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Faraday effect in composites
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We study the Faraday effect in a binary composite consisting of a dielectric matrix with metallic inclusions.
We first use the replica trick together with a variational method in order to compute the effective permittivity
tensor in the quasistatic limit of this composite in a static magnetic field. In order to find scaling exponents near
the percolation thresholdpc , we use a high contrast or low-frequency expansion combined with scaling. The
results of the two methods are in agreement, and predict that nearpc ~and below, that is, in the dielectric
region!, the Faraday effect is greatly enhanced.@S0163-1829~98!01644-0#
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I. INTRODUCTION

We will concentrate on the problem of the effective pe
mittivity tensor of a binary mixture in a static magnetic fiel
Since the Faraday effect is usually very weak in dielectr
we study a mixture made of a dielectric host matrix w
metallic inclusions. In such a system, the Hall effect in t
inclusions is expected to induce a measurable Faraday e
in the composite dielectric even when this effect is tota
negligible in the pure dielectric host. We will study the qu
sistatic limit, the wavelength of the incoming wave bei
much larger than the typical inhomogeneity length, which
for example, the size of the metallic grains. Therefore,
composite medium can be seen as quasihomogeneous
the equivalent homogeneous material is called the effect
medium. Determining the effective-medium properties
disordered materials such as composites or suspensions
difficult problem, and one has often to resort to perturbat
methods~low field, low density, or low contrast! which can-
not be applied for a high magnetic field, for instance. H
we propose two different approaches to this problem. T
first is based on the use of the replica method together wi
variational principle. This treatment possesses the advan
that it is nonperturbative, and may thus be useful for stro
disorder or strong fields. This method was successfully
plied to different problems such as the random resistor
work problem,1 and the Hall effect in composites.2 More-
over, it has been shown that it can give reasonable value
the permittivity tensor if the system is not too close to t
percolation thresholdpc . However, the critical exponent
are not reproduced correctly, and one usually obtains me
field or effective-medium-approximation exponents. In ord
to present an alternative discussion of this problem, and
tain correct exponents nearpc , we introduce a high contras
expansion. This is essentially an expansion in powers of
ratio of resistivities or permittivities of the two componen
which can be made very small by making the frequency
the incoming wave very small. This expansion can be u
for weak magnetic fields as well as strong magnetic fields
order to discuss the critical properties nearpc , we apply
some scalingAnsätze to that expansion, which are base
PRB 580163-1829/98/58~19!/12770~12!/$15.00
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upon previous discussions of dc magnetotransport.3,4

The Hall effect in percolating composites has been st
ied using a number of different methods which enabled
critical behavior to be determined quite reliably.5–7,3,2How-
ever, until now the Faraday effect in metal-dielectric co
posites was only discussed using a Clausius-Mossotti-t
approximation,8 which is good for dilute systems, and
Bruggeman-type self-consistent effective-medium appro
mation~SEMA!,9 which exhibits a percolation threshold bu
with incorrect values of the critical exponents. In the pres
study we employ different approaches~see above!. Both of
our approaches are not limited to dilute systems, and one
high contrast expansion together with scalingAnsätze, is ex-
pected to lead to reliable results for the critical behavior n
pc .

Let us first recall some facts about the Faraday effe
When an isotropic material is subjected to a static and u
form magnetic fieldB directed along thez axis, it can be
described by the permittivity tensor

«̂5S « i «̃ 0

2 i «̃ « 0

0 0 «z

D , ~1.1!

where «̃ must depend uponB ~see, e.g., Ref. 10!. In a ho-
mogeneous medium, the dispersion equation gives rise
two solutions, which are the left and right circularly pola
ized waves with two different refractive indices,

n65A«6 «̃, ~1.2!

where« and«̃ are positive and real and«. «̃, which ensures
that the wave is undamped. If a linearly polarized wave
frequencyv propagates over a distanceL through this me-
dium, the polarization plane will rotate~the so-called Fara-
day effect! by an angle

u5
v

c
L~n12n2!, ~1.3!
12 770 ©1998 The American Physical Society
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PRB 58 12 771FARADAY EFFECT IN COMPOSITES
wherec is the light speed in vacuum. Usually the Farad
effect is weak and«̃ is very small compared to«, and the
rotation angle is therefore approximately given by

u.
v

c
L

«̃

A«
. ~1.4!

We will also use the Faraday coefficient, which is defined
F[«̃/A«. We note here that the Faraday effect is usua
weak, andF ranges from 1026 in dielectrics to 1022 for thin
films of metallic iron.

We will study the case where the material is a rand
binary composite medium made of a dielectric host with m
tallic inclusions, and where a static uniform magnetic fieldB
is applied along thez axis. We suppose that the medium h
a position-dependent permittivity tensor«̂(r ) which is an
independent random variable at each pointr , distributed ac-
cording to the probability density

p~ «̂ !5pd~«̂2 «̂M !1~12p!d~ «̂2 «̂ I !. ~1.5!

Let us note that, in real materials, the grains have finite s
and that in a finite-frequency calculation one should take
into account. However, in the quasistatic limit, the gra
sizes are irrelevant and this simplified characterization of
disorder@Eq. ~1.5!# is justified.

Equivalently, the local resistivity tensorr̂(r ) ~related to
the permittivity tensor«̂ by r̂54p/ iv«̂) is a step function
that is equal tor̂M inside the metal and tor̂ I inside the
dielectric component. It will be represented, with the help
the appropriate characteristic functionsuM(r ) andu I(r ), as

r̂~r !5 r̂MuM~r !1 r̂ Iu I~r !, ~1.6!

uM~r !512u I~r !5H 1 for r inside the metal

0 otherwise.
~1.7!

In the dielectric component, the permittivity is taken to b

«̂ I5« I Î , ~1.8!

where« I , the dielectric constant of the host, is a real sca
quantity and is independent ofB. The metallic component is
nonpercolating, and is characterized by a free-electron-
resistivity tensor in the presence of a magnetic fieldBiz or,
equivalently, by its permittivity tensor

«̂M5«MS 1

11H2

H

11H2 0

2
H

11H2

1

11H2 0

0 0 1

D , H[vct}uBu,

~1.9!

wherevc is the cyclotron frequency,t is the conductivity
relaxation time, and«M54psM/ iv is purely imaginary and
independent ofB (sM is the conductivity of the metallic
component!. We assume that this form continues to be va
even at finite frequencies. This probably means that the
tire subsequent discussion will not be valid for optical fr
y
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quencies in the visible range. But it will be relevant for fr
quencies up to, and including, the microwave regime.

These assumptions mean that the host exhibits no intri
Faraday effect, and the metallic component has no intrin
magnetoresistance, only a Hall effect. In terms of resistiv
the metallic component is characterized by a free-electr
like resistivity tensor obtained by inverting«̂M ,

r̂M5rMS 1 H 0

2H 1 0

0 0 1
D , ~1.10!

and the impedance of the dielectric host is an imaginary s
lar tensor

r̂ I5r I Î , r I5
4p

iv« I
. ~1.11!

We will assume that the quasistatic approximation can
used, that is, both wavelength and skin depth are large c
pared to the sizes of metallic inclusions.

We define the bulk effective permittivity tensor«̂e of the
medium by the relation

^«̂~r !E~r !&5 «̂e^E~r !&, ~1.12!

whereE is the electric field, and where the brackets denot
quenched average over the probability distribution given
Eq. ~1.5!, or equivalently a spatial average over the volum
of the sample. The effective medium will be homogeneo
and isotropic, and we expect an effective permittivity tens
of the form

«̂e5S «e i «̃e 0

2 i «̃e «e 0

0 0 «ze

D . ~1.13!

We can also define the bulk effective complex resistiv
tensor by

r̂e•^J&[^r̂J&, ~1.14!

whereJ is the local current density.
In order to evaluate the effective properties of the hete

geneous medium, we can proceed in different ways. The
one ~Sec. II! relies on the observation that the effective pe
mittivity tensor can be exactly related to the inverse o
random operatorM̂ . The problem is thus reduced to the ca
culation of^M̂ 21&, and we will use replicas together with
variational approximation to evaluate this quantity. Let
note here that this is in principle equivalent to computing«̂e

using Eq.~1.12! or r̂e using Eq.~1.14!, since the product of
these tensors is proportional to the unit tensorÎ . However,
since we use approximations, the two procedures are
necessarily equivalent. In fact, it has been shown11,12that, for
the variational approximation, computing«̂e or r̂e leads to
different results, and that it is more reliable to calculate
permittivity or the conductivity than it is to calculate th
resistivity.
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Since the variational method is nonperturbative, it p
sesses the advantage that it is reliable in the whole rang
concentration and for any strength of the disorder. Howe
near the percolation thresholdpc , this method leads to
mean-field exponents which are usually not accurate e
cially in three dimensions (d53). Moreover, it is difficult to
control the quality of the variational approximation.

In order to describe the Faraday effect nearpc , we will
use a second approach, which relies on the fact that ifv is
small enough, we have two small parametersrM /r I and
HrM /r I . The local electric fieldE(r ) and current density
J(r ) can be found by defining a vector potentialA(r ) such
that

J~r !5¹3A~r !, ~1.15!

and then solving the equation

¹3E50 ~1.16!

using the constitutive relationE(r )5 r̂(r )J(r ). It is of
course out of the question to solve this equation exac
therefore we will expandA in powers of the contrast be
tween the two components, i.e., the resistivity ratiorM /r I .
This approach is valid only in the quasistatic regime. Besi
confirming results obtained by means of the replicas, w
combined with scaling this allows us to predict the behav
of the medium near the percolation threshold.

One of the conclusions of the present work is that
Faraday effect can be greatly enhanced in a metal-diele
composite just below the percolation threshold. This diff
from the enhancement found in ferrofluids:13,14 In those sys-
tems it arises due to the presence of small ferromagn
particles in suspension. By contrast, in the system we
considering none of the components are assumed to
magnetic properties. The magnetic field influences the
sponse only through the Hall effect in the metal compone

The rest of this paper is organized as follows. In Sec
we apply the replica method to the Faraday effect in rand
composites. Results are obtained for the scaling behav
near the percolation threshold. In Sec. III we present
high-contrast or low-frequency expansion. Section IV p
sents a scaling theory based upon the approaches desc
in the two previous sections. Section V summarizes the m
conclusions from this work.
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II. REPLICA APPROACH

In this section we present the replica approach. Here
compute the effective permittivity tensor of a binary mixtur
where the tensor«̂ is a random variable equal to«̂1 with
probabilityp and to«̂2 with probabilityq512p, each com-
ponent having a permittivity of the form given in Eq.~1.1!.
The calculation is essentially the same as for the Hall effe2

and we give the main steps of the derivation in Appendix
We obtain the following equations: The first one gives t
longitudinal effective permittivity

«ze5E
0

`

du e2u ^«ze
2u«z/3«ze&

^e2u«z/3«ze&
, ~2.1!

where the brackets still denote an average over Eq.~1.5!, and
we also obtain two coupled equations for the transverse
mittivities «e ,«̃e :

152 3
2 E

0

`

du e2u$ ln^e2uX/3«e&1 ln^e2uY/3«e&%, ~2.2!

«̃e5 3
2 «eE

0

`

du e2u$ ln^e2uX/3«e&2 ln^e2uY/3«e&%, ~2.3!

whereX[«2 «̃ andY[«1 «̃. Equation~2.2! determines«e

self-consistently, while Eq.~2.3! determines«̃e after «e is
known.

Equation~2.1! is the same as that obtained in Refs. 1 a
13 for the bulk effective conductivity of a binary mixture o
zero-field conductivitiessz1 with concentrationp, and sz2
with concentration 12p. That equation was studied tho
oughly in Ref. 14; it displays a percolation threshold atpc
512e21/3.0.28 ford53.

The Faraday effect is contained in Eqs.~2.2! and ~2.3!.
We first note that the percolation threshold is independen
the magnetic field. Let us note here that the percolat
threshold, which is a geometrical quantity, is still meaning
here since we are working in the quasistatic limit.

By expanding the logarithms~these expansions are vali
for p, 1

2 ), we obtain, from Eq.~2.2!,
aic
1523 lnq1
«2

«e
2

3

2 (
n>1

ln

n
~2 !n11S 1

11n
~X12X2!

3«e

1
1

11n
~Y12Y2!

3«e

D , ~2.4!

and, from Eq.~2.3!,

«̃e5 «̃21~ «̃12 «̃2! (
n>1

ln~2 !n11
1

F11
n

3«e

~X12X2!GF11
n

3«e

~Y12Y2!G , ~2.5!

wherel5p/q, with p the fraction of component 1 andq512p the fraction of component 2. By some simple algebr
manipulations, these equations can be rewritten as
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05
1

3
1 ln q2

a2

3ae

1 (
n>1

ln

n
~2 !n11

11
n~a12a2!

3ae

S 11
n~a12a2!

3ae
D 2

1S n~b12b2!

3ae
D 2 ~2.6!

and

be5b21~b12b2! (
n>1

ln

n
~2 !n11

1

S 11
n~a12a2!

3ae
D 2

1S n~b12b2!

3ae
D 2 , ~2.7!
he
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h
me
wherea i andb i describe, respectively, the diagonal and t
off-diagonal transverse elements of the conductivity ten
of component i @a i5s i /(11Hi

2), b i5s iHi /(11Hi
2)],

and wheres i is the zero-field conductivity of componenti.
The quantityHi is the Hall-to-Ohmic resistivity ratio in com
ponent i: it is proportional to the magnetic-field streng
uBu—see Eq.~1.9!. The quantitiesae andbe are the effective
coefficients of the composite. Equations~2.6! and ~2.7! are
identical to the equations obtained in the case
magnetotransport.2 We have thus shown that the results o
tained in that case can be continued analytically to comp
values ofa and b: We can go from the Hall effect to th
Faraday effect by changinga to « andb into i «̃.

We now study these equations in the case of a me
dielectric mixture~the metal will be component 1 and th
dielectric component 2). We assume here that the Hall ef
in the dielectric is very weak, so thata2 /a1!1 or H2.0,
and we useH instead ofH1 . We also assume thatae!a1 .

We will first study the weak-field regimeH!1; in this
caseb i!a i . Near the percolation thresholdpc512e21/3 of
component 1 (Dp5p2pc!1), we find thatae has the
scaling behaviorae.a1uDpuf@(a2 /a1)/Dp2#, where the
scaling functionf(z) satisfies

0.2
Dp

qc
2

a2

3a1uDpuf
1uDpufA, ~2.8!

whereA53(n>1(lc
n/n2)(2)n11 ~with lc5pc/12pc). We

thus obtain the following equation forf

Af22
ef

qc
2

z

3
50, ~2.9!

where e511 if p.pc and e521 for p,pc , and where
z5a2 /a1Dp2. The solution of this equation isf5(1/
2A)@(e/qc)1A(1/qc

2)1(4Az/3)#, which for small z be-
comes~up to a constant factorqc/3)

f~z!}H z2
A

3
qc

2z2, p,pc

const, p.pc .

~2.10!

We can now easily obtain the behavior ofbe from Eq. ~2.7!
~for p,pc),
r

f
-
x

l-

ct

be}
b1

a1
2
ae

2}b1S a2 /a1

uDpu D 2

, ~2.11!

which is proportional toH.
We now consider the regimeH@1 for p below pc which

is the interesting one for the following. In this regimeb i
@a i , and Eq.~2.6! then reads

0.2
Dp

qc
2

a2

3ae
1

a1ae

b1
2

A, ~2.12!

from which we can deduce that the scaling behavior ofae is
of the form ae.(b1

2/a1)uDpuf̃(a2a1 /b1
2Dp2), where the

scaling functionf̃(z) has a behavior like that off(z), up to
the same constant factorqc/3 @see~2.10!#:

f̃~z!}H z2
A

3
qc

2z2, p,pc

const, p.pc .

~2.13!

The behavior ofbe is a priori different, since nowb1
}1/H@a1}1/H2. The equation forbe then becomes

be.b1(
n>1

lc
n

n3
~2 !n11

1

~b1/3ae!
2

, ~2.14!

which for p,pc leads to the behavior

be}
a2

2

Dp2

1

b1
, ~2.15!

which is again proportional toH. We will discuss the physi-
cal consequences relevant to the Faraday effect in Sec.

III. LOW FREQUENCY OR HIGH CONTRAST
EXPANSION

In this section we derive an expansion for«̂e in powers of
the complex resistivity ratiorM /r I . While expansions in
powers of volume fraction or low contrast expansions@i.e.,
expansion in powers of (r I2rM)/r I ], abound in the
literature,15 we believe this is the first example of a hig
contrast expansion. Throughout this section we will assu
that v is small enough so that bothr I@rM andr I@HrM ,
and that the quasistatic limit is valid.
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Under these assumptions, the local electric fieldE(r ) and
current densityJ(r ) can be found by defining a vector po
tential A(r ), such that

J~r !5¹3A~r !, ~3.1!

and solving the equation

05¹3E5¹3$r̂~r !•@¹3A~r !#% ~3.2!

along with appropriate boundary conditions onn3A(r ) at
the system surface~n is the unit normal vector to that sur
face!.

We recall that the local resistivity tensorr̂(r ) is a step
function equal tor̂M inside the metal and tor̂ I inside the
dielectric component, and that it can be represented with
help of the appropriate characteristic functions as in
~1.6!.

In connection with Eq.~3.2! it is useful to define a Green
tensorĜ(r)(r ,r 8) by the equations

$¹3@ r̂•~¹3G
•b
~r!!#%a2k2Gab

~r!5dabd3~r2r 8!

for any r ,r 8, ~3.3!

n3G
•b
~r!50 for r at the system surface. ~3.4!

This tensor can be used to solve Eq.~3.2!:

A~r !5A~0!~r !2E dr 8 lim
k→0

@¹83Ĝ~r!~r ,r 8!#

3 r̂~r 8!•@¹83A~0!~r 8!#, ~3.5!

whereA(0)(r ) is a vector field that satisfies the same boun
ary conditions asA(r ), but is otherwise arbitrary. Note tha
we need to use the limitk→0 of ¹83Ĝ(r)(r ,r 8) here: We
could not take that limit in Eq.~3.3!, because then the equa
tions for Ĝ(r) would have no solution~see Appendix B for a
discussion of this point!.

Since we intend to expandA in powers ofrM /r I , we
define
e
.

-

Ĝ~ I ![ lim
rM→0

Ĝ~r!. ~3.6!

It is then possible to transform Eqs.~3.3! and ~3.4! into an
integrodifferential equation that relatesĜ(I ) andĜ(r):

Gab
~r!~r ,r 8!5Gab

~ I ! ~r ,r 8!2E dr9@¹93Ga•
~ I !~r ,r 9!#

3 r̂MuM~r 9!•@¹93G
•b
~r!~r 9,r 8!#. ~3.7!

Iteration of this equation leads, in the usual way, to an
pansion ofĜ(r) in powers ofr̂M aroundĜ(I ). We note that,
althoughGab

(r)(r ,r 8) is not a symmetric kernel@becauser̂(r )
is a nonsymmetric tensor#, Gab

(I ) (r ,r 8) is symmetric because

r̂ I is symmetric, and, in fact,r̂ I is a scalar tensor~see Ap-
pendix B for a discussion of this point!:

Gab
~ I ! ~r ,r 8!5Gba

~ I ! ~r 8,r !. ~3.8!

A possible choice of A(0) in Eq. ~3.5! is
limrM→0A—henceforth we adopt that choice. If we then ta

the limit rM→0 also in the functionsA(r ), Ĝ(r)(r ,r 8), we
conclude that

E dr 8 lim
k→0

@¹83Ĝ~ I !~r ,r 8!#• r̂ Iu I~r 8!@¹83A~0!~r 8!#50.

~3.9!

Using the above-mentioned power series expansion forĜ(r),
this result can be extended to hold also whenĜ(I ) is replaced
by Ĝ(r):

E dr 8 lim
k→0

@¹83Ĝ~r!~r ,r 8!#• r̂ Iu I~r 8!@¹83A~0!~r 8!#50.

~3.10!

Using this result together with Eq.~3.7!, ~3.5! can be trans-
formed into an expansion forA(r ) in powers ofrM :
A~r !5A~0!~r !2E dr 8 lim
k→0

@¹83Ĝ~r!~r ,r 8!#• r̂MuM~r 8!•@¹83A~0!~r 8!#

5A~0!~r !2E dr 8 lim
k→0

@¹83Ĝ~ I !~r ,r 8!#• r̂MuM~r 8!•@¹83A~0!~r 8!#1O~rM
2 !. ~3.11!

We also note thatA(0)(r ) can be obtained by an expression that is the analog of Eq.~3.5!, namely

A~0!~r !5A~00!~r !2E dr 8 lim
k→0

@¹83Ĝ~ I !~r ,r 8!#• r̂ Iu I~r 8!•@¹83A~00!~r 8!#. ~3.12!

This was obtained by replacingA(0)(r ) by A(00)(r ) in Eq. ~3.5!, and then taking the limitrM→0 in that equation. Equation
~3.12! is especially useful if we assume the following boundary condition forA(r ) andA(0)(r ):

A~r !5A~0!~r !5
1

3
~e3r ! at the system surface, ~3.13!

and choose
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A~00!~r !5
1

3
~e3r ! everywhere, ~3.14!

wheree is some unit vector. This last choice corresponds to a uniform current density

¹3F1

3
~e3r !G5e,

which is equal to thevolume averagedcurrent density for bothA(e)(r ) andA(0e)(r ), which satisfy Eq.~3.13!,

^¹3A~e!&5^¹3A~0e!&5e. ~3.15!

We thus find thatA(0e) is given by

A~0e!~r !5
1

3
~e3r !2E dr 8 lim

k→0
@¹83Ĝ~ I !~r ,r 8!#• r̂ Iu I~r 8!•e. ~3.16!

We recall that the bulk effective complex resistivity tensor of the system is defined by@see Eqs.~1.14! and 3.1!#

r̂e•^¹3A&[^r̂•~¹3A!&, ~3.17!

for anyA of form ~3.5!. Using Eqs.~1.6! and~3.11!, we can expand an arbitrary element of the tensorr̂e in powers ofrM ~f,
e are arbitrary unit vectors!

~ f• r̂e•e!5f•^r̂•~¹3A~e!!&

5f• r̂ I•^u I~¹3A~0e!!&1f• r̂M•^uM~¹3A~0e!!&

2f•
1

VE dr r̂ Iu I~r !•¹E dr 8 lim
k→0

@¹83Ĝ~ I !~r ,r 8!#• r̂MuM~r 8!•@¹83A~0e!~r 8!#1O~rM
2 !. ~3.18!
nt
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@Note that ^u I(¹3A(0e))& is just the spatial average of¹
3A(0e) over the subvolume of the dielectric compone
while ^uM(¹3A(0e))& is the average of the same quant
over the metallic subvolume.# The integration overr can be
performed using Eqs.~3.8! and~3.16!, leading to the follow-
ing result for the double integral of~3.18!

E dr 8@¹83A~0f!~r 8!2f#• r̂MuM~r 8!@¹83A~0e!~r 8!#.

~3.19!

Part of this cancels the second term of Eq.~3.18!, and we
finally obtain

f• r̂e~ r̂ I ,r̂M !•e5f• r̂ I•^u I~¹3A~0e!!&

1^uM~¹3A~0f!!• r̂M~¹3A~0e!!&

1O~rM
2 !. ~3.20!

If the microstructure is isotropic, then sincer̂ I is a scalar
tensor,r̂e( r̂ I ,0) @the first term on the right-hand side of E
~3.20!# is also a scalar tensor, and it is clearly independen
r̂M and hence ofH. The vector potentialsA(0e) and A(0f),
which appear in the second term on the right-hand side
Eq. ~3.20!, satisfy different boundary conditionsat the sys-
tem surface@see Eq.~3.15!#. Inside the metallic subvolume
those potentials can also be viewed as resulting from bou
ary conditions onn3A(0) at the interface between the tw
,

f

of

d-

components. Those latter boundary values are entirely det
mined by the microstructure when we impose the requ
ment that the electric potential must be constant over ev
connected subvolume of the metallic component, but the p
cise local values ofA(0)(r ) inside those subvolumes als
depend upon the Hall-to-Ohmic resistivity ratio of the me
H. Nevertheless, we now argue that even the second vol
average which appears in Eq.~3.20! is independent ofH in
the two limits H!1 andH@1. The onlyH dependence in
those limits arises from the explicitr̂M factor in that term.

In order to prove this, we note that if the resistivity rat
rM /r I is small enough, then the current distribution insi
the metallic subvolumes, though different forH!1 and for
H@1, will be saturated in both limits: In the weak-field lim
this is obvious, while in the strong-field limit this holds in
percolating system whenever the magnetic-field-depend
correlation lengthjH , which diverges asH→`, is greater
than the percolation correlation length4 jp .

Recalling thatBiz, and assuming that the microstructu
is either isotropic or cubic, we now obtain that the diagon
elements ofr̂e are given by

raa
~e!~ r̂ I ,r̂M !5r I^u I~¹3A~0a!!a&1rM^uM~¹3A~0a!!2&

1O~rM
2 !, ~3.21!

while the nonzero off-diagonal elements are
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rxy
~e!~ r̂ I ,r̂M !52ryx

~e!~ r̂ I ,r̂M !5HrM^uM@~¹3A~0x!!3~¹3A~0y!!#z&1O~rM
2 !. ~3.22!

Recalling also that

r̂e5
4p

iv«̂e

,

we finally obtain the following results for«̂e (sM[1/rM):

«̂e~« I ,r̂M !.
« I

^u I~¹3A~0x!!x&
Î 2

iv« I
2

4psM

^uM~¹3A~0x!!2&

^u I~¹3A~0x!!&2 S 1 0 0

0 1 0

0 0 0
D 2

iv« I
2

4psM

^uM~¹3A~0z!!2&

^u I~¹3A~0z!!&2 S 0 0 0

0 0 0

0 0 1
D

2
iv« I

2H

4psM

^uM@~¹3A~0x!!3~¹3A~0y!!#z&

^u I~¹3A~0x!!&2 S 0 1 0

21 0 0

0 0 0
D . ~3.23!
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This expression contains averages such as^u I (M )(¹
3A)2&. These quantities are not easy to compute, since
require knowledge of local values ofA(r ). However, in dc
magnetotransport, one arrives at similar expressions. In
IV, we will use this analogy to construct a scaling theory f
the Faraday effect near the percolation threshold.

IV. SCALING THEORY

In this section, we will discuss physical consequences
the results obtained by the different approaches, and we
use a scaling theory in order to discuss the behavior of
permittivity below the percolation threshold by compari
with scaling theories developed earlier for dc magnetotra
port in a percolating system.3,4,15

As we noted earlier, Eq.~2.1! is the same as the resu
obtained in Refs. 1 and 13: It is an equation for the b
effective conductivity of a binary mixture which was studie
thoroughly in Ref. 14; in particular, it displays a percolati
threshold atpc512e21/3.0.28. The Faraday effect is con
tained in Eqs.~2.2! and ~2.3! or, equivalently, in Eqs.~2.6!
and~2.7!. We first note that the percolation threshold for th
effect is independent of the magnetic field and, as expec
is the same as the threshold found for the conductivity.

We can easily check those results in two limiting cas
First, for zero magnetic field it is easy to see that one rec
ers Hori’s equation for the effective permittivity of a bina
mixture.13 Then, for low concentration (p!1) we find that
«e.« I and «̃e.p(4psM /v)H/(11H2), and the rotation
angle therefore satisfiesu}1/H for high fields andu}H for
low fields. This agrees to orderO(p) with the low-density
expansion results for spherical inclusions as obtained,
example, from the Clausius-Mossotti-type approximation
Ref. 8. We note that hereu is independent of the frequenc
and is always very small.

We now apply our discussion from Sec. II to the case o
nondilute metal-dielectric mixture: For the metal,a1
5sM /(11H2) andb15a1H, and for the dielectric~which
is assumed to have a negligible Faraday effect! a2
5 iv« I /4p and b2.0. We will concentrate on the critica
ey

c.
r

f
ill
e

s-

k

t
d,

.
v-

or
f

a

region near the percolation thresholdpc , where Dp[p
2pc is small (p is the metal volume fraction!. We will now
consider«e and «̃e separately for the weak-field regime (H
!1) and the strong-field regime (H@1).

At low fields, we use the scaling result forae , and thus
find that the effective permittivity («e54pae / iv) is given
by

«e.
qc

3 S « I

uDpu
2 i

Aqc
2

12p

v« I
2

sMuDpu3D ~4.1!

for the regime wherev« I /sMDp2!1 andp,pc . The real
part of «e thus diverges like 1/uDpu ~exponents equal to its
SEMA value 1!, and the imaginary part is proportional t
v« I

2/sMuDpu3. From Eq. ~2.11!, we obtain the following

result for «̃e ( «̃e54pbe /v):

«̃e}2
v« I

2

4psMuDpu2
H. ~4.2!

In this regime, the Faraday coefficient will be

F}2
v« I

3/2H

4psMuDpu3/2
. ~4.3!

In the strong-field regime,b1.sM /H anda1.sM /H2. Us-
ing the scaling result forae in this regime, we find that the
effective permittivity is given by

«e.
qc

3 S « I

uDpu
2 i

Aqc
2

12p

v« I
2

sMuDpu3D . ~4.4!

This scaling behavior is the same as what was found ab
in the weak-field regime. The first term should indeed
independent ofH, since it corresponds to the universal b
havior of the dc permittivity near the percolation thresho
However, the fact that the imaginary parts of Eqs.~4.4! and
~4.1! are the same to the order shown here is accidental,
is probably due to the nature of the approximations used~a
similar accident also occurs in the SEMA results!. Indeed,
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we can see from Eq.~3.23! that these parts depend on th
current distribution in the metallic inclusions, hence th
should be different in the weak- and strong-field regim
The important physical conclusion is that, in both regim
«e is independent ofH.

In the strong-field regime, from Eq.~2.15! we obtain the
surprising result

«̃e}2
v« I

2

4psM~Dp!2
H, ~4.5!

which is again the same scaling behavior as in the weak-fi
regime. In both regimes, the Faraday coefficient thus rea
.
,

ld
s

F}2
v« I

3/2H

4psMuDpu3/2
. ~4.6!

This means that the Faraday rotation~the angle is propor-
tional to F) is proportional to the applied magnetic field
even for strong fields, i.e., whenH@1. It is thus clear that
we can obtain a large value of the rotation angle using s
a composite.

We now consider the results obtained by means of
high-contrast or low-frequency expansion. The scaling
havior of the averages which appear in Eq.~3.23! can be
deduced by comparing~3.20! to scaling theories previously
developed for dc magnetotransport coefficients,3,4 and from
the property that
of three-
J~0!5¹3A~0!}H 1rP percolating cluster, p.pc

0rP elsewhere, p.pc

1rP anywhere, p,pc .

~4.7!

These considerations lead to

^u I~¹3A~0!!&}H Dps, p,pc , any H

0, p.pc , any H,
~4.8!

^uM~¹3A~0a!!2&}H Dp2t, any pH!1

Dp2tHFS jp

jH
D , any pH@1,

~4.9!

^uM@~¹3A~0x!!3~¹3A~0y!!#z&}H Dp2g, any pH!1

Dp2gHGS jp

jH
D , any pH@1.

~4.10!

HerejH5HnH is the magnetic-field-dependent correlation length,jp}Dp2n is the percolation correlation length, andF(z) and
G(z) are scaling functions, which tend to nonzero constants whenz!1, and to asymptotic forms that return theDp exponents
to their H!1 values whenz@1 ~see Ref. 4!:

F~z!}H const, z!1

z
t2tH

n , z@1,
~4.11!

G~z!}H const, z!1

z
g2gH

n , z@1.
~4.12!

The values of the critical exponents which appear in the above scaling expressions, as determined by simulations
dimensional percolating network models, are16,7,4

n>0.88, t>2.0, s>0.7, g>0.38,

nH>0.5, tH>6.0, gH>5.0, ~4.13!

wherenH , tH , andgH are exponents describing high field behavior of percolating systems.4 Finally, we obtain the following
results for the Faraday coefficient of a percolating mixture belowpc :
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2
v« I

3/2H

4psM

^uM@~¹3A~0x!!3~¹3A~0y!!#z&

^u I~¹3A~0x!!x&
3/2

}5
2

v« I
3/2H

4psM
Dp2g23s/2, H!1

2
v« I

3/2H11~gH2g!nH /n

4psM
Dp2g23s/2, H@1 but jH!jp

2
v« I

3/2H

4psM
Dp2gH23s/2, jH@jp .

~4.14!
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These results are consistent with Eq.~4.6!, which was
obtained using the replica method, where we expect to
the SEMA valuess51 andg5gH50. We can also derive a
number of physical consequences which follow from bo
approaches@from Eq. ~3.23! in the high contrast expansion
and from Eqs.~4.1! and ~4.4! in the replica approach#.

~1! The diagonal part of«̂e has an imaginary part that i
proportional tov« I

2/sM and is independent ofH @up to
O(rM) in the high contrast expansion#. This means that there
will be some dissipation.

~2! In the same order,«̂e has an antisymmetric part whic
is imaginary and proportional tov« I

2H/sM . These results
are valid both for weak and strong fields, as long as b
v« I!sM andv« IH!sM .

We note that the scaling predictions for magnetotransp
in a percolating system have been tested experimentally
for weak fields, and only in systems that were above
percolation thresholdpc .17 Measurements of the induce
Faraday effect in a metal-dielectric mixture belowpc could
therefore provide an important test of those predictions. A
other prediction which follows from Eq.~3.23! is that the
induced Faraday effect in a nonconducting metal-dielec
composite, which is not necessarily near any percola
threshold, is linear inH[vct even whenH@1, in agree-
ment with the replica approach nearpc .

V. CONCLUSION

We studied the Faraday effect in a metal-dielectric co
posite in the quasistatic regime, close to but below the p
colation threshold of the metal component. The respons
the dielectric component was assumed to be independe
magnetic field; all the field dependence of the macrosco
response is due to the Hall effect in the metal compon
We presented two different approaches leading essential
the same conclusions. The first approach relies on the rep
method and allowed us to derive in a nonperturbative w
equations for the effective permittivity tensor. The seco
approach is the result of a high contrast expansion in pow
of rM /r I @rM (r I) is the impedance of the metallic~dielec-
tric! component#, combined with scalingAnsätzenearpc .

First of all, both approaches are consistent with ea
other, the only difference is that the scaling exponents p
dicted by the replica approach have their SEMA values. S
ond, the main result is the following: the scaling of the F
aday coefficient is the same for the weak and strong-fi
regimes~as long as bothv« I!sM andv« IH!sM). In par-
ticular, we found that the Faraday angle is proportional to
magnetic fieldB even for a strong field, as long asp,pc and
d
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« Iv/sMDp2!1. We can thus predict that it should in prin
ciple be possible to obtain large values of the rotation an
in such a system. For instance, forDp of order 0.1~which is
realistic in experiments!, « I of order unity andsM /v of
order 100 for semiconductors, and withv in the microwave
region ~the ratiosM /v should not be too large since«̃e is
proportional to its inverse!, one obtains for the Faraday co
efficient

«̃e

A«e

.1021H, ~5.1!

which can be made of order unity using currently availa
magnetic fields and high-mobility doped semiconducto
One should recall that in homogeneous dielectrics, the F
day coefficient is usually much less than 1: Typical valu
for a 1-T magnetic field, and for a wavelength in the visib
spectrum (l.0.6 mm), are of order 1026 for dielectrics
like quartz, and of order 1022 for thin ferromagnetic metallic
iron films. Measurements of the Faraday effect belowpc in a
percolating metal-dielectric composite could provide an i
portant test of the scaling predictions in both the strong a
weak-field regimes. Such experiments would have to invo
either propagation or reflection of microwaves by a met
dielectric composite with metallic inclusions that are smal
than the relevant skin depth. Both approaches also pre
that the transverse diagonal elements of«̂e have an imagi-
nary part that is proportional tov« I

2/sM , and are indepen-
dent ofH @up to terms of orderO(rM) in the high-contrast
expansion#. This means that there will be some dissipatio
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APPENDIX A

We want here to solve the Maxwell equation satisfied
the electric fieldE ~wherek05v/c)

@¹3¹31 «̂~r !k0
2#E~r !50. ~A1!

The tensor«̂ is a random variable equal to«̂1 with probabil-
ity p and to «̂2 with probability q512p @ «̂1 and «̂2 are
tensors of the form given in Eq.~1.1!#. In order to obtain an
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integral equation for the electric field, we first write«̂(r )
5«0Î 1d«̂(r ) ~where«0 is an arbitrary constant which wil
disappear at the end of the calculation!. One can then easily
show thatE(r ) is also the solution of the equation

E~r !5E0~r !1E dr 8Ĝ~r2r 8!d«̂~r 8!E~r 8!, ~A2!

where Ĝ is the dipolar tensor for the uniform medium o
permittivity «0 , and where the quantityE0 depends only on
the boundary conditions and is assumed to be uniform.

We will use the Fourier transform ofGab(r ) given by

Gab~k!52
kakb

«0k2 1
k0

2

k22«0k0
2Fdab2

kakb

k2 G . ~A3!

We work in the quasistatic limit, which means that we ta
the limit k0 going to zero. In this case, the dipolar tensor
given by

Gab~k!52
kakb

«0k2 for kÞ0. ~A4!

At k50, the value of this tensor isG052da,b /(d«0),
whered is the space dimension, here equal to 3. For val
of k0 that are too large, we cannot define an effective p
mittivity tensor, and we have to introduce the notion of sp
tial dispersion~for a review, see e.g., Ref. 18, and for a stu
using the replica method see Ref. 19!.

Averaging Eq.~A2!, after inverting it, and averaging i
before inverting it, leads to the exact relation

^Mab
21~k50!&5~12G0d«̂e!ab

21 , ~A5!

whereM̂ 21 is the inverse of the random operator
is

a

s
r-
-

Mab~r ,r 8!5dabd~r2r 8!2„Ĝ~r2r 8!d«̂~r 8!…ab .
~A6!

Calculation of the effective permittivity tensor is thus r
duced to a calculation of the average over the disorder of
inverse of a random operator, namely,M̂ . In order to do this,
we will use the replica method which allows us to expre
the elements ofM̂ 21 ~after using a Gaussian inversion fo
mula! in terms of the functional integral

Mab
21~r ,r 8!5E D~ c̄,c!c̄a

a~r !cb
a~r 8!

3expS E dr dr 8 (
ab,a

c̄a
a~r !Mab~r ,r 8!cb

a~r 8! D ,

~A7!

whereca
a ~with a51, . . . ,n) ~and its conjugatec̄) are rep-

licated Grassman fields satisfying the usual anticommuta
relations

$c~r !,c~r 8!%5$c~r !,c̄~r 8!%5$c̄~r !,c̄~r 8!%50.
~A8!

The limit n50 is implicitly taken in Eq.~A7! and, as usual
in the replica method, we first considern as an integer and
then take the limitn going to zero at the end of the calcula
tion ~without adressing the problem of analytic continu
tion!.

It is now easy to averageM̂ 21 over the disorder, and we
obtain

^M 21&ab~r2r 8!5E D~ c̄,c!c̄a
a~r !cb

a~r 8!eHe, ~A9!

where the effective Hamiltonian is given by
He5E dr dr 8 (
a,b,a

c̄a
a~r !$dabd~r2r 8!2„Ĝ~r2r 8!d«̂1…ab%cb

a~r 8!

1E dr0lnF11h expS E dr 8 (
a,b,m,a

c̄a
a~r0!Gam~r02r 8!Dmbcb

a~r 8! D G . ~A10!
-

The matrixD̂ is equal to«̂22 «̂1 andh5(12p)/p ~note

that h is the inverse ofl5p/q, which appears in the main
text!. As usual in the replica method, the average over d
order introduces coupling between different replicas~if there
is no coupling, then the averaging is trivial! and in order to
study this complicated effective Hamiltonian, we will use
variational principle.20,1 This principle consists of finding the
best Gaussian approximationH0 to the effective Hamil-
tonianHe . Denoting byK̂21 the kernel ofH0 ~the varia-
tional approximation thus readŝM̂ 21&.K̂), we have to
minimize the following variational free energyF with re-
spect toK̂:

F~K̂ !5F01^He2H0&0 , ~A11!
-

whereF0 is the free energy associated withH0 , and where
^ &0 denotes an average usingH0 . We thus obtain the equa
tion

~K̂21!ab5dab2~Ĝ~k!d«̂e!ab , ~A12!

with

«̂e5 «̂11 (
m>1

~2 !m11hm
D̂

12mD̂E ddk

~2p!d
K̂Ĝ

.

~A13!

The tensorK̂ can be inverted, and we obtain



e
e

n

rd

-

re-
real

l
of

all

nly

-

12 780 PRB 58MARC BARTHÉLÉMY AND DAVID J. BERGMAN
K̂5
1

11
k•q

D

F11
k•q

D
2

k ^ q

D G , ~A14!

where D5«0k2, q5d«̂e
t k (d«̂e

t is the transpose ofd«̂e),
and wherê denotes the usual dyadic product. We can th
computeK̂Ĝ and we find that it is the dipolar tensor for th
effective medium

~K̂Ĝ!ab52
kakb

k•~«e
t k!

52
kakb

(
a51

3

~«e!aaka
2

. ~A15!

It is then easy to integrateK̂Ĝ, and we obtain

E dk

~2p!3
~K̂Ĝ!ab52

1

3
dabma52

1

3
mab , ~A16!

where m̂ is a diagonal matrix with diagonal elementsm1
5m251/«e and m351/«ze. The self-consistent equatio
~A13! can thus be recast as the matrix equation

«̂e5E
0

`

du e2u ^«̂e2u«̂m̂/3&

^e2u«̂m̂/3&
, ~A17!

where the brackets still denote an average over the diso
It is then easy to show that

S «e i «̃e

2 i «̃e «e D 5E
0

`

du e2u ^«̂2e2u«̂2/3«e&

^e2u«̂2/3«e&
, ~A18!

where«̂2 denotes the restriction of the tensor«̂ to the (x,y)
subspace:

«̂25S « i «̃

2 i «̃ « D . ~A19!
n

er.

The equation along thez axis is decoupled from the pre
ceeding one, and is Eq.~2.1! of the main text. Using the
relation

ea«̂25ea«S cosha«̃ 2 i sinha«̃

i sinha«̃ cosha«̃ D , ~A20!

after simple manipulations we obtain Eqs.~2.2! and~2.3! of
the main text. It should be noted that all the calculation p
sented here can be used without any changes for either
or complex values of« and «̃. This justifies the analytica
continuation of the formulas obtained in the framework
the Hall effect in order to describe the Faraday effect.

APPENDIX B

The equations for the Green tensorĜ(r)(r ,r 8) can be
solved in almost closed form if the system occupies
space, and if the resistivity tensorr̂ is constant everywhere
and its symmetric part is a scalar tensor, i.e., if

r̂~r !•v[r̂0•v5r0v1b3v ~B1!

for any vectorv. In that case, the Green tensor depends o
on r2r 8, and we can define its Fourier transform by

G̃ab
~r0!

~q![E d~r2r 8!Gab
~r0!

~r2r 8!e2 iq•~r2r8!. ~B2!

Using Eq.~3.3!, it is easily found that this Fourier transform
satisfies the linear algebraic equation

~r0q22k2!G̃ab
~r0!

2r0qa~q•G̃
•b
~r0!

!1~b•q!~q3G̃
•b
~r0!

!a

5dab , ~B3!

which can be solved to yield («abg is the basic antisymmet
ric tensor!
any
G̃ab
~r0!

~q!5
~r0q22k2!dab2@r0~r0q22k2!1~b•q!2#qaqb /k21~b•q!«abgqg

~r0q22k2!21q2~b•q!2
. ~B4!

Clearly, G̃ab
(r0)(q) diverges in the limitk→0. However, if one calculates the Fourier transform of (¹3G

•b
(r0))a , namely,

~q3G̃
•b
~r0!

!a5
~b•q!~q2dab2qaqb!2~r0q22k2!«abgqg

~r0q22k2!21q2~b•q!2
, ~B5!

then the limitk→0 can be taken without any problems. That is why we had to include the termk2Gab
(r) in the equation for the

Green tensor@see Eq.~3.3!#, deferring the limitk→0 until after the calculation of (¹3G
•b
(r))a .

In order to investigate the symmetry properties ofĜ(r)(r ,r 8), we use integration by parts or Green’s theorem to get, for
vector fieldsA(r ), B(r ), and second-rank tensor fieldr̂(r ),

E
V
dr$A•¹3@ r̂•~¹3B!#2B•¹3@ r̂•~¹3A!#%52 R

]V
@~dS3A!• r̂•~¹3B!2~dS3B!• r̂•~¹3A!#

1E
V
dr @~¹3A!• r̂•~¹3B!2~¹3B!• r̂•~¹3A!#. ~B6!



PRB 58 12 781FARADAY EFFECT IN COMPOSITES
If r̂ is symmetric, then the integrand in the last volume integral vanishes everywhere. Substituting

Av~r ![Gva
~r!~r ,r1!, Bv~r ![Gvb

~r!~r ,r2! ~B7!

into this result, and assuming thatr̂ is a symmetric tensor, we thus obtain, using Eqs.~3.3! and ~3.4!,

Gab
~r!~r1 ,r2!5Gba

~r!~r2 ,r1! if r̂ t5 r̂. ~B8!

Note that if r̂ is nonsymmetric, then in generalGab
(r)(r ,r 8) is not a symmetric kernel.
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