

2 iSabk
i j ~ t,t8!52 i ~21! i 1 j(

pq
Uq

2Gabk2q
i j ~ t,t8!

3Gmnp1q
i j ~ t,t8!Gnmp

j i ~ t8,t !. ~64!

Substituting this expression into Eq.~20! and utilizing Eqs.
~10!, ~11!, ~14!, ~15!, ~12! we have for the out-scattering term
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in the right-hand side of Eq.~20!

2B̂ĝa,el52p(
pq

Uq
2$gld~ t,t!kk8d2~D«lm!@~nalk2q2dal!~nnmp1q2dnm!nmnp2nalk2qnnmp1q~nmnp2dmn!#

1gal~ t,t!kk8d1~D«ln!@~nldk2q2dld!~nnmp1q2dnm!nmnp2nldk2qnnmp1q~nmnp2dmn!#%. ~65!

We have introduced shorthand notation for the energy difference

D«ab5«ak2q1«bp1q2«bp2«ak ,

2Bccga,el522pgcc~ t,t!kk8(pq
Uq

2$d~D«cc!@~nck2q21!~ncp1q21!ncp2nck2qncp1q~ncp21!#1d~D«cv!~~nck2q21!

3~nvp1q21!nvp2nck2qnvp1q~nvp21!!%1p(
pq

Uq
2gcc~ t,t!kk8$pp1qpp* @d2~D«cv!1d1~D«cc!#1c.c.%

2p(
pq

Uq
2gcv~ t,t!kk8pk2q* $d1~D«vc!@ncp1q2ncp#1d1~D«vv!@nvp1q2nvp#%

2p(
pq

Uq
2gvc~ t,t!kk8pk2q$d2~D«vc!@ncp1q2ncp#1d2~D«vv!@nvp1q2nvp#%. ~66!
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Here the first term is conventional except that it includes a
and polarizationpk are created by the same external pert
bation, in this caseupku2 andnck ~or 12nvk) turn out to be
of the same~second! order in the perturbation.

Now let us consider the part of Eq.~20! involving the
kernel. For the kernel we have three terms@we denote them
by ~b!,~c!,~d!#, which bring about operatorsBabgb,el ,
Babgc,el andBabgd,el . Explicit expressions for these oper
tors are given in the Appendix A.

Again the sum of operators describing the electro
electron scattering has a particle conserving property, th
easily seen after simple transformations under the sum
k of the sum of corresponding operators (a,b,c,d). For in-
stance, the replacementk→k1q in the sum of Eq.~A4! ~c!
over k clearly demonstrates that this sum coincides with
sum of Eq.~A2! ~b! over k except for the sign. Hence, w
encounter the following relation:

(
k

@~Bk
adgkk8!a,el1~Bk

adgkk8!b,el1~Bk
adgkk8!c,el

1~Bk
adgkk8!d,el#50. ~67!

Collecting all operatorsB̂j and denoting the sum of them b
B̂ and also incorporating the first four terms in the right-ha
side of Eq.~20! into the definition of the operatorB̂ we have

@daa8ddd8]t1Ba8d8k
ad

~ t1t,r !#ga8bgd8~ t1tr ,tr 8!kk850,

t.0. ~68!

The operatorB describes relaxation of small deviations to
steady distribution and thus is called a relaxation opera
o
-

-
is
er

e

d

r.

As is demonstrated by this formula there is no differen
between a fluctuation deviation evolution and an evolution
deviation caused by some external perturbation. As has b
noted by Gantsevichet al. in their comprehensive review
article4 Eq. ~68! is nothing but an application of the famou
Onsager’s hypothesis to the nonequilibrium fluctuations.

Once the formula~68! is established the problem is re
duced to the seeking of the one-time two-particle correlat
function gabgd(tr ,tr 8)kk8 , which stands as an initial condi
tion to our differential equation for the time-displaced corr
lation functiongabgd(t1tr ,tr 8)kk8 . First, we observe tha
Eq. ~4! at t50 includes two terms: the first term correspon
to the unlinked diagrams~cf. Ref. 7!

Gag
11 ~ t1d8,k2 ;tk18 !Gbd

12 ~ t1d,k28 ;t,k1!

and its Fourier transform results in

d rr 8dkk8nbdk~ tr !@dag2nagk~ tr !#, ~69!

the third~the second has been included into our definition
correlation function! corresponds to the group of linked dia
grams. Adopting for the latter att50 the notation
Gabgd(t;rr 8)kk8 we write

gabgd~ tr ,tr 8!kk85d rr 8dkk8nbdk~ tr !@dag2nagk~ tr !#

1Gabgd~ t;rr 8!kk8 . ~70!

As for the initial condition, in its turn, it has to be obtaine
from an equation of motion forG, we are going to derive
such an equation in the next section.

III. EQUATION FOR ONE-TIME CORRELATION
FUNCTION

In the same way as we have derived equation for
time-displaced correlation function for the one-time corre
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tion function Gabgd(t;rr 8)kk8 we obtain the differential
equation with respect tot. Since we have already establish
the equation with respect tot ~or with respect to the firs
time variablet1t), we note that we need derivative wit
respect to the second time variablet. The left-hand form
integral equation@counterpart of Eq.~4! written in the left-
hand form# is suitable for such a differentiation and it can
easily established that the procedure leads to the same o
tor B which in this case acts on variables corresponding
the second time variable: band indicesbg and electron wave
vectork8 and spatial positionr 8. Thus, the equation of mo
tion for the one-time correlation function reads

] tGabgd~ t;rr 8!kk85Labgd~ t;rr 8!kk82@dbb8dgg8Ba8d8k
ad

~ tr !

1daa8ddd8Bb8g8k8
bg

~ tr 8!#

3Ga8b8g8d8~ t;rr 8!kk8 . ~71!

Here we have introduced the source termLabgd , which de-
scribes a creation of correlation. Thus the influence of
collisions as well as self-consistent fields on the kinetics
twofold: the electron-electron, electron-photon, electro
phonon collisions enter Eq.~71! through the operatorB,
which describes relaxation processes; on the other hand
very existence of the extra source termLabgd(t;rr 8)kk8 cre-
ating a correlation is due to the same collision events.5

The source term in our diagrammatic procedure appe
in the following way: among the diagrams representing
correlation function we observe the group with four Gree
functions linked by the kernelK. Ladder repetition of the
group constitutes the one-time correlation function. T
source term stems from

l abgd5 (
k1k2k3k4

E dt1dt2dt3dt4Gaa8
i i 8 ~ t1d8,k2 ;t1k1!

3Gd8d
m8m

~ t4k4 ;t,k1!Ka8b8g8d8
i 8k8 l 8m8

3~ t1k1 ,t2k2 ,t3k3 ,t4k4!Gg8g
l 8 l

~ t3k3 ;tk18 !

3Gbb8
kk8 ~ t1dk28 ;t2k2! ~72!

after differentiation with respect to timet, which leads to the
replacing one of the GF’s by the correspondingd function in
accordance with Eq.~7!. Since we have already written ex
pressions forK we need no extra formulas. In the next su
section we are going to process each of them separately
obtain explicit expressions for all interactions we have c
sidered so far and included in Eq.~68! and Eq.~71!.

A. Extra correlation source

Let us begin with the Coulomb interaction, we take in
account first direct Coulomb interaction and replaceK in Eq.
~72! according to Eq.~26!. Calculations are lengthy bu
straightforward and we get the following extra source ter
ra-
o

e
s
-

the

rs
e
s

e

-
nd
-

Labgd~ t;rr 8!kk85
]U~r2r 8!

]r

]nadk

]k
~nbgk82nbmk8nmgk8!

1
]U~r2r 8!

]r 8

]nbgk8
]k8

~nadk2namknmdk!.

~73!

In a single band case these terms are in exact agreement
the results of Ref. 7.

For the remaining extra source terms we get

Labgd~ t;rr 8!kk85d rr 8Labgd~ tr !kk8 , ~74!

where the factord rr 8 indicates that the scattering particles a
at the same spatial point.

For exchange Coulomb interaction we get the followi
expression for the extra source term:

Labgd~ tr !kk852 iU k82k$nagk8@nbmk82dbm#nmdk

2nagknbmk8@nmdk2dmd#namknmgk8

3@nbdk2nbdk8#%, ~75!

which has no analogy in the single band case.
Let us write some of the extra terms, describi

generation-recombination processes~explicit expressions for
these extra sources are given in Appendix B!. First we let
a5d5c andb5g5v in Eq. ~B2!, which corresponds to the
extra term entering the right-hand side of the equation
one-time correlation function̂dn̂ckdn̂vk8& and have

Lcvvc~ tr !kk852p(
n

uCnk2k8u
2d~«ck2«vk82vnk2k8!~nck

2nvk8!@~Nnk2k811!nck~nvk821!

2Nnk2k8~nck21!nvk8# ~76!

This extra term describes how two electron statesk andk8 in
different bands become occupied~and two others become
unoccupied! simultaneously as a result of emission and a
sorption of photons with interband frequencyvnk2k8 . This
expression reveals the important property of the extra sou
namely, the interband fluctuation source vanishes in the t
mal equilibrium. Indeed, in this case the expression in
square brackets in Eq.~76! vanishes provided that the pho
tons are described by the Bose distribution functionNnk2k8
with vnk2k85«ck2«vk8 . Physically this means that in thi
case the mean flow into the statesk andk8 in different bands
is equal to the mean flow out of these states.

Let us now obtain the extra source for^d p̂kd p̂k8
† &, letting

a5g5c andb5d5v in Eq. ~B2! we get

Lcvcv~ tr !kk85p(
n

uCnk2k8u
2pk8

* pk$d1~«ck2«vk8

2vnk2k8!@12nvk81Nnk2k8#1d2~«ck

2«vk82vnk2k8 !@nck1Nnk2k8#1d1~«ck8!

2«vk2vnk82k!@nck81Nnk82k#1d2~«ck8

2«vk2vnk82k!@12nvk1Nnk82k#%. ~77!
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Actual calculation of the extra sources for the electro
phonon and electron-electron scattering mechanisms is
sented in Appendix B. Since the extra correlation is e
pressed only through the kernel@see Eq.~72!# we again
separate the electron-electron scattering terms as we did
fore ~see Appendix A!.

Let us write the same extra sources as above for
electron-electron scattering; for the sake of brevity here
restrict ourselves to the case whenpk→0 and discard all
terms that includepk . This approximation corresponds to th
quasiequilibrium theory, where one regardspk as the linear
response to a weak perturbationdcvkE0 and neglects all sec
ond and higher terms ofpk . Moreover, carriers within the
bands are described by a nonequilibrium Fermi distribut
nak

F with chemical potentialsma to be self-consistently ob
tained from normalization conditionNa5(knak

F , and num-
ber of carriers withina bandNa is to be obtained from the
summed overk equation for density matrix componentnak .
In the mentioned approximation we obtain as a contributi
which stems from the first term@see Eq.~B4! in Appendix
B#,

Lcvvc~ tr !kk852p~nck1nvk821!(
q

Uq
2d~«ck1q1«vk82q

2«vk82«ck!@nck~nck1q21!~nvk82q21!nvk8

2~nck21!nck1qnvk82q~nvk821!# ~78!

for Lcvvc and

Lcvcv~ tr !kk850. ~79!

Performing summation over band indices in Eq.~B5! and
neglecting expressions involvingpk we get the following
contribution from the second term:

Lcvvc~ tr !kk852p~nck2nvk8!(q
Uq

2d~«vk82q1«ck2«vk8

2«ck2q!@nvk8~12nck!nck2q~12nvk82q!

2nck~12nvk8!~12nck2q!nvk82q# ~80!

and for Lcvcv we again obtain zero. The last term@see Eq.
~B6! in Appendix B# does not contribute in the accepte
approximation to the sourceLcvvc , while the rather lengthy
explicit expression forLcvcv can be easily obtained from Eq
~B6! in Appendix B.

The extra correlation created by collisions was called
Ref. 4 a kinetic correlation, since the quite important pro
erty of the extra source termL in the single-band case is tha
it vanishes in the thermal equilibrium state. It can be ea
verified that in this case the in and out terms cancel e
other in the expressions forL. This property of the extra
terms remains valid whenever one deals with sources c
cerning fluctuations of occupation numbers, as follows fr
our expressions even for fluctuations of occupation numb
in different bands. We wish to note that the property does
hold for fluctuations of the nondiagonal in band indices d
sity matrix component as is quite evident from Eq.~B6!; this
is not strange since the nondiagonal components descri
mixed electron-hole state.
-
re-
-

e-

e
e

n

,

n
-

y
h

n-

rs
ot
-

a

Thus we have established quantum kinetic equations
fluctuations slowly varying in space and time, closely fo
lowing the Gantsevich, Gurevich, and Katilius approach. T
time-displaced correlation functions obey Eq.~68!, the initial
condition to the equation being determined by Eq.~71!. As
for the density matrix components that enter our formul
they, in their turn, should be determined from the quant
kinetic equations they satisfy. Needless to say, they sho
contain all the interactions involved in the fluctuations kin
ics and describe density matrix components slowly vary
in space and time. We note that such equations can be
stored from our fluctuations kinetic equations~68! since our
equations are, as one can see, a linearized version of
quantum kinetic equations.

The structure of Eq.~68! suggests that it can be inte
preted within a concept of fictitious Langevin random force
Indeed, one can write the generalized Langevin equation
the fluctuations of density matrix by adding the matrix
random Langevin forces:

@daa8ddd8] t1Ba8d8k
ad

~ tr !#dna8d8k~ tr !5Fadk~ tr !. ~81!

This equation can be calledBloch-Langevin equationsor lin-
earized Bloch equation with fluctuations. The popularity
Langevin approach relies on the fact that within this a
proach one can deal with more simple and physically tra
parent linearized equations for the density matrix instead
rather complicated method of moments’ equations we h
derived, provided, of course, that the correlation functions
the corresponding random forces are known.

In the next subsection we will give explicit expressio
for the correlation functions of the random Langevin forc
for the fluctuations near a nonequilibrium but stationary a
spatially inhomogeneous case. Generally speaking,
Langevin forces are fictitious with rather little physic
meaning, whereas their correlation functions enter exp
sions determining fluctuations of physical observables.

B. Matrix of Langevin random forces

For fluctuations from a stationary state our correlati
function gabgd(t1t,r ;tr 8)kk8 depends only on the time dif
ferencet. We define the Fourier transform by

gabgd~v!kk85E dteivtgabgd~ t1t,r ;tr 8!kk8 . ~82!

It is convenient to express the previous transform in terms
half Fourier transformgv

†

gabgd~v!kk85gabgd
1 ~v!kk81gabgd

† ~2v!kk8 , ~83!

where we introduced the half transforms by

gabgd
† ~v!kk85E

0

1`

dteivtgabgd~ t1t,r ;tr 8!kk8 ~84!

and

gabgd
† ~2v!kk85E

0

1`

dte2 ivtgabgd~ t,r ;t1t,r 8!kk8 .

~85!
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The half Fourier transformg†(v) can be obtained readily
from Eq. ~68! andg†(2v) from the similar equation

@dbb8dgg8]t1Bb8g8k8
bg

~r 8!#gab8g8d~ tr ,t1tr 8!kk8

5d~t!gabgd~r ,r 8!kk8 . ~86!

We get

@2 ivdaa8ddd81Ba8d8k
ad

~r !#ga8bgd8
†

~v!kk85gabgd~rr 8!kk8 ,

~87!

@ ivdbb8dgg81Bb8g8k8
bg

~r 8!#gab8g8d
†

~2v!kk8

5gabgd~rr 8!kk8 . ~88!

On the other hand using Eq.~81! and the similar equation fo
dnb8g8k8 and multiplying them and taking an average w
have

@2 ivdaa8ddd81Ba8d8k
ad

~r !#@ ivdbb8dgg8

1Bb8g8k8
bg

~r 8!#ga8b8g8d8~v!kk8

5^Fadk~r !Fbgk8~r 8!&v . ~89!

Multiplying Eq. ~87! by the operator that stands in Eq.~88!
and vice versa and adding them we get the white spec
density of the random forces@we read Eq.~89! from the right
to the left#

^Fadk~r !Fbgk8~r 8!&v

5Ba8d8k
ad

~r !d rr 8dkk8nbd8k~da8g2na8gk!

1Bb8g8k8
bg

~r 8!d rr 8dkk8nb8dk~dag82nag8k!

1Labgd~rr 8!kk8 , ~90!

where we have used Eqs.~70!, ~71!. First of all, using the
explicit expressions for the operatorB and extra sourceL we
notice that the self-consistent fluctuations’ contribution
this correlation function vanishes as does the exchange
tribution from operatorBex in Eq. ~28! and from the sourceL
in Eq. ~75!.

It can be easily shown by giving band indices spec
values and inserting corresponding relaxation operators
extra sources from the above that there are also non
cross-correlation functions of Langevin forces related to d
ferent bandŝ FcckFvvk8&. Although it is rather obvious we
wish here to emphasize that if one includes, say, interb
relaxation in the quantum kinetic equations for occupat
numbers~or/and in the kinetic equation for concentration
carriers!, to be self-consistent the above-mentioned cro
correlation functions have to be taken into account. Mo
over, the very existence of such a correlation function
inevitable since it is closely related to the requirement of
al

n-

nd
ro
-

d
n

s-
-
s
e

charge neutrality. For instance, for spatially homogene
fluctuations the following equality must be fulfilled

(
k8

^FcckFvvk8&v52(
k8

^FcckFcck8&v . ~91!

Let us calculate the sum overk of the left-hand side of this
equation in the quasiequilibrium approximation: we assu
that upku2 can be neglected as compared withnik(12nik).
From Eq.~90! and taking into account properties of rela
ation operators and the explicit form of operators in E
~49!, ~52!,~54!, ~57!, and~76! we get after some algebra

(
kk8

^FcckFvvk8&v52d rr 82p(
kqn

uCnqu2d~«ck1q2«vk2vnq!

3$~11Nnq!nck1q~12nvk!

1Nnq~12nck1q!nvk%. ~92!

Therefore the sum is expressed through the interband re
ation and generation operators that enter the right-hand
of the equation for a macroscopic variable, namely, car
concentration. Here we get a sum of these operators w
the difference of these operators enters the equation for
rier concentration, thus confirming the general concept t
the correlation functions are expressed through the sum
corresponding gain and loss terms in the kinetic equat
Note the importance of the extra term in Eq.~76!; it ensures
the requirement of charge neutrality, Eq.~91!.

Let us write explicit expressions in the same approxim
tion as before for the sum of correlation functions

d rr 8Skk8~v!5^FvckFcvk81FcvkFvck8&v ,

which is usually of importance in noise investigations~cf.
Refs. 11,13!. According to Eq.~90! and taking into accoun
explicit expressions for the relaxation operatorsB we get the
corresponding contributions of all interactions into the su
of correlation functions. The electron-phonon interaction w
not be taken into account, the screening of the Coulo
potential in the electron-electron interaction will be tak
properly into account in the relaxation operator but not in
extra term Eq.~B6! since the latter has no singularityk
Þk8. First of all let us write the generation-recombinatio
contribution

Skk8~v!g2r5dkk8Wk2p(
nq

uCnqu2$~nck1q1Nnq!d~«ck1q

2«vk2vnq!1~12nvk2q1Nnq!

3d~«ck2«vk2q1vnq!%. ~93!

whereWk stands for

Wk5nck~12nvk!1nvk~12nck!.

The generation-recombination contribution coincides w
the results of Haug and Haken,11 particularly if one replaces
the damping coefficientgk for the nondiagonal density ma
trix component, phenomenologically introduced in Ref.
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by our microscopical expression.
The external optical field yields the following nontrivia

contribution:

Skk8~v! f5dkk82~nck2nvk!$ i ~E0dcvk!* pkv0
1c.c.%

~94!
xt
o

an
ly
in
o

em
in contrast with the incorrectly obtained result of Refs.
and 11.

The electron-electron contribution includes three term
two of them are due to the relaxation~out and in terms,
correspondingly! and the last one represents the extra te
For the first term we have
d

Skk8~v!el-el,out5dkk8iWk(
q

H S 1

2
2nck2qD @UR~D«ckk2q!2UA~D«ckk2q!#2

1

2
UK~D«ckk2q!1~c→v !J , ~95!

whereD«akk85«ak2«ak8 , the retardedUR, advancedUA and KeldyshUK Coulomb potentials in the most widely use
random-phase approximation are

UR~v!5U
q
«q ~v! , UA~v!5U

q
«q ~v!
* , UK~v!5

Uq
2

u«q~v!u2 Pq
K~v! ,

«q~v!512UqPq
R~v!, Pq

R~v!5(
ap

nak2q2nak

v2D«akk2q1 i0
,

Pq
K~v!522ip(

abp
d~v2D«bkk2q!@nabp~nbap2q2dab!1~nabp2dab!nbap2q# .

The second term can be written in the form

Skk8~v!el-el,in52 iWkH S 1

2
2nck8D @UR~D«ckk8!2Uk2k8#2S 1

2
2nvk8D @UR~2D«vkk8!2Uk2k8#J 1 iWk8H S 1

2
2nckD

3@UR~D«ckk8!2Uk2k8#2S 1

2
2nvkD @UR~2D«vkk8!2Uk2k8#J 1

1

2
@Wk1Wk8#E dj

2p
UK~j!

3F 1

j2D«ckk82 i0
1

1

j1D«vkk82 i0G . ~96!

The last term can be obtained from Eq.~B6! and is equal to

Skk8~v!el-el,extra52pUk2k8
2

~nvk82nvk!(
ap

d2~«ck82«ck1«ap2k82«ap2k!@nck~nck821!nap2k~nap2k821!

2nck8~nck21!nap2k8~nap2k21!#12pUk2k8
2

~nck82nck!(
ap

d1~«vk82«vk1«ap2k82«ap2k!

3@nvk~nvk821!nap2k~nap2k821!2nvk8~nvk21!nap2k8~nap2k21!# . ~97!
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Here we wish to emphasize that this term describes e
correlation created by collisions in the correlation function
the nondiagonal~interband! Langevin forcesFcv ,Fvc even
though the Coulomb interaction cannot produce interb
transitions. The real part of this extra term is nontrivial on
in nonequilibrium situations and vanishes in the thermal
traband equilibrium. Therefore, our result does not,
course, violate the famous fluctuation-dissipation theor
which is valid only in the thermal equilibrium.
ra
f

d

-
f
,

IV. CONCLUSION

In the present paper a theory of fluctuations around a n
equilibrium state slowly varying in space and time ma
tained by interband optical and driving electric field in sem
conductors is presented. The presentation is self-conta
and is based on the moment method approach. We have
the Keldysh Green’s-function formalism in the course
first-principles derivation of quantum kinetic equations f
fluctuations in the case of two band semiconductors. T
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12 896 PRB 58M. I. MURADOV
fluctuation kinetic equations include both equations for ti
displaced ~two-time! correlation functions of occupatio
numbers in two bands and for correlation functions of
mixed interband state. These equations manifest themse
as a mathematical expression of the famous Onsager hyp
esis, stating that a time evolution of fluctuation deviati
from the physical point of view coincides with the evolutio
of a small deviation caused by some external perturbat
The explicit expressions for relaxation operators that en
the equation for the two-time correlation function are giv
and their properties are discussed. A one-time correla
function enters as an initial condition to the equation for
two-time correlation function. In its turn, the equation for t
one-time correlation function, aside from the relaxation o
erators, includes extra source terms. Explicit microscop
expressions for the extra source terms for the interb
generation-recombination processes, the electron-pho
and electron-electron interactions are given. These two e
tions, i.e., the equation for the time displaced matrix of c
relation functions~68! and the equation for one-time matr
of these correlation functions~71! exhaust the theory of fluc
tuations near the nonequilibrium state in a semiconducto

The structure of the kinetic equation for the two-time co
relation function brings about the interpretation of this eq
tion within the notion of Langevin random forces. Thus, ad
ing the random forces to the linearized kinetic equation
the density matrix we arrive at the Bloch-Langevin equat
~81!. The Langevin approach is very attractive due to
physical transparency and has been extensively used in m
problems of physics. That is why we show how the corre
tion functions~closely related to the ‘‘diffusion coefficients’
in Lax’s terminology! of the Langevin forces can be obtaine
within our approach. Therefore, we give microscopical e
pressions~90! for the matrix of the Langevin random force

We demonstrated that even though the Coulomb inte
tion cannot cause band-to-band transitions it can in a n
equilibrium state contribute to the correlation functions
the Langevin forces. Since these correlation functions de
mine the phase and intensity noise in semiconductor la
we show that the Coulomb scattering yields the nonequi
rium contribution to the linewidth and intensity of the las
radiation.

Note that through the relaxation operators the exter
driving electric field]w/]r and interband optical field ex
plicitly enter expressions for correlation functions of t
Langevin forces. On the other hand, it is rather obvious t
the fluctuation source, the very existence of which is due
random collision events, should not include external de
ministic fields. It is easy to verify that this requirement c
be satisfied if we eliminate the field terms making use
kinetic equations for the density matrix so that the final e
pressions for the source will contain only the density ma
components and the transition probabilities.

The general results concerning properties of the relaxa
operators and correlation functions of the Langevin for
would prove to be useful as a checkup tool when one tre
noise problems in a phenomenological way. Needless to
in the absence of external optical field our results desc
fluctuations in two bands~electron and hole gases! interact-
ing through the self-consistent Coulomb field as well as d
to recombination-generation processes.
e

e
es
th-

n.
r

n
e

-
al
d
n,
a-
-

-
-
-
r
n
s
ny
-

-

c-
n-
f
r-
rs
-

al

at
o
r-

f
-
x

n
s
ts
y,
e

e

Finally, let us note another field where our results can
applied: they can be employed in quantum electronics
order to evaluate the noise sources in diverse active semi
ductor devices. In such investigations only the following co
relation functions of the Langevin forces^FcvkFvck8& and
^FckFck8& are sufficient, usually they are incorporated in
correlation functions of Langevin forces entering the rig
hand side of the field equation and equation for the conc
tration of carriers. It is nearly obvious that, in general, in t
course of solving the density matrix equation with corr
sponding Langevin forces the rest correlation functions a
can be of importance.
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APPENDIX A: RELAXATION OPERATORS

To find operators describing electron-electron interact
we need analytical expressions for the kernelK; for the first
~b! term we obtain

Kabgd
iklm ~ t1k,t2p,t3p,t4k!

5~21! i 1md ikdmld~ t12t2!d~ t32t4!

3(
q

Uq
2Gadk1q

im ~ t1 ,t3!Gbgp2q
im ~ t1 ,t3!. ~A1!

Substitution of this expression into the last term of Eq.~20!
and calculation gives

2B̂ĝb,el5p(
pq

Uq
2$d1~D«ln!@~nalk2dal!nldk2qnnmp1q

2nalk~nldk2q2dld!~nnmp1q2dnm!#

1d2~D«lm!@nalk2q~nldk2dld!nnmp1q

2nldk~nalk2q2dal!~nnmp1q

2dnm!#%gmn~ t,t!pk8 . ~A2!

Now for the next~c! term we have
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Kabgd
iklm ~ t1k,t2p,t3p,t4k!

5~21! i 1md i l dmkd~ t12t3!d~ t22t4!

3(
q

Uq
2Gadk2q

lm ~ t1 ,t2!Gbgp2q
ml ~ t2 ,t1! ~A3!

and further calculations give

2B̂ĝc,el5p(
pq

Uq
2$d1~D«lm!@~nalk2dal!nldk2q~nnmp

2dnm!2nalk~nldk2q2dld!nnmp#1d2~D«ln!

3@nalk2q~nnmp2dnm!~nldk2dld!2~nalk2q

2dal!nnmpnldk#%gmn~ t,t!p1q,k8 . ~A4!

For the last~d! term originated fromK we get the follow-
ing expression:
Kabgd
iklm ~ t1k,t2p,t3p,t4k!

5~21! i 1kd i l dmkd~ t12t3!d~ t22t4!

3dagdbdUk2p
2 (

mns
Gmns1k2p

ik ~ t1 ,t2!Gnms
ki ~ t2 ,t1!.

~A5!

Finally, substitution of this expression into Eq.~20! yields

2B̂ĝd,el5p(
pq

Uq
2$d1~D«lm!gld~ t,t!k2q,k8@~nalk

2dal!nmnp1q~nnmp2dnm!2nalk~nmnp1q

2dmn!nnmp#

1d2~D«ln!gal~ t,t!k2q,k8@nmnp1q~nnmp2dnm!

3~nldk2dld!2~nmnp1q2dmn!nnmpnldk#%. ~A6!
s the
APPENDIX B: EXTRA SOURCE TERMS

Inserting explicit expression~43! for K describing the electron-photon interaction of the lowest order we get for Eq.~72!

l abgd
iklm 5~21! i 81k8E dt1dt2Gamk

i i 8 ~ t1d8,t1!Gmdk
k8m~ t2 ;t !iD k2k8

i 8k8 ~ t1 ,t2!

3Gm̄gk8
i 8 l

~ t1 ,t !Gbm̄k8
kk8 ~ t1d,t2!. ~B1!

Taking derivative with respect tot and calculating thel 1112component we have for the recombination-generation processe
following source term:

Labgd~ tr !kk85p(
n

uCnk2k8u
2@~nāgk82dāg!$d2~«āk82«ak1vnk2k8!@Nnk2k8~nadk2dad!nbāk82~Nnk2k811!nadk~nbāk8

2dbā!#1d2~«āk82«ak2vnk82k!@~Nnk82k11!~nadk2dad!nbāk82Nnk82knadk~nbāk82dbā!#%

1nbd̄k8$d2~«dk2«d̄k82vnk2k8!@Nnk2k8~nadk2dad!nd̄gk82~Nnk2k811!nadk~nd̄gk82dd̄g!#1d2~«dk2«d̄k8

1vnk82k!@~Nnk82k11!~nadk2dad!nd̄gk82Nnk82knadk~nd̄gk82dd̄g!#%1~naḡk2daḡ!$d2~«gk82«ḡk

1vnk2k8!@~Nnk2k811!nḡdk~nbgk82dbg!2Nnk2k8~nḡdk2dḡd!nbgk8#1d2~«gk82«ḡk2vnk82k!

3@Nnk82knḡdk~nbgk82dbg!2~Nnk82k11!~nḡdk2dḡd!nbgk8#%1nb̄dk$d2~«b̄k2«bk82vnk2k8!@~Nnk2k8

11!nab̄k~nbgk82dbg!2Nnk2k8~nab̄k2dab̄!nbgk8#1d2~«b̄k2«bk81vnk82k!@Nnk82knab̄k~nbgk82dbg!

2~Nnk82k11!~nab̄k2dab̄!nbgk8#%#. ~B2!

For the terms that describe extra source for the electron-phonon scattering we have

Labgd~ tr !kk85puck2k8u
2$~nagk2nagk8!†d2~«mk82«mk1vk2k8!@Nk2k8nbmk8~dmd2nmdk!2~Nk2k811!nmdk~dbm2nbmk8!#

1d2~«mk82«mk2vk82k!@~Nk82k11!nbmk8~dmd2nmdk!2Nk82knmdk~dbm2nbmk8!#‡1~nbdk

2nbdk8!†d1~«mk82«mk1vk2k8!@Nk2k8nmgk8~dam2namk!2~Nk2k811!namk~dmg2nmgk8!#1d1~«mk82«mk

2vk82k!@~Nk82k11!nmgk8~dam2namk!2Nk82knamk~dmg2nmgk8!#‡%. ~B3!

For the electron-electron scattering we treat corresponding terms separately, for the first term~see Appendix A! we get
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Labgd~ tr !kk85p(
q

Uq
2d2~«nk1q1«mk82q2«mk82«nk!$nblk8@nndk~nank1q2dan!~nlmk82q2dlm!nmgk82~nndk

2dnd!nank1qnlmk82q~nmgk82dmg!#1~nalk2dal!@nndk~nlnk1q2dln!~nbmk82q2dbm!nmgk82~nndk

2dnd!nlnk1qnbmk82q~nmgk82dmg!#%2p(
q

Uq
2d1~«nk1q1«mk82q2«mk82«nk!$nldk@~nank

2dan!nnlk1qnmgk82q~nbmk82dbm!2nank~nnlk1q2dnl!~nmgk82q2dmg!nbmk8#1~nlgk82dlg!@~nank

2dan!nndk1qnmlk82q~nbmk82dbm!2nank~nndk1q2dnd!~nmlk82q2dml!nbmk8#%, ~B4!

which is the only one to keep in the nondegenerate and single band case for it would be the second order in oc
numbers while the rest at least the third. Treating the second term similarly we get the following expression for the

Labgd~ tr !kk85p(
q

Uq
2d2~«mk82q1«nk2«mk82«nk2q!$nmgk8~dan2nank!@nldknnlk2q~dbm2nbmk82q!2nblk8nndk2q~dlg

2nlgk82q!#2nank~dmg2nmgk8!@nldk~dnl2nnlk2q!nbmk82q2nblk8~dnd2nndk2q!nlgk82q#%

2p(
q

Uq
2d1~«nk1«mk82q2«mk82«nk2q!$nndk~dbm2nbmk8!@~dlg2nlgk8!~dan2nank2q!nmlk82q2~dal

2nalk!~dln2nlnk2q!nmgk82q#2nbmk8~dnd2nndk!@~dlg2nlgk8!nank2q~dml2nmlk82q!2~dal

2nalk!nlnk2q~dmg2nmgk82q!#%. ~B5!

The remaining term~which corresponds to the diagram with the closed fermion loop! is equal to

Labgd~ tr !kk85pUk2k8
2 (

p
d2~«mp2k81«nk82«nk2«mp2k!$~nagk82nagk!@nndk~nlmp2k82dlm!nmlp2k~nbnk82dbn!

2~nndk2dnd!nlmp2k8~nmlp2k2dml!nbnk8#%2pUk2k8
2 (

p
d1~«mp2k81«nk82«nk2«mp2k!$~nbdk82nbdk!

3@~nank2dan!nmlp2k8~nlmp2k2dlm!nngk82nank~nmlp2k82dml!nlmp2k~nngk82dng!#%. ~B6!
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