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Excitation spectra of the Ce monopnictides within dynamical mean-field theory

J. L,gsgaard and A. Svane
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

~Received 29 June 1998!

The excitation spectra of the Ce monopnictides CeN, CeP, and CeAs are calculated using a lattice tight-
binding model including the local Coulomb repulsionU on the Ce 4f orbitals. The model is treated within the
dynamical mean-field theory, whereby the problem is mapped onto an effective Anderson impurity model. This
is solved in a finite-U extension of the noncrossing approximation, including lowest-order crossing diagrams.
The lattice model is parametrized by means ofab initio calculations. The calculated spectra are in good
agreement with experiment. In particular, dispersive quasiparticle peak positions are found close to the Fermi
edge in CeP. CeN shows metallic Fermi-liquid behavior with a correlation-induced mass enhancement factor of
;5 around the Fermi level.@S0163-1829~98!09843-9#
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I. INTRODUCTION

The study of heavy fermion~HF! and related systems ha
been a major research area in condensed-matter physic
more than 20 years.1 Briefly speaking, the HF phase may b
characterized as a paramagnetic Fermi-liquid-like state, w
an anomalously large density of states around the Fe
level, leading to extreme values for quantities like the m
netic susceptibility and electronic specific heat, correspo
ing to effective quasiparticle masses of 10–1000 times
free-electron mass. Furthermore, the spectral features o
systems~as measured in, e.g., photoemission or inverse p
toemission spectroscopy! are poorly described by single
particle theory on a broad energy scale, and even the na
set of quasiparticlelike states around the Fermi level can
in general be described by a parameter-free band theory
though the Fermi surface topologies measured in de Ha
van Alphen experiments are often well reproduced by ba
structure calculations.2 The HF phase appears in compou
systems containing Ce, Yb, U, or Pu ions, and it is gener
accepted that the phenomenon is connected to the st
local Coulomb repulsions in the narrow valence-f orbitals of
these ions. The stoichiometries of the HF compounds
often very complicated, and this is also true of the ph
diagrams as a function of composition, temperature, p
sure, etc. The HF phases are usually found at low temp
tures and often in competition with phases exhibiting m
conventional band structures, or different patterns of m
netic order. Despite a large research effort, the understan
of these phase diagrams is still far from complete.

One of the most successful phenomenological model
the HF phase has for the past 15 years been the sin
impurity Anderson model,3–5 in which a single multiplet off
orbitals with strong local Coulomb repulsion is treated li
an impurity residing in a metallic host. The basic paramet
of this model are the hybridization strengths between
conduction and impurity states, and the position of the
purity levels relative to the Fermi level of the medium. Mo
els of this kind have explained the origin of the heavy qu
siparticles as well as the unusual spectral features, and
also been able to place the HF phase in a broader contex
an intermediate case between a localized behavior, wher
f multiplet is not interacting with the surroundings, but ha
PRB 580163-1829/98/58~19!/12817~19!/$15.00
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fixed integral occupation number, and the mixed-valen
case where thef occupation is far from integral, the ion fluc
tuating between two different configurations. The use
Anderson impurity models is, however, still controversial f
several reasons: First, many HF systems show dispersio
fects in photoemission and other optical experiments, a
for the HF states, which indicates interatomic interaction
variance with the assumption of isolated impurities.6–8 This
is particularly evident as one goes towards the mix
valence regime, but has also been observed in several c
pounds that are unmistakably HF-like.7 Second, attempts to
parametrize impurity models byab initio calculations have
met with mixed success. On one hand, band-structure ca
lations of the hybridization strengths have been able to
plain trends with composition and pressure of the H
compounds,9,10 but on the other hand, quantitative compa
sons to experimental results have usually not been poss
without the introduction of overall rescaling parameters
the hybridization strengths.9,11 Additionally, no reliableab
initio scheme has been found for the calculation of the b
impurity level positions. Thirdly, the theoretical foundatio
and range of validity of the impurity approximation to th
true lattice problem is not clear.

A recent theoretical advance in the understanding of e
tron systems with strong local correlations has been the
alization, that the assumption of ak-independent self-energ
operator~known as the ‘‘local approximation’’12! allows for
a mapping of a lattice problem onto an effective impur
model.13,14 This approach is commonly referred to as t
‘‘dynamical mean-field theory’’~DMFT!. The parameters o
the impurity model depend on the interacting lattice Gree
function, so the problem has to be solved by a se
consistency procedure. At self-consistency, the local Gree
function of the lattice model equals the Green’s function
the effective impurity problem. In this way, the phenomen
logical impurity models may be reinterpreted as represen
solutions for the local Green’s function of a lattice proble
in the local approximation. This picture still allows for th
presence of dispersion effects in thek-resolved spectra
~caused by dispersion effects in the single-particle part of
Hamiltonian!, thus removing a major point of criticism
against the impurity model. Furthermore, the fact that
hybridization strength should be determined as that of a c
12 817 ©1998 The American Physical Society
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12 818 PRB 58J. LÆGSGAARD AND A. SVANE
related medium could be part of the explanation why
attempts ofab initio calculations of these quantities have n
in general been successful. The local approximation can
justified in infinite spatial dimensions,15 and there are indi-
cations that it is reasonably accurate also for close-pac
three-dimensional structures,16,17 but a quantitative estimat
of the error terms is not known in general.

From the preceding discussion it is clear that a natu
step forward in HF research would be to replace the sin
impurity model by a lattice model within the local approx
mation, and solve it by the well-established methods for h
dling impurity problems in the HF regime. Up to now
DMFT studies have mostly been done for simple mod
with a small number of orbitals.13,18Recently, Anisimov and
co-workers19 have presented DMFT calculations fo
La12xSrxTiO3, using a modified perturbation scheme,18 in-
corporated into the LMTO band-structure formalism. T
purpose of the present project is to extend DMFT stud
into the HF regime, by using a self-energy functional app
priate to the description of such systems, together wit
multiorbital tight-binding model. Our goal is twofold: Firs
we want to explore the elementary properties of such
model, most importantly the behavior of the hybridizati
function as one proceeds towards self-consistency and
possible dispersion effects arising in the heavy-elect
states. Second, we want to investigate the possibility of
rametrizing such a model directly fromab initio calculations
to obtain quantitative predictions for a realistic system. A
specific example, we have chosen the Cerium monopnic
systems CeN, CeP, and CeAs. This choice is partly m
vated by the fact that these systems are fairly simple, and
be described by a limited basis set, and partly that they s
an interesting behavior in several ways. First, there is a p
nounced variation of the physical properties with chemi
composition in these compounds.20,21 While CeN tends to-
wards the mixed-valence region,22–25 the rest of the series
show semimetallic behavior,20 yet with pronounced hybrid-
ization effects in the excitation spectra.6,26,23 The study of
this series of compounds will therefore probe the ability
our model to describe different parameter regimes. Sec
the semimetallic gap in the density of states of the wea
correlated states surrounding thef levels in CeP and CeAs
implies that these systems are particularly sensitive to
changes in the effective hybridization function arising fro
the onset of correlations. Third, the photoemission spectr
the Ce monopnictides show dispersion effects not conta
in the single-impurity model.6

The remainder of the paper is organized as follows:
Sec. II, the basic ideas of the theoretical approach are in
duced, and most of the necessary formalism is develope
detailed derivation of the solution method for the impur
problem is, however, deferred to the Appendix. In Sec.
our numerical results are presented and discussed. Fin
we present our conclusions and prospects for future wor
Sec. IV.

II. FORMAL THEORY

A. Basic definitions

Most present-day studies of strongly correlated elect
systems are based on tight-binding Hamiltonians with lo
Coulomb repulsions, i.e., models of the generic form
e
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Ĥ5 (
mm8RR8

T
RR8
mm8ĈmR

† Ĉm8R8

1 (
Rm124

Um3m4

m1m2Ĉm1R
† Ĉm2R

† Ĉm3RĈm4R . ~1!

Here the vectorsR denote points on a Bravais lattice, and t

operatorsĈmR ,ĈmR
† are destruction and creation operato

for electrons in the statem centered on the Bravais lattice si
R. In the case of a lattice with a polyatomic basis, the su
mation overm would include summation over the basis ve
tors. TheT andU parameters are one- and two-body mat
elements describing the chemical nature of the orbitals.
suming translational invariance of the matrix elements o
can transform to ak-space representation:

Ĉmk5
1

AN
(
R

eik•RĈmR , ~2!

Ĥ5 (
mm8k

Tk
mm8Ĉmk

† Ĉm8k

1
1

N(
kk8p

(
m124

Um3m4

m1m2Ĉm1k
† Ĉm2k8

† Ĉm3k1pĈm4k82p ,

~3!

with N denoting the total number of primitive cells in th
crystal. To calculate dynamical properties of a many-parti
system one needs to evaluate one- and two-particle Gre
functions. In this work, we shall focus on the one-partic
Green’s function, which is defined by

Gmm8k~ t !52 i ^T̂Ĉmk
† ~ t !Ĉm8k~0!&, ~4!

Ĉmk~ t !5eiĤ tĈmke
2 iĤ t. ~5!

The operatorT̂ is the usual time-ordering operator that orde
the time-dependent fermion operators with the earliest tim
to the right. The brackets denote a thermal average. T
translational invariance is assumed, so that it is only nec
sary to calculate the Green’s function of one time variable
frequency space, the Green’s function can be expressed27

Gmm8k~v![E dteivtGmm8k~ t !5E d«
rmm8k~«!

v2«
, ~6!

rmm8k~«!5(
ll8

e2b~El2m!

Z
@^luĈmk

† ul8&

3^l8uĈm8kul&d„«2~El82El!…

1^luĈm8kul8&^l8uĈmk
† ul&

3d„«2~El2El8!…# ~7!

The statesul& are eigenstates of the many-particle syste
b5 1/kBT, m is the chemical potential, andZ is the partition
function in the grand canonical ensemble. For the Fou
transform to be well defined, the variablev must carry an
infinitesimal imaginary part the sign of which follows th
sign of the real part. The functionsrmm8 are the spectra
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functions, and can be measured~if the variation in dipole
matrix elements between initial and final states is assum
unimportant! in photoemission/inverse photoemission e
periments. In the remainder of this paper we shall adopt
matrix notation

Gmm8k~v![@G% k~v!#mm8 . ~8!

The unperturbed Green’s function, i.e., the Green’s funct
obtained by keeping only the one-particle terms in
Hamiltonian, is denoted byG% 0k(v), and the self-energy ma
trix is defined by

S% k~v!5G% 0k~v!212G% k~v!21. ~9!

Once the single-particle part of the problem is solved, de
mination of the full Green’s function is equivalent to dete
mination of the self-energy.

B. Local approximation

The equations for the self-energy derived within man
body theory are usually too complicated to be solvable w
out approximations. In recent years, the so-called local
proximation has proved to be a very fruitful approach
model systems of the kind described above.14,12,28,29The ap-
proximation consists of neglecting thek dependence of the
self-energy matrix, so that the real-space self-energy
comes a local quantity. The simplifications arising from th
assumption are twofold: First, the self-energy is reduc
from a four-dimensional to a one-dimensional object, wh
is in itself of some importance for practical calculations. T
most important implication is, however, that locality of th
self-energy allows for a mapping from the lattice problem
an effective impurity problem of the form13

Ĥ imp5(
l

«lĉl
†ĉl1(

lm
~Vmlĉl

†ĉm1H.c.!

1(
m

«mĉm
† ĉm1 (

m124

Um3m4

m1m2ĉm1

† ĉm2

† ĉm3
ĉm4

.

~10!

Here the quantum numbersl denote states of an unspecifie
medium, whilem denotes states of the impurity. TheU pa-
rameters are the same as in the original problem, while
energies«m may differ. The parameters of the effective im
purity model are determined from the condition that the u
perturbed single-particle Green’s function of this mod
should be given by

G% 0imp~v!5@G% loc
21~v!1S% ~v!#21, ~11!

whereG% loc is the local lattice Green’s function in real spac
i.e.,

G% loc~v!5
1

N(
k

G% k~v!. ~12!

If one is able to solve the effective impurity model, i.e.,
calculate to some accuracy the interacting impurity Gree
function, G% imp(v), the self-energy of the lattice problem i
turn may be obtained as
d
-
e

n
e

r-

-
-
p-
r

e-

d
h

e

-
l

,

’s

S% ~v!5G% 0imp
21 ~v!2G% imp

21 ~v!. ~13!

Since determination of the impurity model parameters
quires knowledge of the interacting lattice Green’s functi
G% loc(v), which depends onS% (v), Eqs.~11!–~13! constitute
a self-consistency problem. Inserting Eq.~13! into Eq. ~11!,
it is seen that one way of formulating the self-consisten
requirement is to demand equality of the lattice and impu
Green’s functions. Thus, within the local approximation, a
quantity that only depends on the local Green’s funct
~e.g., results of angle-integrated spectroscopies! can be de-
termined by solving a suitable impurity problem. The com
putational steps in the self-consistency procedure
straightforward~although numerically tedious!, so that the
nontrivial problem that remains is the solution of the sing
impurity model. This problem is, however, much better u
derstood than the corresponding lattice models. Theref
the existence of the above connection is definitely a s
forward.

Assessing the validity of the local approximation is no
straightforward matter. It is trivially justified in the narrow
band limit, since all dispersion effects disappear, and l
trivially in the limit of infinite spatial dimension~that is,
infinite coordination number!.15 Most applications of the
method described above have up to now been conce
with exact solution of infinite-dimensional lattic
models.14,13,18 In finite dimensions the validity of the loca
approximation has been studied in the weak-coupling li
by second-order perturbation theory,16 and it has been found
that the error in the self-energy is less than 10% for thr
dimensional lattices, and that the spectral functions ca
lated with and without the local approximation are almo
identical. For systems of lower dimensionality than 3, t
approximation appears to be less adequate in the limi
weak interaction. A study of an intermediate-interaction ca
~the magnitude ofU being comparable to the bandwidth! in a
one-dimensional ferromagnetic Hubbard model using
three-body scattering approach showed that the local
proximation gave a fairly accurate description of the ang
integrated~i.e., local! spectral function.29

C. Model

The cerium monopnictides CeM ~M5N,P,As, . . . ! consti-
tute a class of systems showing strong correlation-indu
enhancements of electronic effective masses,20,22 although
they are not usually referred to as heavy-fermion materi
At ambient conditions, these compounds have the NaCl c
tal structure. To set up a simple tight-binding model for t
single-particle Hamiltonian of these compounds, we cho
a minimal basis set consisting of Cedf orbitals, andM p
orbitals. TheM s and Cesp orbitals are excluded since the
are either very low~M s and Ce 5p! or very high~Ce 6sp! in
energy. To further simplify the problem spin-orbit couplin
is neglected, and we assume that only theG15 multiplet of
the Ce-f states needs to be considered. The reason for
latter assumption is that only theG15 states are coupled to th
p lobes pointing directly towards a given Ce atom when
M p orbitals are written in the cubic harmonic representati
We emphasize that these approximations are mainly m
for calculational convenience. In reality the spin-orbit spl
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12 820 PRB 58J. LÆGSGAARD AND A. SVANE
ting of the Cef states is much larger~approximately 0.25 eV!
than the splittings arising from crystal fields, so a more re
istic procedure would be to restrict the Cef states to only the
j 5 5

2 multiplet. This would, however, lead to a mixing of th
spin channels, thus doubling the size of the Hamiltonian m
trix. As it turns out, the density of states~DOS! of the Ce
monopnictides is reasonably well described by the nonr
tivistic Hamiltonian, and for the many-body calculations t
difference is not so important, since the degeneracy of
G15 multiplet is identical with the number ofj 5 5

2 states~the
importance of the degeneracy is discussed in the Append!.
The precise orbital character of the Cef states becomes im
portant when one wants to study crystal-field splitting
fects, but this issue is not addressed in the present work

The band structure of the tight-binding model describ
above can be parametrized in terms of Slater-Koster t
center integrals.30 A relatively small number of these param
eters have been adjusted to match the results ofab initio
band-structure calculations, as described in Sec. II E. In
dition, an appropriate choice for the two-body part of t
Hamiltonian has to be made. In the present work, we s
only consider the simplest possible choice, namely, an
site f - f repulsion termU. Other terms of interest could b
the f -d or thed-d Coulomb interactions, but their inclusio
would complicate the self-energy calculation and is theref
left for future work. The complete lattice Hamiltonian ma
now be written as

Ĥ5(
ks

~Ĥks
~c!1Ĥks

~c f !!

1(
R S « f n̂Rs

f 1U (
nn8s8

n̂Rns
f n̂Rn8s8

f D , ~14!

Ĥks
~c!5(

n
«kn

p p̂kns
† p̂kns1(

m8
«km8s

d d̂km8s
† d̂km8s

1 (
nÞn8

tk
nn8p̂kns

† p̂kn8s1 (
mÞm

tk
mm8d̂kms

† d̂km8s

1(
nm8

~ tk
nm8p̂kns

† d̂km8s1H.c.!, ~15!

Ĥks
c f 5(

n
dknp̂kns

† f̂ kns1(
nm8

dknm8
8 d̂km8s

† f̂ kns1H.c.,

~16!

with the operatorsp̂,d̂, f̂ being destruction operators for M-p,
Ce-d, and Ce-f electrons, respectively.

D. Self-energy functional

Having set up the model, our next step is to choose
approximation for the self-energy functional. To this end,
shall rewrite the effective impurity problem in the form4

Ĥ imp5(
n
E d«@« ĉn«

† ĉn«1~V~«!ĉn«
† f̂ n1H.c.!#

1« f(
n

n̂n
f 1U (

n8.n

n̂n
f n̂n8

f . ~17!
l-

-

a-

e

-

d
-

d-

ll
n-

e

n

The operatorsĉn« are destruction operators for a set of ba
states of energy« and symmetry~including spin! n, while
the operatorsf̂ n are destruction operators for effective imp
rity ~ f ! states with energy« f and mutual Coulomb repulsion
U, and the operatorsn̂n

f are the number operators for thef
states. Suppressing the symmetry index~since our model
contains only one irreduciblef representation!, the single-
particle f Green’s function of this model is given by

G0
f ~v!5

1

v2« f2E d«
uV~«!u2

v2«

. ~18!

The impurity Green’s function is a diagonal matrix, since w
have only included one of the irreduciblef-state representa
tions. It then follows by comparison of Eqs.~11! and ~18!
that

uV~«!u25
1

p
Im„@Gloc~«!# f

211S~«!…sgn~«!. ~19!

For simplicity, we take the« f-level position of the impurity
problem to be identical to that of the lattice Hamiltonian. A
alternative~more rigorous! procedure would be to take th
impurity f level as the average of the quantity

« f~v!5v2PE d«
uV~«!u2

v2«
2@Gloc~v!# f

212S~v!.

~20!

In practice we have found that the two procedures lead
identical results.

A common approximation adopted for solving the imp
rity problem in the regime of weak hybridization and larg
orbital degeneracy of the impurity states is the so-called n
crossing approximation~NCA!.5 In this approach, theU pa-
rameter is taken to be infinite, and the Green’s function
determined in terms of resolvent operators, which can
expanded in powers of the hybridization strength. The NC
corresponds to the summation of a particular subset of
resulting series, and is believed to give a good description
the U5` impurity model at temperatures above a~very
small! ‘‘pathology scale.’’ Theories based on NCA solution
of infinite-U impurity models have been very successful
phenomenological descriptions of HF and relat
systems.5,10

In the present work we need to go beyond theU5`
approximation for two reasons: First, to perform the se
consistency procedure described in Sec. II B, we need
determine a self-energy from the solution of the impur
problem. This can be done by the following formula:

S~v!5v2« f2E d«
uV~«!u2

v2«
2S E d«

r imp~v!

v2« D 21

,

~21!

wherer imp is the ~many-body! spectral function of the im-
purity model. To get the correct asymptotic behavior of t
self-energy, it is important, thatr imp is properly normalized,
and since most of the spectral weight in the heavy-ferm
regime resides in a set of states high above the Fermi l
corresponding tof 12 f 2 absorption processes, it is importa
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to include thef 2 states in some way. Secondly, theU5`
approximation is not very well justified for the paramet
regime that is relevant for our study, as will be discuss
later, and this is probably the case for most physical syste
The success of the NCA as a phenomenological theory m
be ascribed to the fact that the theory gives a correct qu
tative description of heavy-fermion physics, so that finiteU
effects can be absorbed in one or more adjustable pa
eters. Since we want to investigate the feasibility ofab initio
parametrization, we need to take these effects explicitly i
account.

The inclusion of finite-U effects in an NCA-like theory
has been discussed by Pruschke and Grewe.31 From the ana-
lytical point of view it is a straightforward matter, but
entails certain numerical difficulties. We have devised a re
tively simple and fast approximation scheme that appear
work well for the cases under study here. The schem
discussed in the Appendix. Basically, it exploits the fact t
most of the spectral weight of the doubly occupiedf configu-
rations is well separated in energy from the rest of thf
spectrum.

E. Parametrization scheme

To parametrize the tight-binding lattice model of the C
monopnictides described in Sec. II C, we have perform
band-structure calculations for these compounds using
local density approximation~LDA ! to density-functional
theory.32 Experience shows that the band structures obtai
in this way give a good description of the elementary ex
tation spectrum of wide-band electron systems. The calc
tions were done using linear muffin-tin orbitals33,34

~LMTO’s! in the atomic-spheres approximation~ASA!. This
method divides the space into volume-filling spheres c
tered around the points of the crystal lattice, and neglects
interstitial and overlap regions. Within each sphere, the
tential and charge density are spherically symmetrized,
the wave functions are expanded in eigenfunctions of
symmetrized potential, and their derivatives with respec
the eigenenergies~the so-calledf and ḟ functions!. From
these functions, which are restricted to a particular ato
sphere, a set of localized continuous and differentiable b
functions~denotedx) are constructed. They retain the de
nite angular momentum character with respect to the cen
site, but do not, in general, constitute an orthonormal ba
set. The scalar relativistic approximation34 ~which neglects
spin-orbit coupling! is invoked, and a minimal basis set wit
only onef function for each angular momentum quantu
number is used. While this cannot be said to be a state
the-art treatment of the Ce monopnictides, it is accur
enough to capture the essential variation of hybridizat
strength and DOS topology with chemical composition.
the same time, the LMTO basis set is easily related to s
pler tight-binding models of the sort described above, in S
II C.

The parametrization of the tight-binding model from t
LMTO calculations is done by first fixing the relative pos
tions of the pdf-energy levels to match the values of th
LMTO ‘‘band-center parameters.’’ To determine the vario
hybridization terms, we extract a Ce 4f-projected DOS and
determine an effective hybridization function from Eq.~19!,
d
s.
st
li-

m-
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with the self-energy set to zero, which is then to be match
by the corresponding function obtained from the tigh
binding model. Having fixed these parameters, we need
determine the local Coulomb repulsionU and, more impor-
tantly, it is essential for our self-energy calculation to kno
the bare f-level position. It is not at all clear how this i
related to thef energy obtained from the band-structure c
culation.

To address these questions, we shall interpret the ti
binding energy levels on a particular atom as represen
the energy cost of moving an electron on that atom from o
orbital to another, including intra-atomic relaxation effec
but excluding effects of hybridization. This implies that w
can extract the value ofU, as well as the difference betwee
the Cef and d levels by evaluating total-energy difference
between free atoms in various configurations. To mimic
screening effects in the solid, and to have consistency in
parametrization procedure, we shall do the atomic calcu
tion by means of the local spin-density approximati
~LSDA!. Since it is not clear whether the screening effects
the region of the 4f states are well described by the LSDA
we shall also investigate the effect of treating these sta
within the self-interaction corrected local-spin-density a
proximation ~SIC-LSDA!.35 In this approach, the 4f self-
interaction terms in the Hartree and exchange-correla
parts of the LSDA energy functional are explicitly su
tracted, leading to an improved description of the Coulo
interactions within the 4f shell. As we shall see, the tight
binding model with parameters extracted using the S
LSDA appear to give better agreement with the experime
data.

Having obtained an atomic value for the difference b
tween f and d energies, we shift the position of the tigh
binding f level relative to the others to match this valu
keeping the separation between the Ce-d and M-p levels
fixed. We are thus assuming, that the relative positions
these levels are well described by the band-structure ca
lation. This completes the parametrization of our model.
parameters have essentially been determined by results oab
initio theory, so our results will be a critical test of the abili
of LDA-like methods to describe the elementary propert
of Ce systems.

III. NUMERICAL RESULTS AND DISCUSSION

A. Ab initio parametrization

1. LMTO calculations

To describe the elementary excitations of the weakly c
related electron gas surrounding the Cef electrons, we have
performed band-structure calculations for CeN, CeP,
CeAs in the NaCl crystal structure, at the experimenta
determined lattice constants.36 In all cases, we worked in a
single energy panel, with only one set of basis functions
angular momentum channel. This makes the description
the Cep states a delicate matter, since both the low-lyingp
states and the high-lying 6p states influence the valenc
bands. For CeN, the 5p states were treated as valence stat
while the 6p states were left out of the calculation, where
for CeP and CeAs the 5p states were treated as core stat
and the 6p’s like downfolded37 valence states. In this way
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12 822 PRB 58J. LÆGSGAARD AND A. SVANE
we were able to converge the calculations in all cases. P
ably, the precise treatment of the Cep states does not matte
too much for the hybridization function in the low-energ
region, as long as the charge distribution of the 5p orbital
~which surrounds the 4f electrons!, is reasonably accurate
We used the scalar relativistic approximation, and inser
empty spheres to reduce the errors arising from the ASA
all spheres other than Ce, the wave function was expan
up to l52. Brillouin-zone summations were done by the t
rahedron method using a mesh of 163 k points in the full
zone, corresponding to 145 irreducible points.

Having performed the band-structure calculation, we n
to extract a 4f-projected DOS in order to get the startin
hybridization function as described in the previous sect
@Eq. ~19!#. This raises the question of which orbital to proje
down upon. The LMTOf4 f functions have the advantage
constituting an orthonormal basis set, but are not continu
being defined only in a single atomic sphere. The LMTOx
functions, on the other hand, are continuous and differ
tiable, but if an orthogonal representation is chosen, they
not be very well localized around a particular site. Since i
essential to work with localized orbitals in theories that on
include local Coulomb interaction terms, we have chosen
use the so-called tight-binding representation,37 in which
highly localized, but nonorthonormal, orbitals are co
structed. To check whether the ambiguity in the choice of
orbital is of consequence for our parametrization proced
we have calculated the effective hybridization function ar
ing from both f and x projection. In Fig. 1 we show the
results for CeP. We note that the results are very sim
below the Fermi level, which is the most important regi
with respect to the many-body calculation. Only at high
energies do the two approaches start to give markedly dif
ent results. This indicates that the separation of the elect
in a set of 4f states and a surrounding medium is a we
defined concept, also in a first-principles band calculati
and that it is not too important which set of 4f states we use
With this result, there is hope that a more complete calcu
tion can be done, using the LMTO Hamiltonian matrix d
rectly instead of the tight-binding matrix. In this work, w
have chosen to use the hybridization functions calcula

FIG. 1. Effective hybridization functions for CeP calculate
from thef4 f- andx4 f- projected DOS. The Fermi level is at zer
energy.
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from the f-projected DOS to parametrize the tight-bindin
Hamiltonian.

As described in the previous sections, we have para
etrized the tight-binding Hamiltonian by first fixing the rela
tive positions of the orbital energies to the values obtain
from the LMTO band-center parameters, and afterwards
justing the various hybridization parameters to match
LMTO hybridization function. All hybridization terms have
been included, except for thef - f terms. Only the Slater-
Koster s integrals were taken to be different from zero.
Fig. 2 we compare the tight-binding hybridization functio
to the LMTO results. While we have not attempted a perf
fit, it is evident that all the low-energy features of the LMT
hybridization functions are well described by the tigh
binding model. The basic trend with increasing atomic nu
ber of the ligand, is a reduction of the hybridizatio
strengths, leading to smaller hybridization functions. T
most dramatic change occurs from CeN to CeP, where
hybridization function is reduced by more than a factor of
From CeP to CeAs a further reduction of;30% takes place.

2. Atomic calculations

To determine values for the local Coulomb repulsionU
and the separation between the bare Cef and d levels we
have performed atomic calculations within the framework
density-functional theory. As in the band calculations,
have worked in the scalar relativistic approximation so t
all states with a given orbital angular momentum and num
of nodes in the radial function are degenerate. Since Ce g

FIG. 2. LMTO and tight-binding hybridization functions fo
CeN ~a! and CeP~b!. The Fermi level is at zero energy.
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off some electronic charge to the ligands in the pnictides,
have done the calculations for free Ce ions of unit posit
charge. We model the atom by a Hamiltonian of the form

Ĥat5« f n̂ f1«dn̂d1«sn̂s1
U f

2 (
nn8

n̂f
nn̂f

n8

1Ud fn̂f n̂d1
Ud

2 (
nn8

n̂d
nn̂d

n8 , ~22!

that is, we neglect correlations between the 6s states and the
rest of the orbitals. The various parameters can now be
tracted from a finite number of atomic calculations. Expl
itly, we have the equations

E@4 f 05d26s1#2E@4 f 15d16s1#5«d2« f1Ud2Ud f , ~23!

E@4 f 05d36s0#2E@4 f 15d26s0#5«d2« f12~Ud2Ud f!,
~24!

E@4 f 15d26s0#2E@4 f 15d16s1#5«d2«s1Ud1Ud f , ~25!

E@4 f 15d16s1#2E@4 f 15d06s2#5«d2«s1Ud f , ~26!

E@4 f 15d26s0#2E@4 f 25d16s0#5«d2«s1Ud2U f .
~27!

From these equations the parameters«d2« f ,U f ,Ud ,Ud f
can be determined in terms of the atomic energies. Doing
atomic calculations within the LSDA, we obtain the resu
«d2« f56.03 eV,U f56.3 eV,Ud f51.23 eV,Ud50.51 eV.
This confirms that the onsite correlation termsUd f andUdd ,
which are neglected in our band Hamiltonian, are inde
much smaller than thef - f repulsion. They are, howeve
large enough that they should be incorporated in a mean-
approximation, since the physics of the Anderson impu
model depends strongly on the position of thef level relative
to the Fermi level of the medium. A direct incorporation in
our tight-binding model is dangerous, since the limited ba
set means that the occupation numbers arising in the m
are not necessarily representative of the real system. Ind
our LMTO band-structure calculations show that both ths
and p states of Ce carry some amount of charge~in total
about 0.8e!, while we neglect these degrees of freedom
our band Hamiltonian. Instead, we estimate the Hartree
ergies from the LMTO occupation numbers. In the man
body calculations, the occupation of thef multiplet comes
out slightly below 1 for CeP and CeAs, and around 0.8
CeN. In the LMTO calculations, thef occupation comes ou
to approximately 1.20 for CeN and 1 for CeP and CeAs.
may thus assume that the onset of the correlations will
lead to any significant charge redistributions relative to
LMTO calculations for CeP and CeAs, while for CeN,;0.4
extra electrons will need to be accomodated~primarily! in
the Ce-d orbitals, since these dominate the DOS near
Fermi level. Therefore, we estimate«d2« f for CeP and
CeAs by comparing atomic total energies in the configu
tions 4f 15d1.46s0.36p0.48 and 4f 05d2.46s0.36p0.48 correspond-
ing to the (f-projected! occupation numbers arising from
our LMTO calculations. In this way, we obtain a value f
«d2« f of 5.16 eV in a pure LSDA calculation, and 5.62 e
treating the 4f state by the SIC-LSDA method. For CeN, it
e
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more difficult to get an accurate estimate, because thf-
occupation changes considerably as the correlations
turned on. The LMTO calculation yields a Ce-d occupation
of about 1.6 electrons, and a Ce-s occupancy similar to CeP
CeAs. If we assume that; 3

4 of the f electrons that are trans
ferred to band states when self-energy effects are include
into the Ce-d states~this appears reasonable from the orbi
projected DOS!, we are led to consider the Ce atomic co
figurations 4f 15d1.96s0.36p0.48 and 4f 05d2.96s0.36p0.48 ~as-
suming that the 6sp occuaptions are as in CeP, CeAs!. With
this configuration,«d2« f54.62 eV is obtained by treating
the Ce 4f states within the LSDA approximation, while SIC
LSDA yields«d2« f55.07 eV. Given the values ofUd f and
Udd discussed above, the uncertainties in occupation n
bers should not lead to inaccuracies greater than 0.1–0.2
in «d2« f .

B. Details of the many-body calculations

The impurity calculations to be described in the followin
were all done on a dense linear mesh, with a spacing o
meV on the energy axis, which is much denser than
resolution obtained in present-day photoelectron sp
troscopies. The temperature parameter was mostly set at
K, so thatkBT was equal to the width of the mesh interva
We have found that this is sufficient to give an accur
numerical calculation, while numerical instabilities start
develop if the temperature is lowered further relative to
energy grid spacing. The mesh extends from220 to 20 eV
in order to get good accuracy in the convolutions.

For impurity model parameters that lead to strong mixi
of the f 0 and f 1 configurations it turns out that our sel
energy functional does not always yield a positive latt
spectral function. This is a clear sign that the hybridizati
expansion is inadequate in strongly hybridizing cases.
have treated this problem in the simplest possible manner
resetting the imaginary part of the self-energy to an infi
tesimal value of the correct sign whenever the probl
arises. This does not appear to disturb the iterations tow
self-consistency, and in the final self-consistent solutio
presented in the following the problem is only present in
case of CeN. Even in this rather strongly hybridized ca
(nf;0.8!, the self-energy only has to be reset in an inter
of length ;0.07 eV in total, and the integral of the res
quantity is;1023 eV2. For the CeP and CeAs solutions, th
spectral function is always positive. Although the existen
of this problem is disturbing from a fundamental point
view, we do not consider it to be a problem in practic
calculations as long as it only occurs in regions where
magnitude of the spectral function is not controlled by t
imaginary part of the self-energy. Still, if one wants to d
scribe more general situations~i.e., with stronger hybridiza-
tion effects! within this formalism, a remedy for the problem
should be sought.

For thek-space integration of the lattice Green’s functio
which constitutes the major computational effort, t
Green’s function was represented on an energy mesh
variable spacing: In a narrow region around the Fermi lev
the spacing was 1 meV, as in the impurity calculation, wh
in the rest of the energy range the spacing was 10 meV
this way the sharp structures in the spectrum arising near
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12 824 PRB 58J. LÆGSGAARD AND A. SVANE
Fermi level are accurately described. The only quantity t
needs to be carried over to the impurity calculation is
effective hybridization function, which is fairly smooth awa
from the Fermi level, and can be interpolated to the den
mesh without problems. Thek-space integration was don
by the Lambin-Vigneron algorithm.38,19 In this approach, the
Green’s-function matrix is diagonalized at each frequen
point, so that a particular matrix element can be expresse

Gkmm8~v!5(
n

amn
k bnm8

k

v2«nk
, ~28!

with amn
k ,bnm

k being components of thenth left and right
eigenvectors of eigenenergy«nk . Dividing the irreducible
part of the Brillouin-zone into tetrahedra, and expanding
eigenvalues and eigenvectors to linear order within each
rahedron, one can obtain analytical formulas for the con
bution to the Green’s function from a single tetrahedro
given eigenvalues and vectors at its corners. We perform
the k-space integration with a division of 12–16k points
along each axis on the coarse energy mesh, and 20–k
points in the high-precision region close to the Fermi lev
The large number ofk points turned out to be necessary f
describing the strongp- f mixing arising here accurately.

C. CeP

Of the three Ce monopnictide systems studied here,
is the most interesting case, with a very localized Ce 4f elec-
tron in the ground state, yet showing strong hybridizat
effects in the low-energy excitations.6,23,26 Experimentally,
CeP is a semimetal with a carrier concentration of 0.3%
formula unit.20 It has recently been shown that this pictu
can be reproduced by band-structure calculations within
SIC-LSD approximation.21 In these calculations, one Ce 4f
electron is treated as localized~i.e., self-interaction cor-
rected!, and does not contribute to the DOS at the Fer
level, but forms ad-function-like peak at high binding en
ergy ~around 7.5 eV!. The net result is that a semimetall
gap opens up, the carriers being provided by small elect
hole pockets at theM /G points in the Brillouin zone, respec
tively. This result indicates, that the experimental picture
CeP is that of a 4f level very close to integral occupanc
with a correspondingly small contribution to the DOS at t
Fermi level. This is in accord with results from photoem
sion spectroscopy, which show a two-peak structure of
occupied 4f DOS, with one peak situated close to~but
clearly below! the Fermi level, and another around th
bottom of the non-f valence bands.26,6 These are naturally
interpreted as deriving from spin~upper peak! and charge
excitations~lower peak!. In a recent, angle-resolved, phot
emission experiment with high resolution, Kumigashiraet al.
determined the position of the upper peak to be about 0.3
below the Fermi level, while the lower peak was found to
around23 eV.6 The upper peak appears quite narrow, a
shows a small dispersion of;40 meV~roughly the same as
the experimental resolution!. The lower peak also display
dispersion effects in position and magnitude, but whet
this is due to the actual DOS or to finite-lifetime effects
not clear. It should be noted, that the integrated intensity
the upper peak is at least as high as that of the low o
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which shows that there is a strong effect of thef-valence
hybridization ~in the unhybridized limit, only the charge
excitation peak would be present!, in spite of the near-
integralf occupation. This makes CeP~and to a lesser exten
CeAs! a particularly interesting case for study.

In Figs. 2 and 3 the hybridization functions entering va
ous stages of the calculations are shown. Figure 2~b! depicts
the LMTO and tight-binding hybridization functions of CeP
to give an idea of the accuracy of our mapping procedu
While the overall fit is quite good, it can be seen that t
tight-binding Hamiltonian cannot provide a perfect match
the LMTO results. We have emphasized an accurate des
tion of the hybridization strength below the Fermi leve
since this is most important in the many-body calculatio
In particular, we have fixed the integrated weight belowEF
in the tight-binding model to equal the result of the LMT
calculation. It is seen that the large contribution to the h
bridization arising from the occupied P-p states is quite well
matched, while the description of thef resonance near th
Fermi level is less accurate. This is probably not too imp
tant, since this energy region will lie aboveEF in the self-
consistent solution. At the present level of approximation
is probably not worthwhile to pursue a more detailed agr
ment between these functions.

Figure 3~a! shows the hybridization function obtained b
diagonalizing the single-particle part of the tight-bindin
Hamiltonian after thef level has been shifted down to mak
«d2« f55.16 eV, but without inclusion of any self-energ
effects. Apart from shifting the energy positions of the va
ous structures, this modification also enhances the hybrid

FIG. 3. Effective hybridization functions for CeP in the initia
iteration ~a!, and at self-consistency~b!. «d2« f is 5.16 eV. The
Fermi level is at zero energy.
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tion between thef and p states, since they are now rath
close in energy. We emphasize that this hybridization fu
tion is ‘‘unphysical,’’ since it is calculated without taking th
f - f correlation effects into account in any way~not even in a
mean-field approximation!. When the self-energy effects ar
turned on, the~‘‘dressed’’! f-level position is again pulled
upwards. Figure 3~b! shows the self-consistent hybridizatio
function, which is seen to be quite close to the initial LMT
result @Fig. 2~b!#. The main difference is that the weigh
around the Fermi level is strongly affected by the many-bo
effects in this region, as will be discussed further below.

In Fig. 4~a! the 4f DOS arising at self-consistency for th
parameters mentioned above~that is, with«d2« f determined
by atomic LSDA calculations! is shown. The sign of the
spectral function is positive belowEf and negative above
The main features of the DOS are a very narrow peak aro
the Fermi level, accompanied by a broader structure cent
at approximately20.15 eV, a largef 12 f 2 peak just below 6
eV, and a broad band of states at approximately22 eV de-
rived from the smallf components of the occupiedpd bands.
The spectrum is clearly at variance with the experimen
picture described above in three respects: First, the DO
the Fermi level is large, so that this model describes a hea
fermion state, rather than a semimetal. The 4f occupancy
comes out as 0.92 electrons. Second, the charge-excit
satellite, which is well defined in the experimental spectru
is absent here. And third, the peak just below the Fermi le
appears too high in energy.

The ~weak! delocalization of the 4f electron can have two
causes: Either the hybridization strength is too large, or

FIG. 4. Ce 4f-projected DOS of CeP for«d2« f55.16 eV ~a!
and«d2« f55.62 eV~b!. The spectral weight is plotted positive fo
occupied states, and negative for unoccupied states.
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position of thef level is too high. At self-consistency, thef
level position in this calculation is20.80 eV relative to the
Fermi level. The absence of a well-defined charg
fluctuation peak indicates that the latter explanation is
appropriate one~a weaker hybridization would not enhanc
the weight at the lower band edge!. In Fig. 4~b! we therefore
show the spectral function arising from a calculation
which the «d2« f separation was taken to be 5.62 eV
obtained in a SIC-LSDA atomic calculation. There is no
more weight in the states at higher binding energy, and tf
occupancy has increased to about 0.96. However, the DO
the Fermi level is still high, so this calculation does not co
stitute a satisfactory description of the experimental situat
either. The self-consistent position of thef level relative to
Ef is now21.05 eV. That our initial downshift of thef level
by 0.46 eV results in a final shift of only 0.25 eV has
simple explanation: When thef-level position is moved
down, more electrons are transferred to thef state from the
other orbitals, which means that the Fermi-level positi
relative to «p and «d goes down, counteracting the down
ward shift of thef level.

To investigate whether the model is capable of describ
the experimental situation at all, we continue to lower t

FIG. 5. Same as Fig. 4 for«d2« f56.0 eV ~a!, 6.2 eV ~b!, and
6.5 eV ~c!.
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12 826 PRB 58J. LÆGSGAARD AND A. SVANE
f-level position. In Fig. 5 we show spectral functions for«d
2«f values of 6.0, 6.2, and 6.5 eV. We notice that t
charge-excitation peak rises sharply as the«d2« f value be-
comes larger than 6 eV. At the same time, thef-level occu-
pancy becomes close to 1, so that the position of the s
consistentf level now follows the«d2« f value without the
counteracting effect mentioned above. It appears that an«d
2« f value of approximately 6.2–6.3 eV would give a go
description of the experimental spectrum~at least as good a
we can expect from the present model!. The sensitivity of the
spectral function to small changes of thef-level position in
this parameter region means that one will probably nee
more accurate model than the present one to do reliableab
initio calculations for this compound. Still, our results sho
that the parameters obtained by LSDA and SIC-LSDA c
culations are of the correct magnitude, and at least const
a good starting point for seeking refinements of the theo

In Fig. 6 we show thep, d, andf DOS close toEF for the
calculation with«d2« f55.62 eV. It is clear that thep andd
DOS are significantly perturbed by hybridization to thef-
electron heavy-fermion states. However, the modification
not very strong, and is only seen clearly because the ‘‘ba
pd DOS shows a semimetallic gap in this region.

It is interesting to follow the evolution of the hybridiza
tion function in the vicinity of the Fermi level as thef level
is shifted downwards. This is shown in Fig. 7, together w
the 4f spectral function. The hybridization strength is seen
evolve more or less with the spectral density. In particu
the weight at the Fermi level decreases as the position o« f
is lowered. In a region with a large 4f self-energy, the
asymptotic form of Eq.~19! is

uV~«!u25
1

p
Im (

k
(
l

uVln
k u2

«2«l2 i01
. ~29!

Herel enumerates eigenstates of thepd system without in-
clusion of the couplingVln

k to thef states~indexed byn). As
all f states are equivalent in our model, the expression~29! is
independent onn. Since thef states do not influence th
energy spectrum of thel states at all, it is clear that thi
function will not show thef-related peak structures at th
Fermi level. In Figs. 7~a!–7~c! the intensity of the structure

FIG. 6. Orbital projected DOS of CeP close to the Fermi lev
The solid line is P-p states, the dashed line is Ced, and the dash-
dotted line is Cef. Sign convention as in Fig. 4.
lf-

a

l-
te
.

is
’’

o
r,

right at the Fermi level is seen to decrease as thef electron
becomes more and more localized, but the unhybridized li
is quite far from being realized. Note, in particular, th
growth of the hybridization strength arising from the man
body states at;20.2 eV.

Kumigashiraet al.6 have recently presented evidence f
a small dispersion in thef-related peak just below the Ferm
level in angle-resolved photoemission spectroscopy. To
vestigate this phenomenon, we have extracted angle-reso
spectral functions from our self-consistent calculations.
Fig. 8 we show an example along theG-X direction in the
Brillouin zone. The curves were obtained by fixing the~con-
served! surface-parallel component of thek vector at some
point on theG-X line, while integrating the perpendicula
component across the Brillouin zone. The numbers labe
the different curves gives the distance fromG in the surface
plane in units of 2p/a. The magnitude of the dispersion
;0.05 eV, and the width of the structure is;0.2 eV. Both of
these quantities are in reasonable agreement with the ex
mental results, which find a dispersion of;0.04 eV, and a

.

FIG. 7. Hybridization function nearEF for different f-level po-
sitions: ~a! «d2« f55.16 eV, nf50.92; ~b! «d2« f55.62 eV,
nf50.96; ~c! «d2« f56.0 eV, nf50.995. The hybridization func-
tions are shown together with the~scaled! 4f DOS ~dashed lines!.
In all figures, the Fermi level is at zero energy.



n

p
ce
e
u
bu
e

he
e
a

in
e

s

to
tio
ou
-

ie
by

h

r

P
i

e-
it

ct

e

mit

, so
a

on

less
s at
tal

nd
ely.
it is
ce

o
er,
ion

PRB 58 12 827EXCITATION SPECTRA OF THE Ce MONOPNICTIDES . . .
peak width of;0.2 eV. The trend that the peak positio
moves down in energy as one goes fromG towardsX, with a
final upturn close to the zone edge, is also~qualitatively! in
agreement with the photoemission results. However, the
sition of the structure, and the precise energy differen
between the variousk points are not predicted correctly. Th
high position of the peak compared to the experiment co
be remedied by a rescaling of the hybridization function,
this also reduces the total weight of the structure consid
ably. Probably, a more detailed description of the 4f multip-
let structure~and perhaps a more realistic modeling of t
photoemission experiment! would be needed to reproduc
the results in greater detail. Conceptually, however, it is
important realization, that dispersion effects can appear
model of the kind discussed here, even in the present cas
rather strongly localizedf electrons.

D. CeAs

The physical properties of CeAs are quite similar to tho
of CeP, except that the hybridization of the Ce 4f orbitals to
the surroundings is weaker. This is clearly seen in pho
emission experiments as a reduction of the spin-fluctua
peak close to the Fermi level, and is also borne out by
LMTO calculations. Total-energy studies with the SIC
LSDA formalism have indicated that the structural propert
of the Ce monopnictides may be understood as caused
decrease of the 4f hybridization with increasing ligand
atomic number.21 Like CeP, CeAs is also semimetallic, wit
a carrier concentration of 0.24%.39

In Fig. 9 the 4f DOS is shown as calculated within ou
model for three different values of«d2« f ~5.16 eV, 5.62
eV, and 6.0 eV!. The major trends are the same as for Ce
The weight in the upper part of the occupied spectrum
reduced as thef level moves down, and a clear charg
excitation peak develops at the lower band edge. Again
observed, that theab initio positions of thef level are too
high to give a good agreement with the experimental fa
Both the LSDA and SIC-LSDA values for«d2« f give a
metallic, heavy-fermion-like system. The self-consistentf-
level occupancies are 0.94, 0.98, and 0.997, respectiv
The positions of thef level relative toEF at self-consistency

FIG. 8. Ce 4f-projected DOS of CeP for states withk-vector
component in the@100# plane along theG-X direction. The length
of the G-X component isx(2p/a)«d2« f is 6.5 eV. The Fermi
level is at zero energy.
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are 20.97 eV,21.31 eV, and21.62 eV, respectively, for
the three different choices of«d2« f . Comparing the posi-
tions and the relative weight of thef-related peaks to
experiments,23,26the calculation with«d2« f56.0 eV gives a
spectral function closest to the experimental one. In the li
of extremely weak hybridization, the 4f DOS would consist
of a single peak around the baref-level position. The calcu-
lated spectra of Fig. 9 do not show a peak at this energy
it can be concluded that hybridization effects still play
decisive role in determining the structure of the excitati
spectrum.

Compared to the CeP spectrum, the CeAs DOS has
weight in the spin-fluctuation peak, and more in the state
higher binding energies. This is consistent with experimen
findings,26,23 which gives the ratio between the upper a
lower peak as 2:1 and 1:1 for CeP and CeAs, respectiv
These ratios are extracted from difference spectra, and
not clear how they should be calculated from our DOS, sin
a substantial part of the 4f weight in our calculations lie in
the region of the P,Asp bands, and since our calculations d
not include matrix element effects. Qualitatively, howev
this trend seems well explained by the model. The posit

FIG. 9. Ce 4f-projected DOS of CeAs for«d2« f55.16 eV~a!,
«d2« f55.62 eV~b!, and«d2« f56.0 eV~c!. Sign convention as in
Fig. 4.



i
r

0.
h
te

ow
s
m
is
en
an
io
s
.
is

n
nh

ie
,
e
hi

ture

ob-

e-

The

ne
ion
ey
g
ion

lder

m
r
p-
f a

lt
g
a

t
ns,
the
e
O

-

the
ds
nc-

m-

n-
ned
a

han
this
of

gth
-
if

ly

f-

12 828 PRB 58J. LÆGSGAARD AND A. SVANE
of the upper peak found in these experiments is;0.6 eV
below the Fermi energy for both CeP and CeAs, which
clearly at variance with our results, but also with the mo
recent angle-resolved data for CeP.6 Assuming that the cor-
rect position is 0.3–0.4 eV belowEF , as in CeP, our peak
still appears too high, but the difference is of the order of
eV and could be modified in a more complete treatment. T
broadening of the peak in CeAs relative to CeP is connec
to the position of thep band relative to the Fermi level: In
CeP there is a gap in the hybridization function just bel
the structure related to the many-body states, wherea
CeAs the edge of thep states moves very close to the Fer
level ~Fig. 10!. This result is not supported by the photoem
sion experiments quoted, but the widths found experim
tally are, in any case, larger than the calculated widths,
may in part be caused by the finite experimental resolut
For CeP, the more recent high-resolution measurement
deed find a smaller width of the spin-fluctuation structure

In Fig. 10 the hybridization function at self-consistency
shown for two different positions of thef level. In compari-
son to the CeP case, the strucure near the Fermi level is
less pronounced, and closer to the asymptotic case of u
bridizedpd bands.

E. CeN

CeN is the only material in the Ce monopnicitide ser
showing a metallic ground state. Thef electron delocalizes
due to a strongerpd-f hybridization, and a narrow peak in th
DOS develops around the Fermi level. In addition to t

FIG. 10. Effective hybridization function of CeAs at sel
consistency for«d2« f55.16 eV ~a!, and 6.0 eV~b!. The Fermi
level is at zero energy.
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peak, photoemission experiments reveal a shoulder struc
at ;20.3 eV and a second peak at21.2 eV, both of which
are thought to bef related.22,23 At higher binding energies a
valence band extending down to about24 eV is observed,
but in contrast to CeP and CeAs, no clear sign of anf-state
charge excitation peak at the lower valence-band edge is
served. This indicates that thef weight in this region resides
in bandlike states.

Schneideret al.25 analyzed a variety of spectroscopic r
sults using the Gunnarsson-Scho¨nhammer approach,4 and
found that anf-level position of20.8 eV relative toEF and
a hybridization strength leading to anf occupation of 0.8
electrons gave good fits to the experimental spectra.
analysis of Schneideret al. was done with aU value of 7 eV
and anf-level degeneracy of 6~neglecting thej 5 7

2 states!,
so their many-body calculation is quite similar to the o
implemented here, except for the more realistic descript
of the hybridization function in the present work. Patth
et al.24 did a first-order perturbation calculation includin
spin-orbit splitting, and found agreement with photoemiss
spectra with anf-level position of21.0 eV and aj 5 5

2 oc-
cupation of 0.86. These authors interpreted the shou
structure at20.3 eV as caused by aj 5 5

2→ j 5 7
2 transition,

and the peak at21.2 eV as being caused by emission fro
localized f 1 levels, stabilized by proximity to the surface o
vacancy defects. The last interpretation is indirectly su
ported by our calculations, since we do not find any sign o
bulk state at this energy.

Due to the strong hybridization, CeN is the most difficu
of the monopnictides to describe within our tight-bindin
model. The LMTO calculation for this compound yields
separation of 3.7 eV between the Ced andf band centers, bu
to obtain a reasonable match of the hybridization functio
we have found it necessary to reduce the separation of
tight-binding levels to 2.7 eV. This is an indication that th
small basis set is no longer adequate to mimic the full LMT
calculation. The LMTO and initial TB hybridization func
tions are shown in Fig. 2~a!. The LMTO hybridization func-
tion was, as in the other compounds, calculated from
f4 f-projected DOS. In CeN, unlike the other compoun
studied here, the integrated weight of the hybridization fu
tion below the Fermi level is somewhat different (;20%! in
the f- andx-projected calculations, so in this case the a
biguity in the definition of the 4f orbitals is not completely
without consequence.

As it turns out, it is impossible to describe the experime
tal situation even approximately by the parameters obtai
from ab initio calculations. The strong hybridization puts
large weight on thef 0 impurity configuration, while thef 2

weight remains low due to the large value ofU. As a result,
very low f occupancies~of approximately 0.3 electrons! are
predicted. Therefore, it is clear, that anab initio theory of
CeN would have to be considerably more sophisticated t
the present approach, and our main reason for including
compound in the discussion is to investigate what kind
improvements are likely to be necessary.

Since the delocalization of the Ce 4f electron is mostly
determined by the ratio between the hybridization stren
and thef-level position relative to the Fermi level, the re
quirement ofnf50.8 can be met by a range of parameters
we allow for adjustment of both quantities. If we additional
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PRB 58 12 829EXCITATION SPECTRA OF THE Ce MONOPNICTIDES . . .
require that no clearf-electron peak should develop at th
lower band edge we do at least obtain a lower bound on« f .
It is not our intention here to make a detailed fit of para
eters to experimental information, but only to investigate
behavior of the model as we go towards the regime of mi
valence. In Fig. 11 we show a Ce 4f spectrum calculated with
parameters chosen to mimic the above-mentioned resul
spectroscopic fits. Thus,nf is equal to 0.82, and the positio
of the f level relative toEF is 21.02 eV. This is obtained by
rescaling the hybridization strength with a factor close
two, and putting«d2« f55.55 eV. This value of«d2« f is
;0.5 eV lower than the values required to match the exp
mental spectra of CeP, CeAs, similar to the difference in
values from the atomic calculations. It is thus a consist
trend in all three compounds, that theab initio estimate of
the f-level position is too high to reproduce the experimen
spectra. A possible explanation for this could be that we
using the same hybridization function to describe both
f 0-f 1 and f 1-f 2 couplings in the impurity model. Gunnarso
and Jepsen40 have argued that the hybridization function
be used for thef 1-f 2 matrix elements should be calculate
with a doubly occupied 4f wave function, which would be
considerably expanded compared with the singly occup
function used for thef 0-f 1 hybridization. As a result, thef 1-
f 2 coupling strength could be several times larger than
f 0-f 1 coupling. The leading effect of this modification wou
be to favor occupation of thef 1 configuration, since the ‘‘ef-
fective’’ f 1-level position is shifted downwards by the co
pling to f 2 states. We have not investigated the effect in t
work, since we at present have no parameter-free schem
estimating the enhancement of thef 1-f 2 coupling, but it is a
problem that should be addressed in a more complete t
ment of Ce compounds. A similar effect would arise fro
the inclusion of the fullf multiplet (Nf514!, but this would
also increase thef 02 f 1 coupling, so the combined result o
this modification is less clear.

The necessary rescaling of the hybridization strength,
the other hand, appears surprisingly large, in light of the f
that no significant rescaling was needed for the other c
pounds. A possible explanation could be the differences
occupation numbers. For CeP and CeAs we had approxim
consistency between thef-occupation numbers of the LMTO
and many-body calculations. In the case of CeN, the oc

FIG. 11. Correlated 4f-projected DOS for CeN. Sign conventio
as in Fig. 4.
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pation of the LMTO 4f orbital is about 1.2, while the many
body occupation is only 0.8 electrons. This difference in o
cupation numbers would make thef orbital too large in the
LMTO calculation, increasing the hybridization to the oth
orbitals. Whether this explanation is correct can only
checked by performing calculations in which the man
body–related changes in occupation numbers are inco
rated in the band calculation in a self-consistent manner

The most prominent features of the 4f spectrum shown in
Fig. 11 are the very narrow band arising aroundEF and the
shoulder structure appearing just below, at;20.15 eV. The
width of the narrow band is only about 0.1 eV, which
much smaller than the results usually obtained in ba
theory. The energy derivative of the self-energy at the Fe
level ~which is a measure of the quasiparticle mass enhan
ment! is ;5 in this calculation. Still, thek-resolved spectra
show strong quasiparticle peaks in this region, so that a
persion relation of« vs k can be extracted. Thus, the mod
in this case describes a heavy-fermion-like state, featu
fermi-liquid-like excitations with strong correlation-induce
mass enhancements.

In Fig. 12 plots of the band structure along theG-X and
G-L directions ink space are shown. Figure 12~a! shows the
quasiparticle bands with self-energy effects included, wh
Fig. 12~b! shows the bare tight-binding bands calculated w
the parameters matched to the LMTO hybridization funct
~i.e., with «d2« f52.7 eV!. The inclusion of many-body ef-
fects clearly leads to the formation of a set of narrow ban

FIG. 12. ~a! Valence-band structure of CeN with self-energ
effects included. The curves were obtained by finding, at eack
point, the energiesv, where Real(v2«nk)50, «nk being thenth
eigenvalue of the Green’s-function matrix at the pointk. The
dashed line indicates the Fermi level.~b! Tight-binding bands with-
out inclusion of self-energy effects, as obtained with parame
matched to the LMTO calculation.
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12 830 PRB 58J. LÆGSGAARD AND A. SVANE
close to the Fermi level. However, there is still a noticea
dispersion around theG point. Comparison of Figs. 12~a!
and 12~b! shows that the bands in the vicinity of the Ferm
level are significantly narrowed, in accord with the calc
lated mass enhancement factor;5. The lower-lying bands
are largely unaffected by the correlation effects. We emp
size that the ‘‘bands’’ in Fig. 12~a! do not constitute the only
contribution to the DOS of CeN. The satellite structure a
pearing just below the HF peak in Fig. 11 arises from
imaginary part of the self energy, i.e., the single-parti
states in this energy region have short lifetimes.

In comparison with the experimental photoemissi
spectra,22–24it is interesting to notice, that the present mod
which contains no spin-orbit effects, still predicts a should
structure at an energy about 0.2 eV belowEF . The same
shoulder structure is less pronouncedly found for CeP in F
4 and for CeAs in Fig. 9. The states in this structure
short-lived ~i.e., they have a large imaginary self-ener
component! and are very weakly dispersing. They arise he
because the self-consistent hybridization function~shown in
Fig. 13 for CeN! develops a peak at the Fermi level corr
sponding to thef bands appearing here. The satellite stru
tures are created at the back edge of this hybridization p
and are analogous to the charge excitation peaks arisin
the lower valence band edge in CeP and CeAs. It is unc
how this structure would be modified in the presence o
spin-orbit splitf multiplet, but the present result shows th
direct extraction of spin-orbit splitting from photoemissio
experiments may be dangerous.

IV. CONCLUSIONS AND OUTLOOK

In the present work we have described a method for s
ing strongly correlated lattice problems by means of the
namical mean-field theory. The method has been applied
realistic model of the Ce monopnictide systems CeN, C
and CeAs. The model has been parametrized using resu
ab initio atomic and band-structure calculations, and it h
been shown that the main physical trends and features o
compounds can be reproduced in this way. Furthermore
have demonstrated, that a fairly accurate quantitative acc
of experimental results can be achieved by adjustment

FIG. 13. Self-consistent effective hybridization function f
CeN, with parameters as described in the text. The Fermi level
zero energy.
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single parameter~the position of the Ce 4f level!, in the case
of CeP and CeAs, while for CeN a rescaling of the hybr
ization parameters is also necessary. In particular, we h
shown that dispersion effects can occur in the Cef-
projected DOS, even in cases where thef occupation is close
to 1. The parameter dependence of the self-consistent e
tive hybridization function has been investigated, and it h
been found to resemble the uncorrelated hybridization ra
well, except in energy regions where there is a sizeable d
sity of correlated Ce 4f states.

The results presented in this paper raise several quest
but are also promising in at least two respects: Firstly, i
very encouraging, that the model, qualitatively and oft
quantitatively, is able to account for all features of the e
perimental spectra of Ce monopnictide compounds. S
ondly, it is interesting, that the parameters obtained fromab
initio calculations come quite close to the ones needed f
detailed match of the experimental picture, and that they~at
least for CeP, CeAs! are not very sensitive to the precise wa
of defining the Ce 4f orbital in the LMTO formalism. In light
of this, the obvious next step seems to be an incorporatio
the many-body calculational scheme presented here dire
into anab initio LMTO band structure code, thus providing
more detailed description of the single-particle part of t
Hamiltonian, and possibly including spin-orbit effects. A ca
culation of this kind would be computationally demandin
but not prohibitive.
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APPENDIX: SOLUTION METHOD
FOR THE IMPURITY PROBLEM

In this appendix, the solution of the single-impurity pro
lem will be discussed in greater detail. Most of our discu
sion will be focused on the calculation of the thermodynam
potential, since this is formally simpler, yet contains all t
ingredients needed for the evaluation of the Green’s fu
tion. For simplicity, we shall consider the case where
impurity states are equivalent.

We follow the approach of Keiter and Morandi41 and
write the partition function as

Z5Tr@e2b~Ĥ2m!#5
1

2p i RC
dve2b~v2m!TrS 1

v2Ĥ
D ,

~A1!

by the residue theorem, with the contourC chosen so as to
encircle all poles of the resolvent operator.m is the chemical
potential, which in the following will be taken to be equal
zero to simplify the notation. The variablev is understood to
carry an infinitesimal imaginary part. To perform the trac

at
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we choose a basis consisting off 0, f 1, and f 2 configurations
in combination with conduction electron statesNc as fol-
lows:

uNc&5 ĉn1«1

† ..ĉnN«N

† uvac&,

uNc ;n&5 ĉn1«1

† ..ĉnN«N

† f̂ n
†uvac&, ~A2!

uNc ;nn8&5 ĉn1«1

† ..ĉnN«N

† f̂ n
† f̂ n8

† uvac&.

We work in the grand canonical ensemble so that the par
number as well as the total energy is variable. This allows
to split the trace into a sum over band states and a sum
the various impurity occupations. Shifting the integral by t
energy of the unperturbed conduction electrons, and divid
by their partition functionZc we obtain

Zf[
Z

Zc
5

1

2p i R dv(
Nc

e2bENc

Zc
e2bvF K NcU 1

v2ĤNc

UNcL
1(

n
S K n;NcU 1

v2ĤNc

UNc ;nL
1 (

n8.n
K nn8;NcU 1

v2ĤNc

UNc ;nn8L D G , ~A3!

ĤNc
5Ĥ2ENc

, ENc
5 (

m51

N

«m , Zc5(
Nc

e2bENc.

~A4!

Introducing the ‘‘configurational Green’s functions’’~not to
be confused with the physical Green’s function! as

G~0!~v!5(
Nc

e2bENc

Zc
K NcU 1

v2ĤNc

UNcL ,

Gn
~1!~v!5(

Nc

e2bENc

Zc
K n;NcU 1

v2ĤNc

UNc ;nL , ~A5!

Gnn8
~2!

~v!5(
Nc

e2bENc

Zc
K nn8;NcU 1

v2ĤNc

UNc ;nn8L ,

and the corresponding spectral functions,

r~0!~v!5
1

p
Im G~0!~v!, etc., ~A6!

the partition function can be written as

Zf5E
2`

`

dv e2bvFr~0!~v!1(
n

„rn
~1!~v!

1 (
n8.n

rnn8
~2!

~v!…G . ~A7!

All we need to describe the thermodynamics of the impu
model is thus to determine the configurational Green’s fu
tions. This is done by a series expansion of the resolv
le
s
er

g

y
-

nt

operator. The Hamiltonian is split into a partĤD that is
diagonal in the chosen basis, and a partV̂ that is not, i.e.,
Ĥ5ĤD1V̂. Thus

1

v2ĤNc

5 (
n50

`
1

v2ĤNc

D S V̂
1

v2ĤNc

D D n

. ~A8!

To determine the Green’s function for some configurationm,
we must evaluate

G~m!~v!5(
Nc

e2bENc

Zc
K m;NcU 1

v2ĤNc

UNc ;mL
5(

Nc

e2bENc

Zc

3K m;NcU 1

v2ĤNc

D (
n50

` S V̂
1

v2ĤNc

D D nUNc ;mL .

~A9!
The expectation values of the operatorĤNc

D are independen

of the state of the conduction electrons since their energy
been explicitly subtracted, i.e., we can write

K m;NcU 1

v2ĤNc

D UNc ;mL [G0
~m!~v!. ~A10!

Introducing the projection operator

ÔNc

m 512uNc ;m&^m;Ncu, ~A11!

the G(m) can be expressed as

G~m!~v!5G0
~m!~v! (

n50

` FG0
~m!~v!(

Nc

e2bENc

Zc

3K m;NcU (
n850

` S V̂ÔNc

m 1

v2ĤNc

D D n8

V̂UNc ;mL G n

[
1

„G0
~m!~v!…212S~m!~v!

, ~A12!

thus defining the configurational self-energyS (m),

S~m!~v!5(
Nc

e2bENc

Zc

3K m;NcU (
n850

` S V̂ÔNc

m 1

v2ĤNc

D D n8

V̂UNc ;mL .

~A13!

To arrive at a manageable approximation for the se
energies we write out the lowest-order terms of the se
~A13! for the different configurations:

S0
~0!~v!5NfE

2`

`

d« f ~«!uV~«!u2G0
~1!~v1«!1•••,

~A14!
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S0
~1!~v!5E

2`

`

d« f ~2«!uV~«!u2G0
~0!~v2«!

1~Nf21!E
2`

`

d« f ~«!uV~«!u2

3G0
~2!~v1«!1•••, ~A15!

S0
~2!~v!52E

2`

`

d« f ~2«!uV~«!u2

3G~1!~v2«!1•••, ~A16!

where f («) is the Fermi distribution function. Notice that
configuration withm f electrons can couple to them11 con-
figurations inNf2m ways, but to them21 configurations
only in m ways. In the heavy-fermion regime the ener
scaleNfV

2 is of the same magnitude as the other ene
scales of the system (« f andU!, which makes it possible to
arrange the perturbation series as a 1/Nf expansion. Typical
NfV

2 values are in the range 0.1–1 eV. Another ‘‘natura
expansion parameter that emerges from the above seri
the ratio NfV

2/(U2« f) , which for a U of 6 eV and « f
values between21 and23 eV would be in the range from
1/3 to 1/50. Therefore, the two expansion parameters
generally of comparable magnitude.

A simple, self-consistent self-energy approximation is o
tained from the above formulas by everywhere replacing
bare Green’s functionsG0

(m) by the dressed onesG(m). This
is a direct generalization of the usual NCA to the finiteU
case. Pruschke and Grewe have argued31 that this is in gen-
eral a rather crude approximation. The basic problem is
the leading error term in thef 0 self-energy,

DS~0!5Nf~Nf21!E
2`

`

d« d«8 f ~«! f ~«8!uV~«!u2

3uV~«8!u2G0
~1!~v1«!G0

~2!~v1«1«8!

3G~1!~v1«8!, ~A17!

is of orderNfV
2/(U2« f) , thus making the approximatio

dubious for a considerable range of parameters. To en
the correctness of the theory to first order inboth 1/Nf and
NfV

2/(U2« f) we need to consider the extended set of eq
tions,

S~n!~v!5SNC
~n! ~v!1SVC

~n!~v!, ~A18!

with n ranging from 0 to 2. Here theSNC are the self-
energies given by Eqs.~A14!–~A16! with the bare Green’s
functions replaced by the interacting ones, while the ‘‘ver
correction terms’’SVC are given by31

SVC
~0!~v!5Nf~Nf21!E

2`

`

d«uV~«!u2f ~«!G~1!~v1«!

3E
2`

`

d«8uV~«8!u2f ~«8!G~2!~v1«1«8!

3G~1!~v1«8!, ~A19!
y

is

re

-
e

at
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-
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SVC
~1!~v!5~Nf21!E

2`

`

d«uV~«!u2f ~2«!G~0!~v2«!

3E
2`

`

d«8uV~«8!u2f ~«8!G~2!~v1«8!

3G~1!~v1«82«!

1~Nf21!E
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The leading error term in thef 0 self-energy is now of order
@NfV

2/(U2« f)#2, while the leading error in thef 1 self-
energy is still;(1/Nf

2).

FIG. 14. Spectral functions for thef 0 ~a!, f 1 ~b!, and f 2 ~c!
configurations. Full lines display vertex corrected results, wh
dashed lines are calculated without vertex corrections.
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As an example of the importance of the correction term
we show in Fig. 14 the spectral functions for the differenf
configurations calculated with and without vertex correctio
for a self-consistent CeP hybridization function. The posit
of the f level was« f520.915 eV. To simplify the numerics
the temperature was set at 60 K. The most important dif
ence is that some of thef 0 weight is shifted down in energy
when the vertex corrections are turned on, implying a lar
f 0 component in the low-lying~thermally occupied! states of
the system. In this case, the vertex corrections change thf 1

occupancy from 0.98 to 0.92, which will imply a conside
able modification of the physical properties. Furthermore,
pole in thef 1 peak is broadened, and slightly shifted in e
ergy. The f 2 spectrum, on the other hand, is largely un
fected by the corrections. This is consistent with the fact t
the f 2 correction is of order 1/Nf

2, and indicates that the 1/Nf

expansion is converging rapidly.
It is remarkable that the treatment of the coupling to

f 2 configuration is so decisive in this case of relatively we
hybridization and high-lying« f . It shows, as previously dis
cussed, that anyab initio theory of heavy-fermion system
must in some way take these couplings into account.
merically this is, however, a difficult task due to the doub
integrals encountered in Eqs.~A19!–~A21!, and the high ac-

FIG. 15. Spectral functions for thef 0 ~a! and f 1 ~b! configura-
tions. Full lines display fully vertex corrected results, while dash
lines are calculated with the coarse-graining approximation
scribed in the text.
,
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r

e
-
-
t

e
k
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curacy needed near the sharp features of the spectra. A n
ral way of circumventing the problem is to work on a no
linear ~e.g., logarithmic! energy mesh that is dense arou
the peak structures but not elsewhere. This has the draw
that one needs to adjust the mesh for each iteration, whic
cumbersome for a calculation like the present one, where
total number of iterations is large~since we have one self
consistency loop within another!. Instead, we have chosen t
work on a dense linear mesh~typically with a spacing of 1
meV!, which allows us to do convolutions by fast Fouri
transforms, so that the calculational time for the evaluat
of the NCA self-energies scales asN ln N while the calcula-
tion of VC energies scales asN2ln N, with N being the num-
ber of energy mesh points. With such a scheme, the N
self-energies are easily evaluated, while the vertex cor
tions are still very time consuming. To arrive at a more ma
ageable method, we simplify the form of the correction ter
by ignoring the unimportant correction to thef 2 self-energy
~A21!, and by treating the integrals in the other terms by
coarse-graining procedure that relies on the fact that
spectral weights of thef 0 and f 1 configurations are concen
trated in a region where thef 2 Green’s function is relatively
structureless. The basic idea is to replace theG(2) function
by a suitable averageg2 that is then pulled outside the inte
grals. As an example, one could approximate the vertex
rection to thef 0 and f 1 self-energies by

SVC
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g2~v!5
1

DE2`

`

d«uV~«!u2f ~«!G~2!~v1«!, ~A24!

G2~v!5
1

DE2`

`

d«uV~«!u2f ~«!g2~v1«!,

~A25!

D5E
2`

`

d«uV~«!u2f ~«!. ~A26!

These expressions can be evaluated byN ln N operations
only. In our actual calculations we have refined the abo
approximation slightly by taking into account that the ima
nary part ofG(1) is almost ad function while the real part
samples a larger energy region, so that different average
the G(2) function should be used for the different terms
the product of NCA self-energies. In Fig. 15 we show t
configurational spectra calculated from this approximat
together with the fully corrected ones. Parameters are
same as in Fig. 14. The curves are now almost indistingu
able over the whole energy range. Although this resul
very encouraging, we emphasize that the coarse-grai
procedure discussed here cannot be expected to be jus
for all relevant parameters of the impurity model. In partic
lar, one would expect it to become dubious in cases wh
the low-energy states have a significantf 2 component. This
is, however, not the case for the models discussed in
present work.

Finally, we comment briefly on the evaluation of th
physical Green’s function. By a procedure similar to the o
used for the partition sum, one can derive the gene
formula41
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Gf~v!5
1

2p i RC
dz e2bzTrS 1

z2Ĥ
f̂ †

1

z2v2Ĥ
f̂

2
1

z2v2Ĥ
f̂ †

1

z2Ĥ
f̂ D . ~A27!

Here C is a contour surrounding the poles of the resolve
operators, while the variablev is assumed to carry an infini
tesimal imaginary part yet still lying outside the contourC.
Doing a simple NCA-like approximation one can derive t
following equation for the spectral function:5

r f~v!5
1

Zf
E

2`

`

d« e2b«
„r~1!~«!r~0!~«2v!

1~Nf21!@r~2!~«!r~1!~«2v!

1r~0!~«!r~1!~«1v!1r~1!~«!r~2!~«1v!#….

~A28!

In the infinite-U limit, this expression is correct to first orde
in 1/Nf . For finite-U values there are correction terms
orderNfV

2/U, but the expression still gives the correct o
cupation numbers, as one can derive directly from E
~A28! and~A7!. As it turns out, the vertex corrections to E
~A28! are more difficult to evaluate in an economical mann
than the corrections to the self-energies, so we have cho
to omit them in the present work. Thus, the vertex corr
tions enter in the evaluation of the configurational spec
but not in the subsequent calculation of the physical Gree
function from the configurational ones.
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