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Quantum electrodynamic treatment of photon-assisted tunneling
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We present a quantum electrodynamic treatment of the photon-assisted tunneling sidebands that arise when
an electron tunnels through a discrete electron state that is interacting with a coherent field. Virtual spontaneous
emission of photons by the electron due to its interaction with the vacuum fluctuations of the electromagnetic
field leads to an asymmetry in the sideband spectrum not present in the classical limit. For the case of strong
coupling between the electron state and the electromagnetic field there can be significant differences between
the quantum and classical results, even in the limit of high fi¢88163-18208)02640-X]

INTRODUCTION and both the electrons and photons are treated quantum me-
chanically. We compare our results with a semiclassical cal-
The application of time-dependent fields to tunnel junc-culation and find that differences arise due to interaction of
tions, whether through an ac voltage applied to the potentidhe electron with the vacuum fluctuations of the EM field.
barrier itself or via laser illumination of the device, has beenWe emphasize that the classical field approximation is a
of interest since the advent of high-quality superconducting/alid one for present experiments, not because the field in-
tunnel junctions(STJ'9.1? More recently, low-dimensional tensities are high, but because the coupling between the elec-
electron gases formed in semiconductor heterostructure§ons and field is weak.
have provided a range of resonant tunneling structures in
which effects induced by an electromagnétdM) field may THE CURRENT

; ; -11
be investigated: To calculate the current we use a sequential model for the

M,OSt theorles for the effec;ts of the applied field use <'?‘tunneling event; the tunneling is taken to be a two-step pro-
semiclassical model to describe the system. These theorua&glsS from emitter to confined electron gas, and from con-

ignore the quantum nature of the EM field and treat it as g,qq glectron gas to collector. The method assumes that the
classical potential energy, |nclud|2ng itin the Hamiltonian for s mission coefficients across the individual barriers are
the electrons as a termVcoset.” For a STJ or confined g gych that the widths of the resonances are small com-

electron system the classical theory predicts the emergenes ey with their separations and tunneling is a slow process.
of “sidebands” to the resonant level under the influence of | ihis model. the Hamiltonian in second quantized form

the EM field. The sidebands form a symmetric spectrum Offor tunneling across a potential barrier K=H,_ +H
additional resonant tunneling channels through which the+|_|LR whereH, g is the Hamiltonian for the eIethronsRon
current can flow. This effect could form the basis for the (R

. . e . . _the left- (right) hand side of the barrier,H g
design of fast optoelectronic switching devices, opt|cal_E E T The t i Hamiltoniad |
memory, or radiation detectdrs'®'?3if the device is bi- L(Rl)) LRALRALR - Ne tUNNeling Hamitoniar 1S
ased such that it is not conducting in the dark, but illumina-3'Ven Y

tion creates a sideband to the resonant level at the correct

energy to allow a current to flow from emitter to collector. HLR=E (TLRa[aR+ TfRaLaL),
An example is a quantum dot biased in the Coulomb block- LR
ade regimé. where the tunneling matrix elememt ; is calculated using

Classical extensions to the original theory have included ghe Bardeen transfer meth8dThe rate of change of the
more realistic treatment of the field on the electron $fate number of particles on the left-hand side is the commutator
and increasing the complexity of the electronic system, fors ha number operator with the Hamiltoniari;\l,_
example, introducing coupling between neighboring CO”'Z[NL,H]. The current is then given by the expectation

fined electron gasé$:!® The calculation has also been per- value |, g— —e(N,) and is calculated from linear response
formed using a quantum electrodynant@ED) formalism, theory Eg bt L P

but in the classical limit where the EM field operators are

allowed to commuté®*6 Using this method both sequential

and coherent tunneling have been treated, including the I r=

effects of the field on the emitter ang l%?Llector regions, in

addition to on the confined state itséft3 161 The only fully X [Ne(e)—ne(e+eV)],

QED results of which we are aware have been obtained for a

thermal photon field® whereV is the bias voltage and is the Fermi occupation
In this paper we present a QED calculation for the inter-factor. This formula shows explicitly that the current de-

acting system, in which the EM field is taken to be coherentpends on the product of the spectral functionggy(e) for

2e »
7) ; |TLR|2f_xd8XR(8)XL(8+eV)
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the two sides of the barrier. The spectral function, equal tgart of the Hamiltonian for a single mode are the number
twice the imaginary part of the single electron retarded fresstates|n). However, a laser field is best described by the
guency Green’s functior)(L(R)(s)=2Im[G[e(tR)(s)], is the  minimum uncertainty or single-mode coherent stéte
probability that an electron in statgR) has energy. This :eflalzfzzn(a"/ Jn!)[n),a Poisson distribution of number
derivation is for a single tunnel barrier. For a double-barrierstates with mean vaIuE=|a|2, since the expectation value
system the current is calculated for emitter to well and sepaof the electric field in this state has the form of a classical
rately for well to collector. Equating these two currents givesfield of amplitude2n w/eV.?2

the full expression for the current from emitter to collecfor. In order to calculate the Green’s function, we first per-
form a canonical transformation of the Hamiltonian of
THE INTERACTING ELECTRON-PHOTON SYSTEM the interacting system to a new Hamiltoni&h=eSHe S,

. _ T T_ _ P .
The interaction of the electron with the EM field is in- With S=a'ar(b’=b)and A=M/% e, giving the diagonal

clude in the Hamiltonian for the electrons in termsfos oM H=a'a(Eg—A)+Aiw(b'b+1/2) with A=\*hw.*
Ho=(p—eA)2/2m* +V(r). In the QED description of the The Green’s function is also transformed to
field the magnetic vector potentidlis expressed in terms of G(t,t')=eSG(t,t')e” >, factored into electron and photon

bl and by, the creation and annihilation operators for theParts and evaluated between the electron vacuum and the

photons of each mode:?! coherent photon state giving

- . G(t,t)=—(i/A)[1—ne(Eg—A)]D(t,t)
A(r,t)zzq:(ﬁ/28qu)1/28q(bqe'q‘r"“’qt+bge"q"*'“’qt). it e

Neglecting the quadratic term i in theH, as it merely Bt t,):e—i(Eo—A)(t—t')e—x2<1—e*‘w“**’))
shifts the zero of energy for the electrons, and normally by a
negligible amountH, may be written as w @ ha(e =gt ra(etet—eiet)

He|:2 Siai-ra.i‘f' E Mq,ij(bq+ bg)a}-ai, :e_i(EO_A)(t_t’)e_)\z(l_eiim“it,))
1 q.1,)

where the first term refers to the electrons moving in the = = not’ - —imot
potential V(r) in the absence of any coupling and the anz_x m;_m In(2ha)Jm(2ha)e™ e '

second term describes the interaction, the strength of _ _
which is determined by the matrix element WhereJ,(z) is themth-order Bessel function. In the absence

Mg ij:—(e/m*)(z,ﬂﬁ/qug)lm(i|eiCI‘rE)|j>_ Physically the ©of a time-dependent field, this would depend only on the
interaction term describes the scattering of an electron fronfime differencer=t—t’. However, since the field removes

statei to statej with the emission bg) or absorption ) of the translational invariance with respect to time, this simpli-
a photon of wave vectay. The full HamiltonianH, for the fication cannot be made. Provided the frequency of the ex-

interacting system is obtained by adding the Hamiltonian fot€nal field is larger than the inverse tunneling time we can,
the EM fieldHgy=S o (blb,+1/2) to . 22 however, define a spectral function, by averaging the Green’s
a3 function over one cycle of the EM field. Transforming to the

The full Hamiltonian is a sum over the modgshus each ) , .
AVigner coordinates=t—t’, T=(t+t')/2 (Ref. 17 gives

mode may be treated independently. We make the addition
simplification of considering only a single bound electron

state, of energ¥,; thus the total Hamiltonian for each mode | T+ I,T_I) =— I_efhz(l*E““’U
g also becomes diagonal in the electron terms: 2 2 h
Hiotq=Eoa'a+%w(b'b+1/2)+M(b+b")a'a. S S 3(2na)d(2Na)

n=—o m=-—wx

This Hamiltonian is used to describe the electrons and pho-
tons in the well region only; there is assumed to be no cou- x @ oT(n—mg-iwr(n+m)/2g=i(Eg—A)7
pling between electrons and photons in the emitter and col-

lector for which the noninteracting form of the Green’s andYielding an average

spectral functions are retained. This approximation is reason-

able as the effect of the photons on a continuum of levels, d(7)= ifToqu)(T+I1T_ Z)
such as would be found in the leads, is small; the structure in ToJo 2 2

the spectral function is washed out by summing over the

continuum of states. Therefore the current will be modified i EgA S
by the EM field mainly due to the change in the spectral =—gze el )Tn_Zx e 'ner
function in the well, obtained from the single-electron re-

tarded Green'’s function: n A 2(n—m)

J2(2Na)———.
G(t,t")=—i0(t—t" ){(Ta(t)a'(t")), Xm;m ml a)(”—m)!

evaluated for the electron vacuum and the coherent statdhe spectral function is obtained by taking the Fourier trans-
which describes the EM field. The eigenstates of the bosoniform of G(7), yielding
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h i f the first f ED L FIG. 2. The amplitude of the first three sidebands at energies
FIG. 1. The amplitude of the first four Q spectral lines at E=Ey;—A+nkw for n=1,...,3,relative to the zero field side-

energieﬁEz EO_AB\nﬁw ;or nb=0, e ,fs(ﬁee tex)]:vals a”ftljlnction band amplituddésee Fig. 1, as a function of field intensityn) for
of coupling strength in the absence of the EM fielffull lines). a coupling strength\ of 0.4. As the field intensity increases, the

The semiclassical result gives only one spectral line in the absencﬁdeband amplitude can become smaller than the vacuum back-
of a field (dashed ling ground

, & tions. Physically they correspond to the spontaneous emis-
x(e)=2me 2 e—Epg—nhw+A) sion by an electron of a photon to the field or, rather, a
n=-e virtual spontaneous emission since the electron only emits a
n \2(n=m) photon to the field while it is in the well as the tunneling
X 2 an(z)\a)—, process we consider is elastic. It should be noted that
m=— (n—m)! vacuum interaction occurs for all photon modes, not just for

_ o ) ) the single mode we are treating here. Summing over all the
Under the influence of radiation, the singfdunction spec-  other zero-point modes gives a continuous spectral function

tral function is shiftedby A) and splits into a series of peaks, for energies greater than the bound-state energy since all
corresponding to the spectrum of energies at which an elegrequencies are included.

tron can tunnel through the system. The asymmetry in the single field mode QED spectral
function is retained as the field intensity increases, although
DISCUSSION the degree of asymmetry is reduced as highesidebands

become stronger with increasing field strengttPhysically,

The results of the semiclassical mddemay be the asymmetry arises at finite field strength since each of the
expressed in terms of the spectral function,sidebands induced by the field has a set of spontaneous emis-
Xeas{ @) =272 ;_ . 8(e —Eq—nhw)J3(eViiw). Asinthe  sion sidebands above it. The calculation automatically in-
QED calculation, the semiclassical calculation finds that uncludes the total probability associated with each spectra line;
der laser illumination sidebands to the initial resonant levethe nth spectral line contains contributions from all the spec-
are formed; these levels are equally spaced and occur at ifal lines below it since an electron using théh sideband
teger multiples of a field quantum. In addition both modelscan spontaneously emit photons and traverse the well using
show that the sideband amplitudes oscillate with increasinginy sideband at lower energy. The difference between the
field amplitude. quantum and classical results depends largely on the strength

However, there are several important differences betweeof the coupling,\, and significant differences can be ob-
the classical and quantum results: firstly the spectrum in theained for large couplings even at high field intensity. High-
guantum case is displaced from the noninteracting spectrumntensity EM fields(large number of photonsre frequently
(delta function by A; this is a renormalization of the electron treated as classical, whereas our result shows that the high-
energy (electron self-energyas a result of the interaction intensity field limit is rather more subtle than this: it appears
with the EM field. More importantly, the relative intensities that the field may be treated as a classical entity only under
of the quantum spectral lines are different from those obrather specific conditions, namely, when the coupling be-
tained classically, and in particular the spectrum is asymmetween the electrons and the EM field is weak. However,
ric with respect to the=0 line. In Fig. 1 it can be seen that present experimental investigations are limited to the weak
this is also the case if the intensityof the field is zero; here coupling regime where it is appropriate to use the classical
the spectral amplitudes are finite for sideband energieapproximation.
greater than the renormalized resonant energy whereas the The nonmonotonicity of the Bessel functions results in an
semiclassical model gives only a single delta functiofeat oscillatory behavior of the spectral function amplitudes with
=Ey. The sidebands still occur in the quantum case due tincreasing field strength. In the semiclassical model the am-
interaction of the confined particle with the vacuum fluctua-plitudes have real zeroes and tunneling can be completely
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suppressed at certain values of the field strength, even at thlee QED spectral function for an irradiated confined electron
original resonance. However, the quantum spectral line ingas, and found that it is different from the semiclassical re-
tensity is finite for all values of the field strength since somesult for all field intensities. The differences arise due to the
zero-point spontaneous emission terms, of oiderfrom the  interaction of the electrons with the vacuum fluctuations, and
lower-energy lines always remain. Figure 2 illustrates that inare only negligible in the limit of weak coupling between the
the quantum model, for certain ranges of laser intensity, th@lectrons and the field. The field-induced sidebands to the
amplitude of a spectral line can fall below the zero field-main resonance oscillate in amplitude but, whereas the clas-
vacuum contribution at the energy, i.e., the laser has the ek;ica| current peaks can be entirely suppressed by increasing
fect of suppressing the tunneling contribution due to thene intensity of the field, the quantum sidebands cannot, but

vacuum interaction for that m_ode. . they can be reduced below the field-free vacuum amplitude.
In summary, we have derived a time-averaged form for
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