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Influence of higher harmonics on Poincare´ maps derived from current self-oscillations
in a semiconductor superlattice

K. J. Luo,* H. T. Grahn, S. W. Teitsworth,† and K. H. Ploog
Paul-Drude-Institut fu¨r Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany

~Received 29 June 1998!

The effect of higher harmonics on the shape of Poincare´ maps~first return maps! derived from current
self-oscillations has been investigated in a semiconductor superlattice system driven by a dc1 ac voltage bias.
In addition to the intrinsic fundamental frequency, a number of higher harmonics with comparable amplitude
are observed. The current oscillation traces are simulated according to the power spectra in order to determine
the effect of the higher harmonics on the Poincare´ maps. The calculated Poincare´ maps for quasiperiodic
oscillations as well as frequency locking are clearly distorted by the presence of the higher harmonics. The
shape of the distorted Poincare´ maps agrees with the experimentally observed ones. The calculation also
reveals that the phase shift between the different frequency components of the current has an important effect
on the shape of the Poincare´ maps.@S0163-1829~98!03843-0#
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The dynamical behavior in a variety of nonlinear syste
can be described by a set of coupled, ordinary differen
equations, which containn variables. The time evolution o
these variables constitutes a trajectory through ann-
dimensional phase space.1–3 It is usually possible and usefu
to analyze the dynamical behavior by making a transve
cut through the trajectory so that instead of a complex cu
in then-dimensional space one now has a set of points on
(n21)-dimensional hypersurface, which is called the Po
carémap~or Poincare´ section!.1–4 In a computer study of the
dynamical behavior in ann-dimensional space, it is possib
to analyze directly then-dimensional signal. By contrast, in
physical experiment, one monitors typically only one sca
variable, e.g., the current responseI (t) for a system under a
driving voltage. In this case, one usually records the fi
return map to analyze the attractors in a dissipative syst
Taking the current responseI (t) as an example, the firs
return map is constructed by plottingI n11 vs I n , whereI n is
sampled at a fixed phase in thenth period of the driving
voltage.5 The attractor revealed by the first return map m
not be identical to the one in the Poincare´ section; however,
the first return map retains the same topological propertie
the Poincare´ section, which is sufficient to study the essent
characteristics of the attractors.1,3 In this paper, we will refer
to the first return map as the Poincare´ map.

The Poincare´ map technique provides a natural link b
tween continuous trajectories and discrete maps and mak
more convenient to analyze as well as visualize
attractors.1,2 If the intrinsic oscillation contains no highe
harmonics, the Poincare´ map for frequency locking consist
of a set of discrete points, while for quasiperiodicity it w
be a simple smooth loop. In systems, where the motion
space-charge layer determines the oscillation proper
higher harmonics are frequently present5–10 because the
space-charge layer is usually strongly localized within
sample. To the best of our knowledge, there has been
report about the distortion of Poincare´ maps through the
presence of higher harmonics up to now, although hig
harmonics are clearly present in several solid-st
systems.5–10 In one particular case, the higher harmon
were removed using a filter.6
PRB 580163-1829/98/58~19!/12613~4!/$15.00
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In the present investigation, the Poincare´ maps derived
experimentally for the current self-oscillations in a weak
coupled semiconductor superlattice~SL! system are found to
be significantly distorted by the presence of higher harm
ics. Even for quasiperiodicity, the Poincare´ map can show a
very complex structure. The current self-oscillations a
simulated according to their power spectra, and the resp
tive Poincare´ maps are calculated. The simulated results
not agree with the experimentally derived ones, unless hig
harmonics are included. The calculation also reveals that
phase shift between different frequency components ha
important effect on the actual shape of the Poincare´ maps.

The investigated sample consists of a 40-period, wea
coupled SL with 9.0-nm GaAs wells and 4.0-nm AlAs ba
riers grown by molecular beam epitaxy on a~100! n1-type
GaAs substrate. The central 5 nm of each well aren doped
with Si at 3.031017 cm23. The SL is ‘‘sandwiched’’ be-
tween two highly Si-doped Al0.5Ga0.5As contact layers form-
ing ann1-n-n1 diode. The sample is etched to yield mes
with a diameter of 120mm. The experimental data are re
corded in a He-flow cryostat at 5 K using high-frequency
coaxial cables with a bandwidth of 20 GHz. The drivin
voltage is generated with a Wavetek 50-MHz pulse/funct
generator~model 81!. The power spectra of the current o
cillations are detected with an Advantest R3361 spectr
analyzer. The real-time current traces are recorded wit
Hewlett-Packard 54720A digital oscilloscope, which is tri
gered by the synchronization signal from the pulse/funct
generator using a sampling rate of 1 G samples/second an
32 768 points/snapshot. The resulting time resolution
about 50 points per periodtd of the driving frequency, which
corresponds to about 600td per snapshot.

Current self-oscillations in weakly coupled semiconduc
superlattices originate from a recycling motion of a char
accumulation layer inside the superlattice.11 For a dc bias
fixed at 7.08 V, the intrinsic fundamental frequency (f 1) of
the current self-oscillations is 11.4 MHz. In the experime
the driving frequency (f d) is set to the golden mean (1
1A5)/251.618 timesf 1 , i.e., 18.4 MHz, while the driving
12 613 ©1998 The American Physical Society
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amplitude (Vac) is varied. AtVac50, the current oscillations
contain up to three higher harmonics with a significant a
plitude, which are clearly identified in the power spect
When the driving voltage is applied, combination freque
cies of the formn fd1m f1 , wheren andm are integers, also
appear in the power spectrum in addition tof 1 and its higher
harmonics.10,12 Figure 1 shows the power spectra on the l
and real-time current tracesI (t) on the right for two different
values of Vac . At 2 mV, the oscillation is quasiperiodic
since f 1 and f d are incommensurate.2,10,12 With increasing
Vac , f 1 will gradually shift to higher frequencies. At 12
mV, the frequency ratiof 1 / f d reaches a rational numbe
with a value of 7/11, which is called the winding numbe
The system has now entered a so-called frequency-loc
state.2,10,12

Figure 2~a! shows the Poincare´ map derived from the
real-time trace in Fig. 1~b! for Vac52 mV with the sam-
pling phase fixed at the maximum of the amplitude of t
driving voltage. As mentioned above, if there are no hig
harmonics, the Poincare´ map for quasiperiodic oscillation
should be a smooth loop. This is obviously not the case
Fig. 2~a!, where the Poincare´ map is a distorted loop contain

FIG. 1. Current power spectra~left! and real-time current trace
~right! for Vac52 and 125 mV, respectively, recorded at 5 K in a
superlattice structure.

FIG. 2. ~a! Experimentally derived Poincare´ map for the quasi-
periodic oscillations observed at 2 mV. Calculated Poincare´ maps
for ~b! the fundamental frequencyf 1 alone,~c! the second harmonic
f 2 alone,~d! f 1 and f 2 together,~e! f 1 plus three higher harmonic
and no phase shift (f150), and~f! f 1 plus three higher harmonic
and a phase shift off150.8p. The frequency ratio was set t
f d / f 15(11A5)/2.
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ing self-crossings. In the following, we will simulate the cu
rent traces by using sinusoidal functions in order to der
Poincare´ maps for different conditions, which can be com
pared to the one obtained from the experimental data.
simulated results demonstrate that the distortion of the l
is caused by the presence of higher harmonics.

As a first approximation, we calculate the Poincare´ maps
at 2 mV without taking into account any higher harmonic
The driving voltageVd(t) is defined as

Vd~ t !5Vacsin~vdt !, ~1!

wherevd52p f d . In the simplest case, the real-time curre
responseI (t) consists of two terms

I ~ t !5I dsin~vdt !1I 1sin~v1t1f1!, ~2!

wherev152p f 1 . The first term represents the response d
to the driving voltage, which has the same frequency a
phase as the driving voltage. The second term denotes
intrinsic current component, which exhibits a phase shiftf1
with respect to the driving voltage.

In the power spectra, the measured quantityP( f ) is de-
fined as

P~ f !510 log10@ uI ~ f !u2#, ~3!

whereI ( f ) denotes the amplitude of the oscillatory comp
nent with frequencyf. In the measured power spectra, t
current amplitude is converted into a voltage. In the follo
ing, only amplitude ratios are important, and the current a
plitude in the calculation has been normalized to an arbitr
constant. From the power spectra in Fig. 1~a!, we can deter-
mine the amplitude ratio between the driving and intrin
frequency components. In the calculation, we have use
value of 229 forI 1 /I d . As mentioned above, the frequenc
ratio f d / f 1 was set at (11A5)/2. The current traces are ca
culated using Eq.~2! with a time scale adjusted in such
way that every Poincare´ map contains about 500 data point
Figure 2~b! shows the calculated Poincare´ map using the
parameters given above with a phase shiftf150, which con-
sists of a smooth loop. Changing the value off1 does not
result in any changes of the shape of the Poincare´ map, al-
though the exact location of the points in the Poincare´ map
may be influenced. Therefore, we conclude that, if high
harmonics are not taken into account, the phase differe
between the driving and intrinsic frequency components d
not have any effect on the shape of the Poincare´ map. How-
ever, the calculated result in Fig. 2~b! is very different from
the experimentally observed result shown in Fig. 2~a!. In a
previous paper,12 we have studied the Poincare´ map for cer-
tain dc voltages, where the current response in the quasip
odic regime does not contain any higher harmonics. Th
the resulting Poincare´ map is indeed very similar to the on
shown in Fig. 2~b!. In contrast, when the higher harmonic
are experimentally present as shown in Figs. 1~a! and 1~c!, it
is necessary to include them in the simulation.

Figure 2~c! shows the calculated Poincare´ map for the
second harmonic alone, which corresponds to the Poin´
map for a frequency ratio of (11A5)/4. It is again a smooth
loop without any distortion, but has a different shape than
one in Fig. 2~b!. Any phase shift has again no effect on th
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shape. However, when at least the fundamental freque
and the second harmonic are considered according to

I ~ t !5I dsin~vdt !1I 1sin~v1t1f1!1I 2sin~2v1t1f2!,
~4!

whereI 2 denotes the amplitude of the second harmonic,
loop becomes already distorted containing at least one
crossing. This is shown in Fig. 2~d! for f15f250. The
amplitude ratiosI 1 /I d5229 andI 2 /I d5126 have been de
termined from the power spectra at 2 mV.

In order to improve the simulated result with respect
the experimentally observed one, the Poincare´ map is now
derived from a current response that includes all three hig
harmonics shown in Fig. 1~a!. We therefore consider at
mV a current response of the form

I ~ t !5I dsin~vdt !1I 1sin~v1t1f1!1I 2sin~2v1t1f2!

1I 3sin~3v1t1f3!1I 4sin~4v1t1f4!, ~5!

whereI 3 andI 4 denote the amplitudes of the third and four
harmonic, respectively. A total of five frequencies is no
taken into account. The other frequency peaks, which
present in Fig. 1~a! and originate from the mixing off 1 with
f d , are not included in Eq.~5!, since their amplitudes ar
rather small. We also confirmed that they have little infl
ence on the calculated results. From the power spectra
mV, the additional amplitude ratios used in the calculat
have been determined to beI 3 /I d528 and I 4 /I d545. For
simplicity, we assume that there is no phase shift betw
the fundamental intrinsic frequency and its higher harm
ics, i.e.,f15f i for i 52,3, and 4. However, the phase sh
between the driving frequency and all other frequencies m
still have an important effect on the shape of the Poinc´
map.

Figure 2~e! shows the calculated Poincare´ map when all
three higher harmonics of Fig. 1~a! are included with a phas
shift f150. Comparing it with Fig. 2~d!, the number of self-
crossings increases when more higher harmonics are t
into account. We tried a number of different values forf1 .
The best qualitative agreement in terms of the shape of
Poincare´ map was found for a value of 0.8p as shown in Fig.
2~f!. This clearly demonstrates the influence of higher h
monics on the shape of the Poincare´ map. The remaining
difference between Figs. 2~a! and 2~f! may originate from a
phase shift between the different frequency component
the current traces. Better agreement can be expected, i
phase shifts are finely tuned between the different freque
components. In principle, they can be obtained from co
plete Fourier transforms of the corresponding real-ti
traces. However, the effect of higher harmonics and ph
shifts on the Poincare´ maps can already be demonstrat
using the procedure outlined above.

We will now calculate the Poincare´ map for the
frequency-locked state observed at 125 mV in the same
as described above. The Poincare´ map is expected to contai
11 separate points, since the winding number is equa
7/11.12 The experimental result is shown in Fig. 3~a! and
consists of some 10 isolated areas. However, it appears
one of the longer regions actually consists of two sepa
regions. Figure 3~b! displays the calculated Poincare´ map
without considering any higher harmonics, i.e., the curr
cy
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trace has been simulated using Eq.~2! with a frequency ratio
of f d / f 1511/7. It indeed contains 11 isolated points along
similar loop as that shown in Fig. 2~b!. It should be noted
that there are 500 data points inside a single Poincare´ map so
that each isolated point actually consists of about 45 poi
which have exactly the same value. The calculated resu
Fig. 3~b! is again very different from the experimental resu
so that higher harmonics have to be taken into account.

Just as in the calculation for 2 mV, we simulate the c
rent trace using Eq.~5!. The amplitude ratio ofI i /I d for i
51,2,3, and 4 is again obtained from the power spectra w
values of 1.40, 0.70, 0.15, and 0.28, respectively. We a
assume no phase shift between thef 1 component and the
f i ( i 52,3,4) components. Figures 3~c! and 3~d! display the
calculated results for a phase shift between the driving
intrinsic frequency component off150 andf150.8p, re-
spectively. The agreement between the experimental
simulated result is greatly improved in Fig. 3~d! compared
with Fig. 3~c!. However, it may be further improved by tak
ing into account all other frequency peaks~there are 24!
shown in Fig. 1~c!, which are linear combinations off d and
f 1 . In contrast to the quasiperiodic case at 2 mV, these
quency peaks are rather strong@cf. Fig. 1~c!#. In Fig. 3~e!, the
corresponding Poincare´ section is shown under the assum
tion that the phases of all terms are set to 0.8p, i.e., there is
no relative phase shift between any of these terms. C
pared with that in Fig. 3~d!, the overall shape in Fig. 3~e! has
only changed a little, but some details are in better agreem
with the experimental result. In particular, the lowest tw
points are now very close to each other indicating that
large region in the lowest part of Fig. 3~a! actually consists
of two regions, which are connected.

Figure 3~f! shows the calculated Poincare´ map including
all frequency components assuming a different phase s
from that in Fig. 3~e!. The phase shift for the intrinsic fre
quency and its higher harmonics is the same as for Fig. 3~e!,
but for all other frequency components~i.e., the mixing

FIG. 3. ~a! Experimentally derived Poincare´ map for frequency
locking observed at 125 mV corresponding to a winding numbe
7/11. Calculated Poincare´ maps for a frequency ratio off 1 / f d

57/11 ~b! without considering any higher harmonics off 1 , ~c!
including three higher harmonics and no phase shift (f150), ~d!
including three higher harmonics with the same phase shift off1

50.8p, ~e! including all higher frequency components with a pha
shift of f150.8p, and ~f! including all higher frequency compo
nents with phase shifts off150.8p for the three higher harmonic
andf150 for all the other frequency components.
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terms! the phase has been set to zero. Again, the ove
shape does not change very much, but the separation
tance between the different points is varied. Among
simulated results for the frequency-locked state, Fig. 3~e!
shows the best agreement with the experimental Poin´
map. Therefore, we conclude that also for the frequen
locked state the presence of the higher harmonics and m
frequency components result in a distortion of the Poinc´
map. A detailed reproduction of the experimentally observ
shape can only be achieved by including nonzero ph
shifts between the different frequency components.

In summary, the effect of the higher harmonics on t
shape of Poincare´ maps has been investigated for a driv
semiconductor superlattice, where the current s
oscillations originate from a recycling motion of a char
ll
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accumulation layer. Experimental results show that the Po
caré maps are significantly distorted by the presence
higher harmonics. Even for quasiperiodic oscillations a
frequency locking, the Poincare´ maps show a rather compli
cated structure. The simulation including the higher harm
ics and taking into account finite phase shifts between
different frequency components reproduces the main featu
of the experimental results. Therefore, Poincare´ maps con-
tain information about the presence of higher harmonics a
the phase shift between these frequency components.
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