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Quantum Hall ferromagnet in a parabolic quantum wire
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The spin phase diagram of interacting electrons in a quantum wire under a high magnetic field is investigated
by finite-system exact diagonalization. Various phases emerge as a function of interaction strength and aspect
ratio. Stable spin-polarized states correspond to two-dimensional fractional quantum Hall states of filling
fractions 1¢, with g odd. Spin-singlet ground states for six electrons with filling fractions arcﬁmél are
inspected in detail, and a real-space singlet pairing state peculiar to wire systems is found for a larger aspect
ratio. [S0163-18268)06640-3

[. INTRODUCTION sponding to a filling fractionrw=1/q, whereq is odd, are
spin polarized(2) High-spin states found near- 3 (Ref. 6

The fractional quantum Hall statEQHS), which is real-  are not stable except for the four-electron systénFor the
ized by the many-body effect of a two-dimensional electronsix-electron system, spin-singlet GS’s are found for filling
system(2DES under a high magnetic field, has been exten-v~%—3.
sively studied. Recently, a FQHS with an edge has been The model and formulation are described in Sec. Il. Sec-
investigated and successfully described as a chiral Luttinggfon Il presents results relating to GS’s as a function of
liquid.r Now, if two parallel edges are located very close various parameters, and discussions follow. Finally, conclu-
together in the order of magnetic length, what can be exsions are presented in Sec. IV.
pected? To simplify the problem, here | consider a system
with only one kinetic subband occupied. When the edges are Il. MODEL AND METHOD
tightly squeezed, a usual Tomonaga-Luttinger li§usdreal-
ized. In the opposite limit, the system is characterized by two Consider an interacting quasi-one-dimensional electron
independent edge channels. This paper addresses the intg@s, subject to a magnetic fiellin the z direction, strongly
mediate regime between a wide 2DES and a squeezed oneonfined in thex-y plane and weakly confined by a parabolic
dimensional interacting system under a high magnetic fieldpotential 3m* wy?, wherem* is electron effective mass.

Theoretical studies have been undertaken for wires witifhroughout this paper the discussion is limited to a regime
rectangularly confining potential, first by Chisyho found a  of sufficiently high magnetic fields such that only the lowest
finite excitation gap where the electron filling fractiofde-  kinetic-energy level is occupied, and it neglects the level
fined by the average electron number per unit quantum fluxmixing effects by the interactions. Zeeman energy is ne-
is 3, which is related to charge-density-wa(@DW) states. glected in order to clarify intrinsic spin configurations. Fol-
Then Rezayi and Haldaheindertook an extensive study of lowing the parameterization of the system by Yoshidkiae
the strongly squeezed state, whose excitation was found tdamiltonian is in the second quantized form:
be described as an interacting one-dimensional electron sys-
tem with 1/2 potentials. For a parabolic confining potential, T 0 N +
Yoshioka, in his pioneering workdemonstrated that there is 1= %; Ennodmet 5 2 Fin, me@m-+ myoBm-m o

a sequence of states which are close to the FQHS with filling mmpmqeo”

fractionsv=2%, 1, and i, depending on the strength of the X A m +m.o'3me (1
interaction potential. More recently, an incompressible state P

has been reported at the filling fractign® where a' and a are creation and annihilation operators.

Almost all of these gtudies have focused on spin-polarizedrhe functionfmp’mq is the matrix element of the interac-
states. Numerical .studles on 2DES’s have gsserteq thaF SOMBn potential constructed with single-particle bases in the
of the incompressible states are not fully spin polarized if thq_andau gauge, efHMaXlx.(y), With xm(y)=(1/
Zeeman energy is smdllThere is experimental evidence of 771/4)3*(1/2[}’*(”‘/(1)],2 The momenrqltur,n quantummnumben
these states in the GaAs systBfiwhoseg factor is much . ’ . ) .

ystetw g long the wire of length is an integerhalf integey, for the

smaller than that of a free electron. Moreover at the edge of'ong ¢ R - .
a system with several bulk Landau levels occupied, it is preperlod|c(ant|per|od|0 boyndary conditior(BC), which als_o
dicted that a strip of spin-polarized states will be formed jfcorresponds to theyj displacement of the wave function

the edge-confining potential is smodfhHence the spin de- relative to. the wire cgnter. The Iengah scalglilg chpsen to be
gree of freedom extends the variety of ground sté@s's (e effective magnetic lengthy =(m*Q/#) "7 with Q

of this system. In this paper, the eigenvalue problem is= V@pT ¢ and cyclotron frequencyw.=eB/m*. The as-
solved exactly for up to eight electrons in a quantum wire inPect ratio parameter of aN-electron system is defined as
the FQHS regime, taking the spin degree of freedom intax=L/(27lg). The normalized aspect rate= «/N corre-
account. The main results are as follow$) States corre- sponds to the ratio of the electron average spacing along the
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wire and the wire effective width. A system with larger 100 ' L '

corresponds to a more squeezed wire. The energy is scaled
by hwgl(ch); hence the kinetic energy iE,=(m/a)?,
andV, is a parameter of interaction strength independent of
a. Assuming o> w,,, the magnetic field only appears in
parametersr andV,, and does not affect the functional form

of the potential energy. Care is needed for our results near
V=0, which do not correspond to the states for a weak field
(oc<wp). To investigate phases for a weak field, a new
parameter, say./w,, should be introduced. The results for
this regime are reported elsewhéte.

In the absence of spin-orbit coupling, the many-particle
wave function can be factored into a spatial part and a spin
part. The quantum numbeid and S denote the total mo-
mentum and the total spin of a state, respectively. Since Zee-
man energy is neglected, states with different tatabmpo-
nents of spinS, are energetically degenerate. The exact
N-electron eigenstate® (N,M,S) are solved in a subspace
of definiteM andS in the following three stepga) enumer- FIG. 1. Phase diagram of the AGS for a six-electron system.
ate all possibleN-particle basis statd®lM Sy), (b) calculate

the interaction _matri><|_\|MSy’|V|Nl\_/|Sy),. and (c) diago-  fjjlings abouty=1 and} from the bottom to the top. The
nalize the matrix. For fixed/, there is an infinite set of's gjtyation is very similar to that of a 2DEQyhere the states
reflecting a continuous spectrum along the wire. To mak&yith 1/q filling with odd q are spin polarized. There is little
numerical diagonalization possible, the largést is re- size dependence of the areas of these phases Np-& In

stricted to a finite valuen,,,.. The criterion for selecting ; =~ . .
Myax iS that the GS probability amplitude of the occupationthe region of very smalh.these p_olar!zed St"’?tes have pen-
max odic density modulation in thg direction, which has been

. : . .
of the Statem= = My IS sufficienty small. In particular, | Jnvestigated perturbatively and numerically’. The typical
chooseM =0 subspace, which gives the absolute groun o . "

excitation energy is 0.1-0.3, and the excited state has one

state(AGS) for a periodic(antiperiodi¢ BC and odd(even
. . smallerS than the GS.
N. The AGS is selected by comparing the GS for possile Comparing the result of Coulomb potential and that of

_13
s_a(;)/,l for ?\|d/g N, $=2,2,...N/2 and for evenN, S Haldane’s pseudopotenttalis particularly useful to assign
T'h,e. iﬁteraétion potential is taken as being of Coulombthe.GS' The value Of theth psegdopotentlaun, defined n
type V(r) = e2/(4aer). with a truncated range df/2 along a cqcularly symmetric system, is given b_y momentum inte-
the wire. whose matrix element gration of the Founer-transfo_rmed potentidlg) multiplied
’ by expaq?)L,(g?), whereL, is the nth Laguerre polyno-
2 m, 2
-

1| (mg
fmp’quJ'dyex 5|l 1

o
m
cos—x

R @

—Ta A\/X2+ y2 '

with A= (2)%?a, is evaluated numerically. The interaction
strength parameterV, is given in this case by
e’/ (4melg) 20/ (fiw?).

Since the Hamiltonian matrix is highly sparse, the Lanc-
zos method is applied to obtain the lowest few eigenvalues
and their eigenstates. The effective filling factor is defined as
in a 2DES, v (y)=2mp,(y). The local electron density of

spina, p,(y), is given by= | xm(Y)|?Nm, /L, Wheren,, is
the occupation of state with momentumand spino aver-
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0 1
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

aspect ratio &

4
o

o
o

Normalized interaction energy EpNo
=] o
N S

aged by the GS eigenstates. The pair correlation function T 10 2w @ m & .
Oss(AX,y,y") is defined in a usual way, which corresponds
to the joint probability of finding electrons with spsi at Interaction potential V,

r'=(Ax,y") if one electron with spirs is put atr=(0,y). _ L .
( y') P P (0) FIG. 2. Potential energy of a spin-singlet GS normalizedvhy

calculated with the HC potential as a function\6f for N=6 and
@=0.18, 0.25, 0.317, 0.383, and 0.45. Thick horizontal lines show

The phase diagram of the AGS for a six-electron systentheV, parameter region of the spin-singlet AGS calculated with the
is shown in Fig. 1. The broadband regions have averag€oulomb potential for each.

lll. RESULTS
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Potential energy

Interaction V,

FIG. 4. Potential energy of a spin-singlet GS fd=6 as a
function of V with various pseudopotential parametergsee the
text for the definition.

calculated with the HC potential and that with the Coulomb

potential overlap more than 90%, and their electron distribu-

tion is almost uniform and the average filling is about 0.4.

For correlation with small distance, they show %depen-
FIG. 3. Pair distribution functions for a spin-singlet GSat  dence for parallel spin and for staggered spin pairs. This

=0.4,V,=26, andN=6. One electron is fixed at=(0,2), which ~ correlation is well described by the=2 spin-singlet state

is shown symbolically by black ovals. The center of the wire is

shown by a thick solid line. The three figures, from top to bottom, _ 3 3 2~ |22

are for spin parallel, spin staggered, and sum of spin parallel and \If332—H (zi—27) (111, (2a=2p) H (2,—2)% el

staggered pairs. ©)

mial. The matrix elements of these pseudopotentials are okp_ropose_d by I—!alperiﬂ'ﬁ which i’fs a zero eig_e_nvalu_e exact GS
tained analytically asf® £l In the so-called of two-dimensional HC potential. The position with indiek
P

" Mo Mg" "My Mg e ) is for the spin-up state, the position with indeys is for the
hard-core(Hg)_ potential (f,=0 for n>q—2), Laughlin's  gpin.down state, and the position with indexis for both
v=1/q stat_é is exact, and is a zero-eigenvalue state in agpin directions. The region where the spin singlet GS has a
2DES. Wh_lle there remains a kinetic-energy term in a Wireyery large overlap with¥ s, is shown by vertical lines in
the potential energ¥, is strongly suppressed in the broad Fig. 1, which shows locations for a smaliér

regions by using the HC potentiélTherefore the spin- \)Vh’at, then, are the other regions? As seen in Fig. 2, the

pOII?]rZEidn-Sgitlzfizaerg 23%'3;:38asthlj::gigm?nl/igoslﬁé% inCompotential energy of the spin-singlet GS calculated with the

) ~ ' HC potential in these regions is apparently suppressed but is
pressible state for about~0.23 andVy~40. The electrons 6t completely zero. The pair distribution function for this
of this states are almost uniformly distributed with3, @ region calculated with the Coulomb potential is shown in
reported in Ref. 6. For a zero Zeeman energy condition, thigjg 3. Quite noticeable, and the largest difference from that
state isnotan AGS except for the four-electron system, evenyf the = 2 state, is the large spin-singlet correlation in the
in which case the excitation energy =0 and 1 states is |ateral direction of the wire. This pair structure can be found
very small(typically 20% of the gap fov=1and; AGS'S).  in the same parameter range wit=4 or 5, as well as for

For a four-electron system with an antiperiodic BC, thereihe HC potential. There is also a finite probability that two

are only spin-singlet $=0) AGS's and spin-polarized gjlectrons with staggered spin are located at the same posi-
(S=2) AGS's. For a five-electron system with a periodic tjon. The filling fraction of these states is close #e- 2,

1 3 H H . . .
BC, the states ofS=; and ; are distributed between ajthough there are two small peaks in the lateral direction of

v=1/q (q odd) stripes. In the following, | will concentrate the wire. This spin-singlet AGS disappears far>0.55,

on the gletans of .the.spm-smgle,t state #e=6. There alre where no singlet pair can be formed in the lateral direction in
two regions of spin-singlet AGS’s between the-1 and3 such a squeezed wire

spin-polarized stripes. Figure 2 shows tkg of a spin- There has been a spin si 1

! . . pin singlet=3 GS proposed by
smglet GS normah;ed nbyo as a function oV, calculated' Haldane and RezajHR) (Ref. 16 wit% a “hollow core”

with the HC potentialf"=0, n>1). There are clear transi- qtantial. While in spin-polarized states, the zeroth compo-
tions to the zerce, state atVo=66 for «=0.18, or atVo  nent of their pseudopotential, is irrelevant because of the
=46 for «=0.25. In these zer&, regions, the eigenstates Pauli principle, a pair of staggered spins expel each other by
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Uy for spin-singlet states. HR showed thatUf, is suffi-  greatly if V, is increased further. Thi¥’g" is a decreasing
ciently small, the following function is an exact zero energyfunction ofw, and this feature does not change evenwvor

spin singlet eigenstate f@=0 andv=3, >1. Therefore, the origin of the pairing for largeris quali-
tatively differentfrom the hollow core potential.
poR:H (Za—2p)° detM |e_2a‘za‘2’ (4) There is another spin-singlet state in the parameter region
a,b nearv=1, whose filling factor is about= %, and its region

whereM , ;= (z,—z) "2 is theN/2X N/2 matrix. Following is much smaller than that of Laughlin’s=2 state® The

HR, Belkhir and co-workers tried to realize spin-singlet d€tails of this state will be reported elsewhete.

AGS’s at v=3 for Coulomb or HC potentials. They suc-

ceedeq foN=4 and 6 systems in a spherical gepmetry, but IV. CONCLUSIONS

then failed for theN=8 system'’ The pair-correlation func-

tions for the HR state and the singlet state in the wire are | have investigated the phase diagram of interacting elec-

different. According to the definition, the parallel spin pair trons in a quantum wire under a high magnetic field in a

correlation of HR states showd, and the staggered spin two-parameter space, namely, interaction strength and aspect

correlation is constant. However, for the wire, the parallelratio. | used the exact diagonalization method for a finite

spin correlation is only 2. system, while neglecting the Zeeman energy. As in a 2DES,
To compare further withP',, | used a pseudopotential the odd-denominator filling state is a stable spin-polarized

defined asf=wf%+ f* to calculate spin-singlet states, and State. A low-spin GS at around a filling fraction éf and

controlled the relative potential strength of the staggered spimall aspect ratio, has a large overlap with Halperin’s spin-

by varying parametew. E,/V, as a function oV, for this singlet GS. Another spin singlet GS was found at a filling

pseudopotential is shown in Fig. 4. The state witk0 is  fraction of about; and for a larger aspect ratio, at which

the one-dimensional CDW state, which is a periodic array oSpin-singlet real-space pairing was realized.

spin-singlet pairs withv~1 at the center of the wire. As

increases, the CDW state become unstdbld@ncreases, and

the filling fraction decreases. For a fixed there is a critical

potential strengtvg', where E, falls abruptly and corre- | gratefully acknowledge helpful discussions with S.

sponding filling fraction is about= 1/2. E, does not change Tarucha and Y. Takagaki.
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