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Localizations in coupled electronic chains
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We studied effects of random potentials and roles of electron-electron interactions in the gapless phase of
coupled Hubbard chains, using a renormalization group technique. For noninteracting electrons, we obtained
the localization length proportional to the number of chains, as already shown in the other approaches. For
interacting electrons, the localization length is longer for stronger interactions, that is, the interactions coun-
teract the random potentials. Accordingly, the localization length is not a simple linear function of the number
of chains. This interaction effect is strongest when there is only a single chain. We also calculate the effects of
interactions and random potentials on charge stiffng$8163-18208)05143-1

l. INTRODUCTION spins>* For Hubbard model with small, this RG equation
becomes
One of the attractive topics in mesoscopic one-
dimensional (1D) electron systems is the disorder effect. dW_ u
While no extended state can survive in the presence of ran- dl o\ moe W, @

dom potentials in 1D infinite systems, the systems of finite _ _ _ _

size can be metallic if the size is smaller than the localizatiotwherev. is the Fermi velocity. Here electron-electron inter-
length. It is always important to take a serious look at theactions would screen the impurity potentials. Since a spin
interplay between random potentials and electron-electrof€nsity wave(SDW) correlation is dominant in the ground
interactions when we discuss the transport properties of mestate of the repulsive Hubbard model, the interactidn
soscopic metallic wires, which are now available as arfnakes the particle density uniform, and therefore makes the
achievement of the recent technological progress. An inter¢OUPIing of the density to the impurities weak.

esting example is a mesoscopic metallic ring, which has at- These opposite roles of interactions in the spinless and

tracted much attention since a large persistent current w Sf’ggll\?v%[hf%nglo?sb\lgﬁ é?te;r(;?;gﬁ%uwgﬁ?:ﬁl%dnhc?hnenec'
observed even with a modest amount of impurities in the P P ' 9

ring. A simple study, only taking into account the impurity suppressjon of the effective disorder ;trength due to electron-

f ) failed t | ' hal rand it i i electror_l interactions in the models with spin _degrees of fre_e-

effect, faile O €xplain such a fargé currerdnd itis nec- 4,y might explain the observed large persistent current in

essary to consider electron-electron interactions. the disordered metal rings, we should carefully consider the
It is in general quite difficult to correctly take account of

] ! ’ ‘ fact that the metal rings have a finite cross section and there-
interactions. One of the exceptions is 1D systems, wherg, e have a finite number of channels.

interactions can be treated rather rigorously with the help of | 53qder systems have recently attracted a great deal of
bosonization techniques. A renormalization gr¢®®) cal-  attention. The disorder effect on electronic ladder systems
culation for 1D systems with impurities was performed by has not however, been widely investigated so far, and there
Giamarchi and SchufzOne of their interesting results is that are few studies which calculated RG equations for a two-leg
particle-particle interactions of spinless Fermions would enelectronic ladder with impurity potentiafs® If we just fo-
hance the disorder effect and help the system localize, whileus on the role of interactions in the presence of impurities, it
the interactions of spinning Fermiorie.g., Hubbard type is shown that the role changes drastically depending on the
interaction$ would counteract the disordér. phase; the impurity effect is enhanced by electron-electron
The RG calculation showed that the effective backwardnteractions in theC1S2phase(CnSmmeans thah charge
impurity scattering/V of a spinless Fermion system is renor- modes andn spin modes are gaplé8svhile it is suppressed
malized asdW/dI=(3—2K,)W whereK,, is the Luttinger in the C2S2 phase(with all modes being gaples¥ Re-
parameter of the charge motiearger repulsive interactions member that the ground state of a single chain is gapless and
give rise to smalleiK,, and therefore to stronger effective the impurity effect is suppressed by the interactions. There-
impurity potentials. This is due to the enhancement of chargéore, as far as the gapless phase is concerned, the role of
density wave(CDW) correlations in the ground state of the interactions acting against random potentials does not alter
system. The repulsive interactions would enhance the CDWven when we increase the number of channels from 1 to 2.
correlations, which make the system easily pinned by thédowever, the point we should note is that the suppression of
impurities. For electrons with spins, however, the renormalthe effective disorder strength due to interactions is smaller
ized impurity potential is given bydW/dl=(3—K,—K, inthe two channel ladder than the single channel chaif.
—y)W, whereK (v=p,o) is the Luttinger parameters of this tendency continues in systems with more channels, we
charge and spin modes, respectively, andneasures the could not expect the large interaction-driven suppression of
backward scattering strength between electrons of oppositdectron localizations in a thin but finite cross-section wire. It
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is therefore of importance to see whether electron-electrowhereV* is the complex conjugate &f. After the bosoniza-
interactions counteract random potentials in the increasetion we get the forward and backward scattering terms. Since
number of channels and if so how large the effect is. the forward scattering does not affédg,® we only consider

In this paper we first show in Sec. Il how the disorderthe effect of the backward impurity scattering. The backward
effect on a noninteracting electronic ladder changes as thsecattering terms are given by

number of chains is increased. In Sec. Ill we turn on

electron—elect.ron intgractions anc_i inve_stigate the interplay _ i de £ope iyt bppt S(Bagt dpoV2
between the interactions and the impurity potentials in one-, a7s

two-, and three-chain ladders. Section IV is devoted to the

summary of the paper. X CO${(Oap— 0p,) +S(0ae— 05, }/\2]+H.cC.,

(7)
wherea is the lattice constanf is assumed to be a linear
We start from a tight-binding Hamiltonian of coupled combination of Gaussian random variables and then the fol-
chains with the open boundary condition lowing general form of the action will appear in the replica
trick method by integrating out the random variables:

II. NONINTERACTING DISORDERED CHAINS

HOZ_tE C1r:r10iCm0'i+1_tJ_2 C;rno'icm+10'i+H'C'l (2)

$r-— 5 3 73
wherem andi are the chain and site indices, respectively. ()% aBys jjss’ 4
This hopping terms are diagonalized by a unitary transfor-
mation ¢,= 2 ,Vm.a, and they form bands. The matri XJ 0 —0 +s(6 —6. )12
for one-, two-, and three-chain systems, for example, is given cos potS( po)] \/—}
b .
y xcog[ 0}~ 0%, +s'(6),—0},)1/\2}
(1 (Ng=1), X COS{[ iyt blgy TSPy Bipy)]
%— * —[¢h,+t o5+ (Pt 5NN, (®
2 2 (N4=2), wherei,j are the replica indices. In order to discuss the
1 1 disorder effect of various coupled chains on the same basis,
: p
\/_-2- - _2 we assumen, P is a Gaussian random variable and satisfies
(nimPni™P) =W 8 . Hence we have
V=< 1 1 1
5 = 3 ()
2 2 2 :w; VE VgV, Vis. 9)
1 1
= 0 -—=1 HNa=3), The RG equation fo2%% is
V2 V2 &
1 1 1 dZ
- - =7, 10
\ 2 \/5 2 dl ¥ (10

where we used the fact thit's are all equal to 1 for free

B
whereN,, is the number of the chains. Following the stan- partlcles The solution of the RGéequatlgg B,5(1)
dard bosonization procedure, we get the Tomonaga-Luttinget © WEnViaVngVn, Vs Note thatWe =X ,Z74(1). The
type Hamiltonian RG equation stops wheZy (1) reaches~vg?/a, and it is
when I ~log(L,,c./a) wherelL,, is the localization length.
T

Putting all together, we get
where v=p,o represents charge and spin mode, respec- Lioc™Nenyr W (1D
tively, and « is the band index. With no interaction, the _ o
parameterK are equal to 1 and are the Fermi velocities of On the other hand, the electron scattering rate is given by

uavKav(WHav)z K ( X¢a1/)2 1 (4)

each band. 7 1~Wp(er), wherep(eg) (~u;1) is the density of states
The impurity scattering potential term is originally written at the Fermi level, and hence the mean free pathvgr
in the form ~TF2/W. Then we get the known relatiGh'? L,o.~Ng o -
In order to see the disorder effect on the transport prop-
erties, we next calculate charge stiffn&swhich measures
|mP 2 nlmpcmalcmm (5) g »

the strength of the Drude peak=D 5(w) + 0/¢4. Note that
D is also a measure of the persistent currents for small flux.
The external flux couples with the currédlj .5, Where

— impy /% T
=2 MViVmsiidsas 6 4 is the band index. SINCE 5] s S, 11,,, . the charge stif-
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ness is proportional t&,K,,u,,. Ignoring the irrelevant wherev=p,o represents the charge and spin mode, respec-
numerical factor, we define the charge stiffness per channgively, andr is the new band index assigned by the unitary

by D= (1/N¢y) 2K ,,Uq, - FOr noninteracting and nonimpu- transformation Dov—2Tor brv and
rity ladders,D is the averaged Fermi velocity. n,—=T,II,,,where
In the presence of impurities the RG equation for the
charge stiffness is given by (1 (Ng=1),
1 1
dD 2au?,( 1 2a— V22
= e aB| - _ "7 -1 N4y=2),
i }a‘, 7 NchEﬁ: zaﬂ> —vF We. | 1 (Nep=2)
(12 = T =
2 2
D has no explicitN, dependence and the effect of increas- T=9 _L L L
ing channel number can appear only througH, which is V2 3 \/g
usually weak. For a finite system of sike D is given by 1 \/5
0 — —1/= N4=3).
\/3- 3 ( ch )
2
D~Do—— vg WL, (13 S 1
V2 3 e

whereD, is a constant. For a given site the charge stiff- T_his unitary transfo_rmation_ is necessary to diagoneil'l@e

nessD is smaller for stronger disorder, and for a given dis-Since a part of the interaction terms are includedtiy the

order W, D is smaller for a larger system. The former is parameterK andu have different values from the ones of

trivial a;1d the latter is becauss,./L becomes smaller ds the noninteracting case. Hereafter we use Greek letters
1 C . . .

increases withW fixed and hence the system will be in a @8-, for the oldband index and italic letters,..., for

more localized regime. This will be clear if we rewrite Eq. the new band mde_x._ . .
(13 as The other remaining interaction terms are represented by

H,. Since there are still a lot of terms i, , we do not write
them down all here and we only note that the interaction

2 L matrix elemeng,, s in the commonly used notation, repre-
D~Dg— —Ngvg —. (14)  senting the scattering fromn(3) bands to §,5) bands, is
& Loc given by

We cannot simply extend these discussio\{g— o, that

is, to two dimension$2D), because we constructed the RG
theory based on the Tomonaga-Luttinger-type bosonized
Hamiltonian with well-defined subbands, which is not an ap-n the case of the Hubbard model, although some of them,

ga,ﬁ"yﬁz UEI VlaV|BVry I*S (18)

propriate basis for a 2D system. such asgy,zp, andg,gps, Should be set to zero due to lack
of the momentum conservation. As stressed in Ref. 13, one
IIl. INTERACTING DISORDERED CHAINS should not forget the sign factors of which come from

Majorana-Fermion operators. In the present case, the back-
In the previous section we showed that the localizationward scattering interactiogglczﬁﬁ, for example, has to be
length is proportional to the number of chains and that thenultiplied by — 1.
effect of random potentials becomes weaker as the chain The presence of the interaction terms made the phase dia-
number increases. What happens if we turn on interactiongram quite rich®=?! and the interplay between interactions
between the particles. The original Hamiltonian is then Eqand random potentials is strongly phase dependent as stated
(2) plus the Hubbard-type interaction term in Sec. |. In order to construct a systematic view by changing
the number of chains, we should pick up a common phase,
gaplessphase, where no gap opens both in the charge and
UE N (15) spin modes. There is als_o anqther reason to study gapless
mpitmii - phase. When the forward impurity scatterings are considered,
Fujimoto and Kawakami show@dhat the electron-electron
) ) ] ) interactions are effectively suppressed and as a result the
A part of the interaction terms can be combined with thecharge and spin gaps collapse. In this situation the remaining
kinetic term to give task is to study the effect of the backward impurity scatter-
ings on the gap-collapsddapless phase.
In the gapless phase the action presenting the backward
U K, (T, )2+ %(&x(ﬁrv)z . (16) impurity sacﬁa_tterings is again given by E®&). The RG equa-
rv tion for Z75 is

dx
Ho=2 fﬁ

rv
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735 [, 2 1 (Ne=D),
yé _ = _ 2 _ 2 ¢
|3 g ([T T+ (T T) Cc={025 (Ng=2), (22
X (Kt Kr_gl)+[(Tar+TB,)2+(T7r+T5r)2] 0.4 - (Ng=3).
X (Kep Ko} ap Wﬁ’ a B” Therefore the interactiot) always makes the localization

length longer, namely, the interactions have a delocalization
(19) effect in the gapless phase of the coupled chain syst€riss.
not a monotonic function oN., as far as £N. =<3 and
hence it is not always true that the interaction effect becomes
where gV represents the backward scattering interactionsweaker asN., increases. Anyway, since it is easy to prove
Note that for noninteracting electrons, we ha¢e 1 andg C=1, the delocalization effect is strongest wheg,=1.

=0 and then Eq(19) reduces to Eq(10). Also, whenN, Next we study the charge stiffnegs. As noted in the
=1, Eq. (19 reduces todW/dl=(1—-U/u,m)W which is  previous section, the external flux couples ,gj,s
just what we mentioned in Eql). 3 I1,,=2 4 Tull,, . Recall that the Greek letter repre-

Since the renormalization ci\‘.y‘S has a strondK depen- sents the old band index assigned before the operatidin of
dence, the localization length and other physical quantitiesind the italic letterr is the new band index. Sincg,T,,
would change in accordance within a complicated way. =1 (when Ng,=1), v24,; (When Ng,=2), 36,, (when
To make the description simple, we consider the weak interNy,=3), the charge stiffness is given y=u, K, where
action limit and useK=1 as in the noninteracting system. r=1 (whenN.=1,2), r=2 (whenN.,=3) with the irrel-
Also we assume that the random impurity potentials are sevant numerical factor being omitted. The RG equation is
weak that we can forget about the renormalizatioiKofThe  then given by
RG equatior(19) can then be written in the following matrix
form:

dD 2au,
— za 2
. ﬁTar

_@U 1wél CU/UFw)l
di u - B

Z
G -(1-6)Z. (20) (23

wherer=1 (whenNg,=1,2), r=2 (whenNg,=3). In the
The (i,j) element of theN X N, matrix Z is Z wherei second line of Eq(23) the interactions are assumed to be
=(a,B) andj= (v, 5) The (i,j) element of the matrnG is  small. For a finite system of size,
given by (1b,m) g'.)5; whereg™® is now assumed to in-
clude the sign created by the Majorana-Fermion operators
mentioned above. The signs of the elementsGoére not ’a
always plus and it is not in general trivial whether the pres- D~Dy— —vr W
ence of G in Eq. (200 would weaken the growth oF, ™
namely, whether the interactions would suppress the impu-
rity effects. We describe this in more detail in the following.

Since we assume the interactions are weak and ignore thggain, the interactiord suppresses the random potential ef-
renormalization ofG, the solution of Eq.(20) is Z(l) fect and gives larger value of the charge stiffness that in the
=el179)1Z(0)~€'(1-G1)z(0).  Therefore  TFZ(I)]  noninteracting case.
~e{NgW—1Tr{Z(0)]}~ N Wi~ CVveml = where C
=u,m Tr{GZ(0)]/(NWU). Since, Whenl~log(L,OC/a), IV. SUMMARY
TZ(1)]~NZoe2/a, we have Ngop/Wa~(Lo/
a)1CUET Then the localization length of the interacting
system has the form

L\ 1-CUlvgm

a

(24)

We investigated the role of electron-electron interactions
in the coupled Hubbard chains with random potentials. For
noninteracting systems, a RG calculation shows that the ef-
fective strength of the impurity potentials grows towards the
14CUfoen gtrong coupling limit and the localization length is propor-
1) tional to the number of chainy.,. In the presence of inter-

actions between the patrticles, the role of the interactions

changes from phase to phase as previously shown in Refs.

8,10, and therefore we only focused on the gapless phase of
whereLIOC N2/ W is the localization length of the non- N, chain systems. Based on the RG calculation, we showed
interacting system. Because of the presenct pthe local- that the interactions always reduce the effective strength of
ization length is no longer simply proportional h&,,. Tak-  the impurity potentials. The degree of the reduction is sensi-
ing the Majorana-Fermion sign aof,g,s into accountC  tive to Ng,, and the countereffect of the interactions against
becomes the random potentials is strongest whég=1.

L(O)

loc

I—Ioc
a

a
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