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Localizations in coupled electronic chains

Hiroyuki Mori
Department of Quantum Matter Science, ADSM, Hiroshima University, Hiroshima 739-8526, Japan

~Received 23 June 1998!

We studied effects of random potentials and roles of electron-electron interactions in the gapless phase of
coupled Hubbard chains, using a renormalization group technique. For noninteracting electrons, we obtained
the localization length proportional to the number of chains, as already shown in the other approaches. For
interacting electrons, the localization length is longer for stronger interactions, that is, the interactions coun-
teract the random potentials. Accordingly, the localization length is not a simple linear function of the number
of chains. This interaction effect is strongest when there is only a single chain. We also calculate the effects of
interactions and random potentials on charge stiffness.@S0163-1829~98!05143-1#
e
ct
ra
it
io
th
tro
m
a
te
a

w
th
ty

of
e
o

by
t

en
h

ar
r-

s
e
rg
e
D
th
a

f

s

r-
pin
d

the

and
ec-

ron-
ee-
t in
the
ere-

l of
ms
ere
leg

, it
the
ron

and
re-

le of
lter

o 2.
n of
ller

we
of

. It
I. INTRODUCTION

One of the attractive topics in mesoscopic on
dimensional~1D! electron systems is the disorder effe
While no extended state can survive in the presence of
dom potentials in 1D infinite systems, the systems of fin
size can be metallic if the size is smaller than the localizat
length. It is always important to take a serious look at
interplay between random potentials and electron-elec
interactions when we discuss the transport properties of
soscopic metallic wires, which are now available as
achievement of the recent technological progress. An in
esting example is a mesoscopic metallic ring, which has
tracted much attention since a large persistent current
observed even with a modest amount of impurities in
ring.1 A simple study, only taking into account the impuri
effect, failed to explain such a large current,2 and it is nec-
essary to consider electron-electron interactions.

It is in general quite difficult to correctly take account
interactions. One of the exceptions is 1D systems, wh
interactions can be treated rather rigorously with the help
bosonization techniques. A renormalization group~RG! cal-
culation for 1D systems with impurities was performed
Giamarchi and Schulz.3 One of their interesting results is tha
particle-particle interactions of spinless Fermions would
hance the disorder effect and help the system localize, w
the interactions of spinning Fermions~e.g., Hubbard type
interactions! would counteract the disorder.4

The RG calculation showed that the effective backw
impurity scatteringW of a spinless Fermion system is reno
malized asdW/dl5(322Kr)W whereKr is the Luttinger
parameter of the charge mode.3 Larger repulsive interaction
give rise to smallerKr and therefore to stronger effectiv
impurity potentials. This is due to the enhancement of cha
density wave~CDW! correlations in the ground state of th
system. The repulsive interactions would enhance the C
correlations, which make the system easily pinned by
impurities. For electrons with spins, however, the renorm
ized impurity potential is given bydW/dl5(32Kr2Ks

2y)W, where Kn(n5r,s) is the Luttinger parameters o
charge and spin modes, respectively, andy measures the
backward scattering strength between electrons of oppo
PRB 580163-1829/98/58~19!/12699~5!/$15.00
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spins.3,4 For Hubbard model with smallU, this RG equation
becomes

dW

dl
5S 12

U

pvF
DW, ~1!

wherevF is the Fermi velocity. Here electron-electron inte
actions would screen the impurity potentials. Since a s
density wave~SDW! correlation is dominant in the groun
state of the repulsive Hubbard model, the interactionU
makes the particle density uniform, and therefore makes
coupling of the density to the impurities weak.

These opposite roles of interactions in the spinless
spining fermions was later checked numerically in conn
tion with the problem of persistent current.5–7 Although the
suppression of the effective disorder strength due to elect
electron interactions in the models with spin degrees of fr
dom might explain the observed large persistent curren
the disordered metal rings, we should carefully consider
fact that the metal rings have a finite cross section and th
fore have a finite number of channels.

Ladder systems have recently attracted a great dea
attention. The disorder effect on electronic ladder syste
has not however, been widely investigated so far, and th
are few studies which calculated RG equations for a two-
electronic ladder with impurity potentials.8–10 If we just fo-
cus on the role of interactions in the presence of impurities
is shown that the role changes drastically depending on
phase; the impurity effect is enhanced by electron-elect
interactions in theC1S2phase~CnSmmeans thatn charge
modes andm spin modes are gapless!8 while it is suppressed
in the C2S2 phase~with all modes being gapless!.10 Re-
member that the ground state of a single chain is gapless
the impurity effect is suppressed by the interactions. The
fore, as far as the gapless phase is concerned, the ro
interactions acting against random potentials does not a
even when we increase the number of channels from 1 t
However, the point we should note is that the suppressio
the effective disorder strength due to interactions is sma
in the two channel ladder than the single channel chain.10 If
this tendency continues in systems with more channels,
could not expect the large interaction-driven suppression
electron localizations in a thin but finite cross-section wire
12 699 ©1998 The American Physical Society
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is therefore of importance to see whether electron-elec
interactions counteract random potentials in the increa
number of channels and if so how large the effect is.

In this paper we first show in Sec. II how the disord
effect on a noninteracting electronic ladder changes as
number of chains is increased. In Sec. III we turn
electron-electron interactions and investigate the interp
between the interactions and the impurity potentials in on
two-, and three-chain ladders. Section IV is devoted to
summary of the paper.

II. NONINTERACTING DISORDERED CHAINS

We start from a tight-binding Hamiltonian of couple
chains with the open boundary condition

H052t( cms i
† cms i 112t'( cms i

† cm11s i1H.c., ~2!

wherem and i are the chain and site indices, respective
This hopping terms are diagonalized by a unitary trans
mation cm5(aVmaaa and they form bands. The matrixV
for one-, two-, and three-chain systems, for example, is gi
by

~3!

whereNch is the number of the chains. Following the sta
dard bosonization procedure, we get the Tomonaga-Luttin
type Hamiltonian

H05(
na

E dx

2pFuanKan~pPan!21
uan

Kan
~]xfan!2G , ~4!

where n5r,s represents charge and spin mode, resp
tively, and a is the band index. With no interaction, th
parametersK are equal to 1 andu are the Fermi velocities o
each band.

The impurity scattering potential term is originally writte
in the form

H imp5( nmi
impcms i

† cms i ~5!

5( nmi
impVma* Vmbaas i

† abs i , ~6!
n
d

r
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whereV* is the complex conjugate ofV. After the bosoniza-
tion we get the forward and backward scattering terms. Si
the forward scattering does not affectH0 ,9 we only consider
the effect of the backward impurity scattering. The backwa
scattering terms are given by

Hb5
1

paE dx(
ab,s

jabe2 i $far1fbr1s~fas1fbs!%/A2

3cos@$~uar2ubr!1s~uas2ubs!%/A2#1H.c.,

~7!

wherea is the lattice constant.j is assumed to be a linea
combination of Gaussian random variables and then the
lowing general form of the action will appear in the replic
trick method by integrating out the random variables:

Sb
imp5

2

~pa!2 (
abgd

(
i jss8

Zgd
ab

3E cos$@uar
i 2ubr

i 1s~uas
i 2ubs

i !#/A2%

3cos$@u gr
j 2u dr

j 1s8~u gs
j 2u ds

j !#/A2%

3cos„$@far
i 1fbr

i 1s~fas
i 1fbs

i !#

2@f gr
j 1f dr

j 1s8~fgs
j 1fds

j !#%/A2…, ~8!

where i , j are the replica indices. In order to discuss t
disorder effect of various coupled chains on the same ba
we assumenmi

imp is a Gaussian random variable and satisfi
^nmi

impnl j
imp&5Wdmld i j . Hence we have

Zgd
ab5W(

n
Vna* VnbVngVnd* . ~9!

The RG equation forZgd
ab is

dZgd
ab

dl
5Zgd

ab , ~10!

where we used the fact thatK ’s are all equal to 1 for free
particles. The solution of the RG equation isZgd

ab( l )
5elW(nVna* VnbVngVnd* . Note that Wel5(bZab

ab( l ). The

RG equation stops whenZgd
ab( l ) reaches;vF

2/a, and it is
when l; log(Lloc /a) where L loc is the localization length.
Putting all together, we get

L loc;Nch

vF
2

W
. ~11!

On the other hand, the electron scattering rate is given
t21;Wr(eF), wherer(eF) (;vF

21) is the density of states
at the Fermi level, and hence the mean free pathl e5vFt
;vF

2/W. Then we get the known relation11,12 L loc;Nchl e .
In order to see the disorder effect on the transport pr

erties, we next calculate charge stiffnessD, which measures
the strength of the Drude peak,s5Dd(v)1s reg. Note that
D is also a measure of the persistent currents for small fl

The external flux couples with the current(asj as , where
a is the band index. Since(asj as}(aPar ,the charge stiff-
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ness is proportional to(aKaruar . Ignoring the irrelevant
numerical factor, we define the charge stiffness per chan
by D5(1/Nch)(aKaruar . For noninteracting and nonimpu
rity ladders,D is the averaged Fermi velocityvF.

In the presence of impurities the RG equation for t
charge stiffness is given by

dD

dl
52(

a

2auar
2

uas
3 p

S 1

Nch
(
b

Zab
abD 52

2a

p
vF

21Wel .

~12!

D has no explicitNch dependence and the effect of increa
ing channel number can appear only throughvF

21, which is
usually weak. For a finite system of sizeL, D is given by

D;D02
2

p
vF

21WL, ~13!

whereD0 is a constant. For a given sizeL, the charge stiff-
nessD is smaller for stronger disorder, and for a given d
order W, D is smaller for a larger system. The former
trivial, and the latter is becauseL loc /L becomes smaller asL
increases withW fixed and hence the system will be in
more localized regime. This will be clear if we rewrite E
~13! as

D;D02
2

p
NchvF

L

L loc
. ~14!

We cannot simply extend these discussion toNch→`, that
is, to two dimensions~2D!, because we constructed the R
theory based on the Tomonaga-Luttinger-type bosoni
Hamiltonian with well-defined subbands, which is not an a
propriate basis for a 2D system.

III. INTERACTING DISORDERED CHAINS

In the previous section we showed that the localizat
length is proportional to the number of chains and that
effect of random potentials becomes weaker as the c
number increases. What happens if we turn on interact
between the particles. The original Hamiltonian is then E
~2! plus the Hubbard-type interaction term

U( nm↑ inm↓ i . ~15!

A part of the interaction terms can be combined with t
kinetic term to give

H05(
rn

E dx

2pFurnKrn~pP rn!21
urn

Krn
~]xf rn!2G , ~16!
el

-

-

d
-

n
e
in

ns
.

wheren5r,s represents the charge and spin mode, resp
tively, and r is the new band index assigned by the unita
transformation fan→( rTarf rn and
Pan→( rTarP rn ,where

~17!

This unitary transformation is necessary to diagonalizeH0 .
Since a part of the interaction terms are included inH0 , the
parametersK and u have different values from the ones o
the noninteracting case. Hereafter we use Greek let
a,b,... , for the oldband index and italic lettersr ,... , for
the new band index.

The other remaining interaction terms are represented
H1 . Since there are still a lot of terms inH1 , we do not write
them down all here and we only note that the interact
matrix elementgabgd in the commonly used notation, repre
senting the scattering from (a,b) bands to (g,d) bands, is
given by

gabgd5U(
l

VlaVlbVlg* Vld* ~18!

in the case of the Hubbard model, although some of th
such asgabba andgabbb , should be set to zero due to lac
of the momentum conservation. As stressed in Ref. 13,
should not forget the sign factors ofg which come from
Majorana-Fermion operators. In the present case, the b
ward scattering interactiongaabb

(1) , for example, has to be
multiplied by 21.

The presence of the interaction terms made the phase
gram quite rich13–21 and the interplay between interaction
and random potentials is strongly phase dependent as s
in Sec. I. In order to construct a systematic view by chang
the number of chains, we should pick up a common pha
gaplessphase, where no gap opens both in the charge
spin modes. There is also another reason to study gap
phase. When the forward impurity scatterings are conside
Fujimoto and Kawakami showed9 that the electron-electron
interactions are effectively suppressed and as a result
charge and spin gaps collapse. In this situation the remain
task is to study the effect of the backward impurity scatt
ings on the gap-collapsed~gapless! phase.

In the gapless phase the action presenting the backw
impurity scatterings is again given by Eq.~8!. The RG equa-
tion for Zgd

ab is
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dZgd
ab

dl
5F32

1

8(r
$@~Tar2Tbr !

21~Tgr2Tdr !
2#

3~Krr
211Krs

21!1@~Tar1Tbr !
21~Tgr1Tdr !

2#

3~Krr1Krs!%GZgd
ab2

1

usp (
a8b8

ga8gdb8
~1! Za8b8

ab ,

~19!

where g(1) represents the backward scattering interactio
Note that for noninteracting electrons, we haveK51 andg
50 and then Eq.~19! reduces to Eq.~10!. Also, whenNch
51, Eq. ~19! reduces todW/dl5(12U/usp)W which is
just what we mentioned in Eq.~1!.

Since the renormalization ofZgd
ab has a strongK depen-

dence, the localization length and other physical quanti
would change in accordance withK in a complicated way.
To make the description simple, we consider the weak in
action limit and useK51 as in the noninteracting system
Also we assume that the random impurity potentials are
weak that we can forget about the renormalization ofK. The
RG equation~19! can then be written in the following matri
form:

dZ

dl
5~12G!Z. ~20!

The (i , j ) element of theNch3Nch matrix Z is Zgd
ab where i

5(a,b) and j 5(g,d). The (i , j ) element of the matrixG is
given by (1/usp) ggabd

(1) whereg(1) is now assumed to in
clude the sign created by the Majorana-Fermion opera
mentioned above. The signs of the elements ofG are not
always plus and it is not in general trivial whether the pr
ence of G in Eq. ~20! would weaken the growth ofZ,
namely, whether the interactions would suppress the im
rity effects. We describe this in more detail in the followin

Since we assume the interactions are weak and ignore
renormalization ofG, the solution of Eq.~20! is Z( l )
5e(12G) lZ(0);el(12Gl)Z(0). Therefore Tr@Z( l )#
;el$NchW2 l Tr@Z(0)#%;NchWe(12CU/vFp) l , where C
5usp Tr@GZ(0)#/(NchWU). Since, whenl; log(Lloc /a),
Tr@Z( l )#;Nch

2 vF
2/a, we have NchvF

2/Wa;(L loc /
a)12CU/vFp. Then the localization length of the interactin
system has the form

L loc

a
;S L loc

~0!

a D 11CU/vFp

, ~21!

whereL loc
(0)5NchvF

2/W is the localization length of the non
interacting system. Because of the presence ofU, the local-
ization length is no longer simply proportional toNch. Tak-
ing the Majorana-Fermion sign ofgabgd into accountC
becomes
s.

s

r-

o

rs

-

u-

he

C5H 1 ~Nch51!,

0.25 ~Nch52!,

0.4••• ~Nch53!.

~22!

Therefore the interactionU always makes the localizatio
length longer, namely, the interactions have a delocaliza
effect in the gapless phase of the coupled chain systems.C is
not a monotonic function ofNch as far as 1<Nch<3 and
hence it is not always true that the interaction effect becom
weaker asNch increases. Anyway, since it is easy to pro
C<1, the delocalization effect is strongest whenNch51.

Next we study the charge stiffnessD. As noted in the
previous section, the external flux couples to(asj as
}(aPar5(arTarP rr . Recall that the Greek lettera repre-
sents the old band index assigned before the operation oT,
and the italic letterr is the new band index. Since(aTar

51 ~when Nch51), A2d r1 ~when Nch52), A3d r2 ~when
Nch53), the charge stiffness is given byD5urrKrr where
r 51 ~whenNch51,2), r 52 ~whenNch53) with the irrel-
evant numerical factor being omitted. The RG equation
then given by

dD

dl
52

2aurr
2

urs
3 p

(
ab

Zab
abTar

2 ;2
2a

p
vF

21We~12CU/vFp!l ,

~23!

wherer 51 ~when Nch51,2), r 52 ~when Nch53). In the
second line of Eq.~23! the interactions are assumed to
small. For a finite system of sizeL,

D;D02
2a

p
vF

21WS L

aD 12CU/vFp

. ~24!

Again, the interactionU suppresses the random potential e
fect and gives larger value of the charge stiffness that in
noninteracting case.

IV. SUMMARY

We investigated the role of electron-electron interactio
in the coupled Hubbard chains with random potentials. F
noninteracting systems, a RG calculation shows that the
fective strength of the impurity potentials grows towards t
strong coupling limit and the localization length is propo
tional to the number of chainsNch. In the presence of inter
actions between the particles, the role of the interacti
changes from phase to phase as previously shown in R
8,10, and therefore we only focused on the gapless phas
Nch chain systems. Based on the RG calculation, we sho
that the interactions always reduce the effective strength
the impurity potentials. The degree of the reduction is sen
tive to Nch, and the countereffect of the interactions agai
the random potentials is strongest whenNch51.
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