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Quantum electrodynamic treatment of photon-assisted tunneling
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We present a quantum electrodynamic treatment of the photon-assisted tunneling sidebands that arise when
an electron tunnels through a discrete electron state that is interacting with a coherent field. Virtual spontaneous
emission of photons by the electron due to its interaction with the vacuum fluctuations of the electromagnetic
field leads to an asymmetry in the sideband spectrum not present in the classical limit. For the case of strong
coupling between the electron state and the electromagnetic field there can be significant differences between
the quantum and classical results, even in the limit of high fields.@S0163-1829~98!02640-X#
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INTRODUCTION

The application of time-dependent fields to tunnel jun
tions, whether through an ac voltage applied to the poten
barrier itself or via laser illumination of the device, has be
of interest since the advent of high-quality superconduct
tunnel junctions~STJ’s!.1,2 More recently, low-dimensiona
electron gases formed in semiconductor heterostruct
have provided a range of resonant tunneling structure
which effects induced by an electromagnetic~EM! field may
be investigated.3–11

Most theories for the effects of the applied field use
semiclassical model to describe the system. These the
ignore the quantum nature of the EM field and treat it a
classical potential energy, including it in the Hamiltonian f
the electrons as a termeVcosvt.2 For a STJ or confined
electron system the classical theory predicts the emerg
of ‘‘sidebands’’ to the resonant level under the influence
the EM field. The sidebands form a symmetric spectrum
additional resonant tunneling channels through which
current can flow. This effect could form the basis for t
design of fast optoelectronic switching devices, opti
memory, or radiation detectors3,5,10,12,13if the device is bi-
ased such that it is not conducting in the dark, but illumin
tion creates a sideband to the resonant level at the co
energy to allow a current to flow from emitter to collecto
An example is a quantum dot biased in the Coulomb blo
ade regime.8

Classical extensions to the original theory have include
more realistic treatment of the field on the electron sta14

and increasing the complexity of the electronic system,
example, introducing coupling between neighboring co
fined electron gases.12,15 The calculation has also been pe
formed using a quantum electrodynamic~QED! formalism,
but in the classical limit where the EM field operators a
allowed to commute.13,16 Using this method both sequenti
and coherent tunneling17 have been treated, including th
effects of the field on the emitter and collector regions,
addition to on the confined state itself.12,13,16,17The only fully
QED results of which we are aware have been obtained f
thermal photon field.18

In this paper we present a QED calculation for the int
acting system, in which the EM field is taken to be cohere
PRB 580163-1829/98/58~19!/12617~4!/$15.00
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and both the electrons and photons are treated quantum
chanically. We compare our results with a semiclassical c
culation and find that differences arise due to interaction
the electron with the vacuum fluctuations of the EM fie
We emphasize that the classical field approximation is
valid one for present experiments, not because the field
tensities are high, but because the coupling between the e
trons and field is weak.

THE CURRENT

To calculate the current we use a sequential model for
tunneling event; the tunneling is taken to be a two-step p
cess, from emitter to confined electron gas, and from c
fined electron gas to collector. The method assumes tha
transmission coefficients across the individual barriers
small, such that the widths of the resonances are small c
pared with their separations and tunneling is a slow proc

In this model, the Hamiltonian in second quantized fo
for tunneling across a potential barrier isH5HL1HR
1HLR whereHL(R) is the Hamiltonian for the electrons o
the left- ~right-! hand side of the barrier,HL(R)

5(L(R)EL(R)aL(R)
† aL(R) . The tunneling Hamiltonian19 is

given by

HLR5(
L,R

~TLRaL
†aR1TLR* aR

†aL!,

where the tunneling matrix elementTLR is calculated using
the Bardeen transfer method.20 The rate of change of the
number of particles on the left-hand side is the commuta
of the number operator with the Hamiltonian,ṄL
5@NL ,H#. The current is then given by the expectatio
value I LR52e^ṄL& and is calculated from linear respons
theory to be21

I LR5S 2e

\ D(
L,R

uTLRu2E
2`

`

d«xR~«!xL~«1eV!

3@nF~«!2nF~«1eV!#,

whereV is the bias voltage andnF is the Fermi occupation
factor. This formula shows explicitly that the current d
pends on the product of the spectral functionsxL(R)(«) for
12 617 ©1998 The American Physical Society
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the two sides of the barrier. The spectral function, equa
twice the imaginary part of the single electron retarded f
quency Green’s functionxL(R)(«)52 Im@GL(R)

ret («)#, is the
probability that an electron in stateL(R) has energy«. This
derivation is for a single tunnel barrier. For a double-barr
system the current is calculated for emitter to well and se
rately for well to collector. Equating these two currents giv
the full expression for the current from emitter to collector18

THE INTERACTING ELECTRON-PHOTON SYSTEM

The interaction of the electron with the EM field is in
clude in the Hamiltonian for the electrons in terms ofA as
Hel5(p2eA)2/2m* 1V(r ). In the QED description of the
field the magnetic vector potentialA is expressed in terms o
bq

† and bq ,the creation and annihilation operators for t
photons of each modeq:21

A~r ,t !5(
q

~\/2«Vvq!1/2«q~bqeiq–r2 ivqt1bq
†e2 iq–r1 ivqt!.

Neglecting the quadratic term inA in theHel as it merely
shifts the zero of energy for the electrons, and normally b
negligible amount,Hel may be written as

Hel5(
i

« iai
†ai1 (

q,i , j
Mq,i j ~bq1bq

†!aj
†ai ,

where the first term refers to the electrons moving in
potential V(r ) in the absence of any coupling and th
second term describes the interaction, the strength
which is determined by the matrix eleme
Mq,i j 52(e/m* )(2p\/Vvq«)1/2^ i ueiq–r p̂u j &. Physically the
interaction term describes the scattering of an electron f
statei to statej with the emission (bq

†) or absorption (bq) of
a photon of wave vectorq. The full HamiltonianH tot for the
interacting system is obtained by adding the Hamiltonian
the EM fieldHEM5(q\vq(bq

†bq11/2) to Hel.
22

The full Hamiltonian is a sum over the modesq, thus each
mode may be treated independently. We make the additi
simplification of considering only a single bound electr
state, of energyE0 ; thus the total Hamiltonian for each mod
q also becomes diagonal in the electron terms:

H tot,q5E0a†a1\v~b†b11/2!1M ~b1b†!a†a.

This Hamiltonian is used to describe the electrons and p
tons in the well region only; there is assumed to be no c
pling between electrons and photons in the emitter and
lector for which the noninteracting form of the Green’s a
spectral functions are retained. This approximation is reas
able as the effect of the photons on a continuum of lev
such as would be found in the leads, is small; the structur
the spectral function is washed out by summing over
continuum of states. Therefore the current will be modifi
by the EM field mainly due to the change in the spect
function in the well, obtained from the single-electron r
tarded Green’s function:

G~ t,t8!52 iQ~ t2t8!^Ta~ t !a†~ t8!&,

evaluated for the electron vacuum and the coherent s
which describes the EM field. The eigenstates of the boso
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part of the Hamiltonian for a single mode are the numb
statesun&. However, a laser field is best described by t
minimum uncertainty or single-mode coherent stateua&
5e2uau2/2(n(an/An!) un&,a Poisson distribution of numbe
states with mean valuen̄5uau2, since the expectation valu
of the electric field in this state has the form of a classi
field of amplitudeA2n̄\v/«V.22

In order to calculate the Green’s function, we first pe
form a canonical transformation of the Hamiltonian
the interacting system to a new HamiltonianH̄5eSHe2S,
with S5a†al(b†2b)and l5M /\v, giving the diagonal
from H̄5a†a(E02D)1\v(b†b11/2) with D5l2\v.21

The Green’s function is also transformed
G(t,t8)5eSG(t,t8)e2S, factored into electron and photo
parts and evaluated between the electron vacuum and
coherent photon state giving

Ḡ~ t,t8!52~ i /\!@12nF~E02D!#F~ t,t8!

with

F~ t,t8!5e2 i ~E02D!~ t2t8!e2l2~12e2 iv~ t2t8!!

3e2la~eivt2eivt8!ela~e2 ivt2e2 ivt8!

5e2 i ~E02D!~ t2t8!e2l2~12e2 iv~ t2t8!!

3 (
n52`

`

(
m52`

`

Jn~2la!Jm~2la!einvt8e2 imvt,

whereJm(z) is themth-order Bessel function. In the absen
of a time-dependent field, this would depend only on t
time differencet5t2t8. However, since the field remove
the translational invariance with respect to time, this simp
fication cannot be made. Provided the frequency of the
ternal field is larger than the inverse tunneling time we c
however, define a spectral function, by averaging the Gree
function over one cycle of the EM field. Transforming to th
Wigner coordinatest5t2t8, T5(t1t8)/2 ~Ref. 17! gives

FS T1
t

2
,T2

t

2D52
i

\
e2l2~12e2 ivt!

3 (
n52`

`

(
m52`

`

Jn~2la!Jm~2la!

3eivT~n2m!e2 ivt~n1m!/2e2 i ~E02D!t,

yielding an average

F̄~t!5
1

T0
E

0

T0
dT FS T1

t

2
,T2

t

2D
52

i

\
e2l2

e2 i ~E02D!t (
n52`

`

e2 invt

3 (
m52`

n

Jm
2 ~2la!

l2~n2m!

~n2m!!
.

The spectral function is obtained by taking the Fourier tra
form of Ḡ(t), yielding
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x~«!52pe2l2

(
n52`

n

d~«2E02n\v1D!

3 (
m52`

n

Jm
2 ~2la!

l2~n2m!

~n2m!!
.

Under the influence of radiation, the singled-function spec-
tral function is shifted~by D! and splits into a series of peak
corresponding to the spectrum of energies at which an e
tron can tunnel through the system.

DISCUSSION

The results of the semiclassical model2 may be
expressed in terms of the spectral functio
xclass(v)52p(n52`

` d(«2E02n\v)Jn
2(eV/\v). As in the

QED calculation, the semiclassical calculation finds that
der laser illumination sidebands to the initial resonant le
are formed; these levels are equally spaced and occur a
teger multiples of a field quantum. In addition both mod
show that the sideband amplitudes oscillate with increas
field amplitude.

However, there are several important differences betw
the classical and quantum results: firstly the spectrum in
quantum case is displaced from the noninteracting spect
~delta function! by D; this is a renormalization of the electro
energy ~electron self-energy! as a result of the interactio
with the EM field. More importantly, the relative intensitie
of the quantum spectral lines are different from those
tained classically, and in particular the spectrum is asymm
ric with respect to then50 line. In Fig. 1 it can be seen tha
this is also the case if the intensitya of the field is zero; here
the spectral amplitudes are finite for sideband energ
greater than the renormalized resonant energy whereas
semiclassical model gives only a single delta function aE
5E0 . The sidebands still occur in the quantum case due
interaction of the confined particle with the vacuum fluctu

FIG. 1. The amplitude of the first four QED spectral lines
energiesE5E02D1n\v for n50, . . . ,3 ~see text! as a function
of coupling strengthl in the absence of the EM field~full lines!.
The semiclassical result gives only one spectral line in the abs
of a field ~dashed line!.
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tions. Physically they correspond to the spontaneous em
sion by an electron of a photon to the field or, rather
virtual spontaneous emission since the electron only emi
photon to the field while it is in the well as the tunnelin
process we consider is elastic. It should be noted t
vacuum interaction occurs for all photon modes, not just
the single mode we are treating here. Summing over all
other zero-point modes gives a continuous spectral func
for energies greater than the bound-state energy since
frequencies are included.

The asymmetry in the single field mode QED spect
function is retained as the field intensity increases, altho
the degree of asymmetry is reduced as highern sidebands
become stronger with increasing field strengtha. Physically,
the asymmetry arises at finite field strength since each of
sidebands induced by the field has a set of spontaneous e
sion sidebands above it. The calculation automatically
cludes the total probability associated with each spectra l
thenth spectral line contains contributions from all the spe
tral lines below it since an electron using thenth sideband
can spontaneously emit photons and traverse the well u
any sideband at lower energy. The difference between
quantum and classical results depends largely on the stre
of the coupling,l, and significant differences can be o
tained for large couplings even at high field intensity. Hig
intensity EM fields~large number of photons! are frequently
treated as classical, whereas our result shows that the h
intensity field limit is rather more subtle than this: it appea
that the field may be treated as a classical entity only un
rather specific conditions, namely, when the coupling
tween the electrons and the EM field is weak. Howev
present experimental investigations are limited to the w
coupling regime where it is appropriate to use the class
approximation.

The nonmonotonicity of the Bessel functions results in
oscillatory behavior of the spectral function amplitudes w
increasing field strength. In the semiclassical model the a
plitudes have real zeroes and tunneling can be comple

t

ce

FIG. 2. The amplitude of the first three sidebands at energ
E5E02D1n\v for n51, . . . ,3, relative to the zero field side
band amplitude~see Fig. 1!, as a function of field intensity (n̄) for
a coupling strengthl of 0.4. As the field intensity increases, th
sideband amplitude can become smaller than the vacuum b
ground.
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suppressed at certain values of the field strength, even a
original resonance. However, the quantum spectral line
tensity is finite for all values of the field strength since so
zero-point spontaneous emission terms, of orderl2, from the
lower-energy lines always remain. Figure 2 illustrates tha
the quantum model, for certain ranges of laser intensity,
amplitude of a spectral line can fall below the zero fie
vacuum contribution at the energy, i.e., the laser has the
fect of suppressing the tunneling contribution due to
vacuum interaction for that mode.

In summary, we have derived a time-averaged form
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the QED spectral function for an irradiated confined elect
gas, and found that it is different from the semiclassical
sult for all field intensities. The differences arise due to t
interaction of the electrons with the vacuum fluctuations, a
are only negligible in the limit of weak coupling between th
electrons and the field. The field-induced sidebands to
main resonance oscillate in amplitude but, whereas the c
sical current peaks can be entirely suppressed by increa
the intensity of the field, the quantum sidebands cannot,
they can be reduced below the field-free vacuum amplitu
ev.
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