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Faraday effect in composites
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We study the Faraday effect in a binary composite consisting of a dielectric matrix with metallic inclusions.
We first use the replica trick together with a variational method in order to compute the effective permittivity
tensor in the quasistatic limit of this composite in a static magnetic field. In order to find scaling exponents near
the percolation threshold,, we use a high contrast or low-frequency expansion combined with scaling. The
results of the two methods are in agreement, and predict thatme@nd below, that is, in the dielectric
region, the Faraday effect is greatly enhancgsi0163-18288)01644-0

I. INTRODUCTION upon previous discussions of dc magnetotranspbrt.
The Hall effect in percolating composites has been stud-

We will concentrate on the problem of the effective per-ied using a number of different methods which enabled the
mittivity tensor of a binary mixture in a static magnetic field. critical behavior to be determined quite reliaBly:**How-
Since the Faraday effect is usually very weak in dielectrics@ver, until now the Faraday effect in metal-dielectric com-
we study a mixture made of a dielectric host matrix with Posites was only discussed using a Clausius-Mossotti-type
metallic inclusions. In such a system, the Hall effect in theaPproximatiorf, which is good for dilute systems, and a
inclusions is expected to induce a measurable Faraday effeBfuggeman-type self-consistent effective-medium approxi-
in the composite dielectric even when this effect is totallymation(SEMA),® which exhibits a percolation threshold but
negligible in the pure dielectric host. We will study the qua_with incorrect values of the critical exponents. In the present
sistatic limit, the wavelength of the incoming wave beingStudy we employ different approachesee above Both of
much larger than the typical inhomogeneity length, which is.0Ur approaches are not limited to dilute systems, and one, the
for example, the size of the metallic grains. Therefore, thdigh contrast expansion together with scaligsdze is ex-
Composite medium can be seen as quasihomogeneOUS, dp@(:ted to lead to reliable results for the critical behavior near
the equivalent homogeneous material is called the effectivePc -
medium. Determining the effective-medium properties of Let us first recall some facts about the Faraday effect.
disordered materials such as composites or suspensions iddhen an isotropic material is subjected to a static and uni-
difficult problem, and one has often to resort to perturbativdorm magnetic fieldB directed along the axis, it can be
methods(low field, low density, or low contrastvhich can-  described by the permittivity tensor
not be applied for a high magnetic field, for instance. Here
we propose two different approaches to this problem. The e g O
first is based on the use of the replica method together with a A ~
variational principle. This treatment possesses the advantage e=| —ie & 0, (1.3)
that it is nonperturbative, and may thus be useful for strong 0 0 e,
disorder or strong fields. This method was successfully ap-
plied to different problems such as the random resistor netwheres must depend upoB (see, e.g., Ref. 10In a ho-
work problem? and the Hall effect in compositésMore-  mogeneous medium, the dispersion equation gives rise to
over, it has been shown that it can give reasonable values fefo solutions, which are the left and right circularly polar-
the permittivity tensor if the system is not too close to thejzed waves with two different refractive indices,
percolation thresholg.. However, the critical exponents
are not reproduced correctly, and one usually obtains mean- R \/E
field or effective-medium-approximation exponents. In order = -
to present an alternative discussion of this problem, and ob- ~ . ~ .
tain correct exponents nepg, we introduce a high contrast Wheree ande are positive and real _and>s, Wh'c.h ensures
expansion. This is essentially an expansion in powers of th at the wave is undamped. If a_llnearly polarlzed_ wave of
ratio of resistivities or permittivities of the two components, requencyw pro_pagates over a distantethrough this me-
which can be made very small by making the frequency 0ldlum, the polarization plane will rotatghe so-called Fara-
the incoming wave very small. This expansion can be use&|ay effect by an angle
for weak magnetic fields as well as strong magnetic fields. In
order to discuss the critical properties ngar, we apply 0=2L(n —n.) 1.3
some scalingAnsdze to that expansion, which are based c A '

1.2
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wherec is the light speed in vacuum. Usually the Faradayquencies in the visible range. But it will be relevant for fre-
effect is weak and is very small compared te, and the duencies up to, and including, the microwave regime.

rotation angle is therefore approximately given by These assumptions mean th.at the host exhibits no'intr.ins'ic
Faraday effect, and the metallic component has no intrinsic
©w & magnetoresistance, only a Hall effect. In terms of resistivity,
0=—L—. (1.4  the metallic component is characterized by a free-electron-
¢ \/; like resistivity tensor obtained by inverting, ,
We will also use the Faraday coefficient, which is defined by 1 H 0O
F=¢l\Je. We note here that the Faraday effect is usually A
weak, andF ranges from 108 in dielectrics to 107 for thin pm=pm| —H 1 0], (1.10
films of metallic iron. 0O 0 1

We will study the case where the material is a random
binary composite medium made of a dielectric host with me-and the impedance of the dielectric host is an imaginary sca-
tallic inclusions, and where a static uniform magnetic figld lar tensor
is applied along the axis. We suppose that the medium has
a position-dependent permittivity tense(r) which is an pi=pl, p=
independent random variable at each pointlistributed ac-
cording to the probability density

41

iwe,|

(1.1

We will assume that the quasistatic approximation can be
aN Ao Ao used, that is, both wavelength and skin depth are large com-
= — +(1— —g). 1. - 2 .
P(e)=pd(z=em)*+(1=p)d(s—2) (4.5 pared to the sizes of metallic inclusions.

Let us note that, in real materials, the grains have finite sizes \ve define the bulk effective permittivity tense of the

and that in a finite-frequency calculation one should take thignedium by the relation

into account. However, in the quasistatic limit, the grain

sizes are irrelevant and this simplified characterization of the S(NE(r)) =8 .(E(r 11

disorder[Eq. (1.5)] is justified. (2(NEr)=e«EM), (112
Equivalently, the local resistivity tens(ir(r) (related to whereE is the electric field, and where the brackets denote a

quenched average over the probability distribution given by

Eqg. (1.5, or equivalently a spatial average over the volume

of the sample. The effective medium will be homogeneous

and isotropic, and we expect an effective permittivity tensor

the permittivity tensor by p=4n/iwe) is a step function
that is equal topy, inside the metal and t@, inside the
dielectric component. It will be represented, with the help of
the appropriate characteristic functiofg(r) and 8,(r), as

of the form
p(r)=pmOm(r)+p6,(r), (1.6 e i3, O
1 for r inside the metal co=| —iz. € 0 |. (1.13
Ou(r)=1—06,(r)= . 1. e fe Te
0 otherwise. 0 0 &5
In the dielectric component, the permittivity is taken to be e can also define the bulk effective complex resistivity
- - tensor by
£|:8||, (18)
whereg,, the dielectric constant of the host, is a real scalar pe-(I)=(pJ), (1.14

guantity anq is mdept_andent Bf The metallic component IS \vhered is the local current density.
nonpercolating, and is characterized by a free-electron-like In order to evaluate the effective properties of the hetero-

reS|_st|v||ty ttlenzor_tln the p_rt(ta_sgtnie of a magnetic figla or, geneous medium, we can proceed in different ways. The first
equivalently, by Iits permittivity tensor one(Sec. ) relies on the observation that the effective per-

1 H mittivity tensor can be exactly related to the inverse of a
172 1712 0 random ope[atoM. The problem is thus reduced to the cal-
- culation of(M 1), and we will use replicas together with a
Em=&m| H 1 ol H=w7=[B|, variational approximation to evaluate this quantity. Let us
1+H? 1+H? note here that this is in principle equivalent to computftrgg
0 0o 1 using Eq.(1.12 or p, using Eq.(1.14), since the product of
(1.9 these tensors is proportional to the unit tenkoHowever,

where w.. is the cyclotron frequencys is the conductivity —Since we use approximations, the two procedures are not
relaxation time, andy=4moy/iw is purely imaginary and  Necessarily equivalent. In fact, it has been sthAthhat, for
independent ofB (o) is the conductivity of the metallic the variational approximation, computirg or p. leads to
component We assume that this form continues to be validdifferent results, and that it is more reliable to calculate the
even at finite frequencies. This probably means that the erpermittivity or the conductivity than it is to calculate the
tire subsequent discussion will not be valid for optical fre-resistivity.
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Since the variational method is nonperturbative, it pos- Il. REPLICA APPROACH
sesses the advantage that it is reliable in the whole range of In this section we present the replica approach. Here we
concentration and for any strength of the disorder. Howeverc te the effect P ittivity t P fppb. o ;
near the percolation threshold,, this method leads to ompute the etiec 'Ye permitivity er.1$0ro abinary m!x ure,
mean-field exponents which are usually not accurate espdihere the tensoe is a random variable equal to, with
cially in three dimensionsd=3). Moreover, it is difficult to ~ probability p and toe, with probabilityq=1—p, each com-
control the quality of the variational approximation. ponent having a permittivity of the form given in E@L..1).

In order to describe the Faraday effect npar we will ~ The calculation is essentially the same as for the Hall effect,
use a second approach, which relies on the fact thatig  and we give the main steps of the derivation in Appendix A.
small enough, we have two small parametpgs/p, and We obtain the following equations: The first one gives the
Hpm/pi . The local electric fieldE(r) and current density longitudinal effective permittivity
J(r) can be found by defining a vector potenti&(r) such

that = (8,07 \ed%ze)
J(r)=VXA(r), (1.15

0 <e*U82/3€ze>
and then solving the equation where the brackets still denote an average over(ES), and
VXE=0 1.1 e also obtain two coupled equations for the transverse per-

mittivities e, £

: 2.1

using the constitutive relatiorE(r)=p(r)J(r). It is of
course out of the question to solve this equation exactly; o
therefore we will expandA in powers of the contrast be- 1=—%f du e YIn(e "X%e) +In(e UY%%e)1, (2.2
tween the two components, i.e., the resistivity ratjp/p, . 0
This approach is valid only in the quasistatic regime. Besides
confirming results obtained by means of the replicas, when ~ _ =~ = . Ui
combined with scaling this allows us to predict the behavior ge= Eﬁefo due YIn(e e)—In(e 9t (2.3
of the medium near the percolation threshold.
One of the conclusions of the present work is that the ~ ~ ) .
Faraday effect can be greatly enhanced in a metal-dielectri¢thereX=e—¢ andY=e¢+s. Equation(2.2) determines:
composite just below the percolation threshold. This differsself-consistently, while Eq(2.3) determinese, after g, is
from the enhancement found in ferrofluitfs* In those sys-  known.
tems it arises due to the presence of small ferromagnetic Equation(2.1) is the same as that obtained in Refs. 1 and
particles in suspension. By contrast, in the system we aré3 for the bulk effective conductivity of a binary mixture of
considering none of the components are assumed to hawero-field conductivitiesr,; with concentratiorp, and o,
magnetic properties. The magnetic field influences the rewith concentration *+p. That equation was studied thor-
sponse only through the Hall effect in the metal componentoughly in Ref. 14; it displays a percolation thresholdpat
The rest of this paper is organized as follows. In Sec. ll=1—e~1*=0.28 ford=3.
we apply the replica method to the Faraday effect in random The Faraday effect is contained in Eq2.2) and (2.3).
composites. Results are obtained for the scaling behaviol/e first note that the percolation threshold is independent of
near the percolation threshold. In Sec. Ill we present theéhe magnetic field. Let us note here that the percolation
high-contrast or low-frequency expansion. Section IV pre-threshold, which is a geometrical quantity, is still meaningful
sents a scaling theory based upon the approaches describdeele since we are working in the quasistatic limit.
in the two previous sections. Section V summarizes the main By expanding the logarithm@&hese expansions are valid

conclusions from this work. for p<3), we obtain, from Eq(2.2),
g, 3 . \" 1 1
1=-3Ing+——5 > —(-)"*? + , 24
a2 %) (Yo @9
1+n—— 1+n—)——
3ee 3ee
and, from Eq.2.3),
- - 1
ge=82t (81— 82) 2, \"(—)""? : 2.5
n=1 n n
1+ — (X=X || 1+ ——(Y1—Y>)
3ee 3ee

where A =p/q, with p the fraction of component 1 ang=1-p the fraction of component 2. By some simple algebraic
manipulations, these equations can be rewritten as
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N(ay—ay)
1 A" o 3
o a
0=Z+ing— —+ 3, —(-)"** > ; 26
3 SCYe n=1 N n(al—az)) (n(ﬂl_ﬁz))
1+ +
3ae 3ae
and
2 \T n+1 1 2.7
=Bo+(Bi=B2) 2 —(-) : 2
Pe=Fat (rmFo n=1 N ( n(al_a'Z))z n(ﬁl_ﬁz))z
1+ +
3a, 3a,
|
wherea; and B; describe, respectively, the diagonal and the B aylay)?
off-diagonal transverse elements of the conductivity tensor Beu—zagum( Ap) ) , (2.11
of componenti [a;=o;/(1+H?), Bi=oiH;/(1+H?)], aj P

and whereg; is the zero-field conductivity of component

The quantityH; is the Hall-to-Ohmic resistivity ratio in com-

which is proportional tcH.
We now consider the regimé>1 for p below p; which

|B|—see Eq(1.9). The quantitiesr, and 3 are the effective s 4. and Eq.(2.6) then reads

coefficients of the composite. Equatiof&6) and (2.7) are
identical to the equations obtained

in the case of Ap  ay
magnetotranspoftWe have thus shown that the results ob-
tained in that case can be continued analytically to complex

(2.12

values ofe and g: We can go from the Hall effect to the from which we can deduce that the scaling behavio ofs

Faraday effect by changing to ¢ and g into i.

We now study these equations in the case of a meta
dielectric mixture(the metal will be component 1 and the
dielectric component 2). We assume here that the Hall effec

in the dielectric is very weak, so that,/a;<1 or H,=0,
and we useH instead ofH,. We also assume that.<a; .

We will first study the weak-field regimel<1; in this
caseB;<«;. Near the percolation threshoig=1—e~ % of
component 1 Ap=p—p.<1), we find thata, has the
scaling behaviora,=a|Ap| @[ (a/ay)/Ap?], where the
scaling functiong(z) satisfies

O=———— "
dc  3ai|Ap|e

where A=3%,_,(\/n?)(—)""! (with A =p/1—pc). We
thus obtain the following equation fap

+|Ap|gA,

A
P |“2 2.9

(2.9

wheree=+1 if p>p, ande=—1 for p<p., and where
z=a,/a;Ap?. The solution of this equation isp=(1/

2A)[(e/qc)+\/(1/qcz)+(4Az/3)], which for small z be-

comes(up to a constant factay./3)

- 222, p<p,
$(z)= 3 (2.10
const, p>pg.

We can now easily obtain the behavior @f from Eq.(2.7)

(for p<p.),

of the form ae=(B% a;)|Ap|d(ayaq/B2Ap?), where the
Scaling functiong(z) has a behavior like that ab(z), up to
tpe same constant factgg/3 [see(2.10]:

~ z—éqizz, pP<pc
b2y = 3 (213

const, p>p..

The behavior ofB. is a priori different, since nowg;
*x1/H> a;,*1/H?. The equation foB, then becomes

n
Cc

= -yl 2.1
Be=B12, S G (2.1
which for p<p. leads to the behavior
P (219
L — — .
¢ Ap?2B1’

which is again proportional tbl. We will discuss the physi-
cal consequences relevant to the Faraday effect in Sec. IV.

Ill. LOW FREQUENCY OR HIGH CONTRAST
EXPANSION

In this section we derive an expansion fQ.rin powers of
the complex resistivity ratigpy, /p,. While expansions in
powers of volume fraction or low contrast expansidns.,
expansion in powers of p(—pm)/p/], abound in the
literature®® we believe this is the first example of a high
contrast expansion. Throughout this section we will assume
that w is small enough so that boiyy>py andp,>Hpy,,
and that the quasistatic limit is valid.
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Under these assumptions, the local electric fie{d) and &= lim & (3.6)
current densityJ(r) can be found by defining a vector po- pm—0

tential A(r), such that
It is then possible to transform Eq&.3) and (3.4) into an

I(r)=VXA(r), (3.)  integrodifferential equation that relatés" and G():
and solving the equation

Ggpg(r,r')zegg(r,r’)—f dr'[V'xGY)(r,r")]

0=VXE=Vx{p(r)-[VXA(r)]} (3.2
along with appropriate boundary conditions nixXA(r) at Xf) O (r")-[V" X Ge(r" )] (3.7)
: : MYM -B ’ . .
the system surfacén is the unit normal vector to that sur-
face. Iteration of this equation leads, in the usual way, to an ex-

We recall that the local resistivity tensp(r) is a step  pansion ofG*) in powers ofp,, aroundG("). We note that,

function equal topy inside the metal and tp, inside the  althoughGY)(r,r’) is not a symmetric kerngbecausep(r)

dielectric component, and that it can be represented with thg a nonsymmetric tens])rG%(r,r’) is symmetric because

help of the appropriate characteristic functions as in Eq.;)I is symmetric, and, in facly, is a scalar tensofsee Ap-

(1.6). dix B for a discussion of this pojnt
In connection with Eq(3.2) it is useful to define a Green pendix B for a discussion of this poin
tensorG()(r,r') by the equations GUy(rr)=GYUl(r',n). 3.9
- (p) _k2cx(p) = ! . . . .
{VX[p (VX G} = K*G 3= 8apd®(r—r") A possible choice of A©® in Eq. (3.5 is

, lim, _ o,A—henceforth we adopt that choice. If we then take
forany r,r’, (3.3 M ) ) .
the limit py,— 0 also in the functioné\(r), G®(r,r'), we

nxG'%=0 for r atthe systemsurface. (3.4  conclude that

This tensor can be used to solve E§.2): . -
Jdr’Iim[V’xG(')(r,r’)]~p|6’|(r')[V'><A(O)(f')]=O-
A k—
A(N)=AQr)— | dr'lim[V' XG»(r,r")] ° (3.9
k—0

A Using the above-mentioned power series expansiofsfor,
Xp(r')-[V/' xXA©r")], 3.5 s

(-1 ()] 39 this result can be extended to hold also wi&h is replaced
whereA®©)(r) is a vector field that satisfies the same bound-,y, &(»)-
ary conditions a#\(r), but is otherwise arbitrary. Note that

we need to use the limk—0 of V' xG®)(r,r') here: We

could not take that limit in Eq(3.3), because then the equa- dr’iimO[V’ XGPA(r,r")]py6,(r) [V xAO(r")]=0.
tions for G*) would have no solutiofisee Appendix B for a (3.10

discussion of this point
Since we intend to expand in powers ofpy /p,, we  Using this result together with E43.7), (3.5 can be trans-
define formed into an expansion fok(r) in powers ofpy, :

A(r)=A<°>(r)—f dr/lim[V' <GP (r,r")]- pmOm(r’)- [V XAQ(r")]
k—0

=A<°>(r)—j dr'im[V' X GO(r,r")]- ppOu(r)-[V' XAO(r")]+0(p). (3.1
k—0
We also note tha®)(r) can be obtained by an expression that is the analog of E8), namely
A=A ) — | dr'lim[V' xGV(r,r")]-p,6,(r")-[V' x A(r")]. (3.12
k—0

This was obtained by replacing©(r) by A(9(r) in Eq. (3.5, and then taking the limipy,—0 in that equation. Equation
(3.12 is especially useful if we assume the following boundary condition&fr) and A©)(r):

1
A(N=AOQ(r)= 3(ex r) atthe system surface, (3.13

and choose
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1
A0 ()= §(e>< r) everywhere, (3.149

wheree is some unit vector. This last choice corresponds to a uniform current density

VX =g,

1
§(e><r)

which is equal to therolume averagedurrent density for boti\(@(r) and A©°d(r), which satisfy Eq(3.13,

(VXA@Y=(VxALd) =g (3.19
We thus find thatA(®® is given by
1 . .
A(Oe)(r)=§(e><r)— dr' im[V' XG(r,r")]-p,6,(r")-e. (3.1
k~>0

We recall that the bulk effective complex resistivity tensor of the system is defing¢seleyEqs(1.14) and 3.1]

per (VXA)=(p-(VXA)), (3.17

for any A of form (3.5). Using Eqs(1.6) and(3.11), we can expand an arbitrary element of the teqpgdn powers ofpy (f,
e are arbitrary unit vectojs

(f-pe-@)=f-(p (VXA®))
=f-p1-(B(VXAC)) +1- py- (O (VX A))

1 . . .
—f-vf drp6,(r)-V | dr'lim[V' XGO(r,r")]- pymOu(r’)-[V XACI(r")]+0(p3). (3.18
k—0

[Note that({6,(VXxA()) is just the spatial average & componentsThose latter boundary values are entirely deter-
X A% over the subvolume of the dielectric component,mined by the microstructure when we impose the require-
while (0 (VXA©9)) is the average of the same quantity ment that the electric potential must be constant over every
over the metallic subvolumEThe integration over can be  connected subvolume of the metallic component, but the pre-
performed using Eq¢3.8) and(3.16), leading to the follow-  cise local values oA()(r) inside those subvolumes also
ing result for the double integral ¢8.18 depend upon the Hall-to-Ohmic resistivity ratio of the metal
H. Nevertheless, we now argue that even the second volume
average which appears in E@®.20 is independent oH in

the two limitsH<1 andH>1. The onlyH dependence in

(319  those limits arises from the expligity factor in that term.

Jdr'[v'><A<°f>(r')—f].;)MeM(r')[V'><A<°e>(r')].

Part of this cancels the second term of E8.18, and we In order to prove this, we note that if the resistivity ratio
finally obtain pm/p; is small enough, then the current distribution inside
the metallic subvolumes, though different fidr<1 and for
f-pe(pr.pm)-€=f-pi-(6,(VXAD)) H> 1, will be saturated in both limits: In the weak-field limit
~ this is obvious, while in the strong-field limit this holds in a
+(O(VXAD). py (VX ALPD)) percolating system whenever the magnetic-field-dependent
2 correlation lengthéy,, which diverges a$l—x, is greater
+O(pi)- (320 than the percolation correlation lendh, .

Recalling thatB||z, and assuming that the microstructure
is either isotropic or cubic, we now obtain that the diagonal

lements ofp,, are given by
F

If the microstructure is isotropic, then sinpeis a scalar

tensor,pe(p;,0) [the first term on the right-hand side of Eq.
(3.20] is also a scalar tensor, and it is clearly independent o
pw and hence oH. The vector potential&(°® and A", o
which appear in the second term on the right-hand side of p'&(p;.om)=pi{(VXACD) N+ py Oy (VX AC)2)
Eq. (3.20, satisfy different boundary conditiorat the sys- )

tem surfacgsee Eq.3.15]. Inside the metallic subvolume, +0(pin), 3.2
those potentials can also be viewed as resulting from bound-

ary conditions omxA(© at the interface between the two while the nonzero off-diagonal elements are
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PS5 (b1 pu) = = P (p1 ) = Hpm( Ol (FX A X (FX A ],) + O(piy). (3.22
Recalling also that

we finally obtain the following results fat, (oy=1/py):

H 2 (0x)\ 2 1 00 . 2 (02)\2 0O 0 O
- ~ g - g (O (VX A2 0 1 ol_ twe; (Oy(VXAP?)%) 00 0
ee(&1.pm)= o0\ dmo (0x)112 Arro (02)\\2
o 0 0 0O 1 0
iwefH (O (VXA x (Vx A1) 1 0 o (3.23
4o (0x)y\ 2 .

This expression contains averages such (8gu(V region near the percolation threshop, where Ap=p
x A)?). These quantities are not easy to compute, since they p, is small (p is the metal volume fraction We will now
require knowledge of local values &f(r). However, in dc  considers, and, separately for the weak-field regimeél (
magnetotransport, one arrives at similar expressions. In Se& 1) and the strong-field regiméde1).

IV, we will use this analogy to construct a scaling theory for At |ow fields, we use the scaling result far,, and thus

the Faraday effect near the percolation threshold. find that the effective permittivity {,=4ma./iw) is given
by
IV. SCALING THEORY a4 & Aq§ w8|2
. . L , = —i _ 4.1
In this section, we will discuss physical consequences of “e= 3\ [ap] 12 oulAp|? S

the results obtained by the different approaches, and we will . )

use a scaling theory in order to discuss the behavior of thér the regime wheree, /oyAp®<1 andp<p.. The real

permittivity below the percolation threshold by comparing Part of e thus diverges like 1Ap| (exponents equal to its

with scaling theories developed earlier for dc magnetotransSE!ZVIA value 3, and the imaginary part is proportional to

port in a percolating systeff wefloy|Ap|3. From Eq.(2.11), we obtain the following
As we noted earlier, Eq2.1) is the same as the result result fore, (eo=4mBc/w):

obtained in Refs. 1 and 13: It is an equation for the bulk

effective conductivity of a binary mixture which was studied 2

~ we,

thoroughly in Ref. 14; in particular, it displays a percolation e* 4—|A|2H' (4.2
threshold ap.=1—e 3=0.28. The Faraday effect is con- TomIAP

tained in Egs(2.2) and (2.3 or, equivalently, in Eqs(2.6) In this regime, the Faraday coefficient will be

and(2.7). We first note that the percolation threshold for that

effect is independent of the magnetic field and, as expected, wsf”zH

is the same as the threshold found for the conductivity. (4.3

r—
We can easily check those results in two limiting cases. 4moy|Ap[*
First, for zero magnetic field it is easy to see that one recovin the strong-field regime3,= oy /H anda;= o /H?. Us-
ers Hori's equation for the effective permittivity of a binary ing the scaling result for, in this regime, we find that the
mixture® Then, for low concentrationp<1) we find that  effective permittivity is given by
ge=¢, and g,=p(4moy/w)H/(1+H?), and the rotation
angle therefore satisfieg<1/H for high fields andg<H for a & AP ws?
low fields. This agrees to ordéd(p) with the low-density ge= 3 |Ap] - 127 4. |Apl3)
ox . | e ; ) p omlAp|
pansion results for spherical inclusions as obtained, for
example, from the Clausius-Mossotti-type approximation ofThis scaling behavior is the same as what was found above
Ref. 8. We note that here is independent of the frequency in the weak-field regime. The first term should indeed be
and is always very small. independent oH, since it corresponds to the universal be-
We now apply our discussion from Sec. 1l to the case of ehavior of the dc permittivity near the percolation threshold.
nondilute metal-dielectric mixture: For the metaly; However, the fact that the imaginary parts of E@k4) and
=0y /(1+H?) andB;=a;H, and for the dielectriéwhich  (4.1) are the same to the order shown here is accidental, and
is assumed to have a negligible Faraday effeat, is probably due to the nature of the approximations used
=iwe /47 and B,=0. We will concentrate on the critical similar accident also occurs in the SEMA resultsdeed,

(4.9



PRB 58 FARADAY EFFECT IN COMPOSITES 12 777

we can see from Eq3.23 that these parts depend on the wed?H
current distribution in the metallic inclusions, hence they Fo—m— (4.9
should be different in the weak- and strong-field regimes. 4may|Ap|*?
The important phySical conclusion is that, in both regimeS,ThiS means that the Faraday rotatiahe ang|e is propor-
ge is independent oH. tional to ) is proportional to the applied magnetic field,
In the strong-field regime, from E¢2.15 we obtain the  even for strong fields, i.e., whed>1. It is thus clear that
surprising result we can obtain a large value of the rotation angle using such
a composite.
we? We now consider the results obtained by means of the
e — 7 ’ (4.5 high-contrast or low-frequency expansion. The scaling be-
4roy(Ap)? havior of the averages which appear in E§.23 can be

deduced by comparinB.20 to scaling theories previously
which is again the same scaling behavior as in the weak-fieldeveloped for dc magnetotransport coefficiexftgnd from
regime. In both regimes, the Faraday coefficient thus readshe property that

1r e percolating cluster, p>p.
JO=vxAO« Ore elsewhere, p>p, 4.7
1re anywhere, p<p;.

These considerations lead to

Ap®%, p<p., anyH
(0)

(6,(VXA ))m[O' 0>pe. any H. 4.8

Ap~Y, any pH<1
O (VX A02)2 4.9
(O )= Ap“HF<é , any pH>1, “9

n
Ap™9, any pH<1

O (VX AC)) X (VX A 4.1
(Oml( )X ( 12%) pp G ? any pH> 1. (4.10

H

Here,=H" is the magnetic-field-dependent correlation lengtls Ap™~" is the percolation correlation length, aR¢z) and
G(2) are scaling functions, which tend to nonzero constants vekeh and to asymptotic forms that return the exponents
to theirH<1 values wherz>1 (see Ref. %

const, z<1

F(z)ocy t-ty (4.1
v, z>1,
const, z<1

G(z)><y g9-ou4 (4.12
Z v , z>1.

The values of the critical exponents which appear in the above scaling expressions, as determined by simulations of three-
dimensional percolating network models, *are*

v=0.88, t=2.0, s=0.7, g=0.38,

vu=0.5 ty=6.0, gy=5.0, (4.13

wherery, ty, andgy are exponents describing high field behavior of percolating systdtimally, we obtain the following
results for the Faraday coefficient of a percolating mixture bgbgw
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( 12
we; H
_ A —g—3S/2’ H<1
4oy P
3/2 (0x) (0y) 31241+ (gy—9)vy v
we!H ([ (VXA X (VX AO)],) wePH OOy
- f = Ap 9732 Hx>1 < 4.1
Aoy (0,(VX A) y372 droy P ’ but §y<é, (414
312
we; H
_ A —gy—3s/2 >g
\ 47TUM p ’ é:H fp

These results are consistent with Hg.6), which was

g 0l oyAp?<1. We can thus predict that it should in prin-

obtained using the replica method, where we expect to findiple be possible to obtain large values of the rotation angle

the SEMA values=1 andg=g,=0. We can also derive a

in such a system. For instance, fdop of order 0.1(which is

number of physical consequences which follow from bothrealistic in experimenis e, of order unity andoy/w of

approachegfrom Eg. (3.23 in the high contrast expansion,
and from Eqgs(4.1) and(4.4) in the replica approagh

(1) The diagonal part ofée has an imaginary part that is
proportional to ws|2/a'M and is independent oA [up to
O(pw) in the high contrast expansiprThis means that there
will be some dissipation.

(2) In the same Ol’deE-:e has an antisymmetric part which
is imaginary and proportional tee?H/ay, . These results

order 100 for semiconductors, and within the microwave

region (the ratioo /@ should not be too large since, is
proportional to its inverge one obtains for the Faraday co-
efficient

€e

Vee

~10"'H,

(5.7

are valid both for weak and strong fields, as long as bottwhich can be made of order unity using currently available

weg <oy andwe H<oy, .

magnetic fields and high-mobility doped semiconductors.

We note that the scaling predictions for magnetotransporPne should recall that in homogeneous dielectrics, the Fara-
in a percolating system have been tested experimentally onigay coefficient is usually much less than 1: Typical values
for weak fields, and only in systems that were above thdor a 1-T magnetic field, and for a wavelength in the visible
percolation threshold,.'” Measurements of the induced spectrum §£=0.6 um), are of order 10° for dielectrics

Faraday effect in a metal-dielectric mixture bel@y could

like quartz, and of order I for thin ferromagnetic metallic

therefore provide an important test of those predictions. Aniron films. Measurements of the Faraday effect beppvin a

other prediction which follows from Eq3.23 is that the

percolating metal-dielectric composite could provide an im-

induced Faraday effect in a nonconducting metal-dielectrigoortant test of the scaling predictions in both the strong and
composite, which is not necessarily near any percolationveak-field regimes. Such experiments would have to involve

threshold, is linear iH=w.7 even whenH>1, in agree-
ment with the replica approach negy.

V. CONCLUSION

either propagation or reflection of microwaves by a metal-
dielectric composite with metallic inclusions that are smaller
than the relevant skin depth. Both approaches also predict
that the transverse diagonal elementsspthave an imagi-
nary part that is proportional t®8|2/0'M , and are indepen-

We studied the Faraday effect in a metal-dielectric com-dent ofH [up to terms of ordeO(py) in the high-contrast

posite in the quasistatic regime, close to but below the perexpansioih This means that there will be some dissipation.
colation threshold of the metal component. The response of
the dielectric component was assumed to be independent of
magnetic field; all the field dependence of the macroscopic
response is due to the Hall effect in the metal component. One of us(M.B.) acknowledges hospitality from Tel Aviv
We presented two different approaches |eading essentia"y tuniversity, where this work was finished. This research was
the same conclusions. The first approach relies on the replicgupported in part by grants from the U.S.-Israel Binational
method and allowed us to derive in a nonperturbative waybcience Foundation, the Israel Science Foundation, and the
equations for the effective permittivity tensor. The secondl€l Aviv University Research Authority.
approach is the result of a high contrast expansion in powers
of pm/p [pm (p)) is the impedance of the metallidielec-
tric) componen}, combined with scaling\nsaze nearp,.. ) o
First of all, both approaches are consistent with each W€ want here to solve the Maxwell equation satisfied by
other, the only difference is that the scaling exponents prethe electric fieldE (whereko= w/c)
dicted by the replica approach have their SEMA values. Sec-
ond, the main result is the following: the scaling of the Far-
aday coefficient is the same for the weak and strong-field . .
regimes(as long as botlwe, <oy andws,H<ay). In par- The tensok i:s a random variable equal thvvith prczbabil-
ticular, we found that the Faraday angle is proportional to théty p and toe, with probability g=1—p [¢; and e, are
magnetic fieldB even for a strong field, as long ps<p; and  tensors of the form given in E@1.1)]. In order to obtain an

ACKNOWLEDGMENTS

APPENDIX A

[VX VX +&(r)k3]E(r)=0. (A1)
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integral equation for the electric field, we first writgr) Maﬁ(r,r’)=5aﬂ6(r—r’)—(é(r—r’)&é(r’))aﬁ.

=gol + 82(r) (Wheregg is an arbitrary constant which will A6)
disappear at the end of the calculaio@ne can then easily  cajculation of the effective permittivity tensor is thus re-
show thatE(r) is also the solution of the equation duced to a calculation of the average over the disorder of the

A A inverse of a random operator, namely, In order to do this,
E(r):Eo(r)"'J dr'G(r—r")se(r")E(r'), (A2) we will use the replica method which allows us to express
the elements oM ~! (after using a Gaussian inversion for-
where G is the dipolar tensor for the uniform medium of mula in terms of the functional integral
permittivity ¢, and where the quantitl¢, depends only on o
the boundary conditions and is assumed to be uniform. Mcjﬁl(r,r’)zf D(h, ) ha(r) P(r")
We will use the Fourier transform & ,4(r) given by

o (e KoKg k3 [5 Kakg A3
gl )__80k2+k2—80k3[ ap” 2 | (A3)

Xex;{fdrdr'%aEi(r)Maﬁ(r.r')l!fZ(f’) ,

: o (A7)
We work in the quasistatic limit, which means that we take Q. ) . —
the limit ko going to zero. In this case, the dipolar tensor isWherey, (with a=1,...n) (and its conjugate)) are rep-
given by licated Grassman fields satisfying the usual anticommutation

relations
k,k _ _
Gaﬁ(k):_ﬂg for k#0. (A4) {o(r), (e )} ={(r), p(r ) ={(r),(r")}=0.

At k=0, the value of this tensor i€So=—3,,4/(de0),  The limitn=0 is implicitly taken in Eq.(A7) and, as usual
whered is the space dimension, here equal to 3. For valueg, ihe replica method, we first consideras an integer and

of ko that are too large, we cannot define an effective peryen take the limin going to zero at the end of the calcula-
mittivity tensor, and we have to introduce the notion of Spajqn (without adressing the problem of analytic continua-
tial dispersion(for a review, see e.g., Ref. 18, and for a St“dytion).

using the replica method see Ref)19

(A8)

. " -1 .
Averaging Eq.(A2), after inverting it, and averaging it It is now easy to averagkl ~~ over the disorder, and we

before inverting it, leads to the exact relation obtain
(Mai(k=0))=(1~Godee)sj. (AS) M 2upr=1)= | DALY (29)
whereM 1 is the inverse of the random operator where the effective Hamiltonian is given by

He=f drdr’ 3, Wa(r){Bapd(r =)= (G(r=1")881)agh (1)

+f drgln

1+7;exp( dr’ > Ez(r())caw(ro—r')Aﬂﬁqf;;(r'))}. (A10)

a,B,u.a

The matrixA is equal togz_;l and »=(1—p)/p (note  WhereF; is the free energy associated witty, and where
that 7 is the inverse of =p/q, which appears in the main ()o denotes an average usiftg. We thus obtain the equa-
text). As usual in the replica method, the average over distion
order introduces coupling between different repliGathere
is no coupling, then the averaging is trivi@nd in order to (Rfl)aﬁz 5aﬂ—(é(k) §§e)aﬁ, (Al12)
study this complicated effective Hamiltonian, we will use a
variational principlé®! This principle consists of finding the with
best Gaussian approximaticH, to the effective Hamil-

tonian H,. Denoting byK ~* the kernel ofH, (the varia-

~ ~ A _ym+1_m
tional approximation thus readdV ~1)=K), we have to Ee 81+m§;‘1( )" . dik
minimize the following variational free energp with re- 1—mAJ > KG
spect toK (2m)
(A13)

®(K)=Fo+ (He— Hoo, (A11) The tensoiK can be inverted, and we obtain
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. 1 k-qg koq The equation along the axis is decoupled from the pre-
K= -q 5 -7 (Al4)  ceeding one, and is Ed2.1) of the main text. Using the
14+ — relation

where D=gok?, q=dstk (6e!, is the transpose obs.), coshae  —isinhae

and wherez denotes the usual dyadic product. We can then e 2=e" i sinhas  coshas |° (A20)
computeKG and we find that it is the dipolar tensor for the
effective medium after simple manipulations we obtain E48.2) and(2.3) of
the main text. It should be noted that all the calculation pre-
(Ré)aﬂz _ KaKg __ KaKpg . (A15) sented here can be used without any changes for either real
k- (£¢k) > 2 or complex values of andz. This justifies the analytical
CRp continuation of the formulas obtained in the framework of

the Hall effect in order to describe the Faraday effect.

It is then easy to integratéG, and we obtain
APPENDIX B

dk .. 1 1 ~
f 5 3(KG)ap=— 3 0upta= ~ 3 Map. (A16) The equations for the Green tensGf)(r,r’) can be
(2m) solved in almost closed form if the system occupies all
where 4 is a diagonal matrix with diagonal elemenis space, and if the resistivity tenspris constant everywhere
=u,=1le, and uz=1/e,.. The self-consistent equation and its symmetric part is a scalar tensor, i.e., if
(A13) can thus be recast as the matrix equation

p(r)-V=pg-V=pov+bXxv (B1)
(86 Ua,u/3>
f due™Y ey (A17)  for any vectow. In that case, the Green tensor depends only
s > onr—r’, and we can define its Fourier transform by
where the brackets still denote an average over the disorder.
It is then easy to show that PO)(q)_f d(r—r )G(”O)(r rye e =) (B2)
Ce 'Se 3 (s e “62’389) Using Eq.(3.3), it is easily found that this Fourier transform
u
_,Se e d (e~ vz T a—Ueyl3eq) e . (A18) satisfies the linear algebraic equation

~ “ 2_ 1.2y~ (po) = (po) = (po)
wheree, denotes the restriction of the tensoto the (x,y) (pod”—kK )Ga/? —poqa(q'G_B" )+(b-q)(q><G_B° )a

subspace: " (B3)
R e e which can be solved to yielde(,4, is the basic antisymmet-
£,= o~ . (A19)  ric tensoj

(p09?—k?) 85— [po(pod?—k?) +(b-0)?]q,05/k*+(b-q)e £apyly
(pod?—k?)?+g%(b-q)?

Clearly, G(”O)(q) diverges in the limitk— 0. However, if one calculates the Fourier transform BR(G("O))C,, namely,

(B4)

G(Po)( )

(b q)(qzéaﬁ_ anﬁ) - (quZ_ kz)saﬁyqy
(po9*—k*)?+0a*(b-q)?

then the limitk— 0 can be taken without any problems. That is why we had to include thekt%(B@?ﬁ in the equation for the
Green tensofsee Eq.(3.3)], deferring the limitk— 0 until after the calculation of X G(P))a

In order to investigate the symmetry properties3é)(r,r’), we use integration by parts or Green’s theorem to get, for any
vector fieldsA(r), B(r), and second-rank tensor fieldr),

(axG%),= , (B5)

fvdr{A.Vx[,}(Vx B)]-B-VX[p-(VXA)]}=— #%V[(dSXA)fJ-(VX B)—(dSxB)-p-(VXA)]
J'

+f dr[(VXA)-p-(VXB)—(VXB)-p-(VXA)]. (B6)
\%
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If ;3 is symmetri¢ then the integrand in the last volume integral vanishes everywhere. Substituting
AL(N=GLUr.r), B, (N=GYr.ry) (B7)
into this result, and assuming thatis a symmetric tensor, we thus obtain, using E&s3 and (3.4),
GUa(rar)=Gifira,ry) if p'=p. (B8)

Note that ifp is nonsymmetric, then in gener@{f)(r,r’) is not a symmetric kernel.
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