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Recent progress in the formulation of a fully dynamical local approximation to time-dependent density
functional theory appeals to the longitudinal and transverse components of the exchange and correlation kernel
in the linear current-density response of the homogeneous fluid at long wavelength. Both components are
evaluated for the electron gas in dimensiondlty: 3 andD =2 by an approximate decoupling in the equation
of motion for the current density, which accounts for processes of excitation of two electron-hole pairs. Each
pair is treated in the random phase approximation, but the role of exchange and correlation is also examined,;
in addition, final-state exchange processes are included phenomenologically so as to satisfy the exactly known
high-frequency behaviors of the kernel. The transverse and longitudinal spectra involve the same decay chan-
nels and are similar in shape. A two-plasmon threshold in the spectrum for two-pair excitatldrs3neads
to a sharp minimum in the real part of the exchange and correlation kernel at twice the plasma frequency. In
D =2 the same mechanism leads to a broad spectral peak and to a broad minimum in the real part of the kernel,
as a consequence of the dispersion law of the plasmon vanishing at long wavelength. The numerical results
have been fitted to simple analytic functiopS0163-182¢08)04436-1

[. INTRODUCTION scheme for the calculation of the linewidths of non-Landau-
damped collective excitations, whose decay is solely due to
The plasmon dispersion relation and the dynamic strucdynamical xc effects. The order-of-magnitude enhancement
ture factor of the conduction electrons in simple metals arever the homogeneous-gas approximation reported in the ap-
known from electron energy loss and inelastic x-ray scatterplication to quantum strig§ emphasizes the relevance of the
ing experiments:” Both electron-gas correlations and bandinterplay between inhomogeneity and dynamical xc effects.
structure enter in determining these properties and time- The work of Vignale and Kohn has brought new interest
dependentTD) density functional theoryDFT) provides a o the evaluation of the longitudinal and transverse compo-
general framework that can account for both. The generalityanis of the dynamic xc kerngt:(w) andfl(w), sayl in

of the DFT methc_)a In Qeahng W'th '”h°”!°96.“e°“5 elec_- the homogeneous electron gas at long wavelength. An inter-
tron systems motivates interest in the derivation of sens'bl‘i’)olation between the known asymptotic behaviors at low and
approximations to the dynaml_c exci?r_i\g\ge and correla(k_q)w high frequency was proposed for the longitudinal component
potential, beyond the adiabatic reg hose applicability by Gross and Kohh'® and later extended to finite wave
's limited to low-frequency phenomena. number by Dabrowski® It was subsequently notic&tthat

A local density approximation for a scalar xc potential in - )
time-dependent phenomena was proposed in early work &pe long-wavelength longitudinal spectrum is closely related

Gross and Kohi¥1% However, detailed analysis of the con- to processes of excitation of two correlated e.Iectron—hoIe
straints coming from basic conservation laws has shown tht&irs in the electron gas. These have been ;tUd'Ed by pertur-
inconsistencies can arise and are associated with the nond3@tive methods in the early work of Dubi$?and by sev-
istence of a gradient expansion for the frequency-dependef¥al other author&~> The inclusion of dynamic screening
xc potential in terms of the density alofié~'* Recently in the random phase approximatiGRPA) leads to a mode-
Vignale and Kohf'*® have overcome these difficulties by coupling form of the spectruffi and inclusion of final-state
resorting to a dynamic xeectorpotential even in the case of exchange processes is needed to recover the exact high-
an inhomogeneous system subject to an extespalar po-  frequency behavior calculated by Glick and Ldfigh simi-
tential. They obtained an explicit local-density expression fodar expression has been more recently obtained by Neilson
the xc vector potential in the linear response regime in term&t al* within a memory function formalism for the electron
of correlations of longitudinal and transverse currents in thegas in dimensionality = 2.
homogeneous electron gas. This expression becomes exactWith regard to the transverse component of the long-
when the equilibrium electron density and the external powavelength xc kerneflc(w), Vignale and Kohf?*® have
tential are slowly varying in space, on length scales set bgiven a first-order perturbative estimate and obtained the
ke! andve/w wherekg anduvg are the local Fermi wave high-frequency limit. We have subsequently briefly reported
number and velocity. on the results of a full calculation dﬂc(w) for the electron
The results of Vignale and Kohn have been interpreted irgas in three spatial dimensiofisand on preliminary results
terms of complex, frequency-dependent viscoelastic coeffiin the two-dimensional casé These calculations were based
cients, allowing a nonlinear generalization up to second oren the two-pair model treated in the RPA and corrected for
der in the spatial gradient$ Within this framework, Ullrich ~ final-state exchange processghereafter indicated as RPAE
and Vignalé® have developed a simple computational In the present work we give a full account of our ap-

0163-1829/98/5@.9)/1275812)/$15.00 PRB 58 12 758 ©1998 The American Physical Society



PRB 58 DYNAMIC EXCHANGE-CORRELATION POTENTIALS FQR . .. 12 759

proach to the evaluation of the dynamic xc kernéjg(w) (LT w? 1 1
and f] (), including an exact expression fdt: (w) in X XL r(k,w)+n/m Xer(k,@)+n/m|’

c (k,w)= ?2-
terms of four-point response functions. We also extend our 3

calculations ta(i) fully evaluate the dynamic xc kernels for ) ) )
the electron gas wite?/r interactions inD=2, and(ii) ex- This emphasizes that the plasmon does not contribute to

L . . . . . .
amine the role of including exchange and correlation in the x(K:®@), leaving only contributions from multipair excita-

screening processes entering the RPAE. tions in the limitk— 0. In fact, to leading order in the long-
The layout of the paper is as follows. Section Il presentdvavelength limit we have from Eq3)

the theory underlying our calculations, with the help of three 2,2

Appendices. We start from the definition " (w) in terms Im fL:T(w) = lim —zrIm Yotk o). )

of the current-current response functions for the ideal and the k—o N

real electron gas and proceed to evaluate the ideal-gas &y
sponse at high frequency and to derive an exact eXpreSSionnels from which their real part will be obtained by means of
for the real-gas response in terms of a four-point responsg, o kramers-Kronig relation. The equation of motion for
function. An approximate decoupling of this latter function : ) L

. X : ; ii(K,w) can be obtained from the definition of a general
into products of two-point response functions introduces th re]sponse function in terms of unequal-time commutators
two-pair approximation. Screening at the RPA level or better '
and phenomenological inclusion of final-state exchange fi- ©

nally lead to the formulas used in our calculations. The nu- ((A;B)),= —if e @HIY[A(L),B(0)])dt,  (5)
merical results are presented in Sec. Il together with fits to 0

analytic functions incorporating the known asymptotic be-whereA(t)=e'"'Ae ™", (---) denotes a ground-state expec-
haviors and aimed at facilitating numerical applicationstation value, ance is a positive infinitesimal. The current-
within the time-dependent DFT formalism. The role of ex- current responsqij(k,w):<<j:(;ij>>w satisfies the equa-
change and correlation in the treatment of each pair is studign of motion

ied in Sec. IV. We conclude with a brief summary in Sec. V.

e proceed below to evaluate the imaginary part of the ker-

@2xii (K, @) ={[[i}  HLIL D) = (i HEL G HI Y s
II. THEORY: EXACT RESULTS AND TWO-PAIR MODEL (6)

where the first term is real and independentwofit will be
evaluated below in the discussion of the real part,f Egs.
(15—(17)]. Quite lengthy calculations, which are briefly re-
ported in Appendix B, lead to the long-wavelength result

The longitudinal () and transverseT) kernelsf:."(w)
of the homogeneous electron gas are defined ak+th@
limit of the functions

2
LT (k)= | ~ 1 N
xe A k? | X0 1(k,)+n/m Im Xij(klw)ZWE’ IM{(jgp—qiiqP-a))e
aq

1

LT il iVt 2

T (Kw)Fnim| VK (1) xT (q,k)F (9", —k)+o(k), (7)
' where the coefficients'"'(q,k) are defined in Eq(B7) and

Here, x_ (1) is the longitudinal(transversg current-current  summation over repeated indices is understood. This expres-

response function of the homogeneous fluid at densjty sion, together with Eq.(4), gives an exact result for

Xt is the corresponding ideal-gas response functigris  Im f5"(«w).

the Coulomb potentialvy=4me*k? in D=3 and v We now discuss some approximate evaluations of(Bq.

=27e’/k in D=2), and v;=0. We remark>3* that Use of the ideal-gas four-point response function in the right-

xL(k,w) is related to the density-density response functiorhand side(RHS) gives the exact second-order perturbative

x(k,w) by value forf5:"(w), which is expected to be accurate at high
frequency(see Appendix € In Appendix C we derive in
n  ? this way the leading high-frequency behavior of the kernel,
XL(k!w)_i_E:FX(klw) (2)
LT X 2 D—2(2 Ry D/2 5 . o
and thatf’_ is proportional to the local field factdB(k,w) fxe (w)=—a 7 ag Ry, (8

entering the dielectric function of the electron gas, accordin

to f!;c(k,w)z—v:;G(k,w). g/vhereaB is the Bohr radiusa, =23/30, anda;=28/15 in

o 9 o . D=3, whilea, =11/16 anda;=9/16 inD=2. The longitu-
The longitudinal response functiog (k, ) is |r2r_ned|- dinal component of this result was obtained by Glick and

ately obtained from the Lindhard susceptibifity*® in D Long® in D=3 and by Holas and Singiiin D=2. In the

=3 and from the Stern susceptibififyin D=2 by using EqQ.  |ow-frequency limit instead, perturbation theory gives an ar-

(2) for the ideal Fermi gas. The calculation pf(k,») for tificial divergence in Rd, and a discontinuity in Inf,,

the ideal Fermi gas iD =3 andD =2 is reported in Appen- and will not be pursued further.

dix A. ) ) We obtain an approximate nonperturbative evaluation of
Equation(1) may be written in terms of the proper current gq. (7) by decoupling its RHS within an RPA-like scheme,

response functiong, t(k,w), which in the frequency domain gives
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FIG. 1. Structure of two-pair excitations in a Fermi liquid for
energies much smallér) and much biggetb) than the Fermi en-
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m'm XL (Qo—w"),

11

with a, 1 as defined below Ed8), by =8/15 andb+=2/5 in
D=3 andb, =b=1/2 inD=2. The expression for the lon-
gitudinal component is equivalent to that obtained in 3D by
Hasegawa and Watalfeby diagrammatic means and similar
to that derived in 2D by Neilsoet al2° (see the discussion

in Ref. 20. This result can be physically understood as rep-
resenting the spectral density of two-pair excitations, which
are present at any frequency in the long-wavelength region
of the spectrum and provide a mechanism for the decay of
the plasmon outside of the single-pair continuum. The result-

ergy. The arrows join the electron and hole of each pair, their lengtling linewidth isT/w=—1m fl?c(wk)/vk .

is the transferred wave vectqr

o dw’
|m<<AB;CD>>w:_L T['m«A?C»w'

XIM((B;D))or_ o
+IMA;D)) o IM{(B;C)) 0] (9)

The functions in the RHS of Eq9) are understood to be

Considering the low-frequency behavior of jm(k w) it
can be shown that at low Eq. (11) is linear in w, and that
to this order the first term in the square brackets does not
contribute. The coefficients of this linear behavior are
related”’ to the bulk and shear viscosities of the electron gas,
¢ and 7, respectively, via

Im fk (o) ) D—1Im fi(w)

exact response functions of the interacting electron gas. Thi@nd

scheme clearly neglects exchange processes in the final state,
which are known to reduce the spectral strength by a factor

of 2 at high frequency in perturbative treatmefsse Appen-

{=-n?lim - 5 (12)
w—0
Im ! (w
7=—nZlim xl ). (13)
w—0

dix C), but are ineffective at low frequency. This can beThe significance of¢ and 7 is the same as in classical
physically understood as follows. A two-pair excitation at hydrodynamics® Both viscosities vanish in the ideal Fermi
long wavelength involves the creation of holes with mo-gas as well as in the RPA and in static-local-field approxi-
mentap andp’ inside the Fermi sphere and of electrons with mations to the interacting electron gas. Sifgebr=2(D

momentap+q and p’ —q outside the Fermi sphere. If the

—1)/D, also within the present model the bulk viscosity

excitation energyw is small compared to the Fermi energy yanishes identically. Numerical results for the shear viscosity

eg, then necessariljg|<kg and, since on average—p’|
=kg, each electron is substantially clos@n k spacg to

n will be given below.
We now discuss the real part of the kernés (»). Once

“its” hole than to the other one: exchange processes are thuge imaginary part has been evaluated, the real one can be

suppressed in this cageee Fig. 18)] by a factorka/vc';,

which vanishes fog—0 (i.e., ®—0).2® Conversely if w
>er one has|q|>kg and therefore for parallel spins the

strengths of direct and exchange processes are equal and op-

posite[see Fig. 1b)].
On the basis of the above argument, which can be mal

incorporate exchange effects by inclusion of a factor

1+ 05(1)/28|:

1+ wl2ef (10

Ox(w)=

which interpolates between 1 at lawand 0.5 at highv on
the energy scale (&) of exchange processes. Our final ex-
pression for the imaginary part of the kernel thus is

D

o do' d”q
Im flx'éT(w)Z—gx(w)Jo TJ m(vé)z
2

a )
X aL,TFIm xL(d,0")

q
"‘bL,T;z'm x1(Q,0")

obtained by means of the Kramers-Kronig relation
Im fi¢" (")

o' —w

1 [+
Re fiT(0) =170+~ [ do’
(14

A herefL,T hérea) high-f limit of th
guantitative at a perturbative level, we phenomenologicalI)ker(re]reelsXC (<) denotes thérea) high-frequency limit of the

. This quantity corresponds to the long-wavelength

value of the leading spectral moment beyond theum

rule 3334 which is the first term on the RHS of E¢6). With

the definitionM_ (k) =1im,, ... %y, 1(k,0), we have

- nk’[ k? 12
ML(k):W %—FB(ke)
2 k-q)2
h2 o k?) [S<|q+k|>—8<q>]},
(15)
and
. nk?[ 4 1 2 (k-q)?
MT(k)ZW[B““”H% q[%_k—q}
X[s<|q+k|>—s<q>]}, (16)
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TABLE I. Exact highw limits of f5."(w) in 3D and bulk moduluk}' obtained from the Monte Carlo
equation of state; shear viscosipyand shear and bulk moduyli.,. andK,.) obtained from the RPA treatment
of two pair processed., is in units of 2wy /n, # in units of n, K, and ¢ in units of 2w,n. Values in
atomic units @g=m=e?’=1) can be obtained from7"V=3/(47rd) 7 (K,u)AV=3%>_97
(2m) (K, ) ®, where® denotes the tabulated values. The last reported decimal figure is likely to be affected
by numerical inaccuracies.

rs Kie () (%) " Hixc K

0.5 —0.04246 —0.01794 0.0177 0.0029 0.0065 —0.0425

1 —0.0611 —0.0216 0.0284 0.0062 0.0064 —0.0612

2 —0.0891 —0.0252 0.0457 0.012 0.0052 —0.0896

3 —0.1119 —0.0280 0.0600 0.017 0.0037 —0.1128

4 —0.1320 —0.0308 0.0724 0.021 0.0020 —0.1335

5 —0.1503 —0.0338 0.0835 0.024 0.0002 —0.1525

6 —0.1674 —0.0370 0.0935 0.027 —0.0018 —0.1702

10 —0.2276 —0.0518 0.1267 0.034 —0.010 —0.233

15 —0.2917 —0.0725 0.1587 0.040 —0.023 —0.301

20 —0.3483 —0.0939 0.1847 0.044 —0.036 —0.361
where_S(q) is the static structure factor am!de) denotes the Uoe™= n2fIC(o), (19
true kinetic energy per particle. Expansion at long wave- o _ ) _
lengths gives the required high{imit of f;c,T(w)’ The significance oK and w is the same as in classical

LT
fXC

elasticity?® and as usual the suffix xc indicates that the ideal-
gas contribution has been subtracted. Our result&fgrare

1
()= Z[d,_;((ke)—(ke>0)+e,_,T(pe>] (17  in good agreement with the accurate values obtained from

the Monte Carlo xc energy per partitle*? el(n) via

with d_ =4, d;=4/3, e, =8/15, ande;=—4/15 inD=3, Kl =n2d2ej/dn? (see belof). We finally note thaK .
andd, =6, dr=2, e, =5/4 ande;=—1/4 inD=2. The av- is also related to the long-wavelength limit of tistatic
erage kinetic and potential energigee) and (pe) can be i (k,0) via the compressibility sum rufg,

obtained from the Monte Carlo equation of st#te*? and

(ke)® denotes the ideal-gas value. The resulting values of Kee=n2lim lim f(k,). (20)
fL:T(0), given in Table | D=3) and Table Il p=2), al- k=0w=0

low to evaluate numerically Eq14) and to obtain the real

part of the kernels at any frequency_ I1l. NUMERICAL RESULTS WITHIN THE RPA

The low-frequency limit off3."(w) is related’ to the
elastic moduliK and u via

and

2| £L D-1 T
Kye=n fXC(O)—ZTfXC(O) (18

LT

This section presents results that we have obtaineél, for
from numerical integration of Eq$11) and(14) using RPA
response functions, which are given by

1 1 k2 .
__2ka . (21)
w

XFEAK, @) +n/m x° (k@) +n/m

TABLE Il. Exact high-w limits of f-."(k,) in 2D and bulk modulu& ¥ obtained from the Monte Carlo
equation of state; shear viscosipyand shear and bulk modyli,. andK,.) obtained from the RPA treatment
of two-pair processes.,. is in units of Ryh, »zin units ofn, K, andu, in units of Ry-n. Values in atomic
units can be obtained from*Y=1/(rr2) 7%, (K,u)AY=1/(27r2) (K, )", where® denotes the tabulated
values. The last reported decimal figure is likely to be affected by numerical inaccuracies.

I's |'<>’\</|cC f)&c(w) fIC(oc) n Mxc Kxe
1 —0.9360 —0.5499 0.3372 0.018 —0.064 —0.959
2 —0.4912 —0.2750 0.1916 0.029 —0.064 —-0.514
3 —0.3413 —0.1933 0.1330 0.035 —0.058 —0.363
4 —0.2649 —0.1535 0.1010 0.040 —0.054 —0.285
5 —0.2180 —0.1294 0.0810 0.043 —0.050 —0.236
6 —0.1860 —0.1128 0.067 0.045 —0.047 —0.203

10 —0.1191 —0.0768 0.0395 0.050 —0.039 —0.132

15 —0.0833 —0.0560 0.0257 0.052 —0.033 —0.094

20 —0.0645 —0.0445 0.0189 0.054 —0.028 —0.073
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Se M7 —0.05 0

-0.05 - >
3 1 =
~ 0]
CI - =
E L 1 -0.1 —0.05

| L 4
-0.1 —

I i -0.15 -0.1

- - 1 1 1 1 I 1 1 1 1 1 1 1 1 | 1 1 1 1 I 1 1 1 1

0 1 2 3 4 5
i 7 w/wy
1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 1 2 3 4 5 FIG. 3. Real part of;."(w) in 3D atrs=3. Notations and units
w/wy are as in Fig. 2. The dot on the left axis mak& /n?. The scale

for the transverse component is on the right-hand axis.
FIG. 2. Imaginary part off%."(w) in 3D atrg=3 in units of

2wp /n, as functions ofw/wy. The dashed line gives the Gross- . ) ) )
Kohn (Refs. 9 and 1pinterpolation scheme. expected to be very precise, being obtained through integra-

tion over the entire spectrum. With thisveat we note that

In the high-frequency limit the first term in the square brack-our numerical estimates foK,. agree with the accurate
ets of Eq.(11) dominates over the second one, implying Monte Carlo resultsk}', also given in the same table,
Im f .= (ar/a.)Im f; conversely, for loww the first term  within 5%. We note that the xc contribution to the shear
is negligible and Inf J.=(b;/b)Im f .. Indeed the longi- modulusy,, becomes negative at low density; the total shear
tudinal and transverse spectra are very similar, and the tranfnodulusu = .+ 2Neg, however, remains positive.

verse one is rather accurately reproduced at all frequencies | order to facilitate use of these data in practical TD-DFT
by setting Imf }(0)=0.72 Imf () in 3D and Imf}(®)  computations, an analytical it has been given in Ref. 31. The
=0.85 Imf () in 2D, the proportionality factor being constraintf L (0)=K,./n? which was imposed in the fits

close both toar/a_ and tobr/b, . For the real part of the 5)10wing GK, can be removed simply by setting= 1.
kernels there is an additional shift due to the different values We now turn to the two-dimensional system. Figures 4

for w=o0.

Figure 2 reports the results for the imaginary parf bf
in 3D atrg=3 as functions ofw/ w, [in 3D ry is defined as
(4mad/3) " and the plasma frequencyw, as
(47e®n/m)Y?]. Both our results and the Gross-Kok@K)
interpolatior?"'%for Im f :." reproduce the high frequency be-
havior given by Eq(8) and are linear at low frequency. As

already remarked the bulk viscosity vanishes identically . .
within the present model, but the shear viscositis finite; broader. The figures also compare our resultforwﬁh the

numerical results for the latter are given in Table I. FromiNt€rpolation scheme of Holas and Sing@lS),>" which is
Fig. 2 one can see that our estimate fpiis significantly the 2D extension of th_e _GK interpolation. Bot.h curves repro-
smaller than that of GK. In the intermediate frequency regiorfluce the asymptotic limit17) as well as the high-frequency
our curves exhibit a sharp threshold at twice the plasma freé?€havior of Eq(8), and both imaginary parts are lineardn
quency, which is due to the onset of two-plasmon processedt lIow frequency. Also in the 2D case the minimum in the
This is the most remarkable difference from the GK interpo-real part is absent in the GK/HS interpolation scheme.
|ation. Table 1l reports the resulting values of the shear viscosity
The corresponding real parts of the kernels are shown im and of the elastic moduK,, and u,., obtained as in the
Fig. 3. The two-plasmon threshold in the spectrum generate3D case. In 2D the agreement between the bulk modkilys
a pronounced minimum aé= 2wy, in the real part, which is  obtained from our data Oﬁ)IZéT and the Monte Carlo value
absent in the smooth GK interpolation. The(0) value was KM is not as good as in 3D, but still better than 10% at all
obtained by GK assuming L(0)=K,./n?, i.e., f1(0) values ofrg that we have considered. In contrast to 3D, at
= u=0 [see EQqs(18) and (19)]; our curves instead are low density the total shear modulps= u,.+ 3NeF turns out
consistent with Eq(18) with a nonvanishing .(0). Table |  to be negative. However, the observed disagreement between
reports our results for the elastic mod#li. and w,., ob- K, and KQ"CC prevents us from drawing a conclusion about
tained from Rd,; via Egs.(18) and (19). They cannot be the presence of an instability.

and 5 report our results for the imaginary and real parts of
fL.Tatrs=3[in 2D r4 is defined as fna3) ~*]. The main
difference with respect to the 3D results is the absence of the
sharp two-plasmon threshold in the two-pair excitation spec-
trum (i.e., in Imf,.), due to the fact that the plasmon disper-
sion relation vanishes in 2D at long wavelength. Correspond-
ingly the minimum in the real part of the kernel is much
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0 —T—T T T — T TABLE IIl. Interpolation parameters according to E@2), in
-\\ . 2D. The last reported decimal figure is likely to be affected by
- 7 numerical inaccuracies.
AN 1 rs 10 3cord?  cyr? c, Cs C4
-0.05 |- N _
- \\ /,,/;:"“' S 1 62.7 1.10 9.94 374 6.84
- \\\‘__"/ i . 2 2.90 59.2 —-1.74 4.62 7.70
3 r 7 3 1.73 34.9 -3.79 12.5 15.1
5,3—01 '_ L _' 4 1.44 28.6 —3.45 15.8 30.3
e | T i 5 1.18 225 —2.64 16.3 47.9
g [ ] 6 0943 173 -204 158  66.2
i \ e ] 10 0.458 723 -10 131 150
L 1 15 0.250 342 -0524 109 276
-0.15 - — 20 0.160 196 —0.313 9.52 430
- ] wherew is in Ry, f, in units of Ryh, andcys=11/8r2 is
I T the coefficient of the leading high-frequency behavior from
-0 = 4 6 s Ed.(8). The remaining parameters, which we obtained by a
o(Ry) least-squares fit to the numerical calculation, are reported in

Table Ill; the transverse component can be approximated by
FIG. 4. Imaginary part of ;;"(w) in 2D atrs=3 in units of  Im f].=0.85 ImfL.. The quality of a typical fit is shown in
Ry/n, as functions ofw (in Ry). The dashed line gives the Holas- Figs. 4 and 5. Values at intermediateare best obtained by
Singwi (Ref. 37 interpolation and the dotted lines are the fit dis- interpolation off,(w) at the samew (in Ry); for rs=3 also
cussed in the text. the simpler scheme of interpolating the fitted coefficients

. L ) Co, - - - ,C4 IS Viable. The real part can be obtained from Eq.
To facilitate application of these results in actual TD-DFT (14), which in this case can be integrated analytically; the

computations, such as the one of Ref. 18, we provide belowegyiting expression is quite long and we do not report it.
a simple analytical interpolation. The imaginary part is re-

produced by
IV. EXCHANGE-CORRELATION EFFECTS ON Fyc

C1w+ C2w2+ 03w3+ 2CHSw5
Cot+Cr*+ w®

Im (@)= —gu() This section is aimed at assessing the validity of the re-

(22) sults presented above. In the first part we study the effect of
correlation in the treatment of each pair, adopting more re-

fined response functions in the RHS of Efjl); in the final

part we discuss corrections that go beyond the present two-

pair model.

We have introduced the effect of correlation in
the treatment of each pair in E¢L1) by means of two of
the most successful static-local-field approximations, the
Singwi-Tosi-Land-Sjtandef® (STLS) and the Vashishta-
Singwi*® (VS). In the 3D case, both schemes predict negative
plasmon dispersion at large (r¢=5 in STLS andr;=9 in
VS), in qualitative agreement with experiméniThe VS
scheme embodies the compressibility sum rule on the static
response, and is therefore more reliable in the study of static
phenomena. Since these schemes only involve longitudinal
currents, the transverse response function is still evaluated at
an RPA level.

Figures 6 and 7 compare the RPA results in 3D with those
obtained with STLS and VS. At;=1 correlation only gives
minor corrections, but at larger, it leads to a divergence,
caused by the appearance of negative plasmon dispersion.
Figure 8 compares the results obtained with STLS at various

w(Ry) densities. The minimum at intermediate frequency gets more

FIG. 5. Real part of ;. (w) in 2D atr¢=3 in units of Ryh, as  Pronounced with increasings, and forrs=5 becomes a
functions ofw (in Ry), the scale for the transverse component beingdivergence of the formd(w— 2w min)(0—20min) M2, where
on the right-hand axis. The dashed line gives the Holas-Singwivmin IS the minimum energy of the collective mode.

(Ref. 37 interpolation and the dotted lines show the fit discussed in  Introduction of the local field correction significantly in-
the text. The dot on the left axis marksic/n?. creases the shear viscosity and leads to large negative
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FIG. 6. Imaginary part of ,(w) in 3D in units of 2wy/n, as a FIG. 8. Imaginary part of () in 3D, in units of 25wy /n,

function of w/wy atr,=5 (main figuré andr,=1 (inse. We plot computed with STLS response functions, at various values of
results obtained using RPA response functigdashed curve ) ) .
STLS response functiondull curve) and VS response functions €ring experiments. The threshold behavior at frequency 2
(dotted curvg is a clear-cut signature of the present results figr. The
more pronounced singularity present in the STLS curves
originates from the negative plasmon dispersion.

We also investigated the role of exchange and correlation
in 2D, using the STLS model as generalized in 2D by
Jonsorf’ The qualitative behavior turns out to be similar.

values of the shear modulys,. (e.g., with VS we gefu,
=-0.03 atr,=5 and u,.=—0.1 atrg=10, in units of
2wyn). The relationK,.= K} is satisfied with the same
accuracy as in the RPA case. Figure 10 reports our results for the imaginary parf gfas
Figure 9 displays the dynamical structure facBik,®)  gptained from RPA and STLS calculations. As in 3D, in
=—(2Knw?)Im x (k.w), which is relevant to inelastic scat- STLS the plasmon energy at intermediate wave vector is
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FIG. 7. Real part off &C(w) in 3D in units of 2wy /n, as a
function of w/wp atrg=>5 (main figurg andr =1 (insey. We plot FIG. 9. Dynamic structure fact®(k,w) atrs=>5 as a function
results obtained using RPA response functiddashed curve  of w/wy shown in the flags on a semilogarithmic scale at various
STLS response functiondull curve) and VS response functions values ofkrsag, as obtained from STLSfull curves and RPA
(dotted curveé The dots mark<§"ccln2. (dashed curvescalculations.
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FIG. 10. Imaginary part of k() in 2D in units of Ryh, as a FIG. 11. Real part off ,(w) in 2D in units of Ryh, as a

function of » (in Ry) atry=6 (main figuré andrs=1 (insey. We  function ofw (in Ry) atr,=6 (main figurg andrs=1 (insey. We
plot results obtained using RPA response functiafeshed curves ~ Plot results obtained using RPA response functieshed curve
and STLS response functiofi@ll curves. and STLS response functiofill curves. The dots mark}/n?.

lower than in RPA, and correspondingly we note a signifi-present in 3D at the two-plasmon threshold. When the plas-
cant increase in the depth of the minimum at intermediatenon dispersion is positivélocal-field-corrected results at
frequency in Imf,.. This increase, unlike the 3D case, is small r, and RPA we expect small corrections, since the
significant also at rather high densifgee the ins¢tas a threshold behavior is driven by the long-wavelength plas-
consequence of the enhancement of correlation effects in 2Bon, whose linewidth vanishes k% for smallk. In the case
systems. On the other hand, in 2D no divergence appears #f negative plasmon dispersion, the collective excitation with
the two-pair spectrum, since no minimum at finikeis  minimum energy has nonzero wave vector and therefore
present in the plasmon dispersion. The same is true for theon-vanishing linewidth due to decay into multiple particle-
corresponding real parts, which are shown in Fig. 11. hole pairs. This indicates that the divergence in the two-pair
Having discussed at length the role of two-pair processespectrum found in the local-field-corrected results at latge
in the long-wavelength spectrum of the uniform electron gas(see Figs. 6 and)8is probably an artifact and would be
we now turn to a qualitative discussion of other effects thateplaced by a smooth peak if plasmon damping were in-
have been neglected in the present treatment. Whereas a dsided.
tailed quantitative calculation is cumbersome, the qualitative
role of multipair processes beyond two pairs can be easily V. SUMMARY
grasped by straightforward extension of the present treat-
ment, in the spirit of an expansion in the number of pairs In this work we have given an extensive discussion of the
involved. A perturbative analysis shows that in the high-exchange-correlation kernek;'(w), both in 2 and in 3
frequency limit these processes are of higher order i 1/ spatial dimensions. We have presented an exact expression
and therefore do not contribute to the asymptotic behaviorfor the kernels in terms of four-point response functions, and
of Eq. (8). In the intermediate-frequency regime one can ex-evaluated it numerically within a nonperturbative approxi-
pect the appearance ofraplasmon threshold effect in the mate decoupling scheme, which accounts for two-pair pro-
n-pair channel. Whereas at present we do not have a reliablsesses. Our numerical results are qualitatively different from
guantitative estimate of the contribution of such processes tpreviously known interpolations. In 3D we predict a thresh-
Im f,., we believe that their overall spectral strength will beold behavior, which can be understood as due to a simple
a minor correction to the present results. This can be inferreghase-space effect, i.e., the opening of the two-plasmon
from the good agreement between the two-pair resulKigr  channel in the two-pair spectrum. In 2D the same mechanism
and that from the Monte Carlo data, the difference being deads to a broad feature in the spectrum. We have also stud-
guantitative measure of the integrated spectral strength déd the influence of static-local-field corrections on our re-
higher-order processes. sults and found even more marked deviations from previous
A different class of effects that could modify the presenttheories.
results are improved response functions in the two-pair chan- We have obtained good agreement with all known
nel, i.e., in Eq.(11). The main qualitative feature that is asymptotic behaviors, including the newly derived high-
absent from all response functions that we have considered feequency limit of the transverse part and the Monte Carlo
plasmon damping. This will broaden the sharp featureresults for the bulk modulus. Estimates for the shear modulus
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and viscosity have also been given. Our results, which have 0 3n [, oo 5.1 45 1 4
been fitted to simple analytical formulas, provide the entire  Re x7(k,0)= g | Z°+3u"z— 72+ ZE(+)— ZE(,

input necessary for non-adiabatic TD-DFT computations. (A6)

i (3) = +112=112 +7— + i
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APPENDIX A: TRANSVERSE RESPONSE FUNCTION FOR x7(k—=0,w)= >— +0p——Z2EKEE, (A8)

THE NONINTERACTING FERMI GAS IN 2D AND 3D @ mao

where g;=48/35, g,=1/2, and M?(k) as defined in Eq.

The current-current response function for the noninteract(As) At zero frequency we have instead

ing Fermi gas is given by

o _ _ Ok e n[5 3 k2
Clko)=S LC;] Ng+ki2™ Ng—ki2 (AD) Xilko=0)=—111g" 3 ki
T m* o—(egq_xp— +ie’
q 0= (8q-k2~ Eq+ki2) 3k [ K 2 =2k,
where ng=26(ke—|q|) is the Fermi distribution function T8k a2 Mkr2ke
and sq:q2/2m the free particle energy. It is sufficient to
evaluate the transverse component of (A9)
in 3D, and
d®q . (q+3k)' (g+3k) n K2
Aij(k,w)=—ﬂ'f Dng Ok w= :__[ -
x7(k,0=0) 1
(2m) m m T m 6k§
Xé(wteq—eqik) (A2) +ﬁ (k_z_l)g/za(k_zk )}
since Imx{(k,0) = Ajj(k, @) — A;; (k, ~ @). Angular integra- 3k | 4k? F
tion leads to (A10)
Ke in 2D. In both cases the@—0, k—0 limit depends on the
AT(K,w)=— kK dqypaPo(ke—q), order in which the limits are taken, as in the longitudinal
g mlw—ey/k case.
(A3)
wherey,=\1-x2, y3=(1—x%)/4 andx=m|w—z//qk. It APPENDIX B: EVQ;;’:‘LQSNOF THE LOW- K
is convenient to work with the reduced variables k/2kg
andu= wm/kkg . After integration we have In this Appendix we evaluate to leading order knthe
second term in the RHS of E(G), which obeys the equation

of motion

ML HIL o HD o= — I K+ PLK+PI;
with B.. = 6(1—|u=Z))[1- (u=2)*]®" V" 1;=37/32 and

l,=1/3. X[[j-k,K+PLK+P]),,

The imaginary part of the ideal-gas transverse response (BY)
function vanishes whefiw| — 2kke /m|>¢,, as the longitu- whereK andP denote the kinetic and potential terms of the

dinal one. As a check of the present derivation we evaluat&lamiltonian, respectively. There are 16 terms in total, which
the third frequency moment sum rule, which leads to correspond to the different combinationskofand P. Fortu-
nately only 4 of them are relevant to our calculations, as is
o 2 (= 0 n shown in the following. Every commutator witk gives a
Mz(k)=—— f o Im y7(k,w)do=hp —erer, factor ofk, therefore terms containing more than tts do
0 not contribute to leading order ik. The commutator

im x3k,@)=lp (B, ~B_) (Ad)

(A5) [[jk,P1,P] vanishes, since
with h;=4/5 andh,=1, in agreement with Eq16) evalu- 1 q
atLed to zero grde_r in the mteractl?n p_otentpél, i.e., with [ik.P]= jk:E vépqp_q}:_ v 2 —Pa+kP—q
vi=0, (ke)=zer in 3D and(ke)=3&¢ in 2D. 970 a#0

The real part is obtained from the imaginary one via the (B2)

Kramers-Kronig relation, which gives and two density operatoys, commute.
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The remaining terms can be written as

1
— S5 Im[Ti K1,PT+ [T, PLK]

[[j—ka]vP]+[[j —kiP]iK]>>w' (83)

At this point we remark that the ter"®s=V "y }Lp,p_, of

the Hamiltonian gives rise to a singular contribution to the

equation of motion foy,,

2
[k i, P®I= g — —vkpaxp—k- (B4)

In the first term in the RHS the factdr ! present in the
others has been compensated by the faggerN. Therefore
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The tensod is of first order ink and the product of the
two tensors in Eq(B6) is of second order, so that in the
response function we can safely &et 0, leading to Eq(7).
This also explains why terms containing opg have been
neglected in the commutatofB5): pq is constant in time and
its commutator withj,p _ vanishes.

APPENDIX C: EVALUATION OF THE HIGH-FREQUENCY
LIMIT VIA PERTURBATIVE EXPANSION

Starting from Eq(7) we evaluate the high-frequency limit
of f,J(w) to second order in perturbation theory. In this way
we extend to the transverse case the results obtained by Glick
and Long® in 3D and by Holas and Sing#fiin 2D on the
asymptotic behavior of,.. The discussion will also clarify
the nature of the exchange processes, which we approxi-
mately included in the decouplind.1) via the factorg, of
Eqg. (10).

this term has to be treated separately when transforming the The four-point response function can be written as
summations into integrals. We found it more convenient to

replace the Hamiltoniahl with H=H— P"in the equation

of motion for the response function, which allows one to

obtain the proper response functign This can be easily
understood from the diagrammatic definitionyofis the sum

of all diagrams that cannot be split by cutting a single inter-

action line: this necessarily carries a facugrgk, which has

been excluded fron. UsingH one also excludes all non-

singular contributions having a factoti:k, as, for example,
the second term in the RHS of E@4). These terms, how-

ever, contain a factov ™! and are irrelevant in the thermo-

dynamic limit.

“n<GgP—q;ﬂyP—q»>w

(p1+a/2)(p—q'12)"
> —
P1P2P3P4

=1

X ; S wno— w)(0|cglc;3cpl+qcp3,q|n>

x(njc! ¢!

pP>—q p4+q’cpch4|0>' (Cl)

All considerations made previously hold with the new where|0) and|n) denote the exact eigenstates of the system,
Hamiltonian, provided that we are computing the properand the spin index is implicit. Since eadhin Eq. (B6)

current-current response in E@). The commutators in Eq.
(B3) are given by

| 1 q :
[[ILIK]vp]:_m_\/% vlc_](akl—f—q'k(s”)]lq-%—kp—q;

. 1 ) )
[[jL,P],K]=m§ [V (a+k) —vgd']

X(q+k) jgrkp-q. (BS)

where terms containing a singpg, operator have been ne-

glected for reasons explained below. From E@, (B3),
and (B5) we get

- 1 | "
Im Xij (k@)= o= 2 IM{(qekp-qilg-iP-a )
qq

xT g,k (q",—k)+o(k?), (B6)

wherel is given by

I'(0,k) = (v —vg)d'd +ug(ad'k'—k'g' = 8,0 k).
(B7)

We remark that Eq.(B6) is valid for every Fourier-

transformable interparticle potential, and is not restricted to

T=0.

contains a factov('; , We can evaluate the four-point response
function at zero order in perturbation theory, i.e., for the
noninteracting electron gas, so that,y=(q’%/m)-+(p4
—p3)-q’/m.

The product of expectation values in the previous equa-
tion is different from zero only wherp,p,,ps3,ps<Kg,
which in the high-frequency limit impliesp;<q=q’
= Jmw. These considerations allow us to simplify EG.1)
as

IM((4p—q g P—q)) o

[P 2
qu’ 5 q’
=T ——= 0| ——w
4am? “\ m
Tt i i
X 2 <O|Cplcp3cp1+qCP3*qCp27q’Cp4+q’cpch4|0>'
P1P2P3P4

(C2
With a,b,g,h<kg andc,d,e,f >k, we have

(0] C;CchCdClCICgCM 0)=(8a,n0b,g— Sa,g%.n)
X (ésd,e‘sc,f__ ‘Sc,e‘sd,f)-
(C3



12 768 R. NIFOél, S. CONTI, AND M. P. TOSI PRB 58

There are 4 terms overall, two of which are negative because The remaining two terms are obtained in an analogous
of the anticommutation rules and mix together field operatorsvay, and their overall contribution is aIscNf/Z)éq,,q,.
belonging to different densityor current densityoperators.  Putting all terms together we get

These terms, which we call exchange terms, are neglected in

the decouplind9) and carry an overall factor  due to spin

(see below. The first termd, Sy, 4J4.0¢, ¢ imposes the fol- , - N2

lowing constraints on the wave vectors and spin indices, |m<(j'qpfq ;j;,pfq,»w_ng W(ﬁq*q'+ S_qq)

P1=Ps 01=04, P1+tQ=ps+q" o1=0y, [l 2
aq q

P2=P3 0,=03, P3—Q=p,—q" 0,=03.

The sum is done orp;,o; p,,0,, and brings a factor Substitution of the previous expression in Ef).and smalk
N23, 4, with N the number of particles. The second term expansion lead to Ed8). . _
Sa,g0b.n0d.edc ¢ Oives An estimate of higher-order corrections can be obtained
from additional applications of the equation of motion jfpr
Third-order perturbation theory treats one of the two pairs to
first order and is irrelevant for larggand w. To fourth order
(C5  invk, one obtains instead three-pair contributions that con-
Po=Ps 01=04, P3—QqQ=p,—q" oc,=03. tain two additional commutators witR in the last term of
Eqg. (6). Considering that the transferred momentum scales as
Unlike the first one, this second term fixes all the fotls, Jo at largew, these scale a® 1P and therefore do not
contributing with a factor—(N2/2)5q,q, which is half the affect the leading behavior given by second-order perturba-
opposite of the first one. tive expansion.

P1=P3 01=03, P1+qd=ps+tq’ o,=04,
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