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Theory of fluctuations around a nonequilibrium state maintained by interband optical
and driving electric field in semiconductors
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Theory of fluctuations around a nonequilibrium state slowly varying in space and time in two-band semi-
conductors is developed. The derivation of kinetic equations for fluctuations within the framework of the
Keldysh formalism is given. The system is supposed to be under the action of a classic optical and external
driving electric field, which can displace the system substantially from equilibrium with a thermal bath, while
the carriers can interact also with phonons, with one another via the Coulomb potential, and with the thermal
photons causing interband recombination and generation. Matrix of correlation functions for Langevin random
forces is obtained. It is shown that in the nonequilibrium state there is an extra correlation contribution of
Coulomb and phonon scattering to the correlation functions of the Langevin fp8353-182008)02939-7

I. INTRODUCTION. hand, Gantseviclet al's usual concern was a single band
case.

Investigation of fluctuations around a nonequilibrium sta- Recently a substantial number of works have been de-
tionary or slowly varying state is important in many areas ofvoted to derivation of quantum kinetic equations describing
physics. The equations for the time-displaced as well as onatonequilibrium optical properties of semiconductors. To
time correlation functions were obtained by L'aX.It has  mention only a few, let us not&’ where such equations
been assumed that the basic stochastic process is a oneere derived by different approaches in the form of effective
particle transition probability and hence, the explicit resultsBloch equations for the density matrix in the case of two-
for the case of one-particle collisions have been obtained. band semiconductors. While quantum kinetic theory describ-

Fluctuations around a nonequilibrium stationary state taking the nonequilibrium state in semiconductors can be re-
ing into account the two-particle collisions were consideredgarded as more or less developed, to our knowledge, a theory
theoretically by Gantsevich, Gurevich, Katilftssand Kogan  of fluctuations around such a nonequilibrium state is still not
and Shu'maf in the framework of nondegenerate Boltz- available. In this paper we intend to fill this gap. One of the
mann statistics. Generalizations to the degenerate Fermi stproblems in quantum electronics attracting the most attention
tistics were obtained in Ref. 7. The many-particle dynamicaldis investigation of noise in various semiconductor optical
screening effect on the collisions between charged particlesmplifiers and generators. For instance, the noise power gen-
was included in the fluctuation theory in Refs. 7 and 8. Theerated by spontaneous emission in optical amplifiers requires
generation-recombination effects in the case of a single bana correlation function of random Langevin forces that enters
and trapping centers were taken into account in RéBd@t-  the right-hand side of the quantum kinetic equation for a
zmann statistios nondiagonal in the band indices density matrix

Although Lax’s method historically precedes the Gant-component®!**3The same correlation function determines
sevich et al. approach(method of momenjsand has been the spectral linewidth of a semiconductor injection la<éf.
extensively employed by many authors in noise phenomena Thus our purpose is to give an adequate description of
investigations%* we will closely follow the latter. In our fluctuation phenomena for the case of two-band semiconduc-
opinion, it is reasonable to use the Gantseétlal. method tors near a nonequilibrium state slowly varying in space and
not only because it gives deep insight into fluctuation phetime. We present a first-principles derivation of the equations
nomena but also because the main equations of this approaghverning evolution of fluctuations. The essential difference
can be readily obtained in the framework of the Keldyshbetween the present treatment and that of Refs. 10 and 11
formalism? which is a great convenience in calculations consists in the following main aspects: first, our treatment
while Lax’s method is less formal and requires some art andhaturally leads to the so-called extra correlation terms in the
intuition. correlation functions, which are n@t correlated ink space

Although Lax’s formulation includes multilevel atomic and arise due to the simultaneous appearance of two electron
transitions the results turn out to be far from being easilystatesk andk’ (and the disappearance of two other staes
applied in the investigation of noise phenomena in semicona result of many-body interactions while the approach of
ductor amplifiers and lasers. That is why, to our mind, someRefs. 10 and 11 has not taken into account these extra cor-
authors prefer generalization of results of the theory of flucrelation sources.
tuations near the equilibrium stafie particular, fluctuation- The other main difference is due to a new dynamical
dissipation theorem or Callen-Welton relatjon their study  variable—nondiagonal over band indices—density matrix
of intensity and phase noise in semiconductor optical amplicomponent involved also in the scattering processes again in
fiers and laserésee, e.g., Refs. 10, 11, and)1®n the other contrast to Refs. 10 and 11 where the equation for the non-
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diagonal component has been introduced phenomenologsf two independent time variablésand 7. It is easily seen

cally. that at the fixed Keldysh indicd& for anyim components
The last difference exists due to our investigation of thethe following identity holds:

nonequilibrium state slowly varying in space. Therefore, the

present approach being more general than the previous ones iklm K

includes a theory of fluctuations in a single-band dagsich Fapyo(tF 0k = Gapys(t+ bk, 70, (3)

enables one to describe current npiss well as optical . . . ) )
band-to-band transitions on the equal footing. This correlation function obeys an integral equation of the

In Sec. Il we introduce a correlation function matrix and ladder type analogous to the pair Green's functi@F),
obtain an equation of motion for this matrix. We considerWhich can be represented diagrammatically in the usual way
quasiclassical fluctuations and discuss underlying approxis€e, e.9., Ref.)7i.e., we represent it through the Keldysh
mations. The three subsections are devoted to interbarfdreen’s functionsG" and the kemneK. As is easily seen
recombination-generation processes, electron-phonon scdtom the diagrammatic representation one can write the
tering, and electron-electron scattering. For all the interacequation forglsy’; in the right-hand or the left-hand form.
tions explicit expressions for a relaxation operator are deThe equation in the right-hand form analytically reads
rived that take into account the particle-particle scattering as
well as the scattering on polarization. Section Il gives aikim , . T
derivation of the diﬁe?entiarequation, which determ?nes angaﬁy&(t+7+5 kgt oke itk it nke)
initial condition (one-time matrix of correlation functionsf
the equation of motion derived in Sec. Il for two-time corre-
lation functions. In the first subsection we give expressions im ) _ Wl s
for a source of fluctuations that enter the right-hand side of —Gus(t+ 7+ 6" k_t+ 7.k, )G, (t+6,kZ jtk)
the equation for one-time correlation functions. Here we use
the concept of Langevin random forces and the last subsec-  + >, f dt,dt,dtsdt,G
tion is devoted to a derivation of correlation functions for Kikaksky
these forces. The last section contains concluding remarks.

=Gl (t+7+8 Ktk )GENt+ 8.k’ ;t+7k,)

X (t+ 7+ 8" K_ itk G M(tgkyit+7,ky)

Il. EQUATION FOR MATRIX OF CORRELATION iK1 m! 7 kIk’
<K' (t1Ka,toKa teKs, taka) ), 5 s

FUNCTIONS a'B'y" o

Fluctuations are described by the time-displaced two- X (tgka;t+ 0,k Stk jtoky). 4
particle correlation function in the mixed or Wigner repre-

) Here and henceforth we employ the Einstein summation con-
sentation

vention.
, N First of all we identify the group of diagrams constituting
gf/'gn;ﬁ(tJr r,kr;t,k’r’)zE e 'ar—tar gg‘/'gmyﬁ a product of two unlinked Green'’s functions, taking into ac-
qq’ count interaction to all orders. Since this group has nothing
X (t+ 7,k stk! stk st 7k, to do with correlation, we exclude this group from our defi-
nition of the correlation function, i.e., we consider equations
1) for
where aByé are band indicesq for the conduction band ikim e ikim L,
andv for valence bandandikim are indices in the Keldysh Gas (L+ 7.0 )i =apys(t+ 7.0 i
space(in our notationi,k,|,m=1,2). Here shorthand nota- +G™ 1+ 7068 (tr 5
tion k. stands for aok(t+ TGy (L1, (5)
which can be rewritten in the forrthis will become appar-

.9 . ent latey
ki=k+3; ko=k-3.
We closely follow Ref. 7 and defingik}smg as gl (t+ 705t e = ([Naae(t+ 7,1 =Ny (t+7,1)]
. aBy
GHIM (4 7+ 8 Ky st 8Kyt Kait+ 7ky) XMy (L1 =Ny (LED])- (6)

In the following we usually omit the redundant Keldykh
=(Tauk, (t+ 7+ 8" )iag,(t+ 5)ka;k3(t)laj$k4(t+ Tm)»  and bandBy indices if there is no likelihood of confusion.
For nonstationary problems it is convenient to convert our
5,6’ —0, (2 integral equations into differential ones with respect to the

) o time displacement. Taking the time derivative of Eq4),
where () denotes taking the statistical averagedenotes anq making use of the right-hand and left-haiod conju-
ordering over the Keldysh contous,, and al, are the gate Dyson equations for the GF
Heisenberg annihilation and creation operators for an elec-
tron in the bandr with a definite wave vectok. iGl(kt,k't")=(Ta (t);al ("))

. . . . . aB ’ ak gk’ j
In this section we derive the equation of motion for the

correlation functiorgig'fl';“;g(t,r)kk, regarding it as a function in the differential form
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i9,G4(tp,t'p’)
= 8,585 (— 1) 18t —t") Sy + £ (P) Gl 4t P)

+<—1>i+1; f dt,3"' (tp,kty)

X Gl y(tk,t'p") (7)

9,9 (t+ 7+ 8 k_;t+ 8,k stk it+7,ky)

and an analogous equation fatr/GEB(tp,t’p’), where we
have introduced the energy matrix

ggﬂ(k)=5aﬁ5ijga(k); a={c,v}, (8

we obtain

=i[es(ks)—ea(k)]gay(t+ 7+ ko it+ 8,k tk) jt+ 7k, )

i 3| dudidtl(—1)'G Mtgksit+ 7k Ky ),

kikoks

aﬁ’ ,y/[sr

X (t+ 7+ 68" K- tiKy 1Ko, taka) @) (toko t+ 8.k iKY stiky) —(—1)™G]

i"k'l'm

X (t+ T+ 5, ,k, ;tlkl)Ka"B"y’é(tlkl ,t2k2 ,t3k3 ,t+ Tk+)

X g (takait+ 8.k itk itoky)] +% f dt'[i(—1)'S (t+7+ 8" k_;t'p)

X gt pit+8,k" k) st r k) —i(—1)Mg!t

X(t+ 746" k_;t+8,k! ;tk! ' p) SNt pit+ 7,k )] (9)

Note that we have included the external driving scalar potenwhere we have used the relation betw& andG?* at the

tial ¢(r) into the definition of the self-enerdE) — iEEB as

coincident instants and introduced the density matrix in the

well as the external classical optical field causing interbandnixed representation by

transitions.
Equation(9) is formally exact, as is Eq4). The reason

_ —i + X
for the form of this equation is that the Feynman rules in the naﬁp(t'r)_f dxe Ipx< ‘/’B(t'r_ 5| ¥a

Keldysh space for calculating the self-enefyynd kerneK

i X
+ -
Yr 2

)

exist. Since the physical quantities such as densities and par- Neep(t,1)=Nep(t,r),  Neyp(t,r)=pp(t,r),

ticle currents(including interband currentsshould be ex-

— n* —
pressed in terms of the equal-time, one-particle density ma- Nyep(t 1) =Pp (61, Nyp(L 1) =Nyp(L 1), (13

trix, Eq. (9) is useless until it is closed.

we have

Let us note that in the course of evaluation of integrals we

encounter the correlation functions with more complicated

v 12 1y —i ie'gk(t’ft)
dependence on the time variable thglffy(t+ 7,r;t,r" ). ; Cagprtt)=inggltrje ’ (14
they involve the annihilation and creation operators at differ- 1 o ) o (1)
ent instants. The latter can be expressed through the former Gapp(rtit’)=ingpy(t’,r)eteaktt =, (15

by the simple relation, they differ from the former only by
the exponential factor, corresponding to the free motion:

gian:s(tlpyt"‘ ok, tk,t,p)

[g(ta e T, 50 (10
| gibt e, 50, (11)

Later we will need also formulas relating the GF to the den

sity matrix. We make here an assumption similar to that we

have just made. Since one-time Green'’s functions are

GlZ

. (rt,t)=G*2

i . 21
(rt,)=in,g(t,r); G aBp

aﬁp (rtlt)_laaﬁ!

12

The notations we have just introduced are commonly used:
N,y stands for the distribution function within the=c,v
bands whilep, describes a mixed electron-hole state and is
closely related to the macroscopic polarization.

We will consider quasiclassical fluctuations; i.e., in what
follows we will transform Eq.(9) to the Wigner representa-
tion and use the gradient approximation. Spatigldrd time
1l/w scales of quasiclassical fluctuations have to be large as
compared with the de Broglie wavelength and the time of

formation of the quantum state £}/ having momentunp
and kinetic energy,:

w
—<1, £_<1 (16
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Needless to say, in the course of derivation of kinetic equaExpanding the exponential in E(L8) and keeping the first

tions one has to impose constraints similar to @®); e.g., two terms one can get the gradient approximation, it is easily

see Ref. 7. seen that the second term is merely the Poisson brackets,
Performing a Taylor expansion one observes that the corfinally

volution in the mixed representation

_ > e > S(k_,k+p)g(k+pky)
> e > (ko k+p)gk+p,ky) (17) q P
q p

i
is given by =2(kng(kn)+5[%,0]e, (19

S e oS s(k_ k+p)g(k+pk,) where
q p

[2.9]p= (0,2 G~ 2 3,9).

Making use of Eq(19) we take a Fourier transform of Eq.

2(kngk.n). (18 (9) over the “center-of-mass” coordinateand get

i
=exp[— )

: . : 1 (st eo) I+ Tt N I IGay(t+ 7,15t s
3 9as(t+ 7,0t o =il € 5= & ak QgL+ 7,15t ) s 3 P r e K

e —iwg(t+7) im tp! - im “tr!
—m—wO(Eoe 0T —C.C)[PaalK) G, 5(t+ 7,1 tr )i —Pss(K) g 5t + 715t )i

1 o
+ EJ dt’{—(—l)'[E'C[#k(H T+ 5’,t’),g;f;(t’r;t+ St it+ 7,0 Ip

+(—1)m[gic[u(t+ T+ &, St Do 2 (Ut 1) e}

+> e—iqrup[ (T8 Kotk —p) gt 7+ 8 s—pit+ 7+ 8 ,9)

pags

+if dt'[(—1)'S ) (t+ 7+ 8 )G rt+ 8t st 7,0 — (—1)™gl,

—GU(t+ 7+ 8 k_+pit+ 1.k )gh, | tH7+8 st g;t+ T+ 5',3—2

m’m

X(t+7+ 6" ,r;t+ 5,r’;tr’;t’,r)kk,EL”;k(t’,H I]+i> J dtldtzdtg[(—l)iGa,(Sk
P

-krlr ’ , . s .. -rkrlr
X (tg;t+ 1)K e s (1 74 8" Kitop,tap,tak) = (= 1)™Gl,,,\ (t+ 7+ 8"t )K L g s
X (t1K,top,tap,t+ Tk)]g'y',kﬁ;,(t3p;t+ S,k t k' 5 top). (20

Here we have taken into account that the expressions for the ) e

SE due to the instantaneous driving potengiaand the op-  —iZag(tp;t’p’) = —i(—l)'+15ij5a_5(t—t')m

tical field with interband frequency, 0
X[ ~i(ap|e'o'p|Bp’)Ege 0!

E=Ege (@t kot cc. (22) +i(aple”'*o'p|gp’)EF €', (23
where the matrix element of momentum is expressible

are through the dipole moment,,

€ + ~ .
- 5<aple*'k°’plﬁp’> =1 04pp0appOprkyip’ 1 @app

—is (it p ) =i(—1)' 8,56, 6(t—t')(—epp_p),
B BYij p—p 22 = e mp—2p (24)
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and the field amplitude can be written in terms of the spatial The contribution of the self-consistent field due to ex-
density of photons/\/w0 with the frequency wy, |Egl change of a phonon is to be neglected since we have taken

«(fhwoN, )Y2 Here and henceforth the bar over band indi-into consideration a more efficient and stronger contribution,

o — which stems from the Coulomb potential. In what follows we

ces means that=v andv =c. _ _ will also neglect the contribution to the self-consistent elec-
The first term on the right-hand side of EO) describes o field produced by the exchange of a phonon since again

the free oscillation of the interband polarization providing e will take into account the stronger contribution arising

a6, the second term takes into account intraband motiong,m the Coulomb potential. Evaluating the analytical ex-
the third and fourth terms describe the interaction with thepression for the SE

driving force and with the interband optical field. The terms '
constituting the Poisson brackets describe the self-consistent . «j NN Y L
field produced by the inhomogeneity in the electron state and 12 ap(tp— U'P4) =i(= 1) 6 6,p8(t—1")Ug
the renormalization of the velocity of intraband motion due

to interaction, which reflects the fact that electrons between X 2; [—iG),(t+0(—=1) k_ tk,)],
collisions do not behave as noninteracting particles. The next #
term describes the self-consistent field of fluctuatit®&p), (29
A 42 and using it when evaluating the term with the Poisson
U=, U, Ug=—7 (25)  brackets in Eq(20) we get for the self-consistent electron
q eq (SCB field
is the Coulomb potential; being the dielectric constant. The J J
corresponding expression f&r is - g@scr_%gaa(ﬁ 7O ) e —
Kici([lsrga(tlkl,tzkz,t3k3,t4k4)
= —1(=1)"0c, +ky kgt k, Ok Oim S St — 1) Xf draU(r—rg) > np(ry). (30
1772737 ™M Mp
X[ 8,4,8550(t1—t3) (ty—ta) Up. To take into account the charge of lattice ions one should
“rtp 3 subtract fromx ,,n ,, the total number of carriers. The SCE
— 80595,0(t1—14) (1~ tz) Uy ] (26)  field vanishes in the case of spatially homogeneous distribu-
a 4~ Kq?

tion of carriers.
where the first term in the brackets accounts for the exchange The self-consistent electron field can be incorporated into
contribution while the second describes direct Coulomb inthe effective scalar potential if one replagesn Eq. (20) by
teraction. ¢ according to
Our primary concern is a contribution from the direct in-

teraction. We can easily take the Fourier transform and in the off 1

gradient approximation the term with the Coulomb potential LA SR dr1U(r—rl)% Nyup(Fa)- (3D
to the first order originated fronkK is given by (we puti

=1 andm=2) The last two terms in Eq20) take into account the scat-

tering between states; they are out and in terms, respectively.

_B6 =in _f drU(r—ry) To complete this section let us write the expression for the
Gse= gi Nadk gr ! 1 term that gives the exchange contribution to the energy

This expression clearly demonstrates the influence of the
self-consistent fluctuation field. Here and hencefant}y,
will stand forn, g (t+ 7,r), it will cause no .confusmn since 1 in the mixed representation
whenever we encounter the density matrix component with
the wave vectok(k') it is obvious that the time and space —iE”B (tr,t'r)=(=1)'8;8(t—t")
arguments aré+ 7,r(t,r’). P

Let us calculate now the exchange contribution. The first T "
term in Eq.(26) after substitution into Eq(20) and evalua- XZS UG ppss(trit’r). (33
tion yields the following expression:

X(tp_+st'py+9) (32

Inserting this expression into the seventh term in(HEg.we

an get the following term in the right-hand side of EQO):
_Bgeleg Uq{ga,u(th)kJrq,k’n,uﬁk

N8 s(t s} (29 D A L

Notice that in the single band case this contribution vanishes im / Sy amm
- L7 (—1)G t+7—0)]. (34

and the next exchange term in the gradient approximation Gau(t,7 N (=1)GaicdtH7-0)]. (39

can be neglected. Using Eg.(12) and for definiteness putting the Keldysh in-
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dicesi=1 andm=2 the last expression can be reduced to Kiolflﬁr;,s(tlklvtzkzat3k2:t4k1)

. =2 i(—1) "6y 0BupByadspd(ts—ta)
- Bgenr: | ES Us[na,u,kJrsg,u,é(ta T)kk' - ga#(ti T)kk'np,&kJrS]' v

(35 X 5(t2_t4)Diykklfk2(tlat2)- (43

The last expression can be incorporated into the definition ot Us also specify the analytical expression for the SE,
effective energy matrix by which describes the lowest-order recombinatjmss term

ook Eadup™ 2 UsNapicq 88  —iEiu(tt)=— (-1 IG5 (LD (L),
: . . (44)
and the first term in Eq(20) can then be cast into the form
Let us begin with the gain term. Inserting E4.3) into the
[ Gk & oo — £ D ok 1. (37) last term in Eq(20) and performing integration ovép and
t; we get
We notice that a sum of exchange operators in E2f.and
(35 has a particle conserving property, i.e., L y
> f dt'[(—1)' G a(t+7+8",t)D,"
vp
2 [(BEPguc ) ext (BE G end = 0. (39) ; .
K X (1, t+ gt o+ 8,8t 1) g — (— 1)™ Gy

A. Interaction with photons.
Interband generation and recombination

im’
ao

X (t' t+ 7D (t+7+8',t')g

Let us return_to Eq(20) and consider the.i.nter.action with X (t+ 7+ 8 1+ 8,4t ). (45)
photons causing band-to-band transitiongnterband
recombjnation-g'ene.ration processe3he electron-photon In accordance with causality principle here we can replace
interaction Hamiltonian has the form the upper integration limit by the instabt- 7 although the
integration ovet’ formally runs from—o to +0. One can
ot ot + easily verify that the future contribution vanishes due to the
Helphot= 2 (CagPaguk@ck+qT CagPag@ck@uk—q)- GF, SE, and kernel properties.
ak;q#0 . . .
(39) It is now stra|ghtforwgrd, by emp_loymg E(_)lO) and Eq.
(14) to reduce the two-time correlation function and the GF
in the first term in the brackets to the one-time functions and

The photon one-time Green’s functidd is related to the : ; h
Eq. (11) together with Eq(15) in the second term, to obtain

number of photonsV,, by the expression
1B 450 =Nog(1); 72 (1) Gt T+ 0G5 e

iDZH(t)=1+iD (1), (40) . .

o : ’ | , X {BUM (t47-0)8 (85— £5p—wpi_p) + DM
which, in its turn, can be related to the two-time function by

X (t+7=0)8 (85— Egpt @yp i)} —(—1)™ GTy"

IDI2(t,t) = Nyq(t) e @aat 1), (41)

! X (t+ 7= 0) g™ (t, Py (D} (t+ 7+0) 8,

The electron-photon interaction brings about an additional

matrix over the band indices,; for the electron-photon X (& k= Eap— @yk—p) + DI\ (t+7+0) 8,
vertex and by virtue of Eq39) gives for the line represent-
ing the exchange of photons between the valence- and X (& ok~ Eqpt ®yp-1)}]- (46)

conduction-band electrons
Here we have introduced_(x) and 5, (x) by the identities

DU (t,t) =Dl (t,t)+D) _(t'1). (42) o i |
f dteitx:mz W(S(X)_’P;

For the term that describes the lowest-order generétjaim)

term and is obtained from the kern€lwe have =7_(X); 6, (X)=86_(—X), (47)
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whereP is the Cauchy principle part. Now using Ed42) As for the loss(recombinatioh term, substituting the ex-
and(40) which express the electron and photon GF in termgression for the self-energy E@l4) into the next to the last
of n,z and \; we have term in Eqg.(20) and by the similar calculation as above we
obtain
—BOger= Cool [ Naskt Nyga 5 _
Gger= 7 24 |Cunl ANt Nigds B~ 3, [Cud 0t Dt (O i
v

LG5t Dic-qie 0-(2ac kg~ @ug) + NuqBap]0-(&uk—q™ &kt @uq) T[Nk g

T Gadl b Diqie O+ (Sak™ Sak—q~ @uq)] + NogSan] 8- (85t q— & k= @1))

+[ 8,5~ Nosk+Nygd t, 16 _ _

[ ad adk vq aé][gg( T)k+q,k +ga,u.(t!7')k,k’([5ﬁ_ n,u&qu_"-/\/'vqb\ﬁ] 5+(8;/.qu

X — &5+t + t, )
(& 5 Esk+q qu) Jaal 7-)k+q.k + _8,uk+wuq)+[n,uv6k+q+qu6;E]5+(8;k+q_8,u,k

X (& ok~ Eak+qt ®u0)]}- (48) — w0, (53)

Performing summation over band indices and retaining onlor after summation over band indices
the resonant terms we obtain the following nonzero opera-

tors CC lec 2
—Baﬁgw:—%gcc(t,r)k,k;q |Cugl’TL— Ny q
—B°°ggen:2”§;* |C ol ?8(eck—80k—q— @ug) T Nigldeuk—q~ €kt @ug), (54
><[nck_l—-/\/cvq]gvu(t!T)qu,k’! (49) _BcvgreC:_Wgcv(taT)k,k’Z |qu|2{[1_nkaq
v
+qu]57(suk7q_sck+qu)+[nck+q
__RCv — 2 , —
B Gun=~ 7P 1Cual (Gt - Ol ook Nl Carq o) (69

+qu)_gvv(tvT)qu,k"SJr(SCk_svk*q_qu)}'

—BY°g"= — mg,o(t, Tk 2 |Cogl H[1— Npkq
(50 v

Here we first encounter processes that do not conserve en- TNl 04 (Eucq™ oot @ug)H i Nekrq
ergy; this is explicitly displayed by_ andé, , which have T Nogl0-_(&ck+q— Evk— @ug) ) (56)
imaginary parts. This is not surprising since the quantum

kinetic equation fomp, includes terms that also do not have

é-function structure and describe both interband transition —B”"grec:—qugw(t,r)k,krz |qu|2[nckJrq
energy renormalizatiofimaginary parts of_ and §,) and va

relaxation(real part$, + Nl 8(E ek q— Evk— @) (57)
—BY°ggen= — 7P 2;4 |CglX{Dec(t, k- q ks 0+ (8pk— Eck—q B. Interaction with phonons

This subsection is devoted to calculation of the last two
T 0,) = Qoo (L, kg O-(Eck— Epk—q— @ug) terms in Eq.(20) for the case when the carriers scatter on
collective excitations of the lattice. The Hamiltonian for the

(5D electron-phonon interaction is

+

—B"Qger= 272 |Cql?8(e ok £k gt @) 1Nk ' r
o vq & ’ a " ’ Hel-phon: kzq#) (Cqbqaakaozk—q_i_C.c’qc bqaakaak+q)l
ak,

58
+ Nyglet P g - (52 8
We should note here thaﬂﬁ are still operators since in the whereba andb are the creation and annihilation operators
gain (or in—) terms they includes summation ovgrof ex-  for phonons with dispersiomy. It is easily seen that the
pressions like (- -)gyx_q describing how fluctuations with electron-phonon interaction Hamiltoniaf58) closely re-
k—q vanish and fluctuations with the wave veckoappear. sembles that for electron-photon interacti®®) except that
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for now the interaction vertex does not compromise the facAgain performing summation over dummy indices one can
tor 0');'3 since the interactiof58) does not involve interband easily obtain operatorB*?, for instance, foiB°¢ we have
transitions. As soon as such a resemblance has been estab-

lished one can process the above written expressid8)s

(53) and simplify them to describe the electron-phonon in-

teraction. Now the photon GF is replaced by the phonon GF—B®°g®'= — 27rg.(t, 7). k/E leglH[1—Nek—q

and we have for the in-scattering term

~n +Nq]5(8ck—q_8ck+wq)+[nck+q
- Bgin: qu |Cq|2({[na,u,k+Nq5a,u]g,u5(tr T)k—q,k’ o-
“

+Nq]5(8ck+q_8ck_wq)}
X (& k™ uk—q~ @q) T[Nk TNyl

X Gan(t, Tk—qk 0+ (& uk— € uk—q— @)} +{[ Sap - 77% |Cal HQuc(t, Dk Pr—al 9= (Evk—q— €0k

=Nk Ny 19 ,us(t,7) 'S
apk qY%apulYud k+q,k
_wq)_gf(skaq_svkdl—wq)]
X(Sﬂk_sﬂk+q+wq)+[5,u5_n,u,5k+Nq6,u5]

+9cu(t, Tk PR—gl 0+ (80k—q— Evk— @g)
Xga/.t(t!T)k+q,k’5+(8/.Lk_8/.Lk+q+wq)})' (59) ¢ a K a

— 04 (gyk—q— Eokt ©g) 1} (62)
Performing summation over band indices we have, e.g., for
CC,
B¥g", One can verify that the operators have the particle number
conserving property, indeed, summing E@59) and (61)
, over k and changing integration variable—k+q in (59)
—Bccg'n=2ﬂé |CalGoc(ts T k- qr{[Nek+ Ngld( & e and adding59) and (61) we get

_Scqu_wq)'l'[l_ nck"'Nq]ﬁ(sck_gcqu

> [(BE°Guc)int (B Gucr)oud = 0. (63)
+wq)}+77§q: |Cq|2{pkguc(trT)qu,k’[‘sf(svk K “ " “ o
“&yk—q— wq) —0_(gpk— €yk—qt wq)] C. Electron-electron scattering
Although within the framework of Keldysh’s GF formal-
+pi , — & k—q— . S :
PicGeo (b Di-ar[ 0+ (80k ™ 8uk—q~ @a) ism taking into account the screening does not present any
— 8, (Eok—Euk_qt wg)I}. (60) difficulties (see, e.g., Refs. 7 and Jlfbr the sake of brevity

in this section we will restrict ourselves to the unscreened

Coulomb interaction. We will take screening into account
The remaining operator8*° can be detailed in the same only in one of our final specific expression for correlation
way and can be easily obtained from E§9). function of Langevin random forcesee Sec. III B.

Treating the out-scattering problem in the same way, with  The second-order terms for the SE describe collisions be-
the SE being given by an expression similar again to the ongveen carriers and the exchange contribution to the scatter-
obtained for photons, we observe that the result can be oling processegthis contribution is smaller than the contribu-
tained by merely removing overbars from the band indices ition of the direct Coulomb scattering due to phase space
Eq. (53): constraints We evaluate here only direct scattering and the

corresponding expression for the SE reads

- Béout: - WEq |Cq|2(g,u,§(t! T)k,k’{[éa,u_ na,uqu
I

+Ngb,,.]6- —a— + +[n, '
9001 0-(& uk—q= & ik 0g) +[Naukq st = - )WE UG, (t,t")
+Nq5a#]57(8p,k+q_sﬂk_wq)}
XGl (LG (). (64
+ga,u(tv7')k,k’{[5,u§_ n//-t?k*q—i_'/\/q(slus]&*(s#k*q Hrere "

_8,U,k+wq)+[n;/,5k+q+~/\/’q§,u§]5+(8,uk+q_S,U,k L . . . o
Substituting this expression into ER0) and utilizing Egs.
—wg)}). (61 (10), (11, (14), (15), (12) we have for the out-scattering term
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in the right-hand side of Eq20)

- Béa,elz - W% U(Z]{g}\ﬁ(t! T)kk' 57(A8)\,u,)[(na)\qu_ 6a)\)(nvlu,p+q_ 5Vp,)np,vp_ na)\qunv,u,erq(n,uvp_ 5/.“/)]
+ ga)\(th)kk' 5+(A8)\V)[(n)\§k—q_ 5)\5)(nv,up+q_ 5V;4)n;/,vp_ n)\ﬁk—qnv,up-%—q(n,uvp_ 5;/,1/)]} (65)
We have introduced shorthand notation for the energy difference

Aeap=€ak—qT €pprq™ Epp Eak)

_Bccga,elz_ZWgcc(t:T)kk'% Ug{ﬁ(Ascc)[(nck—q_1)(ncp+q_1)ncp_nck—qncp+q(ncp_1)]+5(A86v)((nck—q_1)
X _ _ _ 2 *
(nvp+q 1)nvp nck—qnvp+q(nvp 1))}"_77% Uqgcc(taT)kk’{pp+qpp[5—(A80v)+5+(A8cc)]+c-c'}
=72 UgGou(t Pl o 8+ (Aeuo) Mot g~ Nepl 0 (Ae0u)[Nuprg— Mgl

- 77% Uéguc(t. T)kk’pk—q{é—(Asvc)[ncp+q_ ncp] + 5—(A8uv)[nvp+q_ nup]}' (66)

Here the first term is conventional except that it includes als®s is demonstrated by this formula there is no difference
and polarizatiorp, are created by the same external pertur-between a fluctuation deviation evolution and an evolution of
bation, in this casép,|2 andng (or 1—n,,) turn out to be  deviation caused by some external perturbation. As has been
of the samesecondl order in the perturbation. no'ged by Gantgevichat_ al. in their comprghensive review
Now let us consider the part of E20) involving the  article’ Eq. (68) is nothing but an application of the famous
kernel. For the kernel we have three terfwe denote them Onsager’s hypothesis to the nonequilibrium fluctuations.
by (b).(0).(d)], which bring about operatorB®g, Once the formula68) is established the problem is re-
BeAg. , andB*fg, .. Explicit expressions for these opera- duceq to the seeklrlg of the one-time two-partl'cl_e_ correla’glon
tors are given in the Appendix A. functiong,z,s(tr,tr') -, which stands as an initial condi-

Again the sum of operators describing the electron.tion to our (_1|fferent|al equatlt?n for thg time-displaced corre-
tion functiong,g,s(t+ 7r,tr'), . First, we observe that

. . . |
electron scattering has a particle conserving property, that |§q (4) at 7=0 includes two terms: the first term corresponds
easily seen after simple transformations under the sum oveL fhe unlinked diagramécf. Ref 7)

k of the sum of corresponding operatogs lf,c,d). For in- ' '

stance, the replacemekit-k+q in the sum of Eq(A4) (c) Gab(t+ 68" k_tk})GR(t+8,k! ;tk,)
overk clearly demonstrates that this sum coincides with the . : :

sum of Eq.(A2) (b) overk except for the sign. Hence, we and its Fourier transform results in

encounter the following relation: Orr 1 Ok Npak(tN)[ Sy = Ny pi(tr) ], (69
the third(the second has been included into our definition of
E [(Bli“sgkk/)a ot (Bli“sgkk’)b e|+(B§59kk')c o correlation functioh corresponds to the group of linked dia-
K ’ ' ’ grams. Adopting for the latter atr=0 the notation

K Gapys(tiIT )i We write
+(BE D) d,el] = 0- (67) pys( )k

. R . Fapys(trtr e = 8 r S Npak(tr)[ Say = Ngyi(tr)]
Collecting all operator8; and denoting the sum of them by

B and also incorporating the first four terms in the right-hand T Capya( LI e (70)

side of Eq.(20) into the definition of the operatd} we have As for the initial condition, in its turn, it has to be obtained
from an equation of motion foG, we are going to derive

s such an equation in the next section.
[50/(1,555,87-1- Bg’yk(t+ T,r)]garﬁy(sr(t"f‘ Tr,tr,)kkr :O, q
11l. EQUATION FOR ONE-TIME CORRELATION
7>0. (68) FUNCTION

The operatoB describes relaxation of small deviations to a In the same way as we have derived equation for the
steady distribution and thus is called a relaxation operatortime-displaced correlation function for the one-time correla-
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tion function G,z,s(t;rr )i we obtain the differential - AU(r—r") angsk

equation with respect to Since we have already established Lagys(GT ik = ok (Mewe— Nguk Nuykr)
the equation with respect te (or with respect to the first

time variablet+ 7), we note that we need derivative with AU(r—=r’) ang

respect to the second time varialile The left-hand form + ar’ 9k’ (Maok ™ NayukNpok)-

integral equatiorjcounterpart of Eq(4) written in the left-
hand fornj is suitable for such a differentiation and it can be (73

easily established that the procedure leads to the same opefa-a single band case these terms are in exact agreement with
tor B which in this case acts on variables corresponding tahe results of Ref. 7.

the second time variable: band indiggs and electron wave For the remaining extra source terms we get
vectork’ and spatial positiom’. Thus, the equation of mo-
tion for the one-time correlation function reads Lagys(6rm e = O 1L agys(th e (74

where the factob,, , indicates that the scattering particles are
vty — N ad at the same spatial point.
hGapys(LIT Nk =Lapys(tr i —[8pr 655/ B 41 sr (L) For exchange Coulomb interaction we get the following
n 5w,555,527y'k,(”,)] expression for the extra source term:

XGorpryr o (G )i - (71 Lagys(tN i =—1Uk id Ny [Ngarr = 85,10 1ok

_nayknﬁ,uk’[n,uﬁk_ 5M5]na,u,kn,uyk’

Here we have introduced the source tergy, s, which de- X[Ngac—Ngac 1}, (75)
scribes a creation of correlation. Thus the influence of the
collisions as well as self-consistent fields on the kinetics isvhich has no analogy in the single band case.
twofold: the electron-electron, electron-photon, electron- Let us write some of the extra terms, describing
phonon collisions enter Eq.71) through the operatoB, generation-recombination processesgplicit expressions for
which describes relaxation processes; on the other hand tiieese extra sources are given in Appendix Birst we let
very existence of the extra source tekmy. s(t;1r ') cre-  a=Jd=candp=y=v in Eq.(B2), which corresponds to the
ating a correlation is due to the same collision evénts. extra term entering the right-hand side of the equation for

The source term in our diagrammatic procedure appeargne-time correlation functiobaﬁckaﬁvk,> and have
in the following way: among the diagrams representing the
correlation function we observe the group with four Green’s )
functions linked by the kerneK. Ladder repetition of the '—cvvc(”)kk/zzwg |Cok—kr (& ck— 8 ukr — @ k- ) (Nek
group constitutes the one-time correlation function. The

source term stems from =Ny )[(Nopk—ier + D) Nge(Nyer — 1)
— Nk (Nek= )Ny ] (76)
| _ dt-dt-dt-dt G”’, t+ 6 k_ itk T_his extra term describes how t\{vo electron st&tesmdk’ in
apyo klg‘3;<4 106dt0LG k) different bands become occupiédnd two others become
) e unoccupiedl simultaneously as a result of emission and ab-
X GG, S(takast,k DKL sorption of photons with interband frequenay; . . This
; expression reveals the important property of the extra source,
X (tlkl,tzkz,t3k3,t4k4)G'7,'7(t3k3;tk;) namely, the interband fluctuation source vanishes in the ther-
) mal equilibrium. Indeed, in this case the expression in the
X Gy, (14 5k toky) (72)  square brackets in E(76) vanishes provided that the pho-

tons are described by the Bose distribution functidp _
With @, =¢e— g,k - Physically this means that in this
after differentiation with respect to tinte which leads to the case the mean flow into the stateandk’ in different bands
replacing one of the GF’s by the correspondihtunction in  is equal to the mean flow out of these states.
accordance with Eq(7). Since we have already written ex- | et us now obtain the extra source a#p, 5'5;,% letting
pressions foK we_need no extra formulas. In the next sub-  _ y=c and 8= 6=v in Eq. (B2) we get
section we are going to process each of them separately and
obtain explicit expressions for all interactions we have con-
sidered so far and included in E@8) and Eq.(71). Leper (t)icr =72 |Cok—t|2P5 DL 8+ (Eck— €k

. — -k )[ 1Ny + Ny ]+ 8- (8
A. Extra correlation source
Let us begin with the Coulomb interaction, we take into ~ &k = Qg ) [NeF Nok—i 1+ 8 ()
account fwstl direct Coulomb interaction and repl&cim Eq. — ey 0 — ) N + Nor ]+ - (8
(72) according to EQ.(26). Calculations are lengthy but
straightforward and we get the following extra source term —epk— 0y~ LNyt Ny o I} (77)
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Actual calculation of the extra sources for the electron- Thus we have established quantum kinetic equations for
phonon and electron-electron scattering mechanisms is préluctuations slowly varying in space and time, closely fol-
sented in Appendix B. Since the extra correlation is exdowing the Gantsevich, Gurevich, and Katilius approach. The
pressed only through the kerngee Eq.(72)] we again  time-displaced correlation functions obey EG8), the initial
separate the electron-electron scattering terms as we did beendition to the equation being determined by Etl). As
fore (see Appendix A for the density matrix components that enter our formulas,

Let us write the same extra sources as above for théhey, in their turn, should be determined from the quantum
electron-electron scattering; for the sake of brevity here weinetic equations they satisfy. Needless to say, they should
restrict ourselves to the case whpp—0 and discard all contain all the interactions involved in the fluctuations kinet-
terms that includ@, . This approximation corresponds to the ics and describe density matrix components slowly varying
quasiequilibrium theory, where one regamsas the linear in space and time. We note that such equations can be re-
response to a weak perturbatidg,.E, and neglects all sec- stored from our fluctuations kinetic equatio{@3) since our
ond and higher terms gf,. Moreover, carriers within the equations are, as one can see, a linearized version of the
bands are described by a nonequilibrium Fermi distributiorquantum kinetic equations.
nf, with chemical potentialg., to be self-consistently ob- ~ The structure of Eq(68) suggests that it can be inter-
tained from normalization conditioN,,=Xn", , and num- preted within a concept of fictitious_ Langevin rqndom fo_rces.
ber of carriers withina bandN,, is to be obtained from the Indeed, one can write the generalized Langevin equation for
summed ovek equation for density matrix componenm,.  the fluctuations of density matrix by adding the matrix of
In the mentioned approximation we obtain as a contributionf@ndom Langevin forces:

which stems from the first terfsee Eq.(B4) in Appendix w5
B], [Opa 05591+ B 1 g (1) 0N sy (tr) =F , 5(tr). (81)

This equation can be calldloch-Langevin equationsr lin-

Leppc(tr) g =27 (Ng+ nuk,—l)z Uéb‘(schJr €k’ —q earized Bloch equation with fluctuations. The popularity of
4 Langevin approach relies on the fact that within this ap-

— &y — ) [ NedNek s q— 1) (Mg —q— )N yir proach one can deal with more simple and physically trans-
parent linearized equations for the density matrix instead of a
—(Nek= D) Negey gNpir —g(Npir — 1) (78 rather complicated method of moments’ equations we have
derived, provided, of course, that the correlation functions of

the corresponding random forces are known.
Lo o (1) =0. (79 In the next ;ubsectiqn we will give explicit expressions
cvcv T Tkk for the correlation functions of the random Langevin forces

Performing summation over band indices in E85) and for the fluctuations near a nonequilibrium but stationary and

neglecting expressions involving, we get the following spatially inhomogeneo_us_ _case. _Generally _speaking_, the
contribution from the second term: Langevin forces are fictitious with rather little physical

meaning, whereas their correlation functions enter expres-
sions determining fluctuations of physical observables.

for L,,c and

— 2
Louc(thiaer =27 (Mt M) 24 Ug(eoke—q ek 0k
B. Matrix of Langevin random forces

~€ok-)[ Mok (1= Nt Nek— (1= Ny —q) For fluctuations from a stationary state our correlation
Nt 1= Ny ) (1= Nt )Ny g (80)  functiong,g,s(t+ 7,r;tr") . depends only on the time dif-
ferencer. We define the Fourier transform by
and forL.,., we again obtain zero. The last tefsee Eq.

(B6) in Appendix B] does not contribute in the accepted i .

approximation to the sourde,,,., while the rather lengthy gaﬁyﬁ(‘”)kk’:f d7€""gupys(t+ 7,0t e - (82)
explicit expression fot ., can be easily obtained from Eq.

(B6) in Appendix B. It is convenient to express the previous transform in terms of

The extra correlation created by collisions was called inhalf Fourier transforng],
Ref. 4 a kinetic correlation, since the quite important prop-
erty of the extra source terinin the single-band case is that Jupyo @)k = Gapysl ©)ic! +9£g75(— o), (83
it vanishes in the thermal equilibrium state. It can be easily .
verified that in this case the in and out terms cancel eaclynere we introduced the half transforms by
other in the expressions fdr. This property of the extra o
terms remains valid whenever one deals with sources con-  4f 5(w)kk/=j dre'®7g, 5 s(t+ 7,0t N (84)
cerning fluctuations of occupation numbers, as follows from By 0 By
our expressions even for fluctuations of occupation numbers
in different bands. We wish to note that the property does nof"
hold for fluctuations of the nondiagonal in band indices den- i
sity matrix component as is quite evident from EB6); this _ 92375(_“’)kk’:f dre 197G, g (L1t 7 e
is not strange since the nondiagonal components describe a 0
mixed electron-hole state. (85
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The half Fourier transforny’(w) can be obtained readily charge neutrality. For instance, for spatially homogeneous

from Eq.(68) andg’(— w) from the similar equation fluctuations the following equality must be fulfilled
[8ppr Syyr 0t BT i (1) ]Gy yr o1t 71 )i > (FeaFuk)o=—2 (FeaFea)u- (9D
k' k'
= 5(T)gaﬁyé(r!r,)kk’ . (86)

Let us calculate the sum ovérof the left-hand side of this

equation in the quasiequilibrium approximation: we assume

that |p,|? can be neglected as compared with(1—n;y).

From Eq.(90) and taking into account properties of relax-

[—iw8,, 0 ,+sz‘5, (r)]gl/ )ik = Gagrs(IT i » ation operators and the explicit form of operators in Egs.
% ok pyor M pronth K (49), (52),(54), (57), and(76) we get after some algebra

We get

(87)
: B ’ T
[i w5l313'577' + B,B’yy’k’(r )]gaﬁ’y’ﬁ(_ @) ! E <FCCkFUUk’>w: - 5rr’277§ |qu|25(8ck+q_8uk_ qu)
Kk’ v
=0apys(IM ik - (88
. X{(1+qu)nck+q(l_nvk)
On the other hand using E(81) and the similar equation for + Nog(1 = Netg) Nyil- (92
ong e and multiplying them and taking an average we . )
have Therefore the sum is expressed through the interband relax-
ation and generation operators that enter the right-hand side
_ s ) of the equation for a macroscopic variable, namely, carrier
[—1@84ar 055 T By 51 (N1l wSpp 0y concentration. Here we get a sum of these operators while
the difference of these operators enters the equation for car-
+Bg,Vy,k,(r’)]ga,ﬁ,y,g,(w)kk, rier concentration, thus confirming the general concept that
the correlation functions are expressed through the sum of
=(Faok(NF gy (1)) - (89) corresponding gain and loss terms in the kinetic equation.

Note the importance of the extra term in E@6); it ensures
the requirement of charge neutrality, £§1).

| Let us write explicit expressions in the same approxima-
ion as before for the sum of correlation functions

Multiplying Eq. (87) by the operator that stands in E&8)
and vice versa and adding them we get the white spectrzt\
density of the random forcgsve read Eq(89) from the right

to the lefi
5rr ’Skk’(w) = (FkaFCUk’ + chkaCk’>w '
(Fask(NF gy (1)) which is usually of importance in noise investigatiofts.
Refs. 11,13 According to Eq.(90) and taking into account
= BZ?{s,k(r)&r,,5kk,n56,k(5a,7— Ny k) explicit exp_ressions for t'he relaxatipn operatBre/e get the
corresponding contributions of all interactions into the sum
+ Bglyy/k/(r/)én ' SN g7 s B = Negyri) of correlation fL_mctlons. The electron-phc_mon interaction will
not be taken into account, the screening of the Coulomb
T Lagys(IM ik s (900  potential in the electron-electron interaction will be taken

properly into account in the relaxation operator but not in the

where we have used Eq&0), (71). First of all, using the extra tgrm Eq.(B6) since .the latter has-no singula-rity-
explicit expressions for the operatBrand extra source we ik’.. F|r§t of all let us write the generation-recombination
notice that the self-consistent fluctuations’ contribution tocontribution
this correlation function vanishes as does the exchange con-
mbéjct]lo(r;gom operatoB,, in Eq. (28) and from the sourck Se ()97 "= 5kk’Wk27TV2q |qu|2{(nck+q+qu)5(8ck+q

It can be easily shown by giving band indices specific
values and inserting corresponding relaxation operators and ~ 8k W) T (1= Ny gt Nyg)
extra sources from the above that there are also nonzero X 8(8 ek~ Eok—qt @uq)}- (93)
cross-correlation functions of Langevin forces related to dif-
ferent bandgF 4F,,«'). Although it is rather obvious we
wish here to emphasize that if one includes, say, interban
relaxation in the quantum kinetic equations for occupation
numbers(or/and in the kinetic equation for concentration of
carrierg, to be self-consistent the above-mentioned crossThe generation-recombination contribution coincides with
correlation functions have to be taken into account. Morethe results of Haug and Hakéhparticularly if one replaces
over, the very existence of such a correlation function ishe damping coefficieny, for the nondiagonal density ma-
inevitable since it is closely related to the requirement of therix component, phenomenologically introduced in Ref. 11

}therewk stands for

Wie=ng(1=nyp) + Ny (L—=Ngy).
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by our microscopical expression. in contrast with the incorrectly obtained result of Refs. 10
The external optical field yields the following nontrivial and 11.
contribution: The electron-electron contribution includes three terms,
two of them are due to the relaxatiqgout and in terms,
S (@)= Syer2(Nge— Ny {i (Eoleyi)* Prewy + €-C3 correspondingly and the last one represents the extra term.

(94) For the first term we have

1 1
Sucr (w)eHehout= 5kk’iWk§ ((E_nck—q)[UR(Asckk—q)_UA(Asckk—q)]_EUK(Asckk—q)"'(C*)U) , (99

where Ae =€ x—€ak » the retardedJR, advancedJ” and KeldyshUX Coulomb potentials in the most widely used
random-phase approximation are

2

R _ A — * K — q K
u ((1)) quq(m)a u (w) quq(w)a u ((1)) |8q(w)|2Hq(w)1
nak—q_nak

a4 R RN\ _ ak=q ak
gq(@)=1=Udllg(w),  Ilg(w) %w—AsakquHO,

Hg(w) =—2i Wu%p (S(CU_ Asﬁkk—q)[naﬁp(nﬁap—q_ 5&[3) + (naﬁp_ 5aﬁ)nﬁap—q] .

The second term can be written in the form

. 1
+|Wk/ E_nck

. 1 1
S (w)eehin= _iWk[ (E_nck’)[UR(Agckk’)_ Uk—kr]— (E_nvk’>[UR(_A8vkk’)_Ukk’]

1 d
W Wl | o UKe)

1
X[UR(Asckk’)_Uk—k’]_(E_nvk)[UR(_Asvkk’)_Uk—k’]

1 1
X — + — .
§—Asckkr—|0 §+A8vkkr_|o (96)
The last term can be obtained from EB6) and is equal to
Skk,(w)el—el,eXUa:zwuiik,(nvk,_nvk)zp 57(80k'_Sck""sapfk’_Sapfk)[nck(nck’_1)nap7k(napfk’_1)
2
_nck'(nck_l)napfk'(napfk_1)]+277Uk7kf(nck’_nck)§’; 5+(8vk'_8uk+Sapfk’_sapfk)
XNy = DN g k(Ngp—r = 1) = Ny (N = DN (Ngp—k— 1) 7 (97)

Here we wish to emphasize that this term describes extra IV. CONCLUSION

correlatio_n creatgd by collisions in _the correlation function of | . present paper a theory of fluctuations around a non-
the nondiagonalinterband Langevin forcesF, ,F,c 8ven  oquilibrium state slowly varying in space and time main-
though the Coulomb interaction cannot produce interbangained by interband optical and driving electric field in semi-
transitions. The real part of this extra term is nontrivial only conductors is presented. The presentation is self-contained
in nonequilibrium situations and vanishes in the thermal in-and is based on the moment method approach. We have used
traband equilibrium. Therefore, our result does not, ofthe Keldysh Green’s-function formalism in the course of
course, violate the famous fluctuation-dissipation theoremfirst-principles derivation of quantum kinetic equations for
which is valid only in the thermal equilibrium. fluctuations in the case of two band semiconductors. The



12 896 M. I. MURADOV PRB 58

fluctuation kinetic equations include both equations for time Finally, let us note another field where our results can be
displaced (two-time) correlation functions of occupation applied: they can be employed in quantum electronics in
numbers in two bands and for correlation functions of theorder to evaluate the noise sources in diverse active semicon-
mixed interband state. These equations manifest themselvégctor devices. In such investigations only the following cor-
as a mathematical expression of the famous Onsager hypotfglation functions of the Langevin forcé$ ., F,c) and
esis, stating that a time evolution of fluctuation deviation{FcFck/) are sufficient, usually they are incorporated into
from the physical point of view coincides with the evolution correlation functions of Langevin forces entering the right-
of a small deviation caused by some external perturbatiorf’@nd side of the field equation and equation for the concen-
The explicit expressions for relaxation operators that enteffation of carriers. It is nearly obvious that, in general, in the
the equation for the two-time correlation function are given0Urse of solving the density matrix equation with corre-
and their properties are discussed. A one-time correlatiogPonding ITangeV|n forces the rest correlation functions also
function enters as an initial condition to the equation for the“@" b€ of importance.

two-time correlation function. In its turn, the equation for the
one-time correlation function, aside from the relaxation op-
erators, includes extra source terms. Explicit microscopical
expressions for the extra source terms for the interband . '
geE\eration-recombination processes, the electron-phonon Th_e _a_uthor wishes to thank V.B. Khalfin and Kvéhus,
and electron-electron interactions are given. These two equé{\zhc.’ initiated the paper, and V.D. Kagan. and S.V. Gant-
tions, i.e., the equation for the time displaced matrix of cor-S€vich for valuable comments. The author is grateful to V.L.

relation functiong68) and the equation for one-time matrix Glurew;:h,t Whokncr:/t\;lce:jlly rﬁald tf:1ed mrcl':musrcrlptr.nltnltsfralr?loAaV
of these correlation function@1) exhaust the theory of fluc- pieasure to acknowledge help and encouragement Iro e

tuations near the nonequilibrium state in a semiconductor. ;?nc;nizi:n S%ratifrlil \f\?itr:?r? t'?]‘zseéﬂﬁnrglog?:];; Eog‘;gyrfaonz
The structure of the kinetic equation for the two-time cor- PP 9 9

relation function brings about the interpretation of this equa—(KAS)' | ‘acknowledge financial support by the Russian

tion within the notion of Langevin random forces. Thus, add_Foundatmn for Basic Resear¢Brant No. Gr. 97-02-18286
ing the random forces to the linearized kinetic equation for
the density matrix we arrive at the Bloch-Langevin equation
(81). The Langevin approach is very attractive due to its
E?gg’llecﬂstrgp Zﬁ?g?g:y.rirﬁ ir?sa\?vr?i?/\?ee;rtlir\:\?lxgx fhsee(ié?rgg_ny To find operators descrit_>ing electron-electron inte_raction
. . ) CAEE - ., we need analytical expressions for the ketdelfor the first
tion functions(closely related to the “diffusion coefficients (b) term we obtain

in Lax’s terminology of the Langevin forces can be obtained

within our approach. Therefore, we give microscopical ex-

pressiong90) for the matrix of the Langevin random forces. iKlm

We demonstrated that even though the Coulomb interac- Kapys(tiK,t2P,13p,t4k)
tion cannot cause band-to-band transitions it can in a non-
equilibrium state contribute to the correlation functions of :
the Langevin forces. Since these correlation functions deter- =(—=1)"""8j S d(t1—t5) B(t3—ts)
mine the phase and intensity noise in semiconductor lasers
we show that the Coulomb scattering yields the nonequilib- . .
rium contribution to the linewidth and intensity of the laser X D UG (1, t2) Gy (L, t). (A1)
radiation. d

Note that through the relaxation operators the external o _ o
driving electric fieldde/ar and interband optical field ex- Substitution of this expression into the last term of E2f)
plicitly enter expressions for correlation functions of the @nd calculation gives
Langevin forces. On the other hand, it is rather obvious that
the fluctuation source, the very existence of which is due to
random collision events, should not include external deter-
ministic fields. It is easy to verify that this requirement can
be satisfied if we eliminate the field terms making use of
kinetic equations for the density matrix so that the final ex-
pressions for the source will contain only the density matrix
components and the transition probabilities.

The general results concerning properties of the relaxation +0_(Agy ) [Nark—q(Mask— Oxs) Nuup+q
operators and correlation functions of the Langevin forces
would prove to be useful as a checkup tool when one treats
noise problems in a phenomenological way. Needless to say,
in the absence of external optical field our results describe
fluctuations in two bandgelectron and hole gasemteract-
ing through the self-consistent Coulomb field as well as due
to recombination-generation processes. Now for the next(c) term we have

ACKNOWLEDGMENTS

APPENDIX A: RELAXATION OPERATORS

- Béb,elz W% U(21{5+(A8)\V)[(na}\k_ 5&)\)”X§qunw¢p+q

- na)\k(n)\ﬁqu_ 6}\5)(nvl.1,p+q_ 51}#)]

- n)\ﬁk(na)\qu_ 6a}\)(nvlup+q

= 8,,) 119, (6, 7) pir - (A2)
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KX s(t1K,top, tap, tak) KT (11K, 1P, tap, tyk)

=(—1)"M5 Sty —t3) St —ty) =(—1)""K8, 8mid(t;—t3) 8(t,—t,)

X >, UGIM - (ty,t)GM  (t),t A3 i i
% aCask—q(t1,t2)Gpypg(t2,ts) (A3) X5“7535U§‘p%5 G'lfVSJrk_p(tl,tz)G,k,'Ms(tz,tl).

and further calculations give (A5)

Finally, substitution of this expression into EQO) yields
~Bo.o= 72 UZ{5: (Aey [ (Nark= San) Mg o(Muup B ,
. ~BQg o= 2 U{d: (281000l t Di-air[ (Mo

- 51/,11.) - na)\k(n)\ﬁqu_ 5)\6)nv,1/.p] + 6*(A8)\V)
- 5a)\)n,u1/p+q(nv,u.p_ 51/,41.) - na}\k(n,u.varq
X[na)\qu(nv,up_ 51/,u)(”)x6k_ 5)\5) - (na)\qu

-0 v)nu p]
= SN yupM i} 9t P i (Ad) e

+ 5—(A8)\v)ga)\(tvT)k—q,k’[nyvp+q(nv,up_ 51/,44.)
For the lastd) term originated fronK we get the follow-
ing expression: X (N ok= On5) — (Nyuptq™ ) Ny ppMiak] - (AB)
APPENDIX B: EXTRA SOURCE TERMS

Inserting explicit expressiof3) for K describing the electron-photon interaction of the lowest order we get fo(72y.

lagys= (=1 f dtydtGl,(t+ 8 1) Gl R(t2i DD} (1 ta)

kk’

"
XG (11, )G g (t+8,t). (B1)

Taking derivative with respect toand calculating thé*'*?component we have for the recombination-generation processes the
following source term:

Lagys(tN i = >, |C k=i T (Mo = S ) {0 (e = & akF @ k- k) [Nok—k' (Nask— Bad) Ngakr = (Nok—kr + DN o sc(N gk

=85 1+ 0_(eqk — 8 ak— @k — ) (N =k T 1) (N sk — 848)Ngakr = Nokr —kNask(Ngakr — 852) 1}

gl 6-(e s es0 = @k )Nk (Nask— 8as) oy — (Nok—ir + DN ac(Noyir — 85,) 1+ 6 (& s — €5
@k [ (Nokr —kF D) (Ngsk = s Mok = Nokr —iNask(Naykr = 85y) IH (N — S ) 0- (& 0 — &7k

+ @k, [ (Nok—kr + DNk (Ngyir = 85) = Nk (N3 5= 855N goir 1+ 08— (€ i — €% — @i k)
XNk =k sk(Ngykr = 85,) — (Mo —k+ 1) (N3 5¢— 855N g 1+ Ngad 8- (51— € g — @ k- )N (N =k

+ )N k(Ngykr = 85,) = Nok— ik (Nagk— Sap) Ny 1+ - (€5 € g + @ ir —1 ) [Nokr kN (Ngykr — Og,)

= (N =k 1) (Nogc— 8ap)Npgyicr 11 (B2)

For the terms that describe extra source for the electron-phonon scattering we have
Laﬁya(”)kk':7T|Ck—k'|2{(nayk_nayk/)[5—(8#k/_8#k+ wk—k')[/\fk—k/nﬁ#k/(%&_ nﬂak)_(/\fk—k/ﬁLl)nmk( Opu—Ngukr) ]
+6_(&u =€ k= 0~ [ (Nir =t DNgier (8,6~ Nya) — Nir =N ok (85— N ) 11+ (N g s

_nB5k’)[5+(8,uk’_SMk+wk—k’)[Nk—k’n,uyk’(aap,_naﬂk)_(Nk—k’+ 1)na,u,k(6,uy_ nuyk’)]_’_ 5+(8Mk’_8,u,k

- wk'*k)[(Nk’fk_l— 1)n,uyk’( 501/.1._ na,uk) _Nk’fkna,uk( 6,(1,7_ ny,yk’)]]}' (Bg)

For the electron-electron scattering we treat corresponding terms separately, for the firsteemppendix Awe get
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— 2
Laﬂyﬁ(tr)kk’ - 77% Uqaf(evk+q+8y,k’7q_8,uk’ - Svk){nﬁ)\k’[nvﬁk(nakarq_ 5av)(n)\uk'7q_ 5)\/.L)n/.tyk’ _(nvﬁk
- 5V5)navk+qn)\uk’ —q(n,uyk’ - 5;1,)/)] + (na)\k_ 5&)\)[nw§k(n)\vk+q_ 5}\V)(nﬁp,k’—q_ 5B,u)n,uyk’ - (nvék
2
- 5v5)n)\vk+qnﬁ/¢k’ 7q(n,u.yk’ - 5/.Ly)]}_ W% Uq5+(syk+q+ Euk'—q~ Euk’ — 8vk){n}\§k[(navk

- 5av)nv)\k+qnpxyk’7q(nﬁ,uk’ - 56#) - navk(nv)\k+q_ 5V}\)(nﬂ‘yk’*q_ 5My)nﬁp,k’] + (n)\yk’ - 5)\7)[(navk

- 5av)n1/5k+qn,u)\k' *q(nﬁ/,l,k/ - 5[3#) - navk(nv5k+q_ 5V§)(n,u)\k/ -q 5,([.)\)nﬁ/l,kl]}7 (84)

which is the only one to keep in the nondegenerate and single band case for it would be the second order in occupation
numbers while the rest at least the third. Treating the second term similarly we get the following expression for the source:

2
Laﬂyﬁ(tr)kk’ = 77% Uqé—(sp,k’ —q+ Evk ™ Eukr — svk—q){nuyk’(éav_ navk)[n)\ﬁknv)\k—q( 5ﬁ,u_ nﬁ,uk’—q) - nB}\k’nvﬁk—q( 5)\7
=Mk — ) 17 Nk ( Gy = Ny ) LN i 51})\_nv)\k—q)nﬁuk’—q_nﬁ)\k’(gvé_nvék—q)nxyk’—q]}
2
- qu: Uq5+(svk+8#k'7q_8,u,k’ _Skaq){nvﬁk( 5,8,u_ nﬁyk’)[(a}xy_ n}\yk’)((sav_ nakaq)n,u)\k’fq_(aa)x

- na}\k)(a)\v_ n)\kaq)n,uyk’fq] - an,k’( 51/5_ nv&k)[(a}\y_ n)\yk’)nakaq( 5/1)\_ n,u)\k’fq) - ( 5a)\
~Nonid) Mok—g( Gy Ny —) 1} (B5)

The remaining ternfwhich corresponds to the diagram with the closed fermion )la®gqual to

2
Lagys(tH = Wkakfzp O_(&up—k T &k — €k € up— 1)1 (Nayir — Nyt ) [Nk (M wp—k7 = On ) Nunp-k(Ngokr — 9,

2
= (N, 5= 8,5 My sp—kr (Nnp—k— ) N 1} — Wkak/zp: 04 (&up—k T €k — 8k & up— 1) (Ngar —Nga)

X [(navk_ 5av)n,u.)\pfk’(n}\,u.pfk_ 5}\#)”1/7'(, - navk(n,u.}\pfk’ - 5;/.}\)n)\p.pfk(nvyk’ - 51/3/)]} (BG)
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