Relations between global and local topology in multiple nanotube junctions

Vincent H. Crespi*

Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-6300

(Received 23 June 1998)

General topological rules determine the carbon ring structures in arbitrary sp^2 -bonded structures, particularly nanotube junctions. [S0163-1829(98)09543-5]

The experimental observation¹ of junctions between multiple tubelike carbon nanostructures motivates a topological study of the constraints on the types of carbon rings comprising arbitrary sp^2 -bonded structures, in particular junctions that incorporate three or more terminals²⁻⁴ into carbon nanotube⁵ devices.^{4,6–8}

The results herein all follow directly from the generalized Euler rule for the polygons on the surface of a closed polyhedron of arbitrary genus (number of holes). The number of faces plus the number of vertices equals the number of edges plus 2 minus twice the genus, F+V=E+2-2G. For sp^2 carbon nanostructures, we refer to a purely hexagonal structure with admixtures of 4-, 5-, 7-, or 8-gons. The excess in the number of polygonal sides due to these nonhexagonal polygons is called the bond surplus. For example, an otherwise hexagonal structure containing two pentagons has a bond surplus of minus two (regardless of whether the pentagons are fused).

The large-scale topology of the overall sp^2 sheet constrains the small-scale topology of the constituent carbon rings. A simple quasispherical fullerene of genus zero satisfies F + V = E + 2, which yields the familiar bond surplus of -12, e.g., the 12 pentagons in a C₆₀. An open-ended nanotube can be closed upon itself in a large-radius donut without disturbing the polygonal structures on the surface. This donut has G=1 and satisfies F+V=E, with zero bond surplus. Such a nanotube can contain all hexagons or equal numbers of pentagons and heptagons as described previously.^{4,7-9}

The new, more topologically interesting cases arise from junctions of three or more half-tubes.^{2,3} The bond surplus in an arbitrary closed sp^2 -bonded structure is 6(E-F-V)

- ³L. A. Chernozatonskii, Phys. Lett. A **172**, 173 (1992).
- ⁴L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996).
- ⁵S. Iijima, Nature (London) **354**, 56 (1991).
- ⁶N. Hamada, S. I. Sawada, and A. Oshiyama, Phys. Rev. Lett. **68**, 1579 (1992); J. W. Mintmire, B. I. Dunlap, and C. T. White, ibid. 68, 631 (1992); R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

=12(G-1). This formula follows directly from the cases of fullerenes (G=0) and closed nanotubes (G=1), since the bond surplus is linear in the genus. Two nanotube T or Yjunctions can be mated into a closed surface of genus 2,

with a bond surplus of 12 shared between the two junctions. The bond surplus of six in each junction can be taken up, for example, by six heptatons or a combination of six octagons and six pentagons within a hexagonal framework. (This result can also be obtained by placing six-pentagon caps on each open end of a single junction and applying Euler's rule with G=0). Inclusion of pentagons allows junctions between tubes of arbitrary wrapping indices.

Similarly, two X junctions can be mated into a surface of genus 3,

with a total bond surplus of 12 per junction. In general, a junction or series of junctions comprising N half-tubes has a bond surplus of 12(N-2). In this picture a simple closed shell of genus zero is the special case of an N=1 half-tube.

The strongly directional carbon sp^2 covalent bonds guarantee structural metastability so long as extreme conformations such as multiple fused squares are avoided. Analogous topological rules also apply for other tubular structures (e.g., transition metal dichalcogenides¹⁰) with global and local topological constraints.

⁹S. Iijima, T. Ichihashi, and Y. Ando, Nature (London) 356, 776 (1992).

12 671

^{*}Electronic address: vhc2@psu.edu

¹D. Zhou and S. Seraphin, Chem. Phys. Lett. **238**, 286 (1995).

²M. Menon and D. Srivastava, Phys. Rev. Lett. **79**, 4453 (1997).

⁷R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 53, 2044 (1996); J. C. Charlier, T. W. Ebbesen and Ph. Lambin, ibid. 53, 11 108 (1996); Ph. Lambin, A. Fonseca, J. Vigneron, J. B. Nagy, and A. A. Lucas, Chem. Phys. Lett. 245, 85 (1995); B. I. Dunlap, Phys. Rev. B 49, 5643 (1994).

⁸V. H. Crespi, M. L. Cohen, and A. Rubio, Phys. Rev. Lett. 79, 2093 (1997).

¹⁰Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, Science 267, 222 (1995).