
PHYSICAL REVIEW B 15 NOVEMBER 1998-IVOLUME 58, NUMBER 19
Dynamic exchange-correlation potentials for the electron gas in dimensionalityD53 and D52

R. Nifosı̀, S. Conti,* and M. P. Tosi
Istituto Nazionale di Fisica della Materia and Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa, Italy

~Received 12 March 1998!

Recent progress in the formulation of a fully dynamical local approximation to time-dependent density
functional theory appeals to the longitudinal and transverse components of the exchange and correlation kernel
in the linear current-density response of the homogeneous fluid at long wavelength. Both components are
evaluated for the electron gas in dimensionalityD53 andD52 by an approximate decoupling in the equation
of motion for the current density, which accounts for processes of excitation of two electron-hole pairs. Each
pair is treated in the random phase approximation, but the role of exchange and correlation is also examined;
in addition, final-state exchange processes are included phenomenologically so as to satisfy the exactly known
high-frequency behaviors of the kernel. The transverse and longitudinal spectra involve the same decay chan-
nels and are similar in shape. A two-plasmon threshold in the spectrum for two-pair excitations inD53 leads
to a sharp minimum in the real part of the exchange and correlation kernel at twice the plasma frequency. In
D52 the same mechanism leads to a broad spectral peak and to a broad minimum in the real part of the kernel,
as a consequence of the dispersion law of the plasmon vanishing at long wavelength. The numerical results
have been fitted to simple analytic functions.@S0163-1829~98!04436-1#
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I. INTRODUCTION

The plasmon dispersion relation and the dynamic str
ture factor of the conduction electrons in simple metals
known from electron energy loss and inelastic x-ray scat
ing experiments.1,2 Both electron-gas correlations and ba
structure enter in determining these properties and ti
dependent~TD! density functional theory~DFT! provides a
general framework that can account for both. The genera
of the DFT method3,4 in dealing with inhomogeneous elec
tron systems motivates interest in the derivation of sens
approximations to the dynamic exchange and correlation~xc!
potential, beyond the adiabatic regime5–8 whose applicability
is limited to low-frequency phenomena.

A local density approximation for a scalar xc potential
time-dependent phenomena was proposed in early wor
Gross and Kohn.9,10 However, detailed analysis of the con
straints coming from basic conservation laws has shown
inconsistencies can arise and are associated with the no
istence of a gradient expansion for the frequency-depen
xc potential in terms of the density alone.4,11–14 Recently
Vignale and Kohn15,16 have overcome these difficulties b
resorting to a dynamic xcvectorpotential even in the case o
an inhomogeneous system subject to an externalscalar po-
tential. They obtained an explicit local-density expression
the xc vector potential in the linear response regime in te
of correlations of longitudinal and transverse currents in
homogeneous electron gas. This expression becomes
when the equilibrium electron density and the external
tential are slowly varying in space, on length scales set
kF

21 and vF /v wherekF and vF are the local Fermi wave
number and velocity.

The results of Vignale and Kohn have been interpreted
terms of complex, frequency-dependent viscoelastic coe
cients, allowing a nonlinear generalization up to second
der in the spatial gradients.17 Within this framework, Ullrich
and Vignale18 have developed a simple computation
PRB 580163-1829/98/58~19!/12758~12!/$15.00
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scheme for the calculation of the linewidths of non-Landa
damped collective excitations, whose decay is solely due
dynamical xc effects. The order-of-magnitude enhancem
over the homogeneous-gas approximation reported in the
plication to quantum strips18 emphasizes the relevance of th
interplay between inhomogeneity and dynamical xc effec

The work of Vignale and Kohn has brought new intere
to the evaluation of the longitudinal and transverse com
nents of the dynamic xc kernel@f xc

L (v) and f xc
T (v), say# in

the homogeneous electron gas at long wavelength. An in
polation between the known asymptotic behaviors at low a
high frequency was proposed for the longitudinal compon
by Gross and Kohn9,10 and later extended to finite wav
number by Dabrowski.19 It was subsequently noticed20 that
the long-wavelength longitudinal spectrum is closely rela
to processes of excitation of two correlated electron-h
pairs in the electron gas. These have been studied by pe
bative methods in the early work of Dubois21,22 and by sev-
eral other authors.23–29 The inclusion of dynamic screenin
in the random phase approximation~RPA! leads to a mode-
coupling form of the spectrum24 and inclusion of final-state
exchange processes is needed to recover the exact
frequency behavior calculated by Glick and Long.25 A simi-
lar expression has been more recently obtained by Nei
et al.30 within a memory function formalism for the electro
gas in dimensionalityD52.

With regard to the transverse component of the lon
wavelength xc kernelf xc

T (v), Vignale and Kohn15,16 have
given a first-order perturbative estimate and obtained
high-frequency limit. We have subsequently briefly report
on the results of a full calculation off xc

T (v) for the electron
gas in three spatial dimensions,31 and on preliminary results
in the two-dimensional case.32 These calculations were base
on the two-pair model treated in the RPA and corrected
final-state exchange processes~hereafter indicated as RPAE!.

In the present work we give a full account of our a
12 758 ©1998 The American Physical Society
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proach to the evaluation of the dynamic xc kernelsf xc
L (v)

and f xc
T (v), including an exact expression forf xc

L,T(v) in
terms of four-point response functions. We also extend
calculations to~i! fully evaluate the dynamic xc kernels fo
the electron gas withe2/r interactions inD52, and~ii ! ex-
amine the role of including exchange and correlation in
screening processes entering the RPAE.

The layout of the paper is as follows. Section II prese
the theory underlying our calculations, with the help of thr
Appendices. We start from the definition off xc

L,T(v) in terms
of the current-current response functions for the ideal and
real electron gas and proceed to evaluate the ideal-ga
sponse at high frequency and to derive an exact expres
for the real-gas response in terms of a four-point respo
function. An approximate decoupling of this latter functio
into products of two-point response functions introduces
two-pair approximation. Screening at the RPA level or be
and phenomenological inclusion of final-state exchange
nally lead to the formulas used in our calculations. The
merical results are presented in Sec. III together with fits
analytic functions incorporating the known asymptotic b
haviors and aimed at facilitating numerical applicatio
within the time-dependent DFT formalism. The role of e
change and correlation in the treatment of each pair is s
ied in Sec. IV. We conclude with a brief summary in Sec.

II. THEORY: EXACT RESULTS AND TWO-PAIR MODEL

The longitudinal (L) and transverse (T) kernels f xc
L,T(v)

of the homogeneous electron gas are defined as thek→0
limit of the functions

f xc
L,T~k,v!5

v2

k2 F 1

xL,T
0 ~k,v!1n/m

2
1

xL,T~k,v!1n/mG2vk
L,T . ~1!

Here, xL(T) is the longitudinal~transverse! current-current
response function of the homogeneous fluid at densityn,
xL(T)

0 is the corresponding ideal-gas response function,vk
L is

the Coulomb potential~vk
L54pe2/k2 in D53 and vk

L

52pe2/k in D52!, and vk
T50. We remark33,34 that

xL(k,v) is related to the density-density response funct
x(k,v) by

xL~k,v!1
n

m
5

v2

k2 x~k,v! ~2!

and thatf xc
L is proportional to the local field factorG(k,v)

entering the dielectric function of the electron gas, accord
to f xc

L (k,v)52vk
LG(k,v).

The longitudinal response functionxL
0(k,v) is immedi-

ately obtained from the Lindhard susceptibility33–35 in D
53 and from the Stern susceptibility36 in D52 by using Eq.
~2! for the ideal Fermi gas. The calculation ofxT

0(k,v) for
the ideal Fermi gas inD53 andD52 is reported in Appen-
dix A.

Equation~1! may be written in terms of the proper curre
response functionsx̃L,T(k,v),
r
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f xc
L,T~k,v!5

v2

k2 F 1

xL,T
0 ~k,v!1n/m

2
1

x̃L,T~k,v!1n/m
G .

~3!

This emphasizes that the plasmon does not contribute
f xc

L (k,v), leaving only contributions from multipair excita
tions in the limitk→0. In fact, to leading order in the long
wavelength limit we have from Eq.~3!

Im f xc
L,T~v!5 lim

k→0

m2v2

n2k2 Im x̃L,T~k,v!. ~4!

We proceed below to evaluate the imaginary part of the k
nels, from which their real part will be obtained by means
the Kramers-Kronig relation. The equation of motion f
x i j (k,v) can be obtained from the definition of a gene
response function in terms of unequal-time commutators

^^A;B&&v52 i E
0

`

ei ~v1 i e!t^@A~ t !,B~0!#&dt, ~5!

whereA(t)5eiHtAe2 iHt , ^¯& denotes a ground-state expe
tation value, ande is a positive infinitesimal. The current
current responsex i j (k,v)5^^ j k

i ; j2k
j &&v satisfies the equa

tion of motion

v2x i j ~k,v!5^@@ j k
i ,H#,j2k

j #&2^^@ j k
i ,H#;@ j2k

j ,H#&&v ,
~6!

where the first term is real and independent ofv. It will be
evaluated below in the discussion of the real part off xc @Eqs.
~15!–~17!#. Quite lengthy calculations, which are briefly re
ported in Appendix B, lead to the long-wavelength result

Im x̃ i j ~k,v!5
1

m2V2v4 (
q,q8

Im^^ j q
l r2q ; j q8

l 8 r2q8&&v

3G i l ~q,k!G j l 8~q8,2k!1o~k2!, ~7!

where the coefficientsG i l (q,k) are defined in Eq.~B7! and
summation over repeated indices is understood. This exp
sion, together with Eq.~4!, gives an exact result fo
Im f xc

L,T(v).
We now discuss some approximate evaluations of Eq.~7!.

Use of the ideal-gas four-point response function in the rig
hand side~RHS! gives the exact second-order perturbati
value for f xc

L,T(v), which is expected to be accurate at hig
frequency~see Appendix C!. In Appendix C we derive in
this way the leading high-frequency behavior of the kern

f xc
L,T~v!52aL,Tp2S 2

p D D22S 2 Ry

v D D/2

aB
D Ry, ~8!

where aB is the Bohr radius,aL523/30, andaT58/15 in
D53, while aL511/16 andaT59/16 in D52. The longitu-
dinal component of this result was obtained by Glick a
Long25 in D53 and by Holas and Singwi37 in D52. In the
low-frequency limit instead, perturbation theory gives an
tificial divergence in Refxc and a discontinuity in Imfxc ,
and will not be pursued further.

We obtain an approximate nonperturbative evaluation
Eq. ~7! by decoupling its RHS within an RPA-like schem
which in the frequency domain gives
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12 760 PRB 58R. NIFOSÌ, S. CONTI, AND M. P. TOSI
Im^^AB;CD&&v.2E
0

v dv8

p
@ Im^^A;C&&v8

3Im^^B;D&&v2v8

1Im^^A;D&&v8 Im^^B;C&&v2v8#. ~9!

The functions in the RHS of Eq.~9! are understood to be
exact response functions of the interacting electron gas.
scheme clearly neglects exchange processes in the final
which are known to reduce the spectral strength by a fa
of 2 at high frequency in perturbative treatments~see Appen-
dix C!, but are ineffective at low frequency. This can
physically understood as follows. A two-pair excitation
long wavelength involves the creation of holes with m
mentap andp8 inside the Fermi sphere and of electrons w
momentap1q and p82q outside the Fermi sphere. If th
excitation energyv is small compared to the Fermi energ
«F , then necessarilyuqu!kF and, since on averageup2p8u
.kF , each electron is substantially closer~in k space! to
‘‘its’’ hole than to the other one: exchange processes are
suppressed in this case@see Fig. 1~a!# by a factorvkF

L /vq
L ,

which vanishes forq→0 ~i.e., v→0!.38 Conversely if v
@«F one hasuqu@kF and therefore for parallel spins th
strengths of direct and exchange processes are equal an
posite@see Fig. 1~b!#.

On the basis of the above argument, which can be m
quantitative at a perturbative level, we phenomenologica
incorporate exchange effects by inclusion of a factor

gx~v!5
110.5v/2«F

11v/2«F
, ~10!

which interpolates between 1 at lowv and 0.5 at highv on
the energy scale (2«F) of exchange processes. Our final e
pression for the imaginary part of the kernel thus is

Im f xc
L,T~v!52gx~v!E

0

v dv8

p E dDq

~2p!Dn2 ~vq
L!2

3FaL,T

q2

v82 Im xL~q,v8!

1bL,T

q2

v2 Im xT~q,v8!G

FIG. 1. Structure of two-pair excitations in a Fermi liquid fo
energies much smaller~a! and much bigger~b! than the Fermi en-
ergy. The arrows join the electron and hole of each pair, their len
is the transferred wave vectorq.
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q2

~v2v8!2 Im xL~q,v2v8!, ~11!

with aL,T as defined below Eq.~8!, bL58/15 andbT52/5 in
D53 andbL5bT51/2 in D52. The expression for the lon-
gitudinal component is equivalent to that obtained in 3D by
Hasegawa and Watabe24 by diagrammatic means and similar
to that derived in 2D by Neilsonet al.30 ~see the discussion
in Ref. 20!. This result can be physically understood as rep
resenting the spectral density of two-pair excitations, whic
are present at any frequency in the long-wavelength regio
of the spectrum and provide a mechanism for the decay
the plasmon outside of the single-pair continuum. The resul
ing linewidth isGk /vk52Im fxc

L (vk)/vk
L .

Considering the low-frequency behavior of ImxL,T(k,v) it
can be shown that at lowv Eq. ~11! is linear inv, and that
to this order the first term in the square brackets does n
contribute. The coefficients of this linear behavior are
related17 to the bulk and shear viscosities of the electron gas
z andh, respectively, via

z52n2 lim
v→0

F Im f xc
L ~v!

v
22

D21

D

Im f xc
T ~v!

v G ~12!

and

h52n2 lim
v→0

Im f xc
T ~v!

v
. ~13!

The significance ofz and h is the same as in classical
hydrodynamics.39 Both viscosities vanish in the ideal Fermi
gas, as well as in the RPA and in static-local-field approxi
mations to the interacting electron gas. SincebL /bT52(D
21)/D, also within the present model the bulk viscosityz
vanishes identically. Numerical results for the shear viscosit
h will be given below.

We now discuss the real part of the kernelsf xc
L,T(v). Once

the imaginary part has been evaluated, the real one can
obtained by means of the Kramers-Kronig relation

Re f xc
L,T~v!5 f xc

L,T~`!1
1

p E
2`

1`

dv8
Im f xc

L,T~v8!

v82v
,

~14!

where f xc
L,T(`) denotes the~real! high-frequency limit of the

kernels. This quantity corresponds to the long-wavelengt
value of the leading spectral moment beyond thef -sum
rule,33,34 which is the first term on the RHS of Eq.~6!. With
the definitionM̃L,T(k)5 limv→` v2x̃L,T(k,v), we have

M̃L~k!5
nk2

2m2 F k2

2m
1

12

D
^ke&

1
2

n (
q

vq
L ~k•q!2

k4 @S~ uq1ku!2S~q!#G ,
~15!

and

M̃T~k!5
nk2

2m2 F 4

D
^ke&1

1

n (
q

vq
LFq2

k2 2
~k•q!2

k4 G
3@S~ uq1ku!2S~q!#G , ~16!

th
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TABLE I. Exact high-v limits of f xc
L,T(v) in 3D and bulk modulusKxc

MC obtained from the Monte Carlo
equation of state; shear viscosityh and shear and bulk moduli~mxc andKxc! obtained from the RPA treatmen
of two pair processes.f xc is in units of 2vpl /n, h in units of n, Kxc andmxc in units of 2vpln. Values in
atomic units (aB5m5e251) can be obtained fromhAU53/(4pr s

3)h tab, (K,m)AU533/2r s
29/2/

(2p)(K,m) tab, wheretab denotes the tabulated values. The last reported decimal figure is likely to be aff
by numerical inaccuracies.

r s Kxc
MC f xc

L (`) f xc
T (`) h mxc Kxc

0.5 20.04246 20.01794 0.0177 0.0029 0.0065 20.0425
1 20.0611 20.0216 0.0284 0.0062 0.0064 20.0612
2 20.0891 20.0252 0.0457 0.012 0.0052 20.0896
3 20.1119 20.0280 0.0600 0.017 0.0037 20.1128
4 20.1320 20.0308 0.0724 0.021 0.0020 20.1335
5 20.1503 20.0338 0.0835 0.024 0.0002 20.1525
6 20.1674 20.0370 0.0935 0.027 20.0018 20.1702

10 20.2276 20.0518 0.1267 0.034 20.010 20.233
15 20.2917 20.0725 0.1587 0.040 20.023 20.301
20 20.3483 20.0939 0.1847 0.044 20.036 20.361
ve

l

l
al-

rom
whereS(q) is the static structure factor and^ke& denotes the
true kinetic energy per particle. Expansion at long wa
lengths gives the required high-v limit of f xc

L,T(v),

f xc
L,T~`!5

1

2n
@dL,T~^ke&2^ke&0!1eL,T^pe&# ~17!

with dL54, dT54/3, eL58/15, andeT524/15 in D53,
anddL56, dT52, eL55/4 andeT521/4 in D52. The av-
erage kinetic and potential energies^ke& and ^pe& can be
obtained from the Monte Carlo equation of state,40–42 and
^ke&0 denotes the ideal-gas value. The resulting values
f xc

L,T(`), given in Table I (D53) and Table II (D52), al-
low to evaluate numerically Eq.~14! and to obtain the rea
part of the kernels at any frequency.

The low-frequency limit of f xc
L,T(v) is related17 to the

elastic moduliK andm via

Kxc5n2F f xc
L ~0!22

D21

D
f xc

T ~0!G ~18!

and
-

of

mxc5n2f xc
T ~0!. ~19!

The significance ofK and m is the same as in classica
elasticity,43 and as usual the suffix xc indicates that the ide
gas contribution has been subtracted. Our results forKxc are
in good agreement with the accurate values obtained f
the Monte Carlo xc energy per particle40–42 exc

MC(n) via
Kxc

MC5n2d2exc
MC/dn2 ~see below44!. We finally note thatKxc

is also related to the long-wavelength limit of thestatic
f xc

L (k,0) via the compressibility sum rule,33

Kxc5n2 lim
k→0

lim
v→0

f xc
L ~k,v!. ~20!

III. NUMERICAL RESULTS WITHIN THE RPA

This section presents results that we have obtained forf xc
from numerical integration of Eqs.~11! and~14! using RPA
response functions, which are given by

1

xL,T
RPA~k,v!1n/m

5
1

xL,T
0 ~k,v!1n/m

2
k2

v2 vk
L,T . ~21!
t

TABLE II. Exact high-v limits of f xc

L,T(k,v) in 2D and bulk modulusKxc
MC obtained from the Monte Carlo

equation of state; shear viscosityh and shear and bulk moduli~mxc andKxc! obtained from the RPA treatmen
of two-pair processes.f xc is in units of Ry/n, h in units ofn, Kxc andmxc in units of Ry•n. Values in atomic
units can be obtained fromhAU51/(pr s

2)h tab, (K,m)AU51/(2pr s
2)(K,m) tab, wheretab denotes the tabulated

values. The last reported decimal figure is likely to be affected by numerical inaccuracies.

r s Kxc
MC f xc

L (`) f xc
T (`) h mxc Kxc

1 20.9360 20.5499 0.3372 0.018 20.064 20.959
2 20.4912 20.2750 0.1916 0.029 20.064 20.514
3 20.3413 20.1933 0.1330 0.035 20.058 20.363
4 20.2649 20.1535 0.1010 0.040 20.054 20.285
5 20.2180 20.1294 0.0810 0.043 20.050 20.236
6 20.1860 20.1128 0.067 0.045 20.047 20.203

10 20.1191 20.0768 0.0395 0.050 20.039 20.132
15 20.0833 20.0560 0.0257 0.052 20.033 20.094
20 20.0645 20.0445 0.0189 0.054 20.028 20.073
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In the high-frequency limit the first term in the square brac
ets of Eq. ~11! dominates over the second one, implyin
Im f xc

T 5(aT /aL)Im f xc
L ; conversely, for lowv the first term

is negligible and Imf xc
T 5(bT /bL)Im f xc

L . Indeed the longi-
tudinal and transverse spectra are very similar, and the tr
verse one is rather accurately reproduced at all frequen
by setting Imf xc

T (v).0.72 Im f xc
L (v) in 3D and Imf xc

T (v)
.0.85 Im f xc

L (v) in 2D, the proportionality factor being
close both toaT /aL and tobT /bL . For the real part of the
kernels there is an additional shift due to the different val
for v5`.

Figure 2 reports the results for the imaginary part off xc
L,T

in 3D at r s53 as functions ofv/vpl @in 3D r s is defined as
(4pnaB

3/3)21/3 and the plasma frequencyvpl as
(4pe2n/m)1/2#. Both our results and the Gross-Kohn~GK!
interpolation9,10 for Im f xc

L,T reproduce the high frequency be
havior given by Eq.~8! and are linear at low frequency. A
already remarked the bulk viscosityz vanishes identically
within the present model, but the shear viscosityh is finite;
numerical results for the latter are given in Table I. Fro
Fig. 2 one can see that our estimate forh is significantly
smaller than that of GK. In the intermediate frequency reg
our curves exhibit a sharp threshold at twice the plasma
quency, which is due to the onset of two-plasmon proces
This is the most remarkable difference from the GK interp
lation.

The corresponding real parts of the kernels are show
Fig. 3. The two-plasmon threshold in the spectrum gener
a pronounced minimum atv52vpl in the real part, which is
absent in the smooth GK interpolation. Thef xc

L (0) value was
obtained by GK assumingf xc

L (0)5Kxc /n2, i.e., f xc
T (0)

5mxc50 @see Eqs.~18! and ~19!#; our curves instead ar
consistent with Eq.~18! with a nonvanishingf xc

T (0). Table I
reports our results for the elastic moduliKxc and mxc , ob-
tained from Refxc via Eqs. ~18! and ~19!. They cannot be

FIG. 2. Imaginary part off xc
L,T(v) in 3D at r s53 in units of

2vpl /n, as functions ofv/vpl . The dashed line gives the Gros
Kohn ~Refs. 9 and 10! interpolation scheme.
-

s-
ies

s

n
e-
s.
-

in
es

expected to be very precise, being obtained through inte
tion over the entire spectrum. With thiscaveat, we note that
our numerical estimates forKxc agree with the accurate
Monte Carlo resultsKxc

MC , also given in the same table
within 5%. We note that the xc contribution to the she
modulusmxc becomes negative at low density; the total sh
modulusm5mxc1

2
5 n«F , however, remains positive.

In order to facilitate use of these data in practical TD-DF
computations, an analytical fit has been given in Ref. 31. T
constraint f xc

L (0)5Kxc /n2, which was imposed in the fits
following GK, can be removed simply by settingb51.

We now turn to the two-dimensional system. Figures
and 5 report our results for the imaginary and real parts
f xc

L,T at r s53 @in 2D r s is defined as (pnaB
2)21/2#. The main

difference with respect to the 3D results is the absence of
sharp two-plasmon threshold in the two-pair excitation sp
trum ~i.e., in Im fxc!, due to the fact that the plasmon dispe
sion relation vanishes in 2D at long wavelength. Correspo
ingly the minimum in the real part of the kernel is muc
broader. The figures also compare our result forf xc

L with the
interpolation scheme of Holas and Singwi~HS!,37 which is
the 2D extension of the GK interpolation. Both curves rep
duce the asymptotic limit~17! as well as the high-frequenc
behavior of Eq.~8!, and both imaginary parts are linear inv
at low frequency. Also in the 2D case the minimum in t
real part is absent in the GK/HS interpolation scheme.

Table II reports the resulting values of the shear viscos
h and of the elastic moduliKxc andmxc , obtained as in the
3D case. In 2D the agreement between the bulk modulusKxc

obtained from our data onf xc
L,T and the Monte Carlo value

Kxc
MC is not as good as in 3D, but still better than 10% at

values ofr s that we have considered. In contrast to 3D,
low density the total shear modulusm5mxc1

1
2 n«F turns out

to be negative. However, the observed disagreement betw
Kxc and Kxc

MC prevents us from drawing a conclusion abo
the presence of an instability.

FIG. 3. Real part off xc
L,T(v) in 3D at r s53. Notations and units

are as in Fig. 2. The dot on the left axis marksKxc
MC/n2. The scale

for the transverse component is on the right-hand axis.
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To facilitate application of these results in actual TD-DF
computations, such as the one of Ref. 18, we provide be
a simple analytical interpolation. The imaginary part is
produced by

Im f xc
L ~v!52gx~v!

c1v1c2v21c3v312cHSv5

c01c4v41v6

~22!

FIG. 4. Imaginary part off xc
L,T(v) in 2D at r s53 in units of

Ry/n, as functions ofv ~in Ry!. The dashed line gives the Holas
Singwi ~Ref. 37! interpolation and the dotted lines are the fit d
cussed in the text.

FIG. 5. Real part off xc
L,T(v) in 2D at r s53 in units of Ry/n, as

functions ofv ~in Ry!, the scale for the transverse component be
on the right-hand axis. The dashed line gives the Holas-Sin
~Ref. 37! interpolation and the dotted lines show the fit discussed
the text. The dot on the left axis marksKxc

MC/n2.
w
-

wherev is in Ry, f xc in units of Ry/n, andcHS511p/8r s
2 is

the coefficient of the leading high-frequency behavior fro
Eq. ~8!. The remaining parameters, which we obtained b
least-squares fit to the numerical calculation, are reporte
Table III; the transverse component can be approximated
Im f xc

T 50.85 Im f xc
L . The quality of a typical fit is shown in

Figs. 4 and 5. Values at intermediater s are best obtained by
interpolation off xc(v) at the samev ~in Ry!; for r s>3 also
the simpler scheme of interpolating the fitted coefficie
c0 , . . . ,c4 is viable. The real part can be obtained from E
~14!, which in this case can be integrated analytically; t
resulting expression is quite long and we do not report it

IV. EXCHANGE-CORRELATION EFFECTS ON F XC

This section is aimed at assessing the validity of the
sults presented above. In the first part we study the effec
correlation in the treatment of each pair, adopting more
fined response functions in the RHS of Eq.~11!; in the final
part we discuss corrections that go beyond the present
pair model.

We have introduced the effect of correlation
the treatment of each pair in Eq.~11! by means of two of
the most successful static-local-field approximations,
Singwi-Tosi-Land-Sjo¨lander45 ~STLS! and the Vashishta-
Singwi46 ~VS!. In the 3D case, both schemes predict negat
plasmon dispersion at larger s ~r s>5 in STLS andr s>9 in
VS!, in qualitative agreement with experiment.1 The VS
scheme embodies the compressibility sum rule on the s
response, and is therefore more reliable in the study of st
phenomena. Since these schemes only involve longitud
currents, the transverse response function is still evaluate
an RPA level.

Figures 6 and 7 compare the RPA results in 3D with tho
obtained with STLS and VS. Atr s51 correlation only gives
minor corrections, but at largerr s it leads to a divergence
caused by the appearance of negative plasmon disper
Figure 8 compares the results obtained with STLS at vari
densities. The minimum at intermediate frequency gets m
pronounced with increasingr s , and for r s>5 becomes a
divergence of the formu(v22vmin)(v22vmin)

21/2, where
vmin is the minimum energy of the collective mode.

Introduction of the local field correction significantly in
creases the shear viscosityh, and leads to large negativ

g
i

n

TABLE III. Interpolation parameters according to Eq.~22!, in
2D. The last reported decimal figure is likely to be affected
numerical inaccuracies.

r s 1023c0r s
5/2 c1r s

2 c2 c3 c4

1 62.7 1.10 9.94 37.4 6.84
2 2.90 59.2 21.74 4.62 7.70
3 1.73 34.9 23.79 12.5 15.1
4 1.44 28.6 23.45 15.8 30.3
5 1.18 22.5 22.64 16.3 47.9
6 0.943 17.3 22.04 15.8 66.2

10 0.458 7.23 21.0 13.1 150
15 0.250 3.42 20.524 10.9 276
20 0.160 1.96 20.313 9.52 430
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values of the shear modulusmxc ~e.g., with VS we getmxc
520.03 at r s55 and mxc520.1 at r s510, in units of
2vpln!. The relationKxc5Kxc

MC is satisfied with the same
accuracy as in the RPA case.

Figure 9 displays the dynamical structure factorS(k,v)
52(2k2/nv2)Im xL(k,v), which is relevant to inelastic sca

FIG. 6. Imaginary part off xc
L (v) in 3D in units of 2vpl /n, as a

function ofv/vpl at r s55 ~main figure! andr s51 ~inset!. We plot
results obtained using RPA response functions~dashed curve!,
STLS response functions~full curve! and VS response function
~dotted curve!.

FIG. 7. Real part off xc
L (v) in 3D in units of 2vpl /n, as a

function ofv/vpl at r s55 ~main figure! andr s51 ~inset!. We plot
results obtained using RPA response functions~dashed curve!,
STLS response functions~full curve! and VS response function
~dotted curve!. The dots markKxc

MC/n2.
tering experiments. The threshold behavior at frequency 2vpl
is a clear-cut signature of the present results forf xc . The
more pronounced singularity present in the STLS cur
originates from the negative plasmon dispersion.

We also investigated the role of exchange and correla
in 2D, using the STLS model as generalized in 2D
Jonson.47 The qualitative behavior turns out to be simila
Figure 10 reports our results for the imaginary part off xc as
obtained from RPA and STLS calculations. As in 3D,
STLS the plasmon energy at intermediate wave vecto

FIG. 8. Imaginary part off xc
L (v) in 3D, in units of 2r s

23/2vpl /n,
computed with STLS response functions, at various values ofr s .

FIG. 9. Dynamic structure factorS(k,v) at r s55 as a function
of v/vpl shown in the flags on a semilogarithmic scale at vario
values ofkrsaB , as obtained from STLS~full curves! and RPA
~dashed curves! calculations.
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lower than in RPA, and correspondingly we note a sign
cant increase in the depth of the minimum at intermed
frequency in Imfxc . This increase, unlike the 3D case,
significant also at rather high density~see the inset! as a
consequence of the enhancement of correlation effects in
systems. On the other hand, in 2D no divergence appea
the two-pair spectrum, since no minimum at finitek is
present in the plasmon dispersion. The same is true for
corresponding real parts, which are shown in Fig. 11.

Having discussed at length the role of two-pair proces
in the long-wavelength spectrum of the uniform electron g
we now turn to a qualitative discussion of other effects t
have been neglected in the present treatment. Whereas
tailed quantitative calculation is cumbersome, the qualita
role of multipair processes beyond two pairs can be ea
grasped by straightforward extension of the present tr
ment, in the spirit of an expansion in the number of pa
involved. A perturbative analysis shows that in the hig
frequency limit these processes are of higher order in 1v,
and therefore do not contribute to the asymptotic behav
of Eq. ~8!. In the intermediate-frequency regime one can
pect the appearance of an-plasmon threshold effect in th
n-pair channel. Whereas at present we do not have a reli
quantitative estimate of the contribution of such processe
Im fxc , we believe that their overall spectral strength will
a minor correction to the present results. This can be infe
from the good agreement between the two-pair result forKxc
and that from the Monte Carlo data, the difference bein
quantitative measure of the integrated spectral strength
higher-order processes.

A different class of effects that could modify the prese
results are improved response functions in the two-pair ch
nel, i.e., in Eq.~11!. The main qualitative feature that i
absent from all response functions that we have considere
plasmon damping. This will broaden the sharp feat

FIG. 10. Imaginary part off xc
L (v) in 2D in units of Ry/n, as a

function of v ~in Ry! at r s56 ~main figure! and r s51 ~inset!. We
plot results obtained using RPA response functions~dashed curves!
and STLS response functions~full curves!.
-
e

D
in

he

s
s,
t
de-
e
ly
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s
-
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a
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t
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e

present in 3D at the two-plasmon threshold. When the p
mon dispersion is positive~local-field-corrected results a
small r s and RPA! we expect small corrections, since th
threshold behavior is driven by the long-wavelength pl
mon, whose linewidth vanishes ask2 for smallk. In the case
of negative plasmon dispersion, the collective excitation w
minimum energy has nonzero wave vector and theref
non-vanishing linewidth due to decay into multiple particl
hole pairs. This indicates that the divergence in the two-p
spectrum found in the local-field-corrected results at larger s
~see Figs. 6 and 8! is probably an artifact and would b
replaced by a smooth peak if plasmon damping were
cluded.

V. SUMMARY

In this work we have given an extensive discussion of
exchange-correlation kernelsf xc

L,T(v), both in 2 and in 3
spatial dimensions. We have presented an exact expres
for the kernels in terms of four-point response functions, a
evaluated it numerically within a nonperturbative appro
mate decoupling scheme, which accounts for two-pair p
cesses. Our numerical results are qualitatively different fr
previously known interpolations. In 3D we predict a thres
old behavior, which can be understood as due to a sim
phase-space effect, i.e., the opening of the two-plasm
channel in the two-pair spectrum. In 2D the same mechan
leads to a broad feature in the spectrum. We have also s
ied the influence of static-local-field corrections on our
sults and found even more marked deviations from previ
theories.

We have obtained good agreement with all know
asymptotic behaviors, including the newly derived hig
frequency limit of the transverse part and the Monte Ca
results for the bulk modulus. Estimates for the shear modu

FIG. 11. Real part off xc
L (v) in 2D in units of Ry/n, as a

function of v ~in Ry! at r s56 ~main figure! and r s51 ~inset!. We
plot results obtained using RPA response functions~dashed curve!
and STLS response functions~full curves!. The dots markKxc

MC/n2.



av
tir
.

r.

o

M

c

o

n

a

th

e-

al

e
ich

is
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and viscosity have also been given. Our results, which h
been fitted to simple analytical formulas, provide the en
input necessary for non-adiabatic TD-DFT computations
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APPENDIX A: TRANSVERSE RESPONSE FUNCTION FOR
THE NONINTERACTING FERMI GAS IN 2D AND 3D

The current-current response function for the nonintera
ing Fermi gas is given by

x i j
0 ~k,v!5(

q

qiqj

m2

nq1k/2
F 2nq2k/2

F

v2~«q2k/22«q1k/2!1 i e
, ~A1!

where nq
F52u(kF2uqu) is the Fermi distribution function

and «q5q2/2m the free particle energy. It is sufficient t
evaluate the transverse component of

Ai j ~k,v!52pE dDq

~2p!D nq
F

~q1 1
2 k! i

m

~q1 1
2 k! j

m

3d~v1«q2«q1k! ~A2!

since Imxij
0(k,v)5Ai j (k,v)2Ai j (k,2v). Angular integra-

tion leads to

AT~k,v!52
1

pmk Emuv2«ku/k

kF
dqgDqDu~kF2q!,

~A3!

whereg25A12x2, g35(12x2)/4 andx5muv2«ku/qk. It
is convenient to work with the reduced variablesz5k/2kF
andu5vm/kkF . After integration we have

Im xT
0~k,v!5 l D

n

mz
~B12B2! ~A4!

with B65u(12uu6zu)@12(u6z)2# (D11)/2, l 353p/32 and
l 251/3.

The imaginary part of the ideal-gas transverse respo
function vanishes whenzuvu22kkF /mz.«k , as the longitu-
dinal one. As a check of the present derivation we evalu
the third frequency moment sum rule, which leads to

MT
0~k!52

2

p E
0

`

v Im xT
0~k,v!dv5hD

n

m
«k«F ,

~A5!

with h354/5 andh251, in agreement with Eq.~16! evalu-
ated to zero order in the interaction potentialvk

L , i.e., with
vk

L50, ^ke&5 3
5 «F in 3D and^ke&5 1

2 «F in 2D.
The real part is obtained from the imaginary one via

Kramers-Kronig relation, which gives
e
e

n

t-

se

te

e

Re xT
0~k,v!5

3n

8mzFz313u2z2
5

3
z1

1

4
E1

~3!2
1

4
E2

~3!G
~A6!

with E6
(3)5@(z6u)221#2 lnu(u6z21)/(u6z11)u in 3D, and

Re xT
0~k,v!5

n

3mz
@2z316u2z23z2E1

~2!2E2
~2!#

~A7!

with E6
(2)5@(z6u)221#3/2u(uz6uu21)sgn(z6u) in 2D.

We examine now some limiting behaviors. At long wav
length we get

xT
0~k→0,v!5

MT
0~k!

v2 1gD

n

mv4 «k
2«F

2 , ~A8!

where g3548/35, g251/2, and MT
0(k) as defined in Eq.

~A5!. At zero frequency we have instead

xT
0~k,v50!52

n

m F5

8
2

3

32

k2

kF
2

32
3

8

kF

k S k2

4kF
2 21D 2

lnUk22kF

k12kF
UG

~A9!

in 3D, and

xT
0~k,v50!52

n

m F12
k2

6kF
2

1
4kF

3k S k2

4kF
2 21D 3/2

u~k22kF!G
~A10!

in 2D. In both cases thev→0, k→0 limit depends on the
order in which the limits are taken, as in the longitudin
case.

APPENDIX B: EVALUATION OF THE LOW- K
EXPANSION

In this Appendix we evaluate to leading order ink the
second term in the RHS of Eq.~6!, which obeys the equation
of motion

v2Im^^@ j k ,H#;@ j2k ,H#&&v52Im^^†@ j k ,K1P#,K1P‡;

3†@ j2k ,K1P#,K1P‡&&v ,

~B1!
whereK andP denote the kinetic and potential terms of th
Hamiltonian, respectively. There are 16 terms in total, wh
correspond to the different combinations ofK andP. Fortu-
nately only 4 of them are relevant to our calculations, as
shown in the following. Every commutator withK gives a
factor ofk, therefore terms containing more than twoK ’s do
not contribute to leading order ink. The commutator
@@ j k ,P#,P# vanishes, since

@ j k ,P#5F j k ,(
qÞ0

vq
Lrqr2qG52

1

V (
qÞ0

q

m
rq1kr2q

~B2!

and two density operatorsrq commute.
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The remaining terms can be written as

2
1

v2 Im^^†@ j k ,K#,P‡1†@ j k ,P#,K‡;

†@ j2k ,K#,P‡1†@ j2k ,P#,K‡&&v . ~B3!

At this point we remark that the termPres5V21vk
Lrkr2k of

the Hamiltonian gives rise to a singular contribution to t
equation of motion forj k ,

@k• j k ,Pres#5vpl
2 rk2

k2

mV
vk

Lr2kr2k . ~B4!

In the first term in the RHS the factorV21 present in the
others has been compensated by the factorr05N. Therefore
this term has to be treated separately when transforming
summations into integrals. We found it more convenient
replace the HamiltonianH with H̃5H2Pres in the equation
of motion for the response function, which allows one
obtain the proper response functionx̃. This can be easily
understood from the diagrammatic definition ofx̃ as the sum
of all diagrams that cannot be split by cutting a single int
action line: this necessarily carries a factorvq5k

L , which has

been excluded fromH̃. Using H̃ one also excludes all non
singular contributions having a factorvq5k

L , as, for example,
the second term in the RHS of Eq.~B4!. These terms, how
ever, contain a factorV21 and are irrelevant in the thermo
dynamic limit.

All considerations made previously hold with the ne
Hamiltonian, provided that we are computing the prop
current-current response in Eq.~6!. The commutators in Eq
~B3! are given by

†@ j k
i ,K#,P‡52

1

mV (
q

vq
LS qi

m
k l1q•kd i l D j q1k

l r2q ,

†@ j k
i ,P#,K‡5

1

mV (
q

@v uq1ku
L ~q1k! i2vq

Lqi #

3~q1k!• j q1kr2q , ~B5!

where terms containing a singlerk operator have been ne
glected for reasons explained below. From Eqs.~6!, ~B3!,
and ~B5! we get

Im x̃ i j ~k,v!5
1

m2V2v4 (
qq8

Im^^ j q1k
l r2q ; j q82k

l 8 r2q8&&v

3G i l ~q,k!G j l 8~q8,2k!1o~k2!, ~B6!

whereG is given by

G i l ~q,k!5~v uq1ku
L 2vq

L!qiql1vq
L~qlk i2k lqi2d i l q•k!.

~B7!

We remark that Eq.~B6! is valid for every Fourier-
transformable interparticle potential, and is not restricted
T50.
he
o

-

r

o

The tensorG is of first order ink and the product of the
two tensors in Eq.~B6! is of second order, so that in th
response function we can safely setk50, leading to Eq.~7!.
This also explains why terms containing onerk have been
neglected in the commutators~B5!: r0 is constant in time and
its commutator withj qr2q vanishes.

APPENDIX C: EVALUATION OF THE HIGH-FREQUENCY
LIMIT VIA PERTURBATIVE EXPANSION

Starting from Eq.~7! we evaluate the high-frequency lim
of f xc(v) to second order in perturbation theory. In this w
we extend to the transverse case the results obtained by G
and Long25 in 3D and by Holas and Singwi37 in 2D on the
asymptotic behavior off xc . The discussion will also clarify
the nature of the exchange processes, which we appr
mately included in the decoupling~11! via the factorgx of
Eq. ~10!.

The four-point response function can be written as

Im^^ j q
l r2q ; j q8

l 8 r2q8&&v

52p (
p1p2p3p4

~p11q/2! l~p22q8/2! l 8

m2

3(
n

d~vn02v!^0ucp1

† cp3

† cp11qcp32qun&

3^nucp22q8
† cp41q8

† cp2
cp4

u0&, ~C1!

whereu0& andun& denote the exact eigenstates of the syste
and the spin index is implicit. Since eachG in Eq. ~B6!
contains a factorvq

L , we can evaluate the four-point respon
function at zero order in perturbation theory, i.e., for t
noninteracting electron gas, so thatvn05(q82/m)1(p4
2p3)•q8/m.

The product of expectation values in the previous eq
tion is different from zero only whenp1 ,p2 ,p3 ,p4,kF ,
which in the high-frequency limit impliespi!q.q8
.Amv. These considerations allow us to simplify Eq.~C1!
as

Im^^ j q
l r2q ; j q8

l 8 r2q8&&v→`

5p
qlq8 l 8

4m2 dS q82

m
2v D

3 (
p1p2p3p4

^0ucp1

† cp3

† cp11qcp32qcp22q8
† cp41q8

† cp2
cp4

u0&.

~C2!

With a,b,g,h,kF andc,d,e, f .kF , we have

^0uca
†cb

†cccdce
†cf

†cgchu0&5~da,hdb,g2da,gdb,h!

3~dd,edc, f2dc,edd, f !.

~C3!
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There are 4 terms overall, two of which are negative beca
of the anticommutation rules and mix together field operat
belonging to different density~or current density! operators.
These terms, which we call exchange terms, are neglecte
the decoupling~9! and carry an overall factor2 1

2 due to spin
~see below!. The first termda,hdb,gdd,edc, f imposes the fol-
lowing constraints on the wave vectors and spin indices,

p15p4 s15s4 , p11q5p41q8 s15s4 ,

~C4!

p25p3 s25s3 , p32q5p22q8 s25s3 .

The sum is done onp1 ,s1 p2 ,s2 , and brings a factor
N2dq,q8 , with N the number of particles. The second ter
da,gdb,hdd,edc, f gives

p15p3 s15s3 , p11q5p41q8 s25s4 ,

~C5!

p25p4 s15s4 , p32q5p22q8 s25s3 .

Unlike the first one, this second term fixes all the fours’s,
contributing with a factor2(N2/2)dq,q8 which is half the
opposite of the first one.
S

z

.

t

se
s

in

The remaining two terms are obtained in an analogo
way, and their overall contribution is also (N2/2)dq,2q8 .
Putting all terms together we get

Im^^ j q
l r2q ; j q8

l 8 r2q8&&v→`5
p

2

N2

m2 ~dq,q81d2q,q8!

3
qlq8 l 8

4
dS q2

m
2v D . ~C6!

Substitution of the previous expression in Eq.~7! and smallk
expansion lead to Eq.~8!.

An estimate of higher-order corrections can be obtain
from additional applications of the equation of motion forj q .
Third-order perturbation theory treats one of the two pairs
first order and is irrelevant for largeq andv. To fourth order
in vk

L , one obtains instead three-pair contributions that c
tain two additional commutators withP in the last term of
Eq. ~6!. Considering that the transferred momentum scales
Av at largev, these scale asv212D and therefore do not
affect the leading behavior given by second-order pertur
tive expansion.
*Present address: Max-Planck-Institute for Mathematics in the
ences, D-04103 Leipzig, Germany.
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