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We present arab initio procedure for the construction of pseudopotentials accommodated to a crystal
environment under study, which takes into account the response of the core charge density to the valence
electrons of an atom in a bond. Within pseudopotential methodology, core electrons are treated differently from
valence electrons; however, the core electrons are considered as “frozen” in space and independent of the
atom’s valence electrons after they were relaxed and adapted to a crystal-valence charge density. In this way
the frozen-core approximation is removed despite the fact that the frozen-core technique is still used and no
all-electron solid-state calculation is required. Since the all-electron core-valence response is taken into account
properly, the treatment of nonlinear properties of exchange-correlation functionals is naturally included and
corrections using model core charges for nonlinear functionals are eliminated. Contrary to standard pseudo-
potentials based on the atomic charge density of a free atom, the new all-electron pseudopotentials are func-
tionals of the crystal charge density. Consequently, the intuétv&occhoice of occupation numbers, which
is necessary for the construction of pseudopotentials by existing methods, is avoided and energy windows for
pseudopotentials are put at optimum positions. In this paper, core-level shifts were calculated within the
pseudopotential framework. The results of test calculations for diamond, silicon, nonmagngi€égacubic
TiC, and hexagonal TiSare presentedS0163-182¢08)05743-9

I. INTRODUCTION the chemical bond. Contrary to standard pseudopotentials
based on the atomic charge density, the new AEPP’s are
The density-functional scheme in the local-density ap-functionals of the crystal charge density and, therefore, do
proximation (LDA) coupled with a pseudopotential tech- not correspond to any choice of occupation numbers of any
nique is now a standard approach successfully describing tH&tomic configuration.
electronic and structural properties of solid systems. Using We have tested the AEPP approach for carbon, silicon,
pseudopotentials the tremendous simplification of computa>iC, and transition metals, namely, for Co in its nonmagnetic
tional effort is achieved by treating core electrons differentlyfcC 8 phase, and for TiSand TiC. Core-level shifts were
from valence electrons. Deep core electrons are considerédlculated within the pseudopotential framework.
as “frozen” in space and independent of the atom’s valence The main ideas of the AEPP method are explained in the
environment(the frozen-core approximatipn next section. In Sec. Ill, the atomiclike calculatigim the
In standard techniques the frozen core and the correcore regionbased on the input quantities obtained from self-
sponding pseudopotential are derived from the atomic calcuconsistent crystal pseudo-wave-functions is described. The
lation performed for a “suitable” occupation of atomic va- construction of new pseudopotentials is explained in Sec. IV.
lence states. In this way the core and the valence statd$umerical tests and applications are shown in Sec. V. In
anticipating crystal environment are constructed, and by apSecs. VI and VII, relations to other existing methods are
plication of some pseudopotential-generating methdds disc_ussed and main features of the present approach are sum-
more or less transferable pseudopotentials are generated. Aarized.
ditionally, particularly for magnetic materials, model core
charge%swere'introduced to improve transfergbility froman | Al -ELECTRON PSEUDOPOTENTIAL METHOD
atom to a solid by representing “unscreening” and ‘“re-
screening” processes in the derivation and in the application Standard procedures for constructing pseudopotentials
of pseudopotentials more accurately. At present the standarely on potentials and radial wave functions derived from
application of pseudopotentials neglects core-relaxation efall-electron calculations ofree atoms. For given reference
fects by definition. energiegwhich are usually equal to the eigenvalues of free-
In this paper we present a pseudopotential-generatioatom valence statgsit is required that pseudo-wave-
technique that takes into account all electfonre and va- functions match exactly the corresponding all-electron wave
lence interactions of an atom in a bond and generates afunctions outside a certain cutoff radius. Then, the pseudo-
“all-electron” pseudopotential(AEPP with the relaxed potential is exact for the reference energies, for which it was
core. Within pseudopotential methodology, core electrongienerated. In some neighborhood of the reference energies,
are treated differently from valence electrons; however, théhe pseudopotential is correct within a reasonable accuracy.
valence states are constructed under boundary conditions rBesulting pseudopotential is unscreened with nonlinear LDA
flecting the surroundings of the atom in the crystal environ-exchange and correlation terms related to the valence charge
ment and the core states are rectified to them. Therefore, bottensity of the isolated atom.
the core and valence states are self-consistently adapted to The AEPP method is based on an iterative procedure
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starting with the standard free-atom-based pseudopotentiahce energies of the AEPP are located in the range of solid-
described above. The AEPP pseudopotential is adapted to tilseate eigenvalues in a natural way, and reasonable pseudopo-
crystal environment by iterative steps. As a matter of facttentials for angular momentum components are provided also
the construction of the AEPP pseudopotential needs one @ér the angular momentum channels that are not occupied or
two iterations and convergency is reached even in the case gf/en do not exist as bound states in the case of free atoms.
the “unsuitably” chosen input pseudopotential. Computa-additionally, the exchange and correlation nonlinear poten-
tionally, this iterative procedure needs only few additionalijs| terms are taken into account properly without the neces-
iterations usual in standard self-consistent calculations. sity of the model core charge for nonlinear core-valence
A_t the beginning, we suppose to have an aII—eI.ectror) PO&orrectiond.
‘t‘ennal of a frle? atom, ml any “reason:;\]ble” conﬂgu;a_ﬂon. In complicated crystalline configurations where atoms of
Az 1 ULeT o derthe same type ai iferent osiions have iferen nesre
) ! 8e|ghborhoods, the AEPP’s are supposed to be generated for

steps are performed: First, the pseudopotential is derive . L :
from the all-electron potential to satisfy the standard condi—eaCh nonequivalent position separately, as if the atoms were

tions, i.e., matching the value and the derivatives of both thé)f i d|ff<_arer}.t t_%/pe.f th tat f the AEPP techni
potential and the wave functions at the cutoff rad®gsand or simpficity ot the presentation of the echnique

fulfilling the normconserving condition. Any of the standard we describe the gonstruction of generalized normcons_erving
pseudopotential techniques can be used here. Second, tﬁ?(gegfa%?gr;ér;en:mbcsﬂ AErF])tIP STtrT:t ?égetr:?;i;o;mgdmgtoag o
pseudopotential is used for the self-consistent calculation q?) P , subsequently. P Y

crystal wave functions. These first two points do not differ e exploited differently, namely for the construction of

from the usual self-consistent calculations of the charge derfl)—vseVUdgqpa}[L“acli vgavg;h?gcorr?mrgtrtlo tg\eri\r/)rtt)ijerc]to; aﬁ?mefr;ted—
sity in a crystal. Third, radial partial charge densities, re- ave method by » Or for the derivation of uitraso

ferred to as the atom of interest, are derived from the crystﬁssgﬂoﬁéi?gséi ?:ﬁca?r%lggr? tzlzannd?r:tﬂ)jltzlcjsggrﬂngr;hs:l
wave functions. Fourth, these charge densities, outside 9 9 properly.

sphere of the pseudopotential cutoff radiRs, are em-

ployed as boundary conditions for valence wave functions in . ATOMICLIKE CALCULATION

the next all-electron atomiclike calculation. In this calcula-

tion, the boundary conditions derived from the crystal charge In this section, we describe a procedure for the recon-
density replace the boundary conditions of the free atom. Bytruction of all-electron atomiclike quantities, related to a
that, a succeeding all-electron potential is obtained in thgiven atomic site, from the results of the previous pseudopo-
region 0<r<Rc, i.e., core states are recalculated and reiential solid-state calculation. It makes it possible to include
laxed to the crystal charge density. The succeeding allthe proper node structure of originally nodeless valence
electron potential obtained by the fourth step is then used fopseudo-wave-functions together with core states in a fully
deriving a suceeding AEPP pseudopotential along the firstonsistent way and to gain all-electron information from
step. The novel feature, with respect to the standard selfpseudopotential quantities. This procedure is analogous to
consistent iterative scheme, is the additional outer iterativéhat originally intended for evaluating the radiative matrix
loop updating the pseudopotentials according to the selfelements of Ref. 11 where some more general aspects of
consistent crystal charge densities. using the procedures of this type have been discussed.

For practical purposes, one to three passes through the The method is based on the following: If the pseudopo-
outer iterative loop are sufficient. One should realize that théential is generated for the cutoff radiRg , then the pseudo-
valence charge density is self-consistent at the end of theotential quantities match the corresponding all-electron
inner (i.e., standard self-consistembop for the first pseudo- quantities outside a sphere of radRig surrounding an atom,
potential, and the new AEPP entering the inner loop again i&@nd they can be used as boundary conditions to calculate the
new mainly for the core region. Consequently, we do notcorresponding atomiclike quantities inside the sphere. More-
need many iterations in the inner loop during the next passegver, if the pseudopotential is normconserving, then the
through the outer loop. Two or three runs through the outeamount of pseudocharge inside the sphere is correct, which
loop totally adds 5-7 iterations through the standard inneyields a simple normalization condition for reconstructing
loop to achieve self-consistency between the charge densitpe valence wave functions with the proper node structure.
and the pseudopotential. Therefore, the generation of the The proper aim of doing this procedure is to derive a new
AEPP only slightly increases the number of standard valencgseudopotential. The pseudopotential simulates the total ef-
charge iterations. The outer loop is computationally fast andect of an atomic nucleus and its core charge density upon
can be appended to any standard pseudopotential code. the valence states. Because the charge density and the poten-

The essential feature of our approach is that the AEPRal of both are spherically symmetric, all the input quantities
pseudopotentials are functionals of the self-consistent crystddr the pseudopotential construction are required to depend
charge density. In consequence of iterations in the oute@nly on the distance from the nucleus. Therefore, the input
loop, the core is self-consistent with the crystal charge denquantities for the atomiclike calculation are considered to be
sity, relaxed and accommodated to the chemical environmerspherically averaged, which does not introduce additional
of an atom in a solid and then frozen in the usual sense cfpproximation. In fact, it is an approximation to the same
pseudopotential methods. This frozen core does not correggxtent as considering the effect of core electr(aesscribed
spond to any configuration of a free atom and cannot b®y the pseudopotentiaio be spherical. This is not absolutely
derived from a free atom in principle. exact in a solid but standard in all-electron methods.

As a result of the all-electron self-consistency, the refer- First, we construct the radial partial-valence pseudo-



12 714 JIRI VACKAR, MAREK HYT'HA, AND ANTONI'N SIMUNEK PRB 58

charge-density by summing over all occupied states, <R in such a way that the radial wave functions have the
proper number of nodes within this interval andrat R

|
1 - they satisfy the boundary condition
PI=3 3 [ andore, i) Y satisly Y
kn m=-I A7r<JsSPH ' d 1d
R . R —In[rR¥3(r)]= = —In[r2p{r)], 5
XYim(N) Yin(N) g n(rn’), (1) gr MITRE 1= 5 g L) ®

where ; , denotes the crystal pseudo-wave-function viRth which replaces the standard condition for the wave functions
,n . . .
as the vector of the first Brillouin zone and a band index (© P& normalizable and determines the eigenvdiye The

Throughout this paper, the superscript sps will be used fopormalization condition for the valence atomiclike radial
the spherically averaged quantities taken from a selfvave functions is
consistent pseudopotential calculation in a solid. Re Re

The total valence-radial pseudo-charge-dengitii(r) is j |R‘é?':f“(r)|2r2dr=J piP{r)radr. (6)
defined by the spherical average of the crystal pseudo- 0 0

charge-density with respect to the chosen atomic site, , ) .
Now, let us consider the calculation of the charge density.

For the core states,

decrystal,pfr ﬁ) ) (2)
47712 ) sPH

pPIr) =
pSEr) =, n|R2, @)

sps

Obviously, p*P°is related top;™° of Eq. (1) by

as in the standard atomic calculation. However, this cannot
pP{r)= E piPr). ©) be us_e_d for the valence states, since—ovying to the boundary
I condition of Eq.(5)—the radial wave functions, if calculated

spherical average of the electrostatic potential core states, although the effect of the particular shape of the

charge density in the outer region upon the core functions is

V)= ! f dQV{ pvsePy(rn). (4)  very slight. We define
4712 ) spPH
La (2
The angular momenturncomponents of the charge den- 2| |R\ée|l,lat(r)| forr<Rc
sity p;P{r) are needed up to the cutoff radiRg so that the valay .\ 8
logarithmic derivative and the partial charge inside the P N=1 pPrn) for Re<r=<Rege  (®
sphere may be determinedrat R¢ . The total radial-valence P Reore for r>R e

charge-density*’{r) and the electrostatic-potentif2{r)

are relevant, for the present scheme, throughout the rangehe constant value of the charge density bey&agl, does
Re=r=Rcoe, WhereRg is the “core” radius chosen so not affect any relevant quantity except for the exchange-
that the core charge density vanish bey&ag.. Now, letus  correlation potential for the calculation of the core wave
describe how these solid-state quantities are used in atomiganctions that are vanishing in this region. Therefore, chang-
like calculation. ing this term results in an additive shift of eigenvalues,
In a standard LDA calculation of electronic states of anwhich is not relevant to the results of further calculations.

atom, one-electron radial wave functions and corresponding After evaluating the total charge densiiy?-24+ p°e the
eigenvalues are determined in such a way that the wave fungotential is to be calculated. The last question that should be
tions have the proper number of nodes, they are normalizabigiscussed here is the calculation of the electrostatic potential
throughout the infinite range, and normalized to given occuy/__. In the present scheme, there is no boundary condition
pation numbers. From the wave functions, the charge densitwr So|ving the Poisson’s equation in the usual way. There-
is evaluated. Then, the exchange and correlation potentiafgre, we make use of the linearity of this equation and split it
and, by solving the Poisson’s equation, the electrostatic pdnto the core and the valence parts, solving the Poisson’s
tential are computed, the total all-electron potential isequation for each part separately with different boundary
formed, and the whole procedure starts again until stabl@gnditions. We calculate the “core Hartree” potentiglre

results are reached. The present procedure differs from thes 5 solution of the Poisson’s equation with'™® satisfying
standard scheme in three poins:the boundary conditions  he houndary condition

for the valence wave functionsiji) the evaluation of the
}[{alence charge density, afiid) solving the Poisson’s equa- Ve p) (1) =Qeore/T  fOr I>Ryore, 9)
ion.

For the present scheme, the atomic all-electron potentiglenoting the core charge Wcore; and| the “valence Har-
can be used at the starting point for the initial step. Then, th&ree” potentialVys as a solution withp*®-*'inside the sphere
radial wave functionsRg (r) and the corresponding eigen- of radiusRc matching the average electrostatic potential in a
values are calculate@) for the core states in a standard way, solid at the surface of the sphev&®defined by Eq(4). The
and (b) for the valence states throughout the ranger0 boundary condition for the solution insid®: is, therefore,
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VZ?'(RC)=V§§S( Re), (10) It should be noted that the continuity of the potential and
. i . its derivatives up to the second order implies the continuity
and we define, consistently with E() of the higher derivatives of the radial pseudo-wave-function,
S too. The reference energi&s of the pseudo-wave-function
v¥(r)= Vesin) for Re<r<Rgore (11) (i.e., its eigenvalue with respect to the corresponding poten-
e V& (Reord  fOr r>Reore. tial) are identical with the eigenvalues of the previous atomi-
clike calculation. From Egg14), (16), and(8) it follows that
Finally, we evaluate the total potential
. pP(Rc) = p" " (Re). (17)
N cor val
VA=~ 7 tVes T + Ve *(r) The complete ionic pseudopotential, like in standard ap-
proaches, is derived by subtracting the electrostatic and the
+V,d p%e+ p*2 (1), (12 exchange-correlation potentials related to the valence

and the next run of the iterative loop of the atomiclike cal-PSeudo-charge-density from the screened pseudopotential.

culation can start. A stable, self-consistent all-electron poten?V€ tréat this procedure in two cases separately.
Forr=<R(, the ionic pseudopotential is determined by

tial V& is supposed to be reached before constructing the

pseudopotential by the procedure described in the next sec- -

tion. VP = V) = Ved pPI(r) =V, L pPI(r).  (18)
At this point, it should be noted that the boundary Cond"The Poisson equation for,, is solved inside the sphere of

tion for the Valence electrom_c states Of. H&) cannot be_ the radiusR¢ with the boundary condition analogous to Eq.
simulated by a particular choice of atomic-valence conﬂgu-(lo)

ration, since the shape of the valence wave functiong for
>R has no meaning in the present scheme. Therefore, the VI oPSI(R~) = VP R 19
resulting all-electron potential®{r) does not correspond to ed P™I(Re)=VesTRe). (9
any particular set of atomic valence occupation numbers

generally. Outside the sphere of the radi&., the local ionic po-

tential V|50 is constructed directly, supposing that all the

pseudoquantities match the all-electron atomiclike corre-
IV. CONSTRUCTION OF THE PSEUDOPOTENTIAL sponding quantities beyondR.. By this procedure,
Using the self-consistent results of the previous atomicPoundary-condition problems of Poisson’s equation are

like calculation, the procedure that generates pseudopotentigvoided. For>Rc we define

is performed. In particular, for a given cutoff radifi,

each component;°(r) of the screened pseudopotential and ion( .\ _ \/COrg" _cor _

; : . Vige(r)=Veg TP °(r)
each corresponding pseudo-wave-function are generated in
such a way that the following three conditions are fulfilled.

Zy

T 4 ch[pcore+ pval,atl ( r )

_ val,a
(i) At r =R the potentiaV;“(r) matches the all-electron Vid p* (). (20
potential up to the second derivative, BeyondR.e, since the boundary condition for the first term
0 0 is determined by Eq(9), and p®°'® vanish, the asymptotic
d Sl Py = i d a for i= behavior is
WV, (r)= |g1 mv r) for i=0,1,2. (13
r— - .
‘ VI(r) = (~ Zn+ Quord 1 (21)

(i) At r=R¢ radial pseudo-wave—functionsRET’l(r)

match the corresponding atomiclike radial functions by their _Equations_(lsf), (12), (10), (19).’ and(17) imply the conti-
values and first derivatives, nuity of the ionic pseudopotential &:, namely,

4 (i VI"(Ro)="lim Vi) (22)

d
o REn=lim — SREM(r) for i=01. (14 Rt
r ~Re-dr . . .
rRe for eachl. The finall-dependent semilocal pseudopotential
(i) The correct energy derivative of the pseudo-wave- on
function is ensured by the norm-conserving condition, Vi(r) forr<Re

i Vied(r)  forr>R¢

(23

Re Re
ps 2.24 ¢ = val,a 2.2
fo |RE| A()Fredr fo |RE| fofredr. 19 is applicable in the standard manner. For the efficient evalu-

_ _ o ation of the Hamilton matrix elements, a separable form is
Equations(6) and(15) imply the same normalization of sub- derived by the method of Kleinman and Byland&or by
sequent pseudopotentials in the iterative loop. We define thg|ochl's method:® which is more reliable concerning ghost

pseudo-charge-density forsRc, states. Alternatively, pseudopotentials can be described by a
linear combination of error functions and Gaussian
. 2 . . . _
ppSZEI: |RET,|(V)|2- (16) functions; which allows an analytic calculation of the non

local pseudopotential components.
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TABLE |. Comparison of the AEPP and FPA eigenvalues. For each element and strisgecéied in
the first column, the AEPP is constructed and applied to the pseudoatom with a test configuration of valence
occupation numbergthe second column In remaining columns the differences between AEPP and FPA
eigenvaluegin brackets relative differences in)%re given. For tests and comparison with ground-state
configurations we used also ionic configurations used by other authors.

Atom—structure  Test configuration A &= AEPP pseudoatomfull-potential atom(eV)
2s 2p d
C — diamond s2p?d°® —0.100 (—0.7% 0.087 (1.6%9 —0.005 (—0.5%
st7%p2d%25 -0.113 (—0.7% 0.101  (1.3% —0.001 (—0.6%
C —SiC s?p2d° -0.133 (—-1.0% 0.098 (1.8%9 —0.006 (—0.6%
st7%p?d0-25 —0.153 (—1.0% 0.115 (1.5% -0.001 (—0.8%
C —TiC s?p2d°® 0.021  (0.2%9 -—0.036 (—0.7% 0.002  (0.2%
s 7%p2d025 —0.001 (—0.0%9 —0.044 (—0.6% 0.000 (0.2%
3s 3p 3d
Si — diamond s2p?d°® 0.037  (0.3% 0.051  (1.2% —0.005 (—0.7%
stpld052 -0.073 (-0.3% 0.052  (0.4% 0.055  (1.2%
Si — SiC s2p?d°® 0.038  (0.3% 0.044  (1.1% —0.005 (—0.6%
stplg0s2 —0.005 (—0.0% 0.057  (0.4% 0.044  (0.9%
Si — CoSj s?p2d° 0.043  (0.4% 0.051 (1.2% —0.005 (—0.7%
stpt®d0s2 —0.086 (—0.4% 0.038  (0.3% 0.066  (1.4%
3d 4s 4p
Co — fce B-Co d’s?p® —0.316 (—3.5% —0.031 (—0.6%  0.007 (0.5%
d’stp025p —0.407 (-2.6% —0.080 (—0.7% —0.031 (—0.5%
Co — CoSj d’s?p° —0.423 (—-4.7% —0.037 (-0.7% —0.004 (—0.3%
d’stp025P -0.487 (-3.1% -0.078 (-0.7% —0.050 (—0.8%
3d 4s 4p
Ti — TiC d?s?p° 0.101  (2.1% -0.006 (—0.1%9 —0.032 (—2.0%
d?stp02?s 0.166  (1.6% 0.022 (0.2% —0.050 (—0.9%
Ti —TiS, d?s?p® 0.099 (2.1% —0.024 (-0.5% —0.038 (—2.4%
d?stp®? 0.140 (1.4% -0.015 (-0.2% -0.082 (—1.5%
aSee Ref. 25.
bSee Ref. 16.
V. NUMERICAL TESTS AND APPLICATIONS the tetrahedrally bonded diamond the differences are nega-

Since the primary objective of test calculations is to verifytive for 2s and positive for P electrons as expected for the
003 bond. We observe the same for silicon. Moreover, the

the AEPP method, a considerable effort has been made S
produce the results that are rid of uncertainties due to baSlSetter the agreement between the AEPP and the ionic FPA

set and numerical precision, and special care has been takEJSt'f'eS the ionic configuration for generating the standard

; : 1pgeudopotential of Si. The ionic configuration is better also
to achieve fully convergent results. For the construction o o .

: - . for cobalt and titanium atoms, especially fod &lectrons.
the radial atomiclike wave functions and the pseudopoten-
tials satisfying the conditions of Eq§l3)—(15), the phase-

The results show that for “simple” carbon and silicon
shift techniquk has been applied. The Ceperley-Alder termatoms the differences are small for any physically reasonable
has been used for exchange and correlation potentials.

valence configuration. On the other hand, we see that the
“problematic” d states in transition-metal atoms exhibit the

biggest differences between the AEPP and the FPA results.
A. Transferability tests To summarize the results presented in this section, we

The resulting AEPP derived from crystal charge densitie$onclude that the AEPP’s, derived from crystal charge den-
do not correspond to any atomic configuration, therefore, wéities and optimized for use in a solid, have reproduced the
at first tested the AEPP in free-pseudoatom calculations. weigenvalues of free atoms with a reasonable accuracy. This
derived AEPP for different crystals and applied them to thefact_lllustrates that the standard transferability of psgudopo-
calculations of eigenvalues of the pseudoatoms having varfentials from an atom to a crystal can be reversed, i.e., our
ous atomic valence configurations. For the same valencBEPP’s are transferable from a crystal to free atoms.
configurations we performed standard full-potential atomic
(FPA) calculations. The differences between the AEPP and
the FPA eigenvalues are shown in Table I.

In this table, the positive energy differences indicate the According to the scheme described in previous sections,
lower binding energies of the AEPP compared to the FPA. Irwe generated AEPP’s for C, Si, and Co atoms from diamond,

B. Total-energy tests
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TABLE II. Lattice constants and bulk moduli calculated with pseudopotentials derived from the ground-
state atomic configuration, calculated with the AEPP’s, and taken from an experiment.

Lattice constantA) Bulk modulus(GP3a
ground present experiment grouhd present experiment
silicon 5.37 5.41 5.43 101 95.7 98
diamond 3.48 3.52 3.57 445 440 440
fcc B-Co 3.49 3.41 3.3 313 308 318
TiC 4.18 4.29 4.32 515 239 242

@As ground-state configurations, $33p?), (2s2,2p?), (4s2,4p°,3d"), and (42,4p°,3d?) were used for Si,

C, Co, and Ti, respectively.

®For fcc B-Co, values calculated by means of the FLAPW metiiBeéf. 15 are given instead of the
experimental values. Results of the pseudopotential calculation by Miketah (Ref. 16, using the

pseudopotential derived from a free atom in the ionic configuratdrmpf-25d’), are 3.45 A and 296 GPa,
respectively.

silicon, and fcc-Co crystals, and for Ti and C atoms fromvalence charges of the Si and also the C atoms are different
TiC crystal. Using these AEPP’s we performed standardhan in Si and C crystals due to the charge transfer from the
total-energy calculation$ for various lattice constants and silicon atom to the carbon atom in SiC. The decrease in the
calculated the structural properties of crystals by fitting theatomic charge in the Si atom yields to an increase in the
Murnaghan-Birch equation of state to the calculated pointsbinding energy of the core levels in the silicon atom. The
Resulting lattice constants and bulk moduli are presented imcrease in the case of the carbon atom yields to a decrease in
Table 1l. For comparison, corresponding values calculatedhe binding energy of the coreslevel of the carbon atom.
from standard pseudopotentials derived from free atoms ilConsequently, the core levels of Si and C atoms in SiC are
the ground-state configurations and experimental values amhifted with respect to the same levels in pure silicon and
given. diamond crystalgcore-level shifts

The fact that AEPP’s are derived from the previous cal- The essential feature of the AEPP’s is that core states are
culation of electronic states in a crystal that presumes theelaxed and accommodated to the chemical environment of
choice of a lattice constarithe experimental value in this an atom in a solid. Therefore, two AEPP’s of silicon, one
case could cast doubt on thab initio quality of the results derived from the silicon crystal and the second from the SiC
presented here. In Sec. V D, the sensitivity of AEPP’s withcrystal, have two different cores with different core levels.
respect to the choice of the lattice constant is tested. The differences between corresponding core-level energies

The results in Table Il show that even for simple materi-determine the core-level shifts of Si. The same holds for two
als, e.g., for diamond and silicon, whedestates are not AEPP’s of carbon, one derived from diamond, the second
significant(however, included in all calculationshe agree- from the SiC crystal.
ment with an experiment is better than for the pseudopoten- The core-levels and the valence-band spectra of amor-
tials derived from the ground-state configuration of free atphous tetrahedrally bonded;SiC, (0=<x=<1) were mea-
oms. In the case of the f¢8-Co, the AEPP results are in sured by Fang and Ley.From the photoemission measure-
better agreement with full-potential linearized augmentednent, the authors derived the valuesl.43+0.07 eV and
plane wavegFLAPW) calculation$® than with the pseudopo- 1.20+0.07 eV for the core shifts of the Csland Si 2
tential calculations based on thd hocatomic configuration levels, respectively. Our calculations described above yield
by Milman et al!® The results for TiC show that the bulk values—1.49 eV for C & and 1.63 eV for Si P.
modulus provided by “ground-state” pseudopotentials is Standard pseudopotential calculations neglect core-
more than 100% off the experiment. It is quite understandrelaxation effects by definition. By this example, we demon-
able since the ground-state configuration of the Ti atom doestrate that this restriction is removed by the AEPP’s and that
not containp electrons, the accurate description of which isthe relaxation of cores can be quantitatively treated within
necessary for the slightly ionic Ti-C bonds aloxgy, andz  the pseudopotential approach.
directions in the cubi¢NaCl) structure of TiC. On the other
hand, in the close-packed fcc structure of cobpdlke states
do not play an important role, which explains the reasonable

results of the atomic ground-state configuration in this case. The resulting AEPP’s are determined by the structure, the
lattice constant, and the cutoff radiis, . The cutoff radius

Rc is a fairly insensitive parameter within a wide range of
reasonable values. In our calculations, as an optimum conve-
In the silicon crystal, all silicon atoms are tetrahedrally nient choice leading to reasonably soft pseudopotentials, the
bonded to four Si atoms, and this chemical environment decutoff radius has been determined by the condition that total
termines the energy positions of the core levels of the silicopseudocharge inside the sphere of radRdsis equal to the
atom. The situation is identical for carbon atoms in diamondyvalence chargéhumber of valence electronsf the pseudoa-
However, in the SiC crystal, silicon atoms are tetrahedrallytom. For C, Si, and Co, and for Ti and C in TiC, the resulting
bonded to four carbon atoms and vice versa. The electroniB.=1.81, 2.76, 2.53, 2.7, and 2.1 a.u., respectively. For the

D. Sensitivity of the AEPP’s to the input data

C. Core relaxation effects: Core-level shifts in SiC
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first iterative step, the superposition of atomic-valence All the tests show that the sensitivity of pseudopotential
charge densities can be used instead of the crystal pseuddg-[a'] with respect to lattice constart is negligible on
charge-density. But, in our tests, changing the condition forondition that the lattice constaat is not far(a few percent
the valence charge insid@c from 100% to 70% had no from the equilibrium valuea,;_; . Since the LDA equilib-
meaningful influence on fully converged resulesccept for  rium valueayg,;_, is different from the experimental value
the size of the basis set that can be affectddhere is N0 only by a few percent, a value near the experimental lattice
restriction forRc with respect to the atom’s own core statesconstant is a quite satisfactory input for the construction of
that are treated properly f&t inside the core region as well the AEPP’s.
as for largeRc in the region where the core charge density By enlarging the starting lattice constant,[a’] ap-
has vanished. The spheres of raj of neighboring atoms  proaches the standard free-atom based pseudopotential, since
can slightly overlagwhat inevitably happens R is deter- it corresponds to the AEPP generated for an infinite lattice
mined by 100% of the valence chajg the condition that  constant(i.e., for noninteracting atomsEven if the starting
no sphere is interfering deeply in core regions of neighboringattice constant is significantly larger than the equilibrium
atoms. Possible inaccuracy can arise only if the pseudovalue (or infinite, which is equivalent to derivingy [a°]
wave-functions differ from the all-electron wave functions in from a free atory) the convergency is usually very fast since
the region of the overlap. In the presented test calculations the free-atom based pseudopotentials do not lead to com-
is not the case since the pseudopotential generating techtetely wrong lattice constaraéq_o in most cases.
nique that we use ensures the continuity of wave functions The |aborious test calculations via “self-constructing”
up to the fourth derivative aRc, which decreases the real AEPP’s(SCAEPP'$ described above confirm that the series
“effective cut_qﬁ radius” for which the.dlfference between of SCAEPP'S{V [al,; 4]} (and, therefore, the series of the
pseudoquantities and the corresponding all-electron quantjzttice constantga.,,; ;}) converges. The limit values of
ties is negligible. the converged lattice constants and bulk moduli are the same
The experimental value of the lattice constant and theys the values presented in Table Il within the accuracy of the
crystal structure has been used for the construction of thgresented digits. Also, the tests confirm that the iterative cal-
AEPP’s in the tests described previously in Secs. V A, V B,culation of the limit of SCAEPP’s is not needed for the prac-
and V C. The natural question is, how sensitive is the AEPRical use.
with respect to the value of the lattice constant and to the The last input parameter in the present scheme for con-
corresponding crystal charge density that is used for constructing pseudopotentials is a crystal structure. In order to
structing the AEPP via boundary conditionsRa . study the “geometry effect” we applied our scheme for the
To answer this question, we performed the iterative caldetermination of titanium pseudopotential from two different
culations described as follows: At first the charge density incompounds: TiC and TiS These compounds differ in the
a crystal, using a lattice constaaf and pseudopotentials Structure(cubic vs hexagonal, respectivglynteratomic dis-
derived from free atoms, has been calculated. Employing thitgance(2.16 vs 2.42 A, and the symmetry of the charge dis-
charge density, the AEPN[a°] has been derived. Then, tribution around titanium atom.133, 0.216, and 0.528 vs
using standard total-energy calculations, the minimum en0.106, 0.150, and 1.504 electrons £, andd |-projected
ergy (equilibrium) lattice constana,, has been determined. partial charges within the sphere of radius 2.16 A, respec-
The notation indicates thfﬂéq.o is based on thev [a°]  fively). Atthe end of TiC and Tigcalculations we obtained
pseudopotential. In the next iterative step, i.e., for derivingWo AEPP’s for Ti. Both reproduce correct eigenvalues used
the new AEPP, the charge-density distributions related té0r the free-pseudoatom calculati¢see Table)l However,
this equilibrium lattice constardg,, have been used. With the amounts of the, p, andd partial charges are different in
the new pseudopotential [aéq.o]v the new equilibrium lat- these pseudoatoms. It corresponds to the fact that the local

; 2 : symmetry of the valence charge in the TiC and,ld#fers.
ice constanta,,, has been found. Employing the new This indicates that the “geometry effect” is not negligible

Charge distribution relgted méql’ the new pseudopotential for the AEPP of Ti. The AEPP technique reflects the changes
V' [8cq,] has been derived and used for the new total-energy, e angular momentum character of electron states of the
calculation. In this way, the series of equilibrium lattice con-Tj atom in the bond and accommodates them for the required
stants{aeq; -1} and of pseudopotentialy/ [a.q;-1] has  nponspherical application. This accommodation is important
been found. The purpose of these calculations Was0  particularly for transition-metal elements, and as a conse-
study the sensitivity of the pseudopotentials to the latticgyyence, the “most suitable” atomic configurations for creat-
constants used in the preceding steps, &ndto verify  jng Ti pseudopotentials by means of standard free-atom-
whether the iterative scheme described above creating theysed techniques should be different for pseudopotentials
series of “self-constructing” pseudopotentialé[a.q;-1]  dedicated for Ti in TiC and for Ti in Ti$
converges to a meaningful lattice constant and bulk modulus. |n the case of Tigwe have studied occupied and unoc-
The numerical tests show that starting from the expericupied states by means of a polarized x-ray absorption. For
mentala’ the only relevant change, if any, between subsecalculating the spectra, the accuracy in the angular momen-
quent terms in the series of pseudopotentafs,,;_;] was  tum character of the electronic states is crucial, particularly
detected during the first iterative step, i.e., frahfa®] to  for p states, since thp states of titanium are created by the
\ [a}eqlo]. Even this change is small compared to the differ-sulfur-titanium bond, and the dipole transition rule selects
ence between th¥ [a°] and the atomic ground-state-basedthese states in the case of theKIspectra. The test calcula-
pseudopotential. tion was done using three types of pseudopotentials: the



PRB 58 ALL-ELECTRON PSEUDOPOTENTIALS 12 719

pseudopotentials derived from ground-state configurations ahodated to the system under study; however, the technical
free atoms, the standard pseudopoterttitidat are based on advantages of the frozen-core approximation are retaiiegd.
ionic configurations, and the AEPP’s. In the first case, thelhe relation between the pseudo- and the all-electron quan-
resulting density of states for occupied electronic states waldties is more complicated in the present approach than in the
in good agreement with other calculations, but thekTab- ~ PAW method, where the parallel basis sets for all electron
sorption spectrum was in disagreement with the experimenand pseudo-Hilbert spaces have been introduced. In the
In the second case, the BHS pseudopotentials led to resulgesent approach, the transformation between the all-electron
similar to LMTO band-structure calculations of Wt al’®  quantities and the corresponding pseudopotential quantities
that are also in poor accordance with the experiment. On this dependent on the particular pseudopotential-generating
other hand, the calculations based on the AEPP’s of Ti and Scheme and the reconstruction scheme.

give practically the same results as the FLAPW

calculations'® and a good agreement between the calculated Vil. SUMMARY

Ti K absorption spectrum and the experiment in the energy e present pseudopotentials are self-consistently derived
range up to 25 eV above Fermi levetray absorption near- om radial partial charge densities referred to the atom of
edge structure regionin detail, these results have been de-jnerest that interacts with other atoms in a solid. Different

scribed in Ref. 20. from the standard procedures that construct pseudopotentials
and pseudo-wave-functions satisfying boundary conditions
VI. RELATIONS TO EXISTING METHODS of a free atom, we use boundary conditions determined by

The present approach described in Secs. Il and IV is noTlhe self-consistent solid-state calculation of the electronic

bound to a particular pseudopotential-generating techniqué'Ucture. By a completelab initio procedure, within a

Besides the phase-shift technique, other techniques—such ageudopotential _framewor(q) the i_ntu!tivead hacchoice of
those of Refs. 4 and 5—could be used as well, as long as th‘@leme occupation number;, which is necessary for the con-
conditions of Egqs(13)—(15) are ensured. Also, the ultrasoft stru.ctlon. of pseudopotentials by ex's“r?g methpds, IS
pseudopotential scheffecan be used in combination with avoided;(2) the all-electron core response is taken into ac-
the present approach. Relaxation of the generalized normount properly, €., the frozen-core approximation 1S
conserving constrain®, ;=0 does not cause any change in avoided;(3) the nonlinear core-valence exchange-correlation
the procedure describlé]d above, except for E2sand (6) term is treated correctly since the ionic pseudopotential is

where the augmentation charg®s; must be taken into ac- unscreened with the correct valence charge dens_,ity, and,
count J therefore, any othefe.g., a model core chargapproxima-

Relations to other approaches closing the gap betweelP"S of it are avoided; an4) optimum locations for the

pseudopotential and all-electron methods should be merf"er9y windows, i.e., the energy transferability ranges for

tioned. In this respect, we considé) the methods using pseudopote.nua_ls, are found in a' natural way. .
solid-state all-electron calculations  to construct The applications of the AEPP’s, e.g., for calculating total

pseudopotentia-23and(ii) Blochl's projector augmented- energies, forc_es, and stress tensors, are not affectecj and are

wave methoc{PA\’/\/) 9 the same as in the case of standard pseudopotentials. The
Contrary to the rﬁethods ifi), the present approach does procedures for reconstructing the all-electron wave functions

not require a preceding all-electron calculation. This could” the core region and for generating AEPP’s are not com-

save computational expenses, if the self-consistent pseudByt"’“Ionally expensive and can be used in standard pseudo-

potential iterative loop of the present scheme is performed "potentlal packages.
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