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Influence of higher harmonics on Poincaremaps derived from current self-oscillations
in a semiconductor superlattice
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The effect of higher harmonics on the shape of Poincaaps (first return mapp derived from current
self-oscillations has been investigated in a semiconductor superlattice system driven byae doltage bias.
In addition to the intrinsic fundamental frequency, a humber of higher harmonics with comparable amplitude
are observed. The current oscillation traces are simulated according to the power spectra in order to determine
the effect of the higher harmonics on the Poincaraps. The calculated Poincameaps for quasiperiodic
oscillations as well as frequency locking are clearly distorted by the presence of the higher harmonics. The
shape of the distorted Poincameaps agrees with the experimentally observed ones. The calculation also
reveals that the phase shift between the different frequency components of the current has an important effect
on the shape of the Poincameaps.[S0163-18208)03843-(

The dynamical behavior in a variety of nonlinear systems In the present investigation, the Poincaraps derived
can be described by a set of coupled, ordinary differentiabxperimentally for the current self-oscillations in a weakly
equations, which contain variables. The time evolution of coupled semiconductor Supeﬂatti@_) system are found to
these variables constitutes a trajectory through mn pe significantly distorted by the presence of higher harmon-
dimensional phase spat€.lt is usually possible and useful j.s Even for quasiperiodicity, the Poinéarap can show a

to analyze the dynamical behavior by making a transversgo,, - .o mplex structure. The current self-oscillations are
cut throu_gh the_ trajectory so that instead of a comp_lex CUNVE:  lated according to their power spectra, and the respec-
in the n-dimensional space one now has a set of points on an ’

(n—1)-dimensional hypersurface, which is called the Poin-tive Poincaremaps are calculated. The simulated results do

caremap(or Poincaresection.In a computer study of the Not agree with the experimentally derived ones, unless higher
dynamical behavior in an-dimensional space, it is possible harmonics are included. The calculation also reveals that the
to analyze directly the-dimensional signal. By contrast, in a phase shift between different frequency components has an
physical experiment, one monitors typically only one scalaimportant effect on the actual shape of the Poincaaps.
variable, e.g., the current resporig€) for a system under a The investigated sample consists of a 40-period, weakly
driving voltage. In this case, one usually records the firsicoupled SL with 9.0-nm GaAs wells and 4.0-nm AlAs bar-
return map to analyze the attractors in a dissipative systemiers grown by molecular beam epitaxy o200 n*-type

Taking the current responddt) as an example, the first Gaas substrate. The central 5 nm of each well mdoped
return map is constructed by plotting, ; vsl,,, wherel, is with Si at 3.0< 107 cm~2. The SL is “sandwiched” be-

sampled at a fixed phase in timh period of the driving ; - i
voltage® The attractor revealed by the first return map mayf[Ween two highly Si-doped AkGay5As contact layers form

not be identical to the one in the Poincaction; however, Nd ann’-n-n" diode. The sample is etched to yield mesas
the first return map retains the same topological properties 4ith a diameter of 120um. The experimental data are re-
the Poincareection, which is sufficient to study the essentialcorded in a He-flow cryostatté K using high-frequency
characteristics of the attractorsIn this paper, we will refer coaxial cables with a bandwidth of 20 GHz. The driving
to the first return map as the Poincanap. voltage is generated with a Wavetek 50-MHz pulse/function
The Poincaremap technique provides a natural link be- generator(model 8. The power spectra of the current os-
tween continuous trajectories and discrete maps and makesdillations are detected with an Advantest R3361 spectrum
more convenient to analyze as well as visualize theanalyzer. The real-time current traces are recorded with a
attractors-? If the intrinsic oscillation contains no higher Hewlett-Packard 54720A digital oscilloscope, which is trig-
harmonics, the Poincamap for frequency locking consists gered by the synchronization signal from the pulse/function
of a set of discrete points, while for quasiperiodicity it will generator using a sampling raté oG samples/second and
be a simple smooth loop. In systems, where the motion of 2768 points/snapshot. The resulting time resolution is
space-charge layer determines the oscillation propertiegbout 50 points per period of the driving frequency, which
higher harmonics are frequently preseit because the corresponds to about 689 per snapshot.
space-charge layer is usually strongly localized within the Current self-oscillations in weakly coupled semiconductor
sample. To the best of our knowledge, there has been nsuperlattices originate from a recycling motion of a charge
report about the distortion of Poincareaps through the accumulation layer inside the superlatticeFor a dc bias
presence of higher harmonics up to now, although highefixed at 7.08 V, the intrinsic fundamental frequendy)( of
harmonics are clearly present in several solid-statéhe current self-oscillations is 11.4 MHz. In the experiment,
systems~ 20 In one particular case, the higher harmonicsthe driving frequency f(3) is set to the golden mean (1
were removed using a filtér. +5)/2=1.618 timesf,, i.e., 18.4 MHz, while the driving
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i B Y =2 mV ing self-crossings. In the following, we will simulate the cur-
Eoh oy i * 03 rent traces by using sinusoidal functions in order to derive
a3 ! Poincaremaps for different conditions, which can be com-
7 fld o0 o pared to the one obtained from the experimental data. The
& owf L - _S|mulated results demonstrate t_hat the dlstor_tlon of the loop
T b e - is caused by the presence of higher harmonics.
E fo . vVe=125mv| |@ V = 125 mV g As a first approximation, we calculate the Poincaraps
= E f, ¢ ac ac 0.3 . . . . .
& Wb R a > at 2 m_\/_wnhout taking into account any higher harmonics.
; 3k oo The driving voltageVy(t) is defined as
80 mm m ) 1 ]”m H ‘ 03 Va(D)=Vacsin(oqt), @)
P P T Y wherewy=27f4. In the simplest case, the real-time current
Frequency (MHz) Time (us) responsd (t) consists of two terms
_ FIG. 1. Current power spectfeft) an_d real-time current .traces [(t)=14SiN(wgt) +11SiN(w,t+ ¢4), (2)
(right) for V,.=2 and 125 mV, respectively, recordetdK in a
superlattice structure. wherew,=2mxf,. The first term represents the response due

to the driving voltage, which has the same frequency and
amplitude ¥/,.) is varied. AtV,.=0, the current oscillations phase as the driving voltage. The second term denotes the
contain up to three higher harmonics with a significant am-intrinsic current component, which exhibits a phase shift
plitude, which are clearly identified in the power spectra.with respect to the driving voltage.
When the driving voltage is applied, combination frequen- In the power spectra, the measured quarfi{y) is de-
cies of the forrmf +mf;, wheren andm are integers, also fined as
appear in the power spectrum in additionff{oand its higher
harmonicsi®'? Figure 1 shows the power spectra on the left P(f)=10logd|1(f)|?], ©)
and real-time current tracéét) on the right for two different
values ofV,.. At 2 mV, the oscillation is quasiperiodic, Wherel(f) denotes the amplitude of the oscillatory compo-
sincef, and f4 are incommensurafe'®*2 With increasing hent with frequencyf. In the measured power spectra, the
Ve, f1 will gradually shift to higher frequencies. At 125 current amplm_Jde is cc_mverteq into a voltage. In the follow-
mV, the frequency ratiof,/f, reaches a rational number ing only amplitude ratios are important, and the current am-
with a value of 7/11, which is called the winding number. plitude in the calculation has been _norr_nalized to an arbitrary
The system has now entered a so-called frequency-lockegPnstant. From the power spectra in Figa)lwe can deter-
state?10.12 mine the amplitude ratio between the driving and intrinsic
Figure Za) shows the Poincarenap derived from the frequency components. In the calculation, we have used a
real-time trace in Fig. (b) for V,c=2 mV with the sam- Vvalue of 229 forl, /I 4. As mentioned above, the frequency
pling phase fixed at the maximum of the amplitude of theratio fq/f; was set at (¥ 5)/2. The current traces are cal-
driving voltage. As mentioned above, if there are no higherculated using Eq(2) with a time scale adjusted in such a
harmonics, the Poincanmap for quasiperiodic oscillations Way that every Poincammap contains about 500 data points.
should be a smooth loop. This is obviously not the case irfFigure 2b) shows the calculated Poincaneap using the
Fig. 2(a), where the Poincammap is a distorted loop contain- parameters given above with a phase sfift=0, which con-
sists of a smooth loop. Changing the valuedf does not
A S result in any changes _of the shape_ of t_he Poihana_nag@, al-
EoT though the exact location of the points in the Poincaiagp

0.3 + F ]
o0 :_'vh-r 3 may be influenced. Therefore, we conclude that, if higher
: 17 ] i ] harmonics are not taken into account, the phase difference

E 03 T E between the driving and intrinsic frequency components does
- (d) HirH -“(‘el) " <r> “““ P not have any effect on the shape of the Poincaag. How-
- 03F ¥ k3 ] ever, the calculated result in Fig(l? is very different from

oo b E the experimentally observed result shown in Fi¢g)2In a
g ] ] previous papet? we have studied the Poincameap for cer-

03 F E i ] tain dc voltages, where the current response in the quasiperi-

Loagd aalonayy I‘..:.. 1 1 Loy
03 00 03 03 00 03 -03 00 03

I, (mA)

odic regime does not contain any higher harmonics. Then,

the resulting Poincarmap is indeed very similar to the one

shown in Fig. Zb). In contrast, when the higher harmonics
FIG. 2. (a) Experimentally derived Poincaraap for the quasi- &€ experimentally present as shown in Figs) and Xc), it

periodic oscillations observed at 2 mV. Calculated Poincasps IS N€cessary to include them in the simulation.

for (b) the fundamental frequendy alone,(c) the second harmonic Figure 2c) shows the calculated Poincaneap for the

f, alone,(d) f, andf, together(e) f, plus three higher harmonics Second harmonic alone, which corresponds to the Poincare

and no phase shift; =0), and(f) f, plus three higher harmonics map for a frequency ratio of (4 5)/4. It is again a smooth

and a phase shift of);=0.87. The frequency ratio was set to loop without any distortion, but has a different shape than the

fqlf,=(1+5)/2. one in Fig. Zb). Any phase shift has again no effect on the
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shape. However, when at least the fundamental frequency Few —tzsmvEm o Ee
and the second harmonic are considered according to B PO 1 E
£ -t ! I . ]

0.0 - « T ° R 3

(1) =1gsiN(wgt) +11SiN(@ t+ ¢1) +1,8IN(2w,t+ ¢5), g I T
4 S T

(mA)

wherel, denotes the amplitude of the second harmonic, the
loop becomes already distorted containing at least one self- SRRV SN S
crossing. This is shown in Fig.(@ for ¢,=¢,=0. The 00 F . F 3 ]
amplitude ratiod ; /1 4=229 andl,/l4=126 have been de- s L : ]

n+l

0.3

I

termined from the power spectra at 2 mV. R TR A N
In order to improve the simulated result with respect to 03 00 03 03 00 03 03 0.0 03
the experimentally observed one, the Poincaap is now I (mA)

derived from a current response that includes all three higher
harmonics shown in Fig.(&). We therefore consider at 2 FIG. 3. (a) Experimentally derived Poincaraap for frequency

mV a current response of the form locking observed at 125 mV corresponding to a winding number of
_ ) ) 7/11. Calculated Poincareaps for a frequency ratio of, /f
[(t)=Igsin(wgt) +11SiN(@1t+ pq) +15SIN2w1t+ ¢y) =7/11 (b) without considering any higher harmonics bf, (c)
1SIN3wit+ dbg) + 1 4SiN(Awgt+ by), ) including three higher harmonics and no phase sh#f{=0), (d)

including three higher harmonics with the same phase shitb,of

wherel ; andl , denote the amplitudes of the third and fourth = 0.8, (e) including all higher frequency components with a phase
harmonic, respectively. A total of five frequencies is nowshift of ¢,=0.8m, and(f) including all higher frequency compo-
taken into account. The other frequency peaks, which ar@ents with phase shifts @, = 0.8 for the three higher harmonics
present in Fig. (a) and originate from the mixing of, witn ~ @nd$1=0 for all the other frequency components.
fq, are not included in Eq(5), since their amplitudes are
rather small. We also confirmed that they have little influ-trace has been simulated using E2).with a frequency ratio
ence on the calculated results. From the power spectra atdf fq/f;=11/7. It indeed contains 11 isolated points along a
mV, the additional amplitude ratios used in the calculationsimilar loop as that shown in Fig.(®. It should be noted
have been determined to bhg/l,=28 andl,/lI4=45. For that there are 500 data points inside a single Poincae so
simplicity, we assume that there is no phase shift betweethat each isolated point actually consists of about 45 points,
the fundamental intrinsic frequency and its higher harmonwhich have exactly the same value. The calculated result in
ics, i.e.,¢,=¢; for i=2,3, and 4. However, the phase shift Fig. 3(b) is again very different from the experimental result
between the driving frequency and all other frequencies mago that higher harmonics have to be taken into account.
still have an important effect on the shape of the Poincare Just as in the calculation for 2 mV, we simulate the cur-
map. rent trace using Eq5). The amplitude ratio of; /14 for i
Figure Ze) shows the calculated Poincameap when all =1,2,3, and 4 is again obtained from the power spectra with
three higher harmonics of Fig(d are included with a phase values of 1.40, 0.70, 0.15, and 0.28, respectively. We also
shift ¢;=0. Comparing it with Fig. &), the number of self- assume no phase shift between thecomponent and the
crossings increases when more higher harmonics are takdén (i=2,3,4) components. Figure¢c} and 3d) display the
into account. We tried a number of different values §ar. calculated results for a phase shift between the driving and
The best qualitative agreement in terms of the shape of thimtrinsic frequency component @f,=0 and ¢,=0.8, re-
Poincaremap was found for a value of 0z8as shown in Fig.  spectively. The agreement between the experimental and
2(f). This clearly demonstrates the influence of higher harsimulated result is greatly improved in Fig(d3 compared
monics on the shape of the Poincamap. The remaining with Fig. 3(c). However, it may be further improved by tak-
difference between Figs(& and 2f) may originate from a ing into account all other frequency peakthere are 24
phase shift between the different frequency components ishown in Fig. 1c), which are linear combinations df; and
the current traces. Better agreement can be expected, if tHe. In contrast to the quasiperiodic case at 2 mV, these fre-
phase shifts are finely tuned between the different frequencguency peaks are rather strdmg Fig. 1(c)]. In Fig. 3e), the
components. In principle, they can be obtained from com<orresponding Poincamgection is shown under the assump-
plete Fourier transforms of the corresponding real-timetion that the phases of all terms are set to/).8e., there is
traces. However, the effect of higher harmonics and phaseo relative phase shift between any of these terms. Com-
shifts on the Poincarenaps can already be demonstratedpared with that in Fig. @l), the overall shape in Fig.(& has
using the procedure outlined above. only changed a little, but some details are in better agreement
We will now calculate the Poincarenap for the with the experimental result. In particular, the lowest two
frequency-locked state observed at 125 mV in the same wapoints are now very close to each other indicating that the
as described above. The Poincarap is expected to contain large region in the lowest part of Fig(a88 actually consists
11 separate points, since the winding number is equal tof two regions, which are connected.
7/11% The experimental result is shown in Fig(aB and Figure 3f) shows the calculated Poincameap including
consists of some 10 isolated areas. However, it appears thall frequency components assuming a different phase shift
one of the longer regions actually consists of two separatéom that in Fig. 3e). The phase shift for the intrinsic fre-
regions. Figure ®) displays the calculated Poincameap  quency and its higher harmonics is the same as for R, 3
without considering any higher harmonics, i.e., the currenbut for all other frequency componentge., the mixing
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term9 the phase has been set to zero. Again, the overaticcumulation layer. Experimental results show that the Poin-
shape does not change very much, but the separation disare maps are significantly distorted by the presence of
tance between the different points is varied. Among thehigher harmonics. Even for quasiperiodic oscillations and
simulated results for the frequency-locked state, Fi@ 3 frequency locking, the Poincaraaps show a rather compli-

shows the best agreement with the experimental Poincaigated structure. The simulation including the higher harmon-
map. Therefore, we conclude that also for the frequencyics and taking into account finite phase shifts between the

locked state the presence of the higher harmonics and mixeglfferent frequency components reproduces the main features
frequency components result in a distortion of the Poincargy ihe experimental results. Therefore, Poircaraps con-

map. A detailed reproduction of the experimentally observedyp, jnformation about the presence of higher harmonics and

shape can only be achieved by including nonzero phasg,e phase shift between these frequency components.
shifts between the different frequency components.

In summary, the effect of the higher harmonics on the The authors would like to thank A. Fischer for sample
shape of Poincarenaps has been investigated for a drivengrowth. Partial support of the Deutsche Forschungsgemein-
semiconductor superlattice, where the current selfschaft within the framework of Sfb 296 is gratefully ac-
oscillations originate from a recycling motion of a chargeknowledged.
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