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Excitation spectra of the Ce monopnictides within dynamical mean-field theory
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The excitation spectra of the Ce monopnictides CeN, CeP, and CeAs are calculated using a lattice tight-
binding model including the local Coulomb repulsionon the Ce #orbitals. The model is treated within the
dynamical mean-field theory, whereby the problem is mapped onto an effective Anderson impurity model. This
is solved in a finited extension of the noncrossing approximation, including lowest-order crossing diagrams.
The lattice model is parametrized by meansadf initio calculations. The calculated spectra are in good
agreement with experiment. In particular, dispersive quasiparticle peak positions are found close to the Fermi
edge in CeP. CeN shows metallic Fermi-liquid behavior with a correlation-induced mass enhancement factor of
~5 around the Fermi leve]S0163-182@08)09843-9

I. INTRODUCTION fixed integral occupation number, and the mixed-valence
case where th&occupation is far from integral, the ion fluc-
The study of heavy fermiofHF) and related systems has tuating between two different configurations. The use of
been a major research area in condensed-matter physics fAnderson impurity models is, however, still controversial for
more than 20 yearsBriefly speaking, the HF phase may be several reasons: First, many HF systems show dispersion ef-
characterized as a paramagnetic Fermi-liquid-like state, witlfiects in photoemission and other optical experiments, also
an anomalously large density of states around the Fernfor the HF states, which indicates interatomic interaction, at
level, leading to extreme values for quantities like the magvariance with the assumption of isolated impurifie$This
netic susceptibility and electronic specific heat, correspondis particularly evident as one goes towards the mixed-
ing to effective quasiparticle masses of 10—1000 times th&alence regime, but has also been observed in several com-
free-electron mass. Furthermore, the spectral features of thunds that are unmistakably HF-lik&Second, attempts to
systemgas measured in, e.g., photoemission or inverse phgparametrize impurity models bgb initio calculations have
toemission spectroscopyare poorly described by single- met with mixed success. On one hand, band-structure calcu-
particle theory on a broad energy scale, and even the narrolations of the hybridization strengths have been able to ex-
set of quasiparticlelike states around the Fermi level cannqgtlain trends with composition and pressure of the HF
in general be described by a parameter-free band theory, atompounds:'° but on the other hand, quantitative compari-
though the Fermi surface topologies measured in de Haassons to experimental results have usually not been possible
van Alphen experiments are often well reproduced by bandwithout the introduction of overall rescaling parameters for
structure calculationsThe HF phase appears in compoundthe hybridization strengthst! Additionally, no reliableab
systems containing Ce, Yb, U, or Pu ions, and it is generallynitio scheme has been found for the calculation of the bare
accepted that the phenomenon is connected to the stromgpurity level positions. Thirdly, the theoretical foundation
local Coulomb repulsions in the narrow valerfogrbitals of  and range of validity of the impurity approximation to the
these ions. The stoichiometries of the HF compounds artue lattice problem is not clear.
often very complicated, and this is also true of the phase A recent theoretical advance in the understanding of elec-
diagrams as a function of composition, temperature, preston systems with strong local correlations has been the re-
sure, etc. The HF phases are usually found at low temperalization, that the assumption ofkaindependent self-energy
tures and often in competition with phases exhibiting moreoperator(known as the “local approximation'?) allows for
conventional band structures, or different patterns of maga mapping of a lattice problem onto an effective impurity
netic order. Despite a large research effort, the understandimgodel***4 This approach is commonly referred to as the
of these phase diagrams is still far from complete. “dynamical mean-field theory'(DMFT). The parameters of
One of the most successful phenomenological models ahe impurity model depend on the interacting lattice Green’s
the HF phase has for the past 15 years been the singlédnction, so the problem has to be solved by a self-
impurity Anderson model;®in which a single multiplet of ~ consistency procedure. At self-consistency, the local Green’s
orbitals with strong local Coulomb repulsion is treated likefunction of the lattice model equals the Green'’s function of
an impurity residing in a metallic host. The basic parametershe effective impurity problem. In this way, the phenomeno-
of this model are the hybridization strengths between thdogical impurity models may be reinterpreted as representing
conduction and impurity states, and the position of the imsolutions for the local Green'’s function of a lattice problem
purity levels relative to the Fermi level of the medium. Mod- in the local approximation. This picture still allows for the
els of this kind have explained the origin of the heavy quapresence of dispersion effects in tlkeresolved spectra,
siparticles as well as the unusual spectral features, and haveaused by dispersion effects in the single-particle part of the
also been able to place the HF phase in a broader context, B&miltonian, thus removing a major point of criticism
an intermediate case between a localized behavior, where tlagainst the impurity model. Furthermore, the fact that the
f multiplet is not interacting with the surroundings, but has ahybridization strength should be determined as that of a cor-

0163-1829/98/5@.9)/1281719)/$15.00 PRB 58 12 817 ©1998 The American Physical Society



12 818 J. LEGSGAARD AND A. SVANE PRB 58

related medium could be part of the explanation why the

. / i N mm' 3t
attempts ofab initio calculations of these quantities have not H= X Ter' VirYmre
in general been successful. The local approximation can be mm’'RR'
justified in infinite spatial dimensiors,and there are indi- mimc At -
cations that it is reasonably accurate also for close-packed + > Urngmg Zm,R¥m,r Ym,rYm,R 1)
three-dimensional structuréé,17 but a quantitative estimate RM1—4
of the error terms is not known in general. Here the vector® denote points on a Bravais lattice, and the

From the preceding discussion it is clear that a natura 3 ot ; ;
X ; rators¥ g , ¥ r truction and creation rator
step forward in HF research would be to replace the smgle]{-)pe atorsW Wy are destruction and creation operators

impurity model by a lattice model within the local approxi- 12" electrons in the state centered on the Bravais lattice site

mation, and solve it by the well-established methods for hanR' I.n the case of a Igttlce with a polyatomlc basis, the sum-
dling impurity problems in the HF regime. Up to now, mation overm would include summation over the basis vec-

DMFT studies have mostly been done for simple modeld©rs- TheT andL_J parameters are one- and tWO'bOdY matrix
with a small number of orbital®!8 Recently, Anisimov and elements describing the chemical nature of the orbitals. As-
co-workerd® have presented DMFT calculations for suming translational invariance of the matrix elements one

La,_,SrTiOs, using a modified perturbation scheffen- ~ can transform to &-space representation:

corporated into the LMTO band-structure formalism. The

purpose of the present project is to extend DMFT studies ¥ _LE ik-Reys o
into the HF regime, by using a self-energy functional appro- mk N € mR 2
priate to the description of such systems, together with a

multiorbital tight-binding model. Our goal is twofold: First, R o

we want to explore the elementary properties of such a H= 2 T \Imek\Ifm,k

model, most importantly the behavior of the hybridization mm’k

function as one proceeds towards self-consistency and the 1 o A .

possible dispersion effects arising in the heavy-electron > > VHEA A k‘I’T o p ke —p
states. Second, we want to investigate the possibility of pa- Nkk’p mp, e Tt M2 3 N
rametrizing such a model directly froab initio calculations 3)

to obtain quantitative predictions for a realistic system. As a ) o )
specific example, we have chosen the Cerium monopnictid®ith N denoting the total number of primitive cells in the
systems CeN, CeP, and CeAs. This choice is partly moticrystal. To calculate dynamical properties of a ma_ny-pamcle
vated by the fact that these systems are fairly simple, and cafySteém one needs to evaluate one- and two-particle Green’s
be described by a limited basis set, and partly that they shofnctions. In this work, we shall focus on the one-particle
an interesting behavior in several ways. First, there is a proGreen’s function, which is defined by

nounced variation of the physical properties with chemical
composition in these compountfs?! While CeN tends to-
wards the mixed-valence regidfi,?° the rest of the series

show semimetallic behavidP,yet with pronounced hybrid- (1) =M W01, ®)

ization effects in the excitation specft&?° The study of  The operatoft is the usual time-ordering operator that orders

this series of compounds will therefore probe the ability ofthe time-dependent fermion operators with the earliest times
our model to describe different parameter regimes. Secongp the right. The brackets denote a thermal average. Time
the semimetallic gap in the density of states of the weaklytrans|ational invariance is assumed, so that it is only neces-
correlated states surrounding théevels in CeP and CeAs gary to calculate the Green's function of one time variable. In

implies that these systems are particularly sensitive to thgequency space, the Green’s function can be expres$ad as
changes in the effective hybridization function arising from

Grmrk(t)=—i(TW () V1 (0)), (4)

the onset of correlations. Third, the photoemission spectra of B (ot Pmmrk(€)
the Ce monopnictides show dispersion effects not contained Cmmi(w)= [ dte“ Gmp ()= | de o—g ' (6)
in the single-impurity modé.
The remainder of the paper is organized as follows: In e BE ) .
Sec. Il, the basic ideas of the theoretical approach are intro- P k(€)= T[(AI‘I’?WI)\’)
duced, and most of the necessary formalism is developed. A A
detailed derivation of the solution method for the impurity " _ _
problem is, however, deferred to the Appendix. In Sec. IlI XN [Wri| M) ole — By —E)
our numerical results are presented and discussed. Finally, : VNI
we present our conclusions and prospects for future work in TN T MO W)
Sec. IV. X 8(e = (E\~Ey)] W)
Il. FORMAL THEORY The stateg\) are eigenstates of the many-particle system,

B= 1KkgT, u is the chemical potential, aridis the partition
function in the grand canonical ensemble. For the Fourier
Most present-day studies of strongly correlated electroriransform to be well defined, the variabde must carry an
systems are based on tight-binding Hamiltonians with localnfinitesimal imaginary part the sign of which follows the
Coulomb repulsions, i.e., models of the generic form sign of the real part. The functions,,,, are the spectral

A. Basic definitions
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func'qons, and can be me_a;gr(aﬁ the variation in dipole g(w):é&#p(w)_éﬁp(w)_ (13)
matrix elements between initial and final states is assumed

unimportanf in photoemission/inverse photoemission €x-sjnce determination of the impurity model parameters re-
periments. In the remainder of this paper we shall adopt thgires knowledge of the interacting lattice Green’s function

matrix notation Gjoc( @), Which depends ol (w), Egs.(11)—(13) constitute
& a self-consistency problem. Inserting Eg3) into Eq. (11),
Gk @) =[G @) Imm ® it is seen that one way of formulating the self-consistency
The unperturbed Green'’s function, i.e., the Green’s functiomequirement is to demand equality of the lattice and impurity
obtained by keeping only the one-particle terms in theGreen’s functions. Thus, within the local approximation, any
Hamiltonian, is denoted b, (w), and the self-energy ma- quantity that only depends on the local Green’s function

trix is defined by (e.g., results of angle-integrated spectroscopies be de-
B B B termined by solving a suitable impurity problem. The com-
Si(0)=Gg(w) 1= Gy(w) L. (9) putational steps in the self-consistency procedure are

straightforward(although numerically tediolisso that the

nontrivial problem that remains is the solution of the single-

impurity model. This problem is, however, much better un-

derstood than the corresponding lattice models. Therefore,

the existence of the above connection is definitely a step
B. Local approximation forward.

The equations for the self-energy derived within many- Assessing the validity of the local approximation is not a
body theory are usually too complicated to be solvable with-Straightforward matter. It is trivially justified in the narrow-
out approximations. In recent years, the so-called local apPand limit, since all dispersion effects disappear, and less
proximation has proved to be a very fruitful approach fortrivially in the limit of infinite spatial dimension(that is,
model systems of the kind described abd¥&222°The ap-  infinite coordination number® Most applications of the
proximation consists of neglecting thedependence of the method described above have up to now been concerned
self-energy matrix, so that the real-space self-energy bewith exact solution of infinite-dimensional lattice
comes a local quantity. The simplifications arising from thismodels'**>*#In finite dimensions the validity of the local
assumption are twofold: First, the self-energy is reducedpproximation has been studied in the weak-coupling limit
from a four-dimensional to a one-dimensional object, whichby second-order perturbation thedfyand it has been found
is in itself of some importance for practical calculations. Thethat the error in the self-energy is less than 10% for three-
most important implication is, however, that locality of the dimensional lattices, and that the spectral functions calcu-
self-energy allows for a mapping from the lattice problem tolated with and without the local approximation are almost
an effective impurity problem of the forfh identical. For systems of lower dimensionality than 3, the

approximation appears to be less adequate in the limit of
~imp_ Apn A weak interaction. A study of an intermediate-interaction case
H'mP= ; EXC\COLT )\Zm (VmCyCm+H.C) (the magnitude o®) being comparable to the bandwiglih a
one-dimensional ferromagnetic Hubbard model using a
apn MMyt At A A three-body scattering approach showed that the local ap-
+§ 8mCmCm+mlz4 Um;micmlcmzcmscw. proximation gave a fairly accurate description of the angle-
B 10 integrated(i.e., loca) spectral functiorf®

Here the quantum numbeksdenote states of an unspecified C. Model

medium, whilem denotes states of the impurity. Thepa- ) o )
rameters are the same as in the original problem, while the The cerium monopnictides @®(M=N,P,As . . .) consti-
energiess,, may differ. The parameters of the effective im- tute a class of systems showmg s.trong correlation-induced
purity model are determined from the condition that the un-enhancements of electronic effective masSés,although

perturbed single-particle Green’s function of this modelthey are not usually referred to as heavy-fermion materials.

Once the single-particle part of the problem is solved, deter
mination of the full Green’s function is equivalent to deter-
mination of the self-energy.

should be given by At ambient conditions, these compounds have the NaCl crys-
tal structure. To set up a simple tight-binding model for the
GOimp(w)=[G,;i(w)+2_(w)]*1, (11  single-particle Hamiltonian of these compounds, we choose

. a minimal basis set consisting of GH orbitals, andM p
whereG,, is the local lattice Green’s function in real space, orbitals. TheM s and Cesp orbitals are excluded since they
ie., are either very low(M s and Ce ) or very high(Ce 6p) in

energy. To further simplify the problem spin-orbit coupling
= 1 = is neglected, and we assume that only the multiplet of
Gioc(@) = N; Cil(w). (12 the Cef states needs to be considered. The reason for the
latter assumption is that only tHg s states are coupled to the
If one is able to solve the effective Impurlty model, i.e., to p lobes pointing direcﬂy towards a given Ce atom when the
calculate to some accuracy the interacting impurity Green'sy| p orbitals are written in the cubic harmonic representation.
function, G, ,(w), the self-energy of the lattice problem in We emphasize that these approximations are mainly made
turn may be obtained as for calculational convenience. In reality the spin-orbit split-
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ting of the Cef states is much largéapproximately 0.25e)  The operators,, are destruction operators for a set of band
than the splittings arising from crystal fields, so a more realstates of energy and symmetry(including spin », while
istic procedure would be to restrict the €states to only the

. : ; . the operatorg , are destruction operators for effective impu-
j=3 multiplet. This would, however, lead to a mixing of the P Y P P

. ! i 9 rity (f with ener nd m | lomb repulsion
spin channels, thus doubling the size of the Hamiltonian ma- ty (f) states with energy; and mutual Coulomb repulsio

trix. As it turns out, the density of staté®OS) of the ce U and the operqtorafv are the number operators for tfie

monopnictides is reasonably well described by the nonrelaStates. Suppressing the symmetry indsince our model

tivistic Hamiltonian, and for the many-body calculations the €Ontains only one irreduciblé representation the single-

difference is not so important, since the degeneracy of th@articlef Green's function of this model is given by

I" ;5 multiplet is identical with the number gf= 3 states(the

importanc;e of the degeneracy is discussed in the App&_zndix Gg(w):

The precise orbital character of the €states becomes im-

portant when one wants to study crystal-field splitting ef-

fects, but this issue is not addressed in the present work. ) . o ) o
The band structure of the tight-binding model described! N impurity Green’s function is a diagonal matrix, since we

above can be parametrized in terms of Slater-Koster twolfave only included one of the irreduciblistate representa-

center integral® A relatively small number of these param- tions. It then follows by comparison of Eqéll) and (18)

eters have been adjusted to match the resultabofnitio that

band-structure calculations, as described in Sec. Il E. In ad- 1

d|t|or_1, an appropriate choice for the two-body part of the IV(e)|2== Im([(Goc(e) ] 1+3(e))sgre). (19

Hamiltonian has to be made. In the present work, we shall ™

only consider the simplest possible choice, namely, an ongqr simplicity, we take the-level position of the impurity

site f-f repulsion termU. Other terms of interest could be nohlem to be identical to that of the lattice Hamiltonian. An

thef-d or thed-d Coulomb interactions, but their inclusion ajternative(more rigorous procedure would be to take the
would complicate the self-energy calculation and is thereforqmpurityf level as the average of the quantity

left for future work. The complete lattice Hamiltonian may
now be written as

(18

1
V(e)|?
w—sf—fdsl ()

w—E&

IV(e)|?

w—E&

sf<w>=w—PJ de [Gioc(@)]f ' —2(w).

A= (R + A 20
7 In practice we have found that the two procedures lead to
S [ it S AL A identical results.
+ — | & NrytU ~ NRueMRyr g | (14) A common approximation adopted for solving the impu-

rity problem in the regime of weak hybridization and large
orbital degeneracy of the impurity states is the so-called non-

AO=> &l Pl Prvet > sg#,odlﬂ,adkﬂ,a crossing_approximatio(i\!CA)_.5 In this approach, the) pa-
v w rameter is taken to be infinite, and the Green’s function is
o determined in terms of resolvent operators, which can be

+ 2 4 PleProret 2 A Oirs expanded in powers of the hybridization strength. The NCA
v u# corresponds to the summation of a particular subset of the
resulting series, and is believed to give a good description of

+ 2 (0" plo Gk e+ H-C), (15  the U= impurity model at temperatures above(ery
v smal)) “pathology scale.” Theories based on NCA solutions
of infinite-U impurity models have been very successful as
HE =2 SiPhvol kot 2 5@”,(3&#,0?,(“,“4_0” phenomélr(l)ological descriptions of HF and related
” o systems
(16 In the present work we need to go beyond the-«

approximation for two reasons: First, to perform the self-
consistency procedure described in Sec. 11 B, we need to
determine a self-energy from the solution of the impurity

problem. This can be done by the following formula:
2 i -1
Having set up the model, our next step is to choose an 2(w)=w—gf—J d8|V(8)| B Jdgp'mp(w)>
approximation for the self-energy functional. To this end, we w—e w—e '
shall rewrite the effective impurity problem in the fotm (21)

with the operatorp,d, being destruction operators for pi-
Ced, and Cef electrons, respectively.

D. Self-energy functional

wherep'™P is the (many-body spectral function of the im-
ﬂimpzz f ds[sf:,tsé,,gﬂL(V(s)(A:LAfﬁ H.c)] purity model. To get the correct asymptotic behavior of the
v ’ self-energy, it is important, that™P is properly normalized,
and since most of the spectral weight in the heavy-fermion
+e > ni+U D ﬁfﬁfv,_ (17)  regime resides in a set of states high above the Fermi level

14

v > corresponding td!— 2 absorption processes, it is important
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to include thef? states in some way. Secondly, the=oc  with the self-energy set to zero, which is then to be matched
approximation is not very well justified for the parameterby the corresponding function obtained from the tight-
regime that is relevant for our study, as will be discussedinding model. Having fixed these parameters, we need to
later, and this is probably the case for most physical systemsletermine the local Coulomb repulsidhand, more impor-
The success of the NCA as a phenomenological theory musantly, it is essential for our self-energy calculation to know
be ascribed to the fact that the theory gives a correct qualithe bare flevel position. It is not at all clear how this is
tative description of heavy-fermion physics, so that fitite- related to the energy obtained from the band-structure cal-
effects can be absorbed in one or more adjustable paransulation.

eters. Since we want to investigate the feasibilitybfinitio To address these questions, we shall interpret the tight-
parametrization, we need to take these effects explicitly intdinding energy levels on a particular atom as representing
account. the energy cost of moving an electron on that atom from one

The inclusion of finited effects in an NCA-like theory orbital to another, including intra-atomic relaxation effects,
has been discussed by Pruschke and Gréweom the ana- but excluding effects of hybridization. This implies that we
lytical point of view it is a straightforward matter, but it can extract the value df, as well as the difference between
entails certain numerical difficulties. We have devised a relathe Cef andd levels by evaluating total-energy differences
tively simple and fast approximation scheme that appears tbetween free atoms in various configurations. To mimic the
work well for the cases under study here. The scheme iscreening effects in the solid, and to have consistency in our
discussed in the Appendix. Basically, it exploits the fact thatparametrization procedure, we shall do the atomic calcula-
most of the spectral weight of the doubly occupfemnfigu- tion by means of the local spin-density approximation
rations is well separated in energy from the rest of the (LSDA). Since it is not clear whether the screening effects in
spectrum. the region of the #states are well described by the LSDA,

we shall also investigate the effect of treating these states
within the self-interaction corrected local-spin-density ap-
E. Parametrization scheme proximation (SIC-LSDA).* In this approach, the f4self-

To parametrize the tight-binding lattice model of the Ceinteraction terms in the Hartree and exchange-correlation
monopnictides described in Sec. Il C, we have performedarts of the LSDA energy functional are explicitly sub-
band-structure calculations for these compounds using théacted, leading to an improved description of the Coulomb
local density approximationLDA) to density-functional interactions within the #shell. As we shall see, the tight-
theory®? Experience shows that the band structures obtainelinding model with parameters extracted using the SIC-
in this way give a good description of the elementary exci-LSDA appear to give better agreement with the experimental
tation spectrum of wide-band electron systems. The calculsdata.
tions were done using linear muffin-tin orbit3ls* Having obtained an atomic value for the difference be-
(LMTO's) in the atomic-spheres approximatiohSA). This tweenf and d energies, we shift the position of the tight-
method divides the space into Vo|ume_fi||ing Spheres Cenbindingf level relative to the others to match this value,
tered around the points of the crystal lattice, and neglects thkeeping the separation between the cCand Mp levels
interstitial and overlap regions. Within each sphere, the pofixed. We are thus assuming, that the relative positions of
tential and charge density are spherically symmetrized, anthese levels are well described by the band-structure calcu-
the wave functions are expanded in eigenfunctions of théation. This completes the parametrization of our model. All
symmetrized potential, and their derivatives with respect tParameters have essentially been determined by resuts of
the eigenenergieghe so-calledg and ¢ functions. From initio thepry, SO our results W|Il_be a critical test of the ab|I|Fy
these functions, which are restricted to a particular atomi@f LDA-like methods to describe the elementary properties
sphere, a set of localized continuous and differentiable basfgf Ce systems.
functions(denotedy) are constructed. They retain the defi-

nite angular momentum character with respect to the central IIl. NUMERICAL RESULTS AND DISCUSSION
site, but do not, in general, constitute an orthonormal basis
set. The scalar relativistic approximati8riwhich neglects A. Ab initio parametrization

spin-orbit coupling is invoked, and a minimal basis set with
only one ¢ function for each angular momentum quantum
number is used. While this cannot be said to be a state-of- To describe the elementary excitations of the weakly cor-
the-art treatment of the Ce monopnictides, it is accurateelated electron gas surrounding the iGdectrons, we have
enough to capture the essential variation of hybridizatiorperformed band-structure calculations for CeN, CeP, and
strength and DOS topology with chemical composition. AtCeAs in the NaCl crystal structure, at the experimentally
the same time, the LMTO basis set is easily related to simdetermined lattice constari$ln all cases, we worked in a
pler tight-binding models of the sort described above, in Secsingle energy panel, with only one set of basis functions per
IIC. angular momentum channel. This makes the description of
The parametrization of the tight-binding model from the the Cep states a delicate matter, since both the low-lyipg 5
LMTO calculations is done by first fixing the relative posi- states and the high-lyingp6states influence the valence
tions of the pdfenergy levels to match the values of the bands. For CeN, thepbstates were treated as valence states,
LMTO “band-center parameters.” To determine the variouswhile the & states were left out of the calculation, whereas
hybridization terms, we extract a Cé-grojected DOS and for CeP and CeAs thepbstates were treated as core states,
determine an effective hybridization function from E9), and the @'s like downfolded’ valence states. In this way,

1. LMTO calculations
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FIG. 1. Effective hybridization functions for CeP calculated . {.’ll
from the ¢,- and y4¢- projected DOS. The Fermi level is at zero (b) \‘l.'l - #I;ITO
I
energy. 0.15} . -
—_— \
. . > \
we were able to converge the calculations in all cases. Prob- £ \
ably, the precise treatment of the @estates does not matter ~ °= 01017 P I
too much for the hybridization function in the low-energy = . ',Jf
region, as long as the charge distribution of the dsbital 0051 AT
(which surrounds the fdelectrong, is reasonably accurate. ' p '
.. . . . . !
We used the scalar relativistic approximation, and inserted /
empty spheres to reduce the errors arising from the ASA. In ok | !
all spheres other than Ce, the wave function was expanded 4 2
up tol=2. Brillouin-zone summations were done by the tet- € [eV]
rahedron method using a mesh Of_S:”G points in the full FIG. 2. LMTO and tight-binding hybridization functions for
zone, corresponding to 145 irreducible points. CeN (a) and CeP(b). The Fermi level is at zero energy.

Having performed the band-structure calculation, we need

to extract a #projected DOS in order to get the starting from the ¢-projected DOS to parametrize the tight-binding
hybridization function as described in the previous sectiorHamiltonian.

[Eq.(19)]. This raises the question of which orbital to project ~ As described in the previous sections, we have param-
down upon. The LMTQOp,; functions have the advantage of etrized the tight-binding Hamiltonian by first fixing the rela-
constituting an orthonormal basis set, but are not continuougive positions of the orbital energies to the values obtained
being defined only in a single atomic sphere. The LM¥O from the LMTO band-center parameters, and afterwards ad-
functions, on the other hand, are continuous and differenjusting the various hybridization parameters to match the
tiable, but if an orthogonal representation is chosen, they wilkMTO hybridization function. All hybridization terms have
not be very well localized around a particular site. Since it isbeen included, except for the-f terms. Only the Slater-
essential to work with localized orbitals in theories that onlyKoster o integrals were taken to be different from zero. In
include local Coulomb interaction terms, we have chosen té19- 2 we compare the tight-binding hybridization functions
use the so-called tight-binding representaﬁbrin which tp t_h_e LM_TO results. While we have not attempted a perfect
highly localized, but nonorthonormal, orbitals are con-fit, it is evident that all the low-energy features of the LMTO

structed. To check whether the ambiguity in the choicé of h_ybrjdization functions are weII_ dgscribeq by the_ tight-
orbital is of consequence for our parametrization procedunﬁ'nd'n? T}Odei.l' The bgsm trend W'.th mcfreaﬁmghato_m!c num-
we have calculated the effective hybridization function aris-P€" Of the ligand, ‘is a reduction of the hybridization
ing from both & and x projection. In Fig. 1 we show the strengths, leading to smaller hybridization functions. The
results for CeP. We note that the results are very simila ost ‘?'fama“c Ch"?‘”g‘? oceurs from CeN to CeP, where the
below the Fermi level, which is the most important region ybridization function is reduced by more than a factor of 2.
’ i 0,
with respect to the many-body calculation. Only at higherFrom CeP to CeAs a further reduction 6880% takes place.

energies do the two approaches start to give markedly differ-
ent results. This indicates that the separation of the electrons
in a set of 4 states and a surrounding medium is a well- To determine values for the local Coulomb repulsldn
defined concept, also in a first-principles band calculationand the separation between the barefGad d levels we

and that it is not too important which set df gtates we use. have performed atomic calculations within the framework of
With this result, there is hope that a more complete calculadensity-functional theory. As in the band calculations, we
tion can be done, using the LMTO Hamiltonian matrix di- have worked in the scalar relativistic approximation so that
rectly instead of the tight-binding matrix. In this work, we all states with a given orbital angular momentum and number
have chosen to use the hybridization functions calculatedf nodes in the radial function are degenerate. Since Ce gives

2. Atomic calculations
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off some electronic charge to the ligands in the pnictides, wenore difficult to get an accurate estimate, becausefthe
have done the calculations for free Ce ions of unit positiveoccupation changes considerably as the correlations are
charge. We model the atom by a Hamiltonian of the form turned on. The LMTO calculation yields a @esccupation
of about 1.6 electrons, and a G@ccupancy similar to CeP,
B e - A &E ~a CeAs. If we assume that 2 of thef electrons that are trans-
at= &N+ &dNg Nt 5= 2, Nen ferred to band states when self-energy effects are included go
. into the Ced states(this appears reasonable from the orbital
Ui ﬁz - 29 projected DO% we are led to consider the Ce atomic con-
+UaMiNg+ 572 NaNg (22 figurations 4'5d'%s%%p®* and 4°5d%%s%%6p°* (as-
" suming that the §p occuaptions are as in CeP, CeAw/ith
that is, we neglect correlations between tisestates and the  this configurationgy—;=4.62 eV is obtained by treating

rest of the orbitals. The various parameters can now be exhe Ce 4 states within the LSDA approximation, while SIC-
tracted from a finite number of atomic calculations. Explic- | SDA vyields e 4—&¢=5.07 eV. Given the values & 4; and

itly, we have the equations Uqq discussed above, the uncertainties in occupation num-
Oe a2p 1 1ol bers should not lead to inaccuracies greater than 0.1-0.2 eV
E[4f 5d“6s ]_E[4f 5d*6s ]:8d_8f+ Ud_Udf! (23) in eq—&f.
E[4f95d%6s°]|— E[4f150%6S|=e4— &5+ 2(Ug—Uyqy),
(24) B. Details of the many-body calculations
E[4f15d265°]— E[4f15d%6s = 84— s+ Ug+Ugs, (25 The impurity calculations to be describeq in the fol!owing
were all done on a dense linear mesh, with a spacing of 1
E[4f!5d6s!]— E[4f15d°652]= 84— e+ Uyr, (26) meV on the energy axis, which is much denser than the
resolution obtained in present-day photoelectron spec-
E[4f15d%65%]— E[4f250165%] = 84— s+ Ug—U; . troscopies. The temperature parameter was mostly set at 11.6

27) K, so thatkgT was equal to the width of the mesh intervals.
We have found that this is sufficient to give an accurate

From these equations the parametefs—e;,U;,Uy,Uqs numerical calculation, while numerical instabilities start to
can be determined in terms of the atomic energies. Doing thdevelop if the temperature is lowered further relative to the
atomic calculations within the LSDA, we obtain the resultsenergy grid spacing. The mesh extends frer20 to 20 eV
eq—¢€5=6.03 eV,U;=6.3 eV,U4;=1.23 eV,U4=0.51 eV. in order to get good accuracy in the convolutions.
This confirms that the onsite correlation terthg; andU 44, For impurity model parameters that lead to strong mixing
which are neglected in our band Hamiltonian, are indeedf the f° and f! configurations it turns out that our self-
much smaller than thé-f repulsion. They are, however, energy functional does not always yield a positive lattice
large enough that they should be incorporated in a mean-fielgipectral function. This is a clear sign that the hybridization
approximation, since the physics of the Anderson impurityexpansion is inadequate in strongly hybridizing cases. We
model depends strongly on the position of fHevel relative  have treated this problem in the simplest possible manner, by
to the Fermi level of the medium. A direct incorporation into resetting the imaginary part of the self-energy to an infini-
our tight-binding model is dangerous, since the limited basigesimal value of the correct sign whenever the problem
set means that the occupation numbers arising in the modetises. This does not appear to disturb the iterations towards
are not necessarily representative of the real system. Indeesklf-consistency, and in the final self-consistent solutions
our LMTO band-structure calculations show that both she presented in the following the problem is only present in the
and p states of Ce carry some amount of chafgetotal case of CeN. Even in this rather strongly hybridized case
about 0.8), while we neglect these degrees of freedom in(n;~0.8), the self-energy only has to be reset in an interval
our band Hamiltonian. Instead, we estimate the Hartree ersf length ~0.07 eV in total, and the integral of the reset
ergies from the LMTO occupation numbers. In the many-quantity is~10 3 eV2. For the CeP and CeAs solutions, the
body calculations, the occupation of tfienultiplet comes  spectral function is always positive. Although the existence
out slightly below 1 for CeP and CeAs, and around 0.8 forof this problem is disturbing from a fundamental point of
CeN. In the LMTO calculations, thioccupation comes out view, we do not consider it to be a problem in practical
to approximately 1.20 for CeN and 1 for CeP and CeAs. Wecalculations as long as it only occurs in regions where the
may thus assume that the onset of the correlations will noiagnitude of the spectral function is not controlled by the
lead to any significant charge redistributions relative to thémaginary part of the self-energy. Still, if one wants to de-
LMTO calculations for CeP and CeAs, while for CeN0.4  scribe more general situatiolfise., with stronger hybridiza-
extra electrons will need to be accomodatedmarily) in  tion effects within this formalism, a remedy for the problem
the Ced orbitals, since these dominate the DOS near theshould be sought.
Fermi level. Therefore, we estimate;—e¢ for CeP and For thek-space integration of the lattice Green'’s function,
CeAs by comparing atomic total energies in the configurawhich constitutes the major computational effort, the
tions 4 5d'46s%36p 48 and 4°5d246s%%6p°*8 correspond-  Green’s function was represented on an energy mesh with
ing to the (¢-projected occupation numbers arising from variable spacing: In a narrow region around the Fermi level,
our LMTO calculations. In this way, we obtain a value for the spacing was 1 meV, as in the impurity calculation, while
eq—€; 0f 5.16 eV in a pure LSDA calculation, and 5.62 eV in the rest of the energy range the spacing was 10 meV. In
treating the fistate by the SIC-LSDA method. For CeN, it is this way the sharp structures in the spectrum arising near the
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Fermi level are accurately described. The only quantity that 0.3 . T T
needs to be carried over to the impurity calculation is the @)

effective hybridization function, which is fairly smooth away -
from the Fermi level, and can be interpolated to the denser
mesh without problems. Thk-space integration was done 0.2
by the Lambin-Vigneron algorithiif1°In this approach, the
Green’s-function matrix is diagonalized at each frequency

point, so that a particular matrix element can be expressed as
0.1f
k

k
amnbnm' | _
kam,(w)_; o—&n’ 29 /\’\//\\
0 1 | |
with aX -

K ..b¥. being components of thath left and right
eigenvectors of eigenenergy,,. Dividing the irreducible
part of the Brillouin-zone into tetrahedra, and expanding the

IV©)® [eV]
(o)
Y

points in the high-precision region close to the Fermi level.
The large number ok points turned out to be necessary for

eigenvalues and eigenvectors to linear order within each tet- 015 I
rahedron, one can obtain analytical formulas for the contri-

bution to the Green’s function from a single tetrahedron,

given eigenvalues and vectors at its corners. We performed 0.101" ]
the k-space integration with a division of 12—16 points

along each axis on the coarse energy mesh, and 26-24 0.05 - 1
describing the strong-f mixing arising here accurately. 0 , M/

n
H

-4 2 0
C. CeP e [eV]

Of the three Ce monopnictide systems studied here, CeP FIG. 3. Effective hybridization functions for CeP in the initial
is the most interesting case, with a very localized €eldc-  iteration (a), and at self-consistenctb). eq—e¢ is 5.16 eV. The
tron in the ground state, yet showing strong hybridizationFermi level is at zero energy.
effects in the low-energy excitatioi€>?® Experimentally,

CeP is a semimetal with a carrier concentration of 0.3% pewhich shows that there is a strong effect of thealence
formula unit®® It has recently been shown that this picture hybridization (in the unhybridized limit, only the charge-
can be reproduced by band-structure calculations within thexcitation peak would be presgnin spite of the near-
SIC-LSD approximatior! In these calculations, one Cé 4 integralf occupation. This makes CdBnd to a lesser extent
electron is treated as localize@le., self-interaction cor- CeAs a particularly interesting case for study.

rected, and does not contribute to the DOS at the Fermi In Figs. 2 and 3 the hybridization functions entering vari-
level, but forms as-function-like peak at high binding en- ous stages of the calculations are shown. Figube @epicts
ergy (around 7.5 eV. The net result is that a semimetallic the LMTO and tight-binding hybridization functions of CeP,
gap opens up, the carriers being provided by small electrorib give an idea of the accuracy of our mapping procedure.
hole pockets at th#1/I" points in the Brillouin zone, respec- While the overall fit is quite good, it can be seen that the
tively. This result indicates, that the experimental picture oftight-binding Hamiltonian cannot provide a perfect match to
CeP is that of a f4level very close to integral occupancy, the LMTO results. We have emphasized an accurate descrip-
with a correspondingly small contribution to the DOS at thetion of the hybridization strength below the Fermi level,
Fermi level. This is in accord with results from photoemis- since this is most important in the many-body calculations.
sion spectroscopy, which show a two-peak structure of thén particular, we have fixed the integrated weight belgw
occupied 4 DOS, with one peak situated close tbut in the tight-binding model to equal the result of the LMTO
clearly below the Fermi level, and another around the calculation. It is seen that the large contribution to the hy-
bottom of the norf-valence band®® These are naturally bridization arising from the occupied fPstates is quite well
interpreted as deriving from spi(upper peak and charge matched, while the description of tHeresonance near the
excitations(lower peall. In a recent, angle-resolved, photo- Fermi level is less accurate. This is probably not too impor-
emission experiment with high resolution, Kumigashdtal.  tant, since this energy region will lie abo#: in the self-
determined the position of the upper peak to be about 0.3 e\¢onsistent solution. At the present level of approximation, it
below the Fermi level, while the lower peak was found to lieis probably not worthwhile to pursue a more detailed agree-
around—3 eV?® The upper peak appears quite narrow, andment between these functions.

shows a small dispersion ef40 meV (roughly the same as Figure 38 shows the hybridization function obtained by
the experimental resolutionThe lower peak also displays diagonalizing the single-particle part of the tight-binding
dispersion effects in position and magnitude, but whetheHamiltonian after thd level has been shifted down to make
this is due to the actual DOS or to finite-lifetime effects iseq—¢e¢=5.16 eV, but without inclusion of any self-energy
not clear. It should be noted, that the integrated intensity oéffects. Apart from shifting the energy positions of the vari-
the upper peak is at least as high as that of the low oneyus structures, this modification also enhances the hybridiza-
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FIG. 4. Ce 4-projected DOS of CeP foty—e¢=5.16 eV (a) 04
andey—e:=5.62 eV(b). The spectral weight is plotted positive for
occupied states, and negative for unoccupied states. 0.2
tion between the and p states, since they are now rather 0.0

close in energy. We emphasize that this hybridization func- 3 > x 5 1
tion is “unphysical,” since it is calculated without taking the
f-f correlation effects into account in any wéayot even in a
mean-field approximationWhen the self-energy effects are ~ FIG. 5. Same as Fig. 4 fary—e;=6.0 eV (a), 6.2 eV(b), and
turned on, the(“dressed”) f-level position is again pulled 6.5 €V (c).
upwards. Figure @) shows the self-consistent hybridization
function, which is seen to be quite close to the initial LMTO position of thef level is too high. At self-consistency, ttie
result [Fig. 2(b)]. The main difference is that the weight level position in this calculation is-0.80 eV relative to the
around the Fermi level is strongly affected by the many-bodyFermi level. The absence of a well-defined charge-
effects in this region, as will be discussed further below. fluctuation peak indicates that the latter explanation is the
In Fig. 4(a) the 4 DOS arising at self-consistency for the appropriate onéa weaker hybridization would not enhance
parameters mentioned abofkat is, withe ;— £; determined  the weight at the lower band edgén Fig. 4b) we therefore
by atomic LSDA calculationsis shown. The sign of the show the spectral function arising from a calculation in
spectral function is positive belo®; and negative above. which the eq—e¢ separation was taken to be 5.62 eV as
The main features of the DOS are a very narrow peak aroundbtained in a SIC-LSDA atomic calculation. There is now
the Fermi level, accompanied by a broader structure centeragdore weight in the states at higher binding energy, and the
at approximately-0.15 eV, a largé*— 2 peak just below 6 occupancy has increased to about 0.96. However, the DOS at
eV, and a broad band of states at approximate®/eV de- the Fermi level is still high, so this calculation does not con-
rived from the smalf components of the occupigui bands.  stitute a satisfactory description of the experimental situation
The spectrum is clearly at variance with the experimentakither. The self-consistent position of théevel relative to
picture described above in three respects: First, the DOS &; is now —1.05 eV. That our initial downshift of thelevel
the Fermi level is large, so that this model describes a heavysy 0.46 eV results in a final shift of only 0.25 eV has a
fermion state, rather than a semimetal. THeodcupancy simple explanation: When thé&level position is moved
comes out as 0.92 electrons. Second, the charge-excitatislown, more electrons are transferred to thetate from the
satellite, which is well defined in the experimental spectrumpother orbitals, which means that the Fermi-level position
is absent here. And third, the peak just below the Fermi levetelative toe, and &4 goes down, counteracting the down-
appears too high in energy. ward shift of thef level.
The (weak delocalization of the #electron can have two To investigate whether the model is capable of describing
causes: Either the hybridization strength is too large, or théhe experimental situation at all, we continue to lower the
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f-level position. In Fig. 5 we show spectral functions g 0.01

—g; values of 6.0, 6.2, and 6.5 eV. We notice that the
charge-excitation peak rises sharply as ¢he ¢ value be-
comes larger than 6 eV. At the same time, tHevel occu- 0.04
pancy becomes close to 1, so that the position of the self-
consistenf level now follows thesy— & value without the
counteracting effect mentioned above. It appears thatzan 0.03
—¢&¢ value of approximately 6.2—6.3 eV would give a good
description of the experimental spectriat least as good as
we can expect from the present moddlhe sensitivity of the
spectral function to small changes of th&evel position in
this parameter region means that one will probably need a 0.01
more accurate model than the present one to do relizble

initio calculations for this compound. Still, our results show

that the parameters obtained by LSDA and SIC-LSDA cal- 0.00
culations are of the correct magnitude, and at least constitute

a good starting point for seeking refinements of the theory.

In Fig. 6 we show the, d, andf DOS close tcE¢ for the _ _FIG. 7. Hybridization function nedEr for differentf-level po-
calculation withe y— £;=5.62 eV. It is clear that thp andd ~ S'ions: (@ e9—81=5.16 eV, n;=0.92; (b) e4—#;=5.62 eV,
DOS are significantly perturbed by hybridization to the "=0-96:(c) eq—#;=6.0 eV,n;=0.995. The hybridization func-
electron heavy-fermion states. However, the modification i#ons are shown together with tiiecaled 4f DOS (dashed lines
not very strong, and is only seen clearly because the “bare’ n all figures, the Fermi level is at zero energy.
pd DOS shows a semimetallic gap in this region.

It is interesting to follow the evolution of the hybridiza-
tion function in the vicinity of the Fermi level as tHdevel
is shifted downwards. This is shown in Fig. 7, together with
the 4 spectral function. The hybridization strength is seen t
evolve more or less with the spectral density. In particular,
the weight at the Fermi level decreases as the positiany of
is lowered. In a region with a largef &elf-energy, the
asymptotic form of Eq(19) is

0.02

ARB. UNITS

right at the Fermi level is seen to decrease asfthkectron
becomes more and more localized, but the unhybridized limit
is quite far from being realized. Note, in particular, the
rowth of the hybridization strength arising from the many-
ody states at-—0.2 eV.
Kumigashiraet al® have recently presented evidence for
a small dispersion in therelated peak just below the Fermi
level in angle-resolved photoemission spectroscopy. To in-
vestigate this phenomenon, we have extracted angle-resolved
K 12 spectral functions from our self-consistent calculations. In
V3 (29) Fig. 8 we show an example along theX direction in the
e—e,—i0" Brillouin zone. The curves were obtained by fixing lcen-
served surface-parallel component of thevector at some
Here\ enumerates eigenstates of gheésystem without in-  point on theI'-X line, while integrating the perpendicular
clusion of the coupling/iy to thef stateqindexed byv). As  component across the Brillouin zone. The numbers labeling
all f states are equivalent in our model, the expres&@@his  the different curves gives the distance frairin the surface
independent orv. Since thef states do not influence the plane in units of 2r/a. The magnitude of the dispersion is
energy spectrum of tha states at all, it is clear that this ~0.05 eV, and the width of the structure+€.2 eV. Both of
function will not show thef-related peak structures at the these quantities are in reasonable agreement with the experi-
Fermi level. In Figs. {@)—-7(c) the intensity of the structure mental results, which find a dispersion 0.04 eV, and a

1
V(z)P=—Im > 2
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peak width of ~0.2 eV. The trend that the peak position <
moves down in energy as one goes fronowardsX, with a -0.6- . . n
final upturn close to the zone edge, is algoalitatively in : : :
agreement with the photoemission results. However, the po- 0.6 © 1
sition of the structure, and the precise energy differences
between the various points are not predicted correctly. The 03l =
high position of the peak compared to the experiment could
be remedied by a rescaling of the hybridization function, but 0.0
this also reduces the total weight of the structure consider-
ably. Probably, a more detailed description of tiieniltip- [
let structure(and perhaps a more realistic modeling of the -03F ]
photoemission experimentvould be needed to reproduce
the results in greater detail. Conceptually, however, it is an 0.6 .
important realization, that dispersion effects can appear in a 3 2 = 0 1
model of the kind discussed here, even in the present case of o [eV]

rather strongly localizedl electrons. )
FIG. 9. Ce 4-projected DOS of CeAs foty—e;=5.16 eV(a),

D. CeAs E,Ijg— Zf.=5.62 eV(b), ande4—¢;=6.0 eV(c). Sign convention as in
The physical properties of CeAs are quite similar to those

of CeP, except that the hybridization of the Cleosbitals to  are —0.97 eV, —1.31 eV, and—1.62 eV, respectively, for
the surroundings is weaker. This is clearly seen in photothe three different choices @f;—&;. Comparing the posi-
emission experiments as a reduction of the spin-fluctuatiotions and the relative weight of thérelated peaks to
peak close to the Fermi level, and is also borne out by ouexperiment$3?6the calculation withe 4— £;=6.0 eV gives a
LMTO calculations. Total-energy studies with the SIC- spectral function closest to the experimental one. In the limit
LSDA formalism have indicated that the structural propertiesof extremely weak hybridization, thef DOS would consist

of the Ce monopnictides may be understood as caused byd a single peak around the bdaréevel position. The calcu-
decrease of the f4hybridization with increasing ligand lated spectra of Fig. 9 do not show a peak at this energy, so
atomic numbef? Like CeP, CeAs is also semimetallic, with it can be concluded that hybridization effects still play a

a carrier concentration of 0.24%%. decisive role in determining the structure of the excitation
In Fig. 9 the 4 DOS is shown as calculated within our spectrum.
model for three different values afy—¢; (5.16 eV, 5.62 Compared to the CeP spectrum, the CeAs DOS has less

eV, and 6.0 eV. The major trends are the same as for CePweight in the spin-fluctuation peak, and more in the states at
The weight in the upper part of the occupied spectrum ishigher binding energies. This is consistent with experimental
reduced as thé level moves down, and a clear charge-findings?®?3 which gives the ratio between the upper and
excitation peak develops at the lower band edge. Again it isower peak as 2:1 and 1:1 for CeP and CeAs, respectively.
observed, that thab initio positions of thef level are too  These ratios are extracted from difference spectra, and it is
high to give a good agreement with the experimental factsnot clear how they should be calculated from our DOS, since
Both the LSDA and SIC-LSDA values fogy—e; give a  a substantial part of thef 4veight in our calculations lie in
metallic, heavy-fermion-like system. The self-consistént the region of the P,Ap bands, and since our calculations do
level occupancies are 0.94, 0.98, and 0.997, respectivelyot include matrix element effects. Qualitatively, however,
The positions of thd level relative toEr at self-consistency this trend seems well explained by the model. The position
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0.15 - . . peak, photoemission experiments reveal a shoulder structure
at ~—0.3 eV and a second peak atl.2 eV, both of which

are thought to bé related®®?® At higher binding energies a
valence band extending down to abou# eV is observed,

but in contrast to CeP and CeAs, no clear sign of-atate
charge excitation peak at the lower valence-band edge is ob-
served. This indicates that tifieveight in this region resides

in bandlike states.

Schneideret al?® analyzed a variety of spectroscopic re-
sults using the Gunnarsson-Sohammer approach,and
found that arf-level position of—0.8 eV relative toEr and

| , | , a hybridization strength leading to dnoccupation of 0.8
T T . T . electrons gave good fits to the experimental spectra. The
analysis of Schneidest al. was done with & value of 7 eV
and anf-level degeneracy of éneglecting thgj =4 states,
so their many-body calculation is quite similar to the one
implemented here, except for the more realistic description
of the hybridization function in the present work. Patthey
et al?* did a first-order perturbation calculation including
spin-orbit splitting, and found agreement with photoemission
spectra with arf-level position of—1.0 eV and a =3 oc-
cupation of 0.86. These authors interpreted the shoulder
structure at—0.3 eV as caused by ja=3—j =7 transition,
and the peak at-1.2 eV as being caused by emission from
4 3 ) X 0 1 2 localizedf?! levels, stabilized by proximity to the surface or
€ [eV] vacancy defects. The last interpretation is indirectly sup-
ported by our calculations, since we do not find any sign of a

FIG. 10. Effective hybridization function of CeAs at self- bulk state at this energy.
consistency foreq—&;=5.16 eV (a), and 6.0 eV(b). The Fermi Due to the strong hybridization, CeN is the most difficult
level is at zero energy. of the monopnictides to describe within our tight-binding

model. The LMTO calculation for this compound yields a
of the upper peak found in these experiments-i8.6 eV  separation of 3.7 eV between the €andf band centers, but
below the Fermi energy for both CeP and CeAs, which iso obtain a reasonable match of the hybridization functions,
clearly at variance with our results, but also with the morewe have found it necessary to reduce the separation of the
recent angle-resolved data for CeRssuming that the cor- tight-binding levels to 2.7 eV. This is an indication that the
rect position is 0.3—-0.4 eV belo®, as in CeP, our peak small basis set is no longer adequate to mimic the full LMTO
still appears too high, but the difference is of the order of 0.1calculation. The LMTO and initial TB hybridization func-
eV and could be modified in a more complete treatment. Th&ions are shown in Fig.(2). The LMTO hybridization func-
broadening of the peak in CeAs relative to CeP is connectetion was, as in the other compounds, calculated from the
to the position of thep band relative to the Fermi level: In ¢4¢-projected DOS. In CeN, unlike the other compounds
CeP there is a gap in the hybridization function just belowstudied here, the integrated weight of the hybridization func-
the structure related to the many-body states, whereas #ion below the Fermi level is somewhat different 20%) in
CeAs the edge of thp states moves very close to the Fermi the ¢- and y-projected calculations, so in this case the am-
level (Fig. 10. This result is not supported by the photoemis-biguity in the definition of the #orbitals is not completely
sion experiments quoted, but the widths found experimenwithout consequence.
tally are, in any case, larger than the calculated widths, and As it turns out, it is impossible to describe the experimen-
may in part be caused by the finite experimental resolutiontal situation even approximately by the parameters obtained
For CeP, the more recent high-resolution measurements ifirom ab initio calculations. The strong hybridization puts a
deed find a smaller width of the spin-fluctuation structure. large weight on thef® impurity configuration, while thef2

In Fig. 10 the hybridization function at self-consistency is weight remains low due to the large valueldf As a result,
shown for two different positions of thielevel. In compari-  very low f occupanciegof approximately 0.3 electrohsre
son to the CeP case, the strucure near the Fermi level is nopredicted. Therefore, it is clear, that ab initio theory of
less pronounced, and closer to the asymptotic case of unhgeN would have to be considerably more sophisticated than
bridized pd bands. the present approach, and our main reason for including this
compound in the discussion is to investigate what kind of
improvements are likely to be necessary.

Since the delocalization of the Cd dlectron is mostly

CeN is the only material in the Ce monopnicitide seriesdetermined by the ratio between the hybridization strength
showing a metallic ground state. Thelectron delocalizes, and thef-level position relative to the Fermi level, the re-
due to a strongepd-f hybridization, and a narrow peak in the quirement ofn;=0.8 can be met by a range of parameters if
DOS develops around the Fermi level. In addition to thiswe allow for adjustment of both quantities. If we additionally

0.10 =

0.05

IVe)l® [eV]
o

0.10

0.05

E. CeN
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FIG. 11. Correlatedfdprojected DOS for CeN. Sign convention
as in Fig. 4.

require that no cleaf-electron peak should develop at the
lower band edge we do at least obtain a lower boundan
It is not our intention here to make a detailed fit of param-
eters to experimental information, but only to investigate the 3
behavior of the model as we go towards the regime of mixed
valence. In Fig. 11 we show a Cégpectrum calculated with
parameters chosen to mimic the above-mentioned results of A r X
spectroscopic fits. Thusy is equal to 0.82, and the position
of thef level relative toEr is —1.02 eV. This is obtained by ~ FIG. 12. (8) Valence-band structure of CeN with self-energy
rescaling the hybridization strength with a factor close to€ffects included. The curves were obtained by finding, at dach
two, and puttingey— £;=5.55 eV. This value ok4—&; is pplnt, the energiesw, wher,e Real@—snk) =_0, e being thenth
~0.5 eV lower than the values required to match the experiSi9envalue of the Green's-function matrix at the polnt The
mental spectra of CeP, CeAs, similar to the difference in th&25"€d iné indicates the Fermi levé) Tight-binding bands with-
values from the atomic calculations. It is thus a consistenf"" Inclusion of self-energy effects, as obtained with parameters
. - - matched to the LMTO calculation.

trend in all three compounds, that thé initio estimate of
thef-level position is too high to reproduce the experimentalpation of the LMTO 4 orbital is about 1.2, while the many-
spectra. A possible explanation for this could be that we ar@ody occupation is only 0.8 electrons. This difference in oc-
using the same hybridization function to describe both thecupation numbers would make tlierbital too large in the
f0-f1 and f1-f2 couplings in the impurity model. Gunnarson LMTO calculation, increasing the hybridization to the other
and Jepsef! have argued that the hybridization function to orbitals. Whether this explanation is correct can only be
be used for thef!-f2 matrix elements should be calculated checked by performing calculations in which the many-
with a doubly occupied fAwave function, which would be body-related changes in occupation numbers are incorpo-
considerably expanded compared with the singly occupiedated in the band calculation in a self-consistent manner.
function used for thé®-f* hybridization. As a result, the'- The most prominent features of thespectrum shown in
f2 coupling strength could be several times larger than thé&ig. 11 are the very narrow band arising aroufd and the
f9-f1 coupling. The leading effect of this modification would shoulder structure appearing just below~at0.15 eV. The
be to favor occupation of thEt configuration, since the “ef- width of the narrow band is only about 0.1 eV, which is
fective” fl-level position is shifted downwards by the cou- much smaller than the results usually obtained in band
pling to f2 states. We have not investigated the effect in thistheory. The energy derivative of the self-energy at the Fermi
work, since we at present have no parameter-free scheme ftavel (which is a measure of the quasiparticle mass enhance-
estimating the enhancement of thef? coupling, butitisa mend is ~5 in this calculation. Still, thé-resolved spectra
problem that should be addressed in a more complete treaghow strong quasiparticle peaks in this region, so that a dis-
ment of Ce compounds. A similar effect would arise from persion relation ok vs k can be extracted. Thus, the model
the inclusion of the fullf multiplet (N¢=14), but this would in this case describes a heavy-fermion-like state, featuring
also increase th&®— f* coupling, so the combined result of fermi-liquid-like excitations with strong correlation-induced
this modification is less clear. mass enhancements.

The necessary rescaling of the hybridization strength, on In Fig. 12 plots of the band structure along theX and
the other hand, appears surprisingly large, in light of the fact"-L directions ink space are shown. Figure (82 shows the
that no significant rescaling was needed for the other comguasiparticle bands with self-energy effects included, while
pounds. A possible explanation could be the differences irrig. 12b) shows the bare tight-binding bands calculated with
occupation numbers. For CeP and CeAs we had approximatbe parameters matched to the LMTO hybridization function
consistency between tHeccupation numbers of the LMTO (i.e., withey—e;=2.7 eV). The inclusion of many-body ef-
and many-body calculations. In the case of CeN, the occufects clearly leads to the formation of a set of narrow bands
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0.20 . - | - single parametefthe position of the Cefdevel), in the case

of CeP and CeAs, while for CeN a rescaling of the hybrid-
ization parameters is also necessary. In particular, we have
shown that dispersion effects can occur in the Ce 4
projected DOS, even in cases where tloecupation is close

to 1. The parameter dependence of the self-consistent effec-
tive hybridization function has been investigated, and it has
been found to resemble the uncorrelated hybridization rather
well, except in energy regions where there is a sizeable den-
sity of correlated Ce fstates.

The results presented in this paper raise several questions,
but are also promising in at least two respects: Firstly, it is
very encouraging, that the model, qualitatively and often

£ [eV] quantitatively, is able to account for all features of the ex-
perimental spectra of Ce monopnictide compounds. Sec-

FIG. 13. Self-consistent effective hybridization function for ondly, it is interesting, that the parameters obtained fedm
CeN, with parameters as described in the text. The Fermi level is dhitio calculations come quite close to the ones needed for a
zZero energy. detailed match of the experimental picture, and that tla¢y

least for CeP, CeAsare not very sensitive to the precise way
close to the Fermi level. However, there is still a noticeableof defining the Ce #lorbital in the LMTO formalism. In light
dispersion around th& point. Comparison of Figs. 13 of this, the obvious next step seems to be an incorporation of
and 1Zb) shows that the bands in the vicinity of the Fermi the many-body calculational scheme presented here directly
level are significantly narrowed, in accord with the calcu-into anab initio LMTO band structure code, thus providing a
lated mass enhancement facteb. The lower-lying bands more detailed description of the single-particle part of the
are largely unaffected by the correlation effects. We emphakamiltonian, and possibly including spin-orbit effects. A cal-
size that the “bands” in Fig. 1@) do not constitute the only culation of this kind would be computationally demanding,
contribution to the DOS of CeN. The satellite structure ap-but not prohibitive.
pearing just below the HF peak in Fig. 11 arises from the
imaginary part of the self energy, i.e., the single-particle
states in this energy region have short lifetimes.

In comparison with the experimental photoemission The authors wish to thank Professor V. I. Anisimov for
spectr&?~?*it is interesting to notice, that the present model,valuable discussions, stimulating our interest in dynamical
which contains no spin-orbit effects, still predicts a shouldermean-field theory. This work has benefited from collabora-
structure at an energy about 0.2 eV bel&y. The same tions within the Human Capital and Mobility Network
shoulder structure is less pronouncedly found for CeP in Figon *“Ab initio (from electronic structupe calculations of
4 and for CeAs in Fig. 9. The states in this structure arecomplex processes in materials” (Contract No.
short-lived (i.e., they have a large imaginary self-energy ERBCHRXCT93036%
componentand are very weakly dispersing. They arise here
because the self-consistent hybridization functisimown in
Fig. 13 for CeN develops a peak at the Fermi level corre- APPENDIX: SOLUTION METHOD
sponding to thd bands appearing here. The satellite struc- FOR THE IMPURITY PROBLEM
tures are created at the back edge of this hybridization peak | this appendix, the solution of the single-impurity prob-
and are analogous to the charge excitation peaks arising fm will be discussed in greater detail. Most of our discus-
the lower valence band edge in CeP and CeAs. It is uncleagion will be focused on the calculation of the thermodynamic
how this structure would be modified in the presence of gtential, since this is formally simpler, yet contains all the
spin-orbit splitf multiplet, but the present result shows thatingredients needed for the evaluation of the Green’s func-
direct extraction of spin-orbit splitting from photoemission tion, For simplicity, we shall consider the case where all
experiments may be dangerous. impurity states are equivalent.

We follow the approach of Keiter and Morafitliand
write the partition function as

0.15

0.10

IVe)P [eV]

0.05+

-4
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IV. CONCLUSIONS AND OUTLOOK

In the present work we have described a method for solv- ) 1 1
ing strongly correlated lattice problems by means of the dy-  z=Te AH-w]= — 3§ dweﬁ(‘”“)Tr( _ ) ,
namical mean-field theory. The method has been applied to a 2mi Je w—H
realistic model of the Ce monopnictide systems CeN, CeP, (A1)
and CeAs. The model has been parametrized using results of
ab initio atomic and band-structure calculations, and it hady the residue theorem, with the contdDrchosen so as to
been shown that the main physical trends and features of thencircle all poles of the resolvent operataris the chemical
compounds can be reproduced in this way. Furthermore, wpotential, which in the following will be taken to be equal to
have demonstrated, that a fairly accurate quantitative accougzero to simplify the notation. The variabdeis understood to
of experimental results can be achieved by adjustment of aarry an infinitesimal imaginary part. To perform the trace,
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we choose a basis consistingfdf f*, andf? configurations
in combination with conduction electron statdls as fol-
lows:

operator. The Hamiltonian is split into a paf® that is
diagonal in the chosen basis, and a parthat is not, i.e.,
H=HP+V. Thus

_af ~t
|NC>_CV181"CV sN|VaC>’ 1

) . (A8)

INe;vy=c] . ..cl . fllvag, (A2)

To determine the Green’s function for some configuratign
we must evaluate
e~ Nc;m>

e BEN,
N
"(w)= E <m, Sy

c

INg;wp'y=c! 117 |vag.

V1€1 VNS

We work in the grand canonical ensemble so that the particle
number as well as the total energy is variable. This allows us
to split the trace into a sum over band states and a sum over
the various impurity occupations. Shifting the integral by the = Z
energy of the unperturbed conduction electrons, and dividing ¢

by their partition functionZ. we obtain

z 1 e PEn,
Zi=—=-— 0 do e Pl (N —|N
"z, 2mi ; Z. < ° o—Fy, °>
+Z(<VN = NC;V>
v w— Nc

(Ad)

Introducing the “configurational Green’s functionghot to
be confused with the physical Green’s funci@s

_BEN
GO(w)= 2 < Nc> ,

w— Nc
_BEN
G (w)= 2 viNg| ——=—|N¢iv),  (A5)
w— Nc
e‘ﬁEN 1
G, (w) E vv';Ng| ——=—|N¢;vv' ),
Nc w_HNc

and the corresponding spectral functions,

1
p O (w)= —Im G9(w), etc., (AB)
the partition function can be written as
Zf—f dw e P9 p® w)-i-E (p(l)
+ 2 ()], (A7)
v >y

All we need to describe the thermodynamics of the impurity
model is thus to determine the configurational Green’s func-
tions. This is done by a series expansion of the resolvent

Nc;m>.

(A9)
The expectation values of the operafd)ﬁC are independent

of the state of the conduction electrons since their energy has
been explicitly subtracted, i.e., we can write

<m;N

Introducing the projection operator

H

Nc,m> Gi"(w). (A10)

OR. =1~ |N¢;m)(m;N], (A11)
the G(™ can be expressed as
- e PEn,
GM(w)=G{"(0) X | Gg"(w
n=0 c Zc
o] l n/ n
x{ m;Ng| > — 1| VINg:m
n"=0 (l)_HNC
1
(A12)

G @) I (w)]
thus defining the configurational self-enejy™,

e PEn,

M (@)= 2

C

n’

Y

Ne| >
n'=0

S

I
I
Z0

Nc;m>.

(A13)

To arrive at a manageable approximation for the self-
energies we write out the lowest-order terms of the series
(A13) for the different configurations:

EBO)(w)= NfJ:cds f(s)|V(s)|2Ggl)(w+s)+
(A14)
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zgl>(w)=J°° de f(—&)|V()|? G (w—¢) E{,lg(w)=(Nf—1)r de|V(e)|*f(—£)GO(w—s)
+(Nf—1)£o de f(&)|V(e)|? xf_w de'|V(e")|*f(e")GP(w+e’)
XGPH(w+e)+:--, (A15) XGM(w+e'—¢)

252)(w)=2f,w de f(—)|V(s)[? ”Nf_1)ffxd’E'V(s)'Zf(a)G(Z)(“’*8)

XGH(w—g)+---, (A16) xf de’|V(e")|2f(—e)GO(w—g")
wheref(g) is the Fermi distribution function. Notice that a (1) ,
configuration withm f electrons can couple to thma+1 con- XGH(wt+e—e’), (A20)

figurations inN;—m ways, but to them—1 configurations .
only in m ways. In the heavy-fermion regime the energy 2{/2()3(“’):J' de|V(e)|2f(— )GV (w—¢)
scaleN{V? is of the same magnitude as the other energy —o

scales of the systent{ andU), which makes it possible to

arrange the perturbation series as ld;1éxpansion. Typical Xf
N;V2 values are in the range 0.1-1 eV. Another “natural” ) ,
expansion parameter that emerges from the above series is XGH(w=g"). (A21)
the ratio NfV?/(U—gy), which for aU of 6 eV ande;  The leading error term in the® self-energy is now of order
values between-1 and—3 eV would be in the range from [N,v2/(U—g;)]% while the leading error in thé® self-
1/3 to 1/50. Therefore, the two expansion parameters argnergy is still~ (1/N?).

generally of comparable magnitude.

A simple, self-consistent self-energy approximation is ob-
tained from the above formulas by everywhere replacing the
bare Green’s function&{™ by the dressed one3(™. This
is a direct generalization of the usual NCA to the firite-
case. Pruschke and Grewe have argtitat this is in gen-
eral a rather crude approximation. The basic problem is ths
the leading error term in the” self-energy,

de' V(") [2F(— )G (w—s—¢")

— VC
—= No VvC

(a)

09 (@) [arb. units]

AE(O)=Nf(Nf_1)fOO de de'f(2)f(e")|V(e)|?

><|V(8,)|2G81)(w+8)652)(w+8+8,) ®)

XGY(w+e"), (A17)

is of orderN¢V?/(U—g;), thus making the approximation
dubious for a considerable range of parameters. To ensul
the correctness of the theory to first orderbioth 1/N; and
N;V?/(U—g¢) we need to consider the extended set of equa
tions,

o () [arb. units)

1.20 -1.15 -1.10 -1.05 -1.00

SM(0)=3 (L w)+3 U o), (A18)

< —VvC
with n ranging from O to 2. Here th&yc are the self- © 2 -~ NoVvC
energies given by Eq$A14)—(A16) with the bare Green's
functions replaced by the interacting ones, while the “vertex
correction terms”S, ¢ are given by*

() [arb. units]

p(2)

E<V°é(w>=Nf<Nf—1>f_°° de|V(e)|*f(e)G P (w+e)

3.5 4.0 a5 5.0 55
w w [eV]
xf de’|V(e")|?f(e")GP(w+e+e")
- FIG. 14. Spectral functions for th€® (a), f* (b), and f2 (c)
configurations. Full lines display vertex corrected results, while
XGM(w+e'), (A19) dashed lines are calculated without vertex corrections.
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As an example of the importance of the correction termscuracy needed near the sharp features of the spectra. A natu-
we show in Fig. 14 the spectral functions for the differént ral way of circumventing the problem is to work on a non-
configurations calculated with and without vertex correctiondinear (e.g., logarithmig energy mesh that is dense around
for a self-consistent CeP hybridization function. The positionthe peak structures but not elsewhere. This has the drawback
of thef level wase;=—0.915 eV. To simplify the numerics, that one needs to adjust the mesh for each iteration, which is
the temperature was set at 60 K. The most important differeumbersome for a calculation like the present one, where the
ence is that some of thi€ weight is shifted down in energy total number of iterations is largeince we have one self-
when the vertex corrections are turned on, implying a largeconsistency loop within anothelnstead, we have chosen to
9 component in the low-lyingthermally occupiefistates of ~ work on a dense linear mestypically with a spacing of 1
the system. In this case, the vertex corrections changé'the meV), which allows us to do convolutions by fast Fourier
occupancy from 0.98 to 0.92, which will imply a consider- transforms, so that the calculational time for the evaluation
able modification of the physical properties. Furthermore, thef the NCA self-energies scales Bsin N while the calcula-
pole in thef! peak is broadened, and slightly shifted in en-tion of VC energies scales &In N, with N being the num-
ergy. Thef? spectrum, on the other hand, is largely unaf-ber of energy mesh points. With such a scheme, the NCA
fected by the corrections. This is consistent with the fact thaself-energies are easily evaluated, while the vertex correc-
the f2 correction is of order N2, and indicates that the N/ tions are still very time consuming. To arrive at a more man-
expansion is converging rapidly. ageable method, we simplify the form of the correction terms

It is remarkable that the treatment of the coupling to theby ignoring the unimportant correction to tfié self-energy
f2 configuration is so decisive in this case of relatively weak(A21), and by treating the integrals in the other terms by a
hybridization and high-lying; . It shows, as previously dis- coarse-graining procedure that relies on the fact that the
cussed, that angb initio theory of heavy-fermion systems spectral weights of thé® and f* configurations are concen-
must in some way take these couplings into account. Nutrated in a region where thi¢ Green’s function is relatively
merically this is, however, a difficult task due to the doublestructureless. The basic idea is to replace @# function

integrals encountered in Eq#19)—(A21), and the high ac- by a suitable averagg, that is then pulled outside the inte-
grals. As an example, one could approximate the vertex cor-

. . . rection to thef® and f self-energies by

(@) — Full cale. ©
- - Appr. calc. Sye(w)=T2(@)N¢(N;—1)
z
5 xf de|V(e)|%f ()G P (w+e)
e — o0
3,
3 xf de’|V(e")|2f(e)GD(w+e")
E>/Q.
1 (0) 2
= 1_N_ Fz(w)ENCA(w) y (A22)
) 1 1 f
-2 -1 0] 1 2
o [eV] >
| , | S0)=(N- Do) | delVie)PH—e)  (A23
(b) — Full calc.
- - Appr. calc. o
) XG(O)(w—s)J de'|V(e")|?
.E — 0
3
_e ’ (1) r_ _
3, Xf(e")G' Y (w+e'—e)+(Ns—1)go(w)
§ o0 o0
Eo_ Xf d8|V(8)|2f(8)f de'|V(e")|?
| > , Xf(—&e" )G (w—e")GH(w+e—g")
-1.20 -1.15 -1.10 -1.05 -1.00

o [eV] _s

1 o
1= ot [ asivier

FIG. 15. Spectral functions for thi? (a) and f* (b) configura-
tions. Full lines display fully vertex corrected results, while dashed Xf(—&)G(w— S)E&O&A(w— €), (A23)
lines are calculated with the coarse-graining approximation de-
scribed in the text. with
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1 (=
g =5 | delVie)P1(e)6 P wte), (A28 Gilw)= 5.7 § dzebery

1 . 1 .
ft—f
z—H w

1 (e
Pow)= 5| delV(e)()g ) S - f). (a27)
. “

z H z—H
(A25)
" Here C is a contour surrounding the poles of the resolvent
A:f de|V(e)|?f (). (A26) operators, while the variable is assumed to carry an infini-

tesimal imaginary part yet still lying outside the contdTir

These expressions can be evaluatedNojn N operations Doing_a simple'NCA-Iike approximationlgr?.e can derive the

only. In our actual calculations we have refined the abovéOIIOWIng equation for the spectral functioh:

approximation( s)lightly by taking into account that the imagi- L

nary part ofG®) is almost aéd function while the real part _ * ges (1 0

samples a larger energy region, so that different averages of Pf(®)= Z_des e P (p'M(e)p (e~ w)

the G(® function should be used for the different terms of

the product of NCA self-energies. In Fig. 15 we show the +(Ni=1)[p®(e)pV (e~ w)

configurational spectra calculated from this approximation

together with the fully corrected ones. Parameters are the 0 (e)p Vet 0)+pM(2)p (e 0)).

same as in Fig. 14. The curves are now almost indistinguish- (A28)

able over the whole energy range. Although this result is

very encouraging, we emphasize that the coarse-grainintp the infiniteU limit, this expression is correct to first order

procedure discussed here cannot be expected to be justified 1/N;. For finiteU values there are correction terms of

for all relevant parameters of the impurity model. In particu-order NyV2/U, but the expression still gives the correct oc-

lar, one would expect it to become dubious in cases whereupation numbers, as one can derive directly from Egs.

the low-energy states have a significdhtcomponent. This  (A28) and(A7). As it turns out, the vertex corrections to Eq.

is, however, not the case for the models discussed in theA28) are more difficult to evaluate in an economical manner

present work. than the corrections to the self-energies, so we have chosen
Finally, we comment briefly on the evaluation of the to omit them in the present work. Thus, the vertex correc-

physical Green'’s function. By a procedure similar to the ondions enter in the evaluation of the configurational spectra,

used for the partition sum, one can derive the generabut not in the subsequent calculation of the physical Green’s

formula! function from the configurational ones.
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