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All-electron pseudopotentials
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We present anab initio procedure for the construction of pseudopotentials accommodated to a crystal
environment under study, which takes into account the response of the core charge density to the valence
electrons of an atom in a bond. Within pseudopotential methodology, core electrons are treated differently from
valence electrons; however, the core electrons are considered as ‘‘frozen’’ in space and independent of the
atom’s valence electrons after they were relaxed and adapted to a crystal-valence charge density. In this way
the frozen-core approximation is removed despite the fact that the frozen-core technique is still used and no
all-electron solid-state calculation is required. Since the all-electron core-valence response is taken into account
properly, the treatment of nonlinear properties of exchange-correlation functionals is naturally included and
corrections using model core charges for nonlinear functionals are eliminated. Contrary to standard pseudo-
potentials based on the atomic charge density of a free atom, the new all-electron pseudopotentials are func-
tionals of the crystal charge density. Consequently, the intuitivead hocchoice of occupation numbers, which
is necessary for the construction of pseudopotentials by existing methods, is avoided and energy windows for
pseudopotentials are put at optimum positions. In this paper, core-level shifts were calculated within the
pseudopotential framework. The results of test calculations for diamond, silicon, nonmagnetic fccb-Co, cubic
TiC, and hexagonal TiS2 are presented.@S0163-1829~98!05743-9#
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I. INTRODUCTION

The density-functional scheme in the local-density a
proximation ~LDA ! coupled with a pseudopotential tec
nique is now a standard approach successfully describing
electronic and structural properties of solid systems. Us
pseudopotentials the tremendous simplification of comp
tional effort is achieved by treating core electrons differen
from valence electrons. Deep core electrons are consid
as ‘‘frozen’’ in space and independent of the atom’s valen
environment~the frozen-core approximation!.

In standard techniques the frozen core and the co
sponding pseudopotential are derived from the atomic ca
lation performed for a ‘‘suitable’’ occupation of atomic va
lence states. In this way the core and the valence st
anticipating crystal environment are constructed, and by
plication of some pseudopotential-generating method1–6

more or less transferable pseudopotentials are generated
ditionally, particularly for magnetic materials, model co
charges7,8 were introduced to improve transferability from a
atom to a solid by representing ‘‘unscreening’’ and ‘‘r
screening’’ processes in the derivation and in the applica
of pseudopotentials more accurately. At present the stan
application of pseudopotentials neglects core-relaxation
fects by definition.

In this paper we present a pseudopotential-genera
technique that takes into account all electron~core and va-
lence! interactions of an atom in a bond and generates
‘‘all-electron’’ pseudopotential~AEPP! with the relaxed
core. Within pseudopotential methodology, core electr
are treated differently from valence electrons; however,
valence states are constructed under boundary condition
flecting the surroundings of the atom in the crystal enviro
ment and the core states are rectified to them. Therefore,
the core and valence states are self-consistently adapte
PRB 580163-1829/98/58~19!/12712~9!/$15.00
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the chemical bond. Contrary to standard pseudopoten
based on the atomic charge density, the new AEPP’s
functionals of the crystal charge density and, therefore,
not correspond to any choice of occupation numbers of
atomic configuration.

We have tested the AEPP approach for carbon, silic
SiC, and transition metals, namely, for Co in its nonmagne
fcc b phase, and for TiS2 and TiC. Core-level shifts were
calculated within the pseudopotential framework.

The main ideas of the AEPP method are explained in
next section. In Sec. III, the atomiclike calculation~in the
core region! based on the input quantities obtained from se
consistent crystal pseudo-wave-functions is described.
construction of new pseudopotentials is explained in Sec.
Numerical tests and applications are shown in Sec. V.
Secs. VI and VII, relations to other existing methods a
discussed and main features of the present approach are
marized.

II. ALL-ELECTRON PSEUDOPOTENTIAL METHOD

Standard procedures for constructing pseudopoten
rely on potentials and radial wave functions derived fro
all-electron calculations offree atoms. For given referenc
energies~which are usually equal to the eigenvalues of fre
atom valence states! it is required that pseudo-wave
functions match exactly the corresponding all-electron wa
functions outside a certain cutoff radius. Then, the pseu
potential is exact for the reference energies, for which it w
generated. In some neighborhood of the reference ener
the pseudopotential is correct within a reasonable accur
Resulting pseudopotential is unscreened with nonlinear L
exchange and correlation terms related to the valence ch
density of the isolated atom.

The AEPP method is based on an iterative proced
12 712 ©1998 The American Physical Society
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PRB 58 12 713ALL-ELECTRON PSEUDOPOTENTIALS
starting with the standard free-atom-based pseudopote
described above. The AEPP pseudopotential is adapted t
crystal environment by iterative steps. As a matter of fa
the construction of the AEPP pseudopotential needs on
two iterations and convergency is reached even in the cas
the ‘‘unsuitably’’ chosen input pseudopotential. Compu
tionally, this iterative procedure needs only few addition
iterations usual in standard self-consistent calculations.

At the beginning, we suppose to have an all-electron
tential of a free atom, in any ‘‘reasonable’’ configuratio
‘‘Unreasonable’’ input only increases the number of ite
tions and does not affect the final AEPP. Then, the follow
steps are performed: First, the pseudopotential is der
from the all-electron potential to satisfy the standard con
tions, i.e., matching the value and the derivatives of both
potential and the wave functions at the cutoff radiusRC and
fulfilling the normconserving condition. Any of the standa
pseudopotential techniques can be used here. Second
pseudopotential is used for the self-consistent calculatio
crystal wave functions. These first two points do not dif
from the usual self-consistent calculations of the charge d
sity in a crystal. Third, radial partial charge densities,
ferred to as the atom of interest, are derived from the cry
wave functions. Fourth, these charge densities, outsid
sphere of the pseudopotential cutoff radiusRC , are em-
ployed as boundary conditions for valence wave function
the next all-electron atomiclike calculation. In this calcu
tion, the boundary conditions derived from the crystal cha
density replace the boundary conditions of the free atom.
that, a succeeding all-electron potential is obtained in
region 0,r ,RC , i.e., core states are recalculated and
laxed to the crystal charge density. The succeeding
electron potential obtained by the fourth step is then used
deriving a suceeding AEPP pseudopotential along the
step. The novel feature, with respect to the standard s
consistent iterative scheme, is the additional outer itera
loop updating the pseudopotentials according to the s
consistent crystal charge densities.

For practical purposes, one to three passes through
outer iterative loop are sufficient. One should realize that
valence charge density is self-consistent at the end of
inner ~i.e., standard self-consistent! loop for the first pseudo-
potential, and the new AEPP entering the inner loop agai
new mainly for the core region. Consequently, we do
need many iterations in the inner loop during the next pas
through the outer loop. Two or three runs through the ou
loop totally adds 5–7 iterations through the standard in
loop to achieve self-consistency between the charge den
and the pseudopotential. Therefore, the generation of
AEPP only slightly increases the number of standard vale
charge iterations. The outer loop is computationally fast a
can be appended to any standard pseudopotential code.

The essential feature of our approach is that the AE
pseudopotentials are functionals of the self-consistent cry
charge density. In consequence of iterations in the o
loop, the core is self-consistent with the crystal charge d
sity, relaxed and accommodated to the chemical environm
of an atom in a solid and then frozen in the usual sense
pseudopotential methods. This frozen core does not co
spond to any configuration of a free atom and cannot
derived from a free atom in principle.

As a result of the all-electron self-consistency, the ref
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ence energies of the AEPP are located in the range of so
state eigenvalues in a natural way, and reasonable pseud
tentials for angular momentum components are provided
for the angular momentum channels that are not occupie
even do not exist as bound states in the case of free ato
Additionally, the exchange and correlation nonlinear pote
tial terms are taken into account properly without the nec
sity of the model core charge for nonlinear core-valen
corrections.7

In complicated crystalline configurations where atoms
the same type at different positions have different nea
neighborhoods, the AEPP’s are supposed to be generate
each nonequivalent position separately, as if the atoms w
of a different type.

For simplicity of the presentation of the AEPP techniq
we describe the construction of generalized normconserv
l-dependent semilocal AEPP’s that are transformed int
separable form, subsequently. The present scheme may
be exploited differently, namely for the construction
pseudopartial waves according to the projector augmen
wave method by Blo¨chl,9 or for the derivation of ultrasoft
pseudopotentials according to Vanderbilt,10 supposing that
the augmentation charges are taken into account proper

III. ATOMICLIKE CALCULATION

In this section, we describe a procedure for the rec
struction of all-electron atomiclike quantities, related to
given atomic site, from the results of the previous pseudo
tential solid-state calculation. It makes it possible to inclu
the proper node structure of originally nodeless valen
pseudo-wave-functions together with core states in a fu
consistent way and to gain all-electron information fro
pseudopotential quantities. This procedure is analogou
that originally intended for evaluating the radiative matr
elements of Ref. 11 where some more general aspect
using the procedures of this type have been discussed.

The method is based on the following: If the pseudop
tential is generated for the cutoff radiusRC , then the pseudo-
potential quantities match the corresponding all-elect
quantities outside a sphere of radiusRC surrounding an atom
and they can be used as boundary conditions to calculate
corresponding atomiclike quantities inside the sphere. Mo
over, if the pseudopotential is normconserving, then
amount of pseudocharge inside the sphere is correct, w
yields a simple normalization condition for reconstructi
the valence wave functions with the proper node structur

The proper aim of doing this procedure is to derive a n
pseudopotential. The pseudopotential simulates the tota
fect of an atomic nucleus and its core charge density u
the valence states. Because the charge density and the p
tial of both are spherically symmetric, all the input quantiti
for the pseudopotential construction are required to dep
only on the distance from the nucleus. Therefore, the in
quantities for the atomiclike calculation are considered to
spherically averaged, which does not introduce additio
approximation. In fact, it is an approximation to the sam
extent as considering the effect of core electrons~described
by the pseudopotential! to be spherical. This is not absolute
exact in a solid but standard in all-electron methods.

First, we construct the radial partial-valence pseud
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charge-density by summing over all occupied states,

r l
sps~r !5(

kW ,n
(

m52 l

l
1

4pr 2ESPH
dVdV8ckW ,n

* ~r n̂!

3Ylm~ n̂! Ylm* ~ n̂8!ckW ,n~r n̂8!, ~1!

whereckW ,n denotes the crystal pseudo-wave-function withkW
as the vector of the first Brillouin zone and a band indexn.
Throughout this paper, the superscript sps will be used
the spherically averaged quantities taken from a s
consistent pseudopotential calculation in a solid.

The total valence-radial pseudo-charge-densityrsps(r ) is
defined by the spherical average of the crystal pseu
charge-density with respect to the chosen atomic site,

rsps~r !5
1

4pr 2ESPH
dVrcrystal,ps~r n̂!. ~2!

Obviously,rsps is related tor l
sps of Eq. ~1! by

rsps~r !5(
l

r l
sps~r !. ~3!

Second, another necessary input quantity that must be
rived from the pseudopotential solid-state calculation is
spherical average of the electrostatic potential

Ves
sps~r !5

1

4pr 2ESPH
dVVes@rcrystal,ps#~r n̂!. ~4!

The angular momentuml components of the charge de
sity r l

sps(r ) are needed up to the cutoff radiusRC so that the
logarithmic derivative and the partial charge inside t
sphere may be determined atr 5RC . The total radial-valence
charge-densityrsps(r ) and the electrostatic-potentialVes

sps(r )
are relevant, for the present scheme, throughout the ra
RC<r<Rcore, whereRcore is the ‘‘core’’ radius chosen so
that the core charge density vanish beyondRcore. Now, let us
describe how these solid-state quantities are used in ato
like calculation.

In a standard LDA calculation of electronic states of
atom, one-electron radial wave functions and correspond
eigenvalues are determined in such a way that the wave f
tions have the proper number of nodes, they are normaliz
throughout the infinite range, and normalized to given oc
pation numbers. From the wave functions, the charge den
is evaluated. Then, the exchange and correlation poten
and, by solving the Poisson’s equation, the electrostatic
tential are computed, the total all-electron potential
formed, and the whole procedure starts again until sta
results are reached. The present procedure differs from
standard scheme in three points:~i! the boundary conditions
for the valence wave functions,~ii ! the evaluation of the
valence charge density, and~iii ! solving the Poisson’s equa
tion.

For the present scheme, the atomic all-electron poten
can be used at the starting point for the initial step. Then,
radial wave functionsRE,l(r ) and the corresponding eigen
values are calculated~a! for the core states in a standard wa
and ~b! for the valence states throughout the range 0<r
r
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<RC in such a way that the radial wave functions have
proper number of nodes within this interval and atr 5RC
they satisfy the boundary condition

d

dr
ln@rREl ,l

val,at~r !#5
1

2

d

dr
ln@r 2r l

sps~r !#, ~5!

which replaces the standard condition for the wave functi
to be normalizable and determines the eigenvalueEl . The
normalization condition for the valence atomiclike rad
wave functions is

E
0

RC
uREl ,l

val,at~r !u2r 2dr5E
0

RC
r l

sps~r !r 2dr. ~6!

Now, let us consider the calculation of the charge dens
For the core states,

rcore~r !5( ni uRi
coreu2, ~7!

as in the standard atomic calculation. However, this can
be used for the valence states, since—owing to the boun
condition of Eq.~5!—the radial wave functions, if calculate
beyond RC , are generally divergent. Nevertheless, t
charge density must be well defined with respect to de
mining the exchange-correlation potential for calculating
core states, although the effect of the particular shape of
charge density in the outer region upon the core function
very slight. We define

rval,at~r !55 (
l

uREl ,l
val,at~r !u2 for r<RC

rsps~r ! for RC,r<Rcore

rval,at~Rcore! for r .Rcore.

~8!

The constant value of the charge density beyondRcore does
not affect any relevant quantity except for the exchan
correlation potential for the calculation of the core wa
functions that are vanishing in this region. Therefore, cha
ing this term results in an additive shift of eigenvalue
which is not relevant to the results of further calculations

After evaluating the total charge densityrval,at1rcore, the
potential is to be calculated. The last question that should
discussed here is the calculation of the electrostatic pote
Ves. In the present scheme, there is no boundary condi
for solving the Poisson’s equation in the usual way. The
fore, we make use of the linearity of this equation and spli
into the core and the valence parts, solving the Poisso
equation for each part separately with different bound
conditions. We calculate the ‘‘core Hartree’’ potentialVes

core

as a solution of the Poisson’s equation withrcore, satisfying
the boundary condition

Ves
core@rcore#~r !5Qcore/r for r .Rcore, ~9!

denoting the core charge byQcore, and the ‘‘valence Har-
tree’’ potentialVes

val as a solution withrval,at inside the sphere
of radiusRC matching the average electrostatic potential in
solid at the surface of the sphereVes

spsdefined by Eq.~4!. The
boundary condition for the solution insideRC is, therefore,
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Ves
val~RC!5Ves

sps~RC!, ~10!

and we define, consistently with Eq.~8!

Ves
val~r !5H Ves

sps~r ! for RC,r<Rcore

Ves
val~Rcore! for r .Rcore.

~11!

Finally, we evaluate the total potential

Vat~r !52
ZN

r
1Ves

core@rcore#~r !1Ves
val@rval,at#~r !

1Vxc@rcore1rval,at#~r !, ~12!

and the next run of the iterative loop of the atomiclike c
culation can start. A stable, self-consistent all-electron po
tial Vat is supposed to be reached before constructing
pseudopotential by the procedure described in the next
tion.

At this point, it should be noted that the boundary con
tion for the valence electronic states of Eq.~5! cannot be
simulated by a particular choice of atomic-valence confi
ration, since the shape of the valence wave functions for
.RC has no meaning in the present scheme. Therefore,
resulting all-electron potentialVat(r ) does not correspond t
any particular set of atomic valence occupation numb
generally.

IV. CONSTRUCTION OF THE PSEUDOPOTENTIAL

Using the self-consistent results of the previous atom
like calculation, the procedure that generates pseudopote
is performed. In particular, for a given cutoff radiusRC ,
each componentVl

scr(r ) of the screened pseudopotential a
each corresponding pseudo-wave-function are generate
such a way that the following three conditions are fulfille

~i! At r 5RC the potentialVl
scr(r ) matches the all-electron

potential up to the second derivative,

d~ i !

dr ~ i !
Vl

scr~r !5 lim
r→RC2

d~ i !

dr ~ i !
Vat~r ! for i 50,1,2. ~13!

~ii ! At r 5RC radial pseudo-wave-functionsREl ,l
ps (r )

match the corresponding atomiclike radial functions by th
values and first derivatives,

d~ i !

dr ~ i !
REl ,l

ps ~r !5 lim
r→RC2

d~ i !

dr ~ i !
REl ,l

val,at~r ! for i 50,1. ~14!

~iii ! The correct energy derivative of the pseudo-wa
function is ensured by the norm-conserving condition,

E
0

RC
uREl ,l

ps ~r !u2r 2dr5E
0

RC
uREl ,l

val,at~r !u2r 2dr. ~15!

Equations~6! and~15! imply the same normalization of sub
sequent pseudopotentials in the iterative loop. We define
pseudo-charge-density forr<RC ,

rps5(
l

uREl ,l
ps ~r !u2. ~16!
-
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It should be noted that the continuity of the potential a
its derivatives up to the second order implies the continu
of the higher derivatives of the radial pseudo-wave-functi
too. The reference energiesEl of the pseudo-wave-function
~i.e., its eigenvalue with respect to the corresponding pot
tial! are identical with the eigenvalues of the previous atom
clike calculation. From Eqs.~14!, ~16!, and~8! it follows that

rps~RC!5rval,at~RC!. ~17!

The complete ionic pseudopotential, like in standard
proaches, is derived by subtracting the electrostatic and
exchange-correlation potentials related to the vale
pseudo-charge-density from the screened pseudopote
We treat this procedure in two cases separately.

For r<RC , the ionic pseudopotential is determined by

Vl
ion~r !5Vl

scr~r !2Ves@rps#~r !2Vxc@rps#~r !. ~18!

The Poisson equation forVes is solved inside the sphere o
the radiusRC with the boundary condition analogous to E
~10!,

Ves@rps#~RC!5Ves
sps~RC!. ~19!

Outside the sphere of the radiusRC , the local ionic po-
tential Vloc

ion is constructed directly, supposing that all th
pseudoquantities match the all-electron atomiclike cor
sponding quantities beyondRC . By this procedure,
boundary-condition problems of Poisson’s equation
avoided. Forr .RC we define

Vloc
ion~r !5Ves

core@rcore#~r !2
ZN

r
1Vxc@rcore1rval,at#~r !

2Vxc@rval,at#~r !. ~20!

BeyondRcore, since the boundary condition for the first ter
is determined by Eq.~9!, and rcore vanish, the asymptotic
behavior is

Vloc
ion~r !5~2ZN1Qcore!/r . ~21!

Equations~13!, ~12!, ~10!, ~19!, and~17! imply the conti-
nuity of the ionic pseudopotential atRC , namely,

Vl
ion~RC!5 lim

r→RC1

Vloc
ion~r ! ~22!

for eachl . The final l-dependent semilocal pseudopotentia

Vl~r !5H Vl
ion~r ! for r<RC

Vloc
ion~r ! for r .RC

~23!

is applicable in the standard manner. For the efficient eva
ation of the Hamilton matrix elements, a separable form
derived by the method of Kleinman and Bylander,12 or by
Blöchl’s method,13 which is more reliable concerning gho
states. Alternatively, pseudopotentials can be described
linear combination of error functions and Gaussi
functions,2 which allows an analytic calculation of the non
local pseudopotential components.
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TABLE I. Comparison of the AEPP and FPA eigenvalues. For each element and structure~specified in
the first column!, the AEPP is constructed and applied to the pseudoatom with a test configuration of v
occupation numbers~the second column!. In remaining columns the differences between AEPP and F
eigenvalues~in brackets relative differences in %! are given. For tests and comparison with ground-st
configurations we used also ionic configurations used by other authors.

Atom—structure Test configuration D«5AEPP pseudoatom2full-potential atom~eV!

2s 2p 3d
C — diamond s2p2d0 20.100 ~20.7%! 0.087 ~1.6%! 20.005 ~20.5%!

s1.75p2d0.25 20.113 ~20.7%! 0.101 ~1.3%! 20.001 ~20.6%!

C — SiC s2p2d0 20.133 ~21.0%! 0.098 ~1.8%! 20.006 ~20.6%!

s1.75p2d0.25 20.153 ~21.0%! 0.115 ~1.5%! 20.001 ~20.8%!

C — TiC s2p2d0 0.021 ~0.2%! 20.036 ~20.7%! 0.002 ~0.2%!

s1.75p2d0.25 20.001 ~20.0%! 20.044 ~20.6%! 0.000 ~0.2%!

3s 3p 3d
Si — diamond s2p2d0 0.037 ~0.3%! 0.051 ~1.2%! 20.005 ~20.7%!

s1p1.5d0.5 a 20.073 ~20.3%! 0.052 ~0.4%! 0.055 ~1.2%!

Si — SiC s2p2d0 0.038 ~0.3%! 0.044 ~1.1%! 20.005 ~20.6%!

s1p1.5d0.5 a 20.005 ~20.0%! 0.057 ~0.4%! 0.044 ~0.9%!

Si — CoSi2 s2p2d0 0.043 ~0.4%! 0.051 ~1.2%! 20.005 ~20.7%!

s1p1.5d0.5 a 20.086 ~20.4%! 0.038 ~0.3%! 0.066 ~1.4%!

3d 4s 4p
Co — fcc b-Co d7s2p0 20.316 ~23.5%! 20.031 ~20.6%! 0.007 ~0.5%!

d7s1p0.25 b 20.407 ~22.6%! 20.080 ~20.7%! 20.031 ~20.5%!

Co — CoSi2 d7s2p0 20.423 ~24.7%! 20.037 ~20.7%! 20.004 ~20.3%!

d7s1p0.25 b 20.487 ~23.1%! 20.078 ~20.7%! 20.050 ~20.8%!

3d 4s 4p
Ti — TiC d2s2p0 0.101 ~2.1%! 20.006 ~20.1%! 20.032 ~22.0%!

d2s1p0.25 0.166 ~1.6%! 0.022 ~0.2%! 20.050 ~20.9%!

Ti — TiS2 d2s2p0 0.099 ~2.1%! 20.024 ~20.5%! 20.038 ~22.4%!

d2s1p0.25 0.140 ~1.4%! 20.015 ~20.2%! 20.082 ~21.5%!

aSee Ref. 25.
bSee Ref. 16.
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V. NUMERICAL TESTS AND APPLICATIONS

Since the primary objective of test calculations is to ver
the AEPP method, a considerable effort has been mad
produce the results that are rid of uncertainties due to b
set and numerical precision, and special care has been
to achieve fully convergent results. For the construction
the radial atomiclike wave functions and the pseudopo
tials satisfying the conditions of Eqs.~13!–~15!, the phase-
shift technique6 has been applied. The Ceperley-Alder te
has been used for exchange and correlation potentials.

A. Transferability tests

The resulting AEPP derived from crystal charge densi
do not correspond to any atomic configuration, therefore,
at first tested the AEPP in free-pseudoatom calculations.
derived AEPP for different crystals and applied them to
calculations of eigenvalues of the pseudoatoms having v
ous atomic valence configurations. For the same vale
configurations we performed standard full-potential atom
~FPA! calculations. The differences between the AEPP
the FPA eigenvalues are shown in Table I.

In this table, the positive energy differences indicate
lower binding energies of the AEPP compared to the FPA
to
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the tetrahedrally bonded diamond the differences are ne
tive for 2s and positive for 2p electrons as expected for th
sp3 bond. We observe the same for silicon. Moreover, t
better the agreement between the AEPP and the ionic F
justifies the ionic configuration for generating the standa
pseudopotential of Si. The ionic configuration is better a
for cobalt and titanium atoms, especially for 3d electrons.

The results show that for ‘‘simple’’ carbon and silico
atoms the differences are small for any physically reasona
valence configuration. On the other hand, we see that
‘‘problematic’’ d states in transition-metal atoms exhibit th
biggest differences between the AEPP and the FPA resu

To summarize the results presented in this section,
conclude that the AEPP’s, derived from crystal charge d
sities and optimized for use in a solid, have reproduced
eigenvalues of free atoms with a reasonable accuracy. T
fact illustrates that the standard transferability of pseudo
tentials from an atom to a crystal can be reversed, i.e.,
AEPP’s are transferable from a crystal to free atoms.

B. Total-energy tests

According to the scheme described in previous sectio
we generated AEPP’s for C, Si, and Co atoms from diamo
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TABLE II. Lattice constants and bulk moduli calculated with pseudopotentials derived from the gro
state atomic configuration, calculated with the AEPP’s, and taken from an experiment.

Lattice constant~Å! Bulk modulus~GPa!
grounda present experiment grounda present experiment

silicon 5.37 5.41 5.43 101 95.7 98
diamond 3.48 3.52 3.57 445 440 440
fcc b-Co 3.49 3.41 3.38b 313 308 310b

TiC 4.18 4.29 4.32 515 239 242

aAs ground-state configurations, (3s2,3p2), (2s2,2p2), (4s2,4p0,3d7), and (4s2,4p0,3d2) were used for Si,
C, Co, and Ti, respectively.

bFor fcc b-Co, values calculated by means of the FLAPW method~Ref. 15! are given instead of the
experimental values. Results of the pseudopotential calculation by Milmanet al. ~Ref. 16!, using the
pseudopotential derived from a free atom in the ionic configuration (s1 p0.25 d7), are 3.45 Å and 296 GPa
respectively.
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silicon, and fcc-Co crystals, and for Ti and C atoms fro
TiC crystal. Using these AEPP’s we performed stand
total-energy calculations14 for various lattice constants an
calculated the structural properties of crystals by fitting
Murnaghan-Birch equation of state to the calculated poi
Resulting lattice constants and bulk moduli are presente
Table II. For comparison, corresponding values calcula
from standard pseudopotentials derived from free atom
the ground-state configurations and experimental values
given.

The fact that AEPP’s are derived from the previous c
culation of electronic states in a crystal that presumes
choice of a lattice constant~the experimental value in thi
case! could cast doubt on theab initio quality of the results
presented here. In Sec. V D, the sensitivity of AEPP’s w
respect to the choice of the lattice constant is tested.

The results in Table II show that even for simple mate
als, e.g., for diamond and silicon, whered states are no
significant~however, included in all calculations!, the agree-
ment with an experiment is better than for the pseudopo
tials derived from the ground-state configuration of free
oms. In the case of the fccb-Co, the AEPP results are i
better agreement with full-potential linearized augmen
plane wave~FLAPW! calculations15 than with the pseudopo
tential calculations based on thead hocatomic configuration
by Milman et al.16 The results for TiC show that the bul
modulus provided by ‘‘ground-state’’ pseudopotentials
more than 100% off the experiment. It is quite understa
able since the ground-state configuration of the Ti atom d
not containp electrons, the accurate description of which
necessary for the slightly ionic Ti-C bonds alongx, y, andz
directions in the cubic~NaCl! structure of TiC. On the othe
hand, in the close-packed fcc structure of cobaltp-like states
do not play an important role, which explains the reasona
results of the atomic ground-state configuration in this ca

C. Core relaxation effects: Core-level shifts in SiC

In the silicon crystal, all silicon atoms are tetrahedra
bonded to four Si atoms, and this chemical environment
termines the energy positions of the core levels of the sili
atom. The situation is identical for carbon atoms in diamo
However, in the SiC crystal, silicon atoms are tetrahedra
bonded to four carbon atoms and vice versa. The electr
d
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valence charges of the Si and also the C atoms are diffe
than in Si and C crystals due to the charge transfer from
silicon atom to the carbon atom in SiC. The decrease in
atomic charge in the Si atom yields to an increase in
binding energy of the core levels in the silicon atom. T
increase in the case of the carbon atom yields to a decrea
the binding energy of the core 1s level of the carbon atom
Consequently, the core levels of Si and C atoms in SiC
shifted with respect to the same levels in pure silicon a
diamond crystals~core-level shifts!.

The essential feature of the AEPP’s is that core states
relaxed and accommodated to the chemical environmen
an atom in a solid. Therefore, two AEPP’s of silicon, o
derived from the silicon crystal and the second from the S
crystal, have two different cores with different core leve
The differences between corresponding core-level ener
determine the core-level shifts of Si. The same holds for t
AEPP’s of carbon, one derived from diamond, the seco
from the SiC crystal.

The core-levels and the valence-band spectra of am
phous tetrahedrally bonded Si12xCx (0<x<1) were mea-
sured by Fang and Ley.17 From the photoemission measur
ment, the authors derived the values21.4360.07 eV and
1.2060.07 eV for the core shifts of the C 1s and Si 2p
levels, respectively. Our calculations described above y
values21.49 eV for C 1s and 1.63 eV for Si 2p.

Standard pseudopotential calculations neglect co
relaxation effects by definition. By this example, we demo
strate that this restriction is removed by the AEPP’s and t
the relaxation of cores can be quantitatively treated wit
the pseudopotential approach.

D. Sensitivity of the AEPP’s to the input data

The resulting AEPP’s are determined by the structure,
lattice constant, and the cutoff radiusRC . The cutoff radius
RC is a fairly insensitive parameter within a wide range
reasonable values. In our calculations, as an optimum co
nient choice leading to reasonably soft pseudopotentials,
cutoff radius has been determined by the condition that t
pseudocharge inside the sphere of radiusRC is equal to the
valence charge~number of valence electrons! of the pseudoa-
tom. For C, Si, and Co, and for Ti and C in TiC, the resulti
RC51.81, 2.76, 2.53, 2.7, and 2.1 a.u., respectively. For



c
u
fo

es
ll
ity

in
d
in
s

ec
on
l

n
n

th
th
B
P
th
o

a
i

s
th
,
en
.

in

w
l
rg
n

ic

t

lu
er
se

er
ed

tial

e
tice
of

since
ice

m

e
om-

’’
es
e
f
ame
the

cal-
c-

on-
r to
he
nt
e

s-
s

ec-

ed

ocal

le
ges
the

ired
ant
se-
at-
m-

tials

c-
For
en-
rly
e

cts
-
the
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first iterative step, the superposition of atomic-valen
charge densities can be used instead of the crystal pse
charge-density. But, in our tests, changing the condition
the valence charge insideRC from 100% to 70% had no
meaningful influence on fully converged results~except for
the size of the basis set that can be affected!. There is no
restriction forRC with respect to the atom’s own core stat
that are treated properly forRC inside the core region as we
as for largeRC in the region where the core charge dens
has vanished. The spheres of radiiRC of neighboring atoms
can slightly overlap~what inevitably happens ifRC is deter-
mined by 100% of the valence charge! on the condition that
no sphere is interfering deeply in core regions of neighbor
atoms. Possible inaccuracy can arise only if the pseu
wave-functions differ from the all-electron wave functions
the region of the overlap. In the presented test calculation
is not the case since the pseudopotential generating t
nique that we use ensures the continuity of wave functi
up to the fourth derivative atRC , which decreases the rea
‘‘effective cutoff radius’’ for which the difference betwee
pseudoquantities and the corresponding all-electron qua
ties is negligible.

The experimental value of the lattice constant and
crystal structure has been used for the construction of
AEPP’s in the tests described previously in Secs. V A, V
and V C. The natural question is, how sensitive is the AE
with respect to the value of the lattice constant and to
corresponding crystal charge density that is used for c
structing the AEPP via boundary conditions atRC .

To answer this question, we performed the iterative c
culations described as follows: At first the charge density
a crystal, using a lattice constanta0 and pseudopotential
derived from free atoms, has been calculated. Employing
charge density, the AEPPV@a0# has been derived. Then
using standard total-energy calculations, the minimum
ergy~equilibrium! lattice constantaeq.0

1 has been determined
The notation indicates thataeq.0

1 is based on theV @a0#
pseudopotential. In the next iterative step, i.e., for deriv
the new AEPP, the charge-density distributions related
this equilibrium lattice constantaeq.0

1 have been used. With
the new pseudopotentialV @aeq.0

1 #, the new equilibrium lat-
tice constantaeq.1

2 has been found. Employing the ne
charge distribution related toaeq.1

2 , the new pseudopotentia
V @aeq.1

2 # has been derived and used for the new total-ene
calculation. In this way, the series of equilibrium lattice co
stants $aeq.i 21

i % and of pseudopotentialsV @aeq.i 21
i # has

been found. The purpose of these calculations was~i! to
study the sensitivity of the pseudopotentials to the latt
constants used in the preceding steps, and~ii ! to verify
whether the iterative scheme described above creating
series of ‘‘self-constructing’’ pseudopotentialsV @aeq.i 21

i #
converges to a meaningful lattice constant and bulk modu

The numerical tests show that starting from the exp
mentala0 the only relevant change, if any, between sub
quent terms in the series of pseudopotentialsV @aeq.i 21

i # was
detected during the first iterative step, i.e., fromV @a0# to
V @aeq.0

1 #. Even this change is small compared to the diff
ence between theV @a0# and the atomic ground-state-bas
pseudopotential.
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All the tests show that the sensitivity of pseudopoten
V @ai # with respect to lattice constantai is negligible on
condition that the lattice constantai is not far~a few percent!
from the equilibrium valueaeq.i 21

i . Since the LDA equilib-
rium valueaeq.i 21

i is different from the experimental valu
only by a few percent, a value near the experimental lat
constant is a quite satisfactory input for the construction
the AEPP’s.

By enlarging the starting lattice constant,V @a0# ap-
proaches the standard free-atom based pseudopotential,
it corresponds to the AEPP generated for an infinite latt
constant~i.e., for noninteracting atoms!. Even if the starting
lattice constant is significantly larger than the equilibriu
value ~or infinite, which is equivalent to derivingV @a0#
from a free atom!, the convergency is usually very fast sinc
the free-atom based pseudopotentials do not lead to c
pletely wrong lattice constantaeq.0

1 in most cases.
The laborious test calculations via ‘‘self-constructing

AEPP’s~SCAEPP’s! described above confirm that the seri
of SCAEPP’s$V @aeq.i 21

i #% ~and, therefore, the series of th
lattice constants$aeq.i 21

i %) converges. The limit values o
the converged lattice constants and bulk moduli are the s
as the values presented in Table II within the accuracy of
presented digits. Also, the tests confirm that the iterative
culation of the limit of SCAEPP’s is not needed for the pra
tical use.

The last input parameter in the present scheme for c
structing pseudopotentials is a crystal structure. In orde
study the ‘‘geometry effect’’ we applied our scheme for t
determination of titanium pseudopotential from two differe
compounds: TiC and TiS2. These compounds differ in th
structure~cubic vs hexagonal, respectively!, interatomic dis-
tance~2.16 vs 2.42 Å!, and the symmetry of the charge di
tribution around titanium atoms~0.133, 0.216, and 0.528 v
0.106, 0.150, and 1.504 electrons fors, p, andd l-projected
partial charges within the sphere of radius 2.16 Å, resp
tively!. At the end of TiC and TiS2 calculations we obtained
two AEPP’s for Ti. Both reproduce correct eigenvalues us
for the free-pseudoatom calculation~see Table I!. However,
the amounts of thes, p, andd partial charges are different in
these pseudoatoms. It corresponds to the fact that the l
symmetry of the valence charge in the TiC and TiS2 differs.
This indicates that the ‘‘geometry effect’’ is not negligib
for the AEPP of Ti. The AEPP technique reflects the chan
in the angular momentum character of electron states of
Ti atom in the bond and accommodates them for the requ
nonspherical application. This accommodation is import
particularly for transition-metal elements, and as a con
quence, the ‘‘most suitable’’ atomic configurations for cre
ing Ti pseudopotentials by means of standard free-ato
based techniques should be different for pseudopoten
dedicated for Ti in TiC and for Ti in TiS2.

In the case of TiS2 we have studied occupied and uno
cupied states by means of a polarized x-ray absorption.
calculating the spectra, the accuracy in the angular mom
tum character of the electronic states is crucial, particula
for p states, since thep states of titanium are created by th
sulfur-titanium bond, and the dipole transition rule sele
these states in the case of the TiK spectra. The test calcula
tion was done using three types of pseudopotentials:
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pseudopotentials derived from ground-state configuration
free atoms, the standard pseudopotentials2 that are based on
ionic configurations, and the AEPP’s. In the first case,
resulting density of states for occupied electronic states
in good agreement with other calculations, but the TiK ab-
sorption spectrum was in disagreement with the experim
In the second case, the BHS pseudopotentials led to re
similar to LMTO band-structure calculations of Wuet al.18

that are also in poor accordance with the experiment. On
other hand, the calculations based on the AEPP’s of Ti an
give practically the same results as the FLAP
calculations,19 and a good agreement between the calcula
Ti K absorption spectrum and the experiment in the ene
range up to 25 eV above Fermi level~x-ray absorption near
edge structure region!. In detail, these results have been d
scribed in Ref. 20.

VI. RELATIONS TO EXISTING METHODS

The present approach described in Secs. III and IV is
bound to a particular pseudopotential-generating techniq
Besides the phase-shift technique, other techniques—suc
those of Refs. 4 and 5—could be used as well, as long as
conditions of Eqs.~13!–~15! are ensured. Also, the ultraso
pseudopotential scheme10 can be used in combination wit
the present approach. Relaxation of the generalized no
conserving constraintQi , j50 does not cause any change
the procedure described above, except for Eqs.~2! and ~6!,
where the augmentation chargesQi , j must be taken into ac
count.

Relations to other approaches closing the gap betw
pseudopotential and all-electron methods should be m
tioned. In this respect, we consider~i! the methods using
solid-state all-electron calculations to constru
pseudopotentials,21–23and~ii ! Blöchl’s projector augmented
wave method~PAW!.9

Contrary to the methods in~i!, the present approach doe
not require a preceding all-electron calculation. This co
save computational expenses, if the self-consistent pse
potential iterative loop of the present scheme is performe
combination with relaxing the structure or other calculatio
Additionally, the present scheme is not affected by rest
tions and/or difficulties of any particular all-electron metho
e.g., those related to orthogonality of eigenvectors or la
energy differences between core and valence states~see, e.g.,
Ref. 24!.

Parallel features can be found between the PAW met
and the present approach. However, the following esse
differences should be mentioned:~a! In the present approach
the whole solid-state calculation is performed using a sim
plane-wave basis set; no partial waves derived from an
lated atom are needed.~b! Frozen core is relaxed and accom
of
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modated to the system under study; however, the techn
advantages of the frozen-core approximation are retained~c!
The relation between the pseudo- and the all-electron qu
tities is more complicated in the present approach than in
PAW method, where the parallel basis sets for all elect
and pseudo-Hilbert spaces have been introduced. In
present approach, the transformation between the all-elec
quantities and the corresponding pseudopotential quant
is dependent on the particular pseudopotential-genera
scheme and the reconstruction scheme.

VII. SUMMARY

The present pseudopotentials are self-consistently der
from radial partial charge densities referred to the atom
interest that interacts with other atoms in a solid. Differe
from the standard procedures that construct pseudopoten
and pseudo-wave-functions satisfying boundary conditi
of a free atom, we use boundary conditions determined
the self-consistent solid-state calculation of the electro
structure. By a completelyab initio procedure, within a
pseudopotential framework,~1! the intuitivead hocchoice of
valence occupation numbers, which is necessary for the c
struction of pseudopotentials by existing methods,
avoided;~2! the all-electron core response is taken into a
count properly, i.e., the frozen-core approximation
avoided;~3! the nonlinear core-valence exchange-correlat
term is treated correctly since the ionic pseudopotentia
unscreened with the correct valence charge density,
therefore, any other~e.g., a model core charge! approxima-
tions of it are avoided; and~4! optimum locations for the
energy windows, i.e., the energy transferability ranges
pseudopotentials, are found in a natural way.

The applications of the AEPP’s, e.g., for calculating to
energies, forces, and stress tensors, are not affected an
the same as in the case of standard pseudopotentials.
procedures for reconstructing the all-electron wave functi
in the core region and for generating AEPP’s are not co
putationally expensive and can be used in standard pse
potential packages.
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12 720 PRB 58JIŘÍ VACKÁ Ř, MAREK HYT’HA, AND ANTONI´N ŠIMŮNEK
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