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Quantum Hall ferromagnet in a parabolic quantum wire
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~Received 26 February 1998!

The spin phase diagram of interacting electrons in a quantum wire under a high magnetic field is investigated
by finite-system exact diagonalization. Various phases emerge as a function of interaction strength and aspect
ratio. Stable spin-polarized states correspond to two-dimensional fractional quantum Hall states of filling
fractions 1/q, with q odd. Spin-singlet ground states for six electrons with filling fractions around2

5 – 1
2 are

inspected in detail, and a real-space singlet pairing state peculiar to wire systems is found for a larger aspect
ratio. @S0163-1829~98!06640-5#
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I. INTRODUCTION

The fractional quantum Hall state~FQHS!, which is real-
ized by the many-body effect of a two-dimensional electr
system~2DES! under a high magnetic field, has been exte
sively studied. Recently, a FQHS with an edge has b
investigated and successfully described as a chiral Luttin
liquid.1 Now, if two parallel edges are located very clo
together in the order of magnetic length, what can be
pected? To simplify the problem, here I consider a syst
with only one kinetic subband occupied. When the edges
tightly squeezed, a usual Tomonaga-Luttinger liquid2 is real-
ized. In the opposite limit, the system is characterized by
independent edge channels. This paper addresses the
mediate regime between a wide 2DES and a squeezed
dimensional interacting system under a high magnetic fie

Theoretical studies have been undertaken for wires w
rectangularly confining potential, first by Chui,3 who found a
finite excitation gap where the electron filling fractionn ~de-
fined by the average electron number per unit quantum fl!
is 1

2 , which is related to charge-density-wave~CDW! states.
Then Rezayi and Haldane4 undertook an extensive study o
the strongly squeezed state, whose excitation was foun
be described as an interacting one-dimensional electron
tem with 1/r 2 potentials. For a parabolic confining potentia
Yoshioka, in his pioneering work,5 demonstrated that there
a sequence of states which are close to the FQHS with fil
fractionsn5 2

3 , 1
3 , and 1

5 , depending on the strength of th
interaction potential. More recently, an incompressible s
has been reported at the filling fraction1

2 .6

Almost all of these studies have focused on spin-polari
states. Numerical studies on 2DES’s have asserted that s
of the incompressible states are not fully spin polarized if
Zeeman energy is small.7 There is experimental evidence o
these states in the GaAs system,8,9 whoseg factor is much
smaller than that of a free electron. Moreover at the edg
a system with several bulk Landau levels occupied, it is p
dicted that a strip of spin-polarized states will be formed
the edge-confining potential is smooth.10 Hence the spin de
gree of freedom extends the variety of ground states~GS’s!
of this system. In this paper, the eigenvalue problem
solved exactly for up to eight electrons in a quantum wire
the FQHS regime, taking the spin degree of freedom i
account. The main results are as follows.~1! States corre-
PRB 580163-1829/98/58~19!/12597~4!/$15.00
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sponding to a filling fractionn51/q, whereq is odd, are
spin polarized.~2! High-spin states found nearn; 1

2 ~Ref. 6!
are not stable except for the four-electron system.~3! For the
six-electron system, spin-singlet GS’s are found for fillin
n; 2

5 – 1
2 .

The model and formulation are described in Sec. II. S
tion III presents results relating to GS’s as a function
various parameters, and discussions follow. Finally, conc
sions are presented in Sec. IV.

II. MODEL AND METHOD

Consider an interacting quasi-one-dimensional elect
gas, subject to a magnetic fieldB in thez direction, strongly
confined in thex-y plane and weakly confined by a parabo
potential 1

2 m* vp
2y2, where m* is electron effective mass

Throughout this paper the discussion is limited to a regi
of sufficiently high magnetic fields such that only the lowe
kinetic-energy level is occupied, and it neglects the le
mixing effects by the interactions. Zeeman energy is
glected in order to clarify intrinsic spin configurations. Fo
lowing the parameterization of the system by Yoshioka,5 the
Hamiltonian is in the second quantized form:

H5(
ms

Emams
† ams1

V0

2 (
mmpmqss8

f mp ,mq
am1mqs

† am2mps8
†

3am2mp1mqs8ams ~1!

where a† and a are creation and annihilation operator
The function f mp ,mq

is the matrix element of the interac
tion potential constructed with single-particle bases in
Landau gauge, exp@i(m/a)x#xm(y), with xm(y)5(1/
p1/4)e2(1/2)@y2(m/a)#2. The momentum quantum numberm
along the wire of lengthL is an integer~half integer!, for the
periodic ~antiperiodic! boundary condition~BC!, which also
corresponds to the (y) displacement of the wave functio
relative to the wire center. The length scale is chosen to
the effective magnetic lengthl V5(m* V/\)21/2, with V
5Avp

21vc
2 and cyclotron frequencyvc5eB/m* . The as-

pect ratio parameter of anN-electron system is defined a
a5L/(2p l V). The normalized aspect ratioã5a/N corre-
sponds to the ratio of the electron average spacing along
12 597 ©1998 The American Physical Society
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wire and the wire effective width. A system with largerã
corresponds to a more squeezed wire. The energy is sc
by \vp

2/(2vc); hence the kinetic energy isEm5(m/a)2,
andV0 is a parameter of interaction strength independen
a. Assumingvc@vp , the magnetic field only appears i
parametersa andV0 , and does not affect the functional form
of the potential energy. Care is needed for our results n
V050, which do not correspond to the states for a weak fi
(vc!vp). To investigate phases for a weak field, a n
parameter, say,vc /vp , should be introduced. The results f
this regime are reported elsewhere.11

In the absence of spin-orbit coupling, the many-parti
wave function can be factored into a spatial part and a s
part. The quantum numbersM and S denote the total mo-
mentum and the total spin of a state, respectively. Since Z
man energy is neglected, states with different totalz compo-
nents of spinSz are energetically degenerate. The ex
N-electron eigenstatesC(N,M ,S) are solved in a subspac
of definiteM andS in the following three steps:~a! enumer-
ate all possibleN-particle basis statesuNMSg&, ~b! calculate
the interaction matrix̂ NMSg8uVuNMSg&, and ~c! diago-
nalize the matrix. For fixedM , there is an infinite set ofg’s
reflecting a continuous spectrum along the wire. To ma
numerical diagonalization possible, the largestumu is re-
stricted to a finite valuemmax. The criterion for selecting
mmax is that the GS probability amplitude of the occupati
of the state,m56mmax is sufficiently small. In particular, I
chooseM50 subspace, which gives the absolute grou
state~AGS! for a periodic~antiperiodic! BC and odd~even!
N. The AGS is selected by comparing the GS for possibleS,
say, for odd N, S5 1

2 , 3
2 , . . . ,N/2 and for evenN, S

50,1, . . . ,N/2.
The interaction potential is taken as being of Coulom

type V(r )5e2/(4per ), with a truncated range ofL/2 along
the wire, whose matrix element

f mp ,mq
5E dy expH 2

1

2 F S mq

a D 2

1S y2
mp

a D 2G J
3E

2pa

pa

dx

cos
mq

a
x

AAx21y2
, ~2!

with A5(2p)3/2a, is evaluated numerically. The interactio
strength parameterV0 is given in this case by
e2/(4pe l V)2vc /(\vp

2).
Since the Hamiltonian matrix is highly sparse, the Lan

zos method is applied to obtain the lowest few eigenval
and their eigenstates. The effective filling factor is defined
in a 2DES,ns(y)52prs(y). The local electron density o
spins, rs(y), is given by(muxm(y)u2nms /L, wherenms is
the occupation of state with momentumm and spins aver-
aged by the GS eigenstates. The pair correlation func
gs,s8(Dx,y,y8) is defined in a usual way, which correspon
to the joint probability of finding electrons with spins8 at
r 85(Dx,y8) if one electron with spins is put atr 5(0,y).

III. RESULTS

The phase diagram of the AGS for a six-electron syst
is shown in Fig. 1. The broadband regions have aver
led
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fillings aboutn51 and 1
3 from the bottom to the top. The

situation is very similar to that of a 2DES,7 where the states
with 1/q filling with odd q are spin polarized. There is little
size dependence of the areas of these phases up toN58. In
the region of very smallã these polarized states have pe
odic density modulation in they direction, which has been
investigated perturbatively12 and numerically.4 The typical
excitation energy is 0.1–0.3, and the excited state has
smallerS than the GS.

Comparing the result of Coulomb potential and that
Haldane’s pseudopotential13 is particularly useful to assign
the GS. The value of thenth pseudopotentialUn , defined in
a circularly symmetric system, is given by momentum in
gration of the Fourier-transformed potentialV(q) multiplied
by exp(2q2)Ln(q

2), where Ln is the nth Laguerre polyno-

FIG. 2. Potential energy of a spin-singlet GS normalized byV0

calculated with the HC potential as a function ofV0 for N56 and

ã50.18, 0.25, 0.317, 0.383, and 0.45. Thick horizontal lines sh
theV0 parameter region of the spin-singlet AGS calculated with

Coulomb potential for eachã.

FIG. 1. Phase diagram of the AGS for a six-electron system
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mial. The matrix elements of these pseudopotentials are
tained analytically asf mp ,mq

0 , f mp ,mq

1 ,... . In the so-called

hard-core~HC! potential ~f n50 for n.q22!, Laughlin’s
n51/q state14 is exact, and is a zero-eigenvalue state in
2DES. While there remains a kinetic-energy term in a w
the potential energyEp is strongly suppressed in the broa
regions by using the HC potential.5 Therefore the spin-
polarized states are assigned as Laughlin’sn51/q state.

In spin-polarized subspace, there is an isolated inco
pressible state for aboutã;0.23 andV0;40. The electrons
of this states are almost uniformly distributed withn5 1

2 , as
reported in Ref. 6. For a zero Zeeman energy condition,
state isnot an AGS except for the four-electron system, ev
in which case the excitation energy toS50 and 1 states is
very small~typically 20% of the gap forn51 and1

3 AGS’s!.
For a four-electron system with an antiperiodic BC, the

are only spin-singlet (S50) AGS’s and spin-polarized
(S52) AGS’s. For a five-electron system with a period
BC, the states ofS5 1

2 and 3
2 are distributed between

n51/q ~q odd! stripes. In the following, I will concentrate
on the details of the spin-singlet state forN56. There are
two regions of spin-singlet AGS’s between then51 and 1

3

spin-polarized stripes. Figure 2 shows theEp of a spin-
singlet GS normalized byV0 as a function ofV0 calculated
with the HC potential~f n50, n.1!. There are clear transi
tions to the zeroEp state atV0566 for ã50.18, or atV0

546 for ã50.25. In these zeroEp regions, the eigenstate

FIG. 3. Pair distribution functions for a spin-singlet GS atã
50.4, V0526, andN56. One electron is fixed atr 5(0,2), which
is shown symbolically by black ovals. The center of the wire
shown by a thick solid line. The three figures, from top to botto
are for spin parallel, spin staggered, and sum of spin parallel
staggered pairs.
b-

a
,

-

is
n

e

calculated with the HC potential and that with the Coulom
potential overlap more than 90%, and their electron distri
tion is almost uniform and the average filling is about 0
For correlation with small distance, they show ar 6 depen-
dence for parallel spin andr 4 for staggered spin pairs. Thi
correlation is well described by then5 2

5 spin-singlet state

C3325)
i , j

~zi2zj !
3)

a,b
~za2zb!3)

i ,a
~za2zi !

2e2(auzau2

~3!

proposed by Halperin,15 which is a zero eigenvalue exact G
of two-dimensional HC potential. The position with indexi , j
is for the spin-up state, the position with indexa,b is for the
spin-down state, and the position with indexa is for both
spin directions. The region where the spin singlet GS ha
very large overlap withC332 is shown by vertical lines in
Fig. 1, which shows locations for a smallerã.

What, then, are the other regions? As seen in Fig. 2,
potential energy of the spin-singlet GS calculated with
HC potential in these regions is apparently suppressed b
not completely zero. The pair distribution function for th
region calculated with the Coulomb potential is shown
Fig. 3. Quite noticeable, and the largest difference from t
of the n5 2

5 state, is the large spin-singlet correlation in t
lateral direction of the wire. This pair structure can be fou
in the same parameter range withN54 or 5, as well as for
the HC potential. There is also a finite probability that tw
electrons with staggered spin are located at the same p
tion. The filling fraction of these states is close ton5 1

2 ,
although there are two small peaks in the lateral direction
the wire. This spin-singlet AGS disappears forã.0.55,
where no singlet pair can be formed in the lateral direction
such a squeezed wire.

There has been a spin singletn5 1
2 GS proposed by

Haldane and Rezaji~HR! ~Ref. 16! with a ‘‘hollow core’’
potential. While in spin-polarized states, the zeroth com
nent of their pseudopotentialU0 is irrelevant because of th
Pauli principle, a pair of staggered spins expel each othe

,
d

FIG. 4. Potential energy of a spin-singlet GS forN56 as a
function of V0 with various pseudopotential parametersw ~see the
text for the definition!.
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U0 for spin-singlet states. HR showed that ifU0 is suffi-
ciently small, the following function is an exact zero ener
spin singlet eigenstate forS50 andn5 1

2 ,

CHR5)
a,b

~za2zb!2 detuM ue2(auzau2, ~4!

whereMa,i5(za2zi)
22 is theN/23N/2 matrix. Following

HR, Belkhir and co-workers tried to realize spin-sing
AGS’s at n5 1

2 for Coulomb or HC potentials. They suc
ceeded forN54 and 6 systems in a spherical geometry, b
then failed for theN58 system.17 The pair-correlation func-
tions for the HR state and the singlet state in the wire
different. According to the definition, the parallel spin pa
correlation of HR states showsr 4, and the staggered spi
correlation is constant. However, for the wire, the para
spin correlation is onlyr 2.

To compare further withCHR , I used a pseudopotentia
defined asf 5w f01 f 1 to calculate spin-singlet states, an
controlled the relative potential strength of the staggered s
by varying parameterw. Ep /V0 as a function ofV0 for this
pseudopotential is shown in Fig. 4. The state withw50 is
the one-dimensional CDW state, which is a periodic array
spin-singlet pairs withn;1 at the center of the wire. Asw
increases, the CDW state become unstable,Ep increases, and
the filling fraction decreases. For a fixedw, there is a critical
potential strengthV0

cr , whereEp falls abruptly and corre-
sponding filling fraction is aboutn51/2. Ep does not change
ys

A.
t

t

e

l

in

f

greatly if V0 is increased further. ThisV0
cr is a decreasing

function of w, and this feature does not change even forw

@1. Therefore, the origin of the pairing for largerã is quali-
tatively different from the hollow core potential.

There is another spin-singlet state in the parameter reg
nearn51, whose filling factor is aboutn5 2

3 , and its region
is much smaller than that of Laughlin’sn5 2

3 state.5 The
details of this state will be reported elsewhere.11

IV. CONCLUSIONS

I have investigated the phase diagram of interacting e
trons in a quantum wire under a high magnetic field in
two-parameter space, namely, interaction strength and as
ratio. I used the exact diagonalization method for a fin
system, while neglecting the Zeeman energy. As in a 2D
the odd-denominator filling state is a stable spin-polariz
state. A low-spin GS at around a filling fraction of2

5 , and
small aspect ratio, has a large overlap with Halperin’s sp
singlet GS. Another spin singlet GS was found at a filli
fraction of about1

2 and for a larger aspect ratio, at whic
spin-singlet real-space pairing was realized.
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