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Transport of localized and extended excitations in a nonlinear Anderson model
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We study the propagation of electrofm excitation$ through a one-dimensional tight-binding chain in the
simultaneous presence of nonlinearity and diagonal disorder. The evolution of the system is given by a
disordered version of the discrete nonlinear Sdhwger equation. For an initially localized excitation we
examine its mean square displacemémi(t)) for relatively long timesVt~ 10, for different degrees of
nonlinearity. We found that the presence of nonlinearity produces a subdiffusive propd@atign~t*, with
a~0.27 and depending weakly on nonlinearity strength. This nonlinearity effect seems to persist for a long
time before the system converges to the usual Anderson model. We also compute the transmission of plane
waves through the system. We found an average transmissivity that decays exponentially with system size
(T)~exp(—pL), where B increases with nonlinearity. We conclude that the presence of nonlinearity favors
(inhibits) the propagation of localizetbxtendedl excitations[S0163-182¢08)06340-1]

In condensed matter the presence of nonlinearity can leader. The transmission of plane waves across the system
to the formation of localized mobile excitatiosuch as po- showed a powerlike decay as a function of system size. Since
larong, while the presence of disorder produces localizedhe DNLS equation is obtained from the coupled system for
modes whose mobility is inhibited, most notably in low- the quasiparticle and vibrational degrees of freedom in the
dimensional system@Anderson localization Thus, it is in-  |imit of a negligible oscillator inertigantiadiabatic limit we
teresting to consider the combined effect of the simultaneougiso examined the effect of a finite oscillator inertia on the
presence of nonlinearity and disorder on localization am&elf-trapping properties exhibited by the DNLS equation. We
transport properties of a typical low-dimensional system. tound that such inertigtreated in a semiclassical wagtoes
With that idea in mind, we consider in this work the propa- ot gjter the existence of a nonlinearity threshold for self-

gation_ of a _generic que}sipartic.(elect.ron or excito}win a trapping or the ballistic character of the propagafiofhe
one-dimensional chain in the tight-binding formalism. Dueabove properties differ markedly from the well-known

to a strong interaction between the quasi-particle and theAnderson localization” phenomenon, where the presence

vibrational degrees of freedom of the chain, and assumiNgs o finite concentration oflinean uncorrelated disorder

that the vibrational time scale is much shorter that the hop- letelv inhibits th Darticl i R
ping time scale, the effective electronic evolution equation jComPpietely INNibits the quasiparticie propagation, giving rise

given by the discrete nonlinear Séhioger (DNLS) equa- to a §aturat|on of its mean-squa_re (_Jll_splacement and an e>fpo-
tion: nential decrease of the transmissivity of plane waves with

dc system sizé.

. n_ 2 In the present work we study the rather complementary
gt~ (@ xnlCol )Gt V(Chia+Con) (D case, taking in Eq(1) x,=consty and e, randomly dis-
whereC,(t) is the probability amplitude of finding the exci- tributed in a finite interval. The mpdel to C(_)nsider can then
tation on siten at timet, €, represents the site energies of a be taken as an Anderson model with a nonlinear background.
one-dimensional crystal is the nearest-neighbor hopping  Localized excitationFor a fixed value ofy and a given
term, andy,, is the nonlinearity parameter, proportional to random{e,} configuration, with—1<e,<1, we compute
the square of théstrong electron-phonon coupling on site the time evolution of the quasiparticle, which is initially
The special casg,=0 and ¢, random, describes a one- placed completely on a single sifesite zero”), and exam-
dimensional Anderson model characterized by having all ofne its mean square displacement in time:

its eigenstates localized and a completely inhibited electronic
transporf In a previous work we considered the special
case of Eq.(1) where the disorder resides entirely in the
nonlinearity parametere,=const andy,,= x or zero with u(t)= _Ew m?|Cpy(t)]? 2
50% probability, that is, a nonlinear random binary alloy. -

The excitation was initially placed on a single impurity site

and both probability profile and mean square displacemerfbllowed by an average over a number of disordered site
were studied for relatively long times. We found that aenergy realizations, obtainingu(t)). The system of equa-
threshold of nonlinearity existsx(V) i~ 3.2, below which  tions (1) is solved numerically by means of a fourth-order
the excitation propagates throughout the chiaadlistically =~ Runge-Kutta algorithm. Numerical precision is checked by
(i.e., like a free particle Above threshold, there is partial monitoring the conservation of probability(norm)
localization (self-trapping around the initial site, while the = .Cn(1)]2=1. In order to avoid undesired boundary effects,
untrapped portion escapes to infinity also in a ballistic mana self-expanding lattice was usé#Ve computed u(t)) up

o
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FIG. 1. Disorder-averagel00 realizations mean square dis- FIG. 2. Fluctuationsr,= \/<_U2>—(U>_2 in the mean square dis-
placement of an initially localized excitation, for different values of placement of an initially localized excitation as a function of time,
the nonlinearity parameter{1<e,<1). for different nonlinearity parameter values (<e,<1).

to times of the order o¥/t,,.,—10", averaging over 100 dis- linearity is needed to self-trap. Figure 3 compares a
order configurations of the chain, going frgp=0 up to x realization- and time-averaged probability at the initial site
=5V. Results are shown in Fig. 1. The cagse 0 shows the with the case of no disorder. The beginning of nonlinear
typical saturation ir{u(t)) evidencing a complete quasipar- r@Pping starts aroung=2V, on average. Clearly, the pres-
ticle localization. However, whey # 0, Anderson localiza- ence_of disorder smears considerably the onset of nonlinear
tion is destroyed and the quasiparticle propagates in a suffaPPIing. _ o , 5

diffusive way, i.e., for long timegu(t))~t* with a<1. A What happens in the limit—? Given that|C,|* must
minimum-squares fit finds: quickly reaching and staying necessarlly decrease QUrlng propagatlon'due to normalization
close to 0.27, fory=1 (see Table )l At this point it is  (P&rring coherent motion, not observed in our gagee ef-
interesting to point out that all the subdiffusive exponents ard€Ct Of nonlinearity decreases in tiniand spaceand, from
substantially smaller than the one conjectured by Shepeliard- (1), We expect that after a sufficiently long time, the
sky (a=2/5), based on a somewhat unclear analogy witHmodel should reduce to the Anderson model. Therefore, the
dynamical localization in the kicked rotator modeAn ex- observed subdiffusive propagation ShOUId event_uaﬁ_yu-
amination of the fluctuations, in u(t) revealed that these rate: We followedu(t) for particular disorder realizations,
grow at the same rate as the mean square displacefignt P to t_lmes of X 10* V without observing a discernible

2). This behavior has also been observed in models describ&gturation. _ .

by long-range random interactiof sample-to-sample ex- _ F1om Fig. 1 we also observe that, for a given tir(t))
amination of the time-averaged probability at the initial site/ncreases with nonlinearity up 'V~ 2. Thereafter, its am-
revealed the presence of a nonlinear trapping regime Supep_htude decreases with increasing nonlinearity. This can be

imposed on a background of Anderson localization. The on-

set of this nonlinear trapping is realization dependent and 10
determined mainly by the disorder environment around the [
initial site. In some cases, this disorder may hold the excita- 08
tion longer in the vicinity of the initial site, allowing nonlin-
earity to self-trap more easily; or it may increase the local
hopping from the initial site, in which case a stronger non- A VBT
(o]
TABLE |. Subdiffusive exponent for the long time disorder- o i
N . L . vV 04
averaged100 realizationspropagation of an initially localized ex- \Y
citation, for several different values of the nonlinearity parameter
(—1<ep<l). 0.2
x!'V a
0.0
0 0.02
0.2 0.08 IV
1 0.282
2 0.287 FIG. 3. Disorder- and time-averaged probability at the initial
3 0.262 site ((PO>)=(1/tmax)fgmax(P0(t)> dt, of an initially localized excita-
4 0.265 tion, as a function of nonlinearityfull line) [—1<e,<1, tyax
5 0.266 ~O(10%), 100 realizationk The case of no disorder is also shown

for comparison(dashed ling
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understood as the effect of nonlinear self-trapping, which

begins aroundy/V=2 on average, according to Fig. 3,

where a finite fraction of the excitation begins to localize

around a narrow vicinity of the initial site. Since the fraction

of the excitation that can propagate is now effectively

smaller, this renormalizeéu(t)) to smaller values ay is

increased. >
Extended excitationWe now consider a segment of our =

disordered and nonlinear material, embedded in a linear, pe-

riodic chain between sites=0 andn=L. Let us look for

stationary solutions of Eq(l) of the form C,(t)= ¢,exp

(—IEt). We obtain

E¢n:(6n_X|¢n|2)¢n+v(¢n+l+d’nfl)- ©)

In particular, we consider the propagation of plane waves

across the segment. We put (a)
Roe*"+R,e k" n=<0 14 |- . i
Pn= Rze“‘”, n=L, 4 !_{‘

1.2 | N _
which impliesE=2V cosk). For a given segment of length ]

L its transmissivity is estimated as follows: given a disorder
configuration and a wave vectkr we putR,=1 (Ref. 7) at
n=L and iterate backwards using E®) until we reach the
beginning of the segment, wheRy is computed. The trans-
missivity is thenT=|R,|?%/|Ro|2. This method for obtaining
T, using a “fixed output” circumvents eventual problems
with multiestability®® In Figs. 4a)—4(c) we show transmit-
ting (dark and nontransmitting regiméslean for a segment
of length L=50 and a given disorder realization with
two different disorder widths: € €,<0.3[Fig. 4a] and 0
< €,<0.6[Fig. 4(b)]. Each diagram was obtained by assign-
ing arbitrarily a passingnonpassing character to a given
wave vectork, whoseT was abovegbelow) a preset cutoff. (b)
The diagrams feature the presence of several branches 0.20
(tongues$ responsible for multiestability and a highly irregu-
lar, fractal-like shape. As the width of the disorder is in-
creased, the transmitting region “evaporates” somewhat, de- 0.18
creasing its total area but creating new tongues and more
irregular features. In Fig.(4) we show an enlargement of the
region indicated in Fig. &), depicting the presence of even 0.16
smaller tongue structures. These irregular features are similar
to the ones obtained for a nonlinear chain in the absence of
disorder® 0.14
For a given segment of lengthwe computed an average
transmissivity(T) by averaging over all wave vectorssk

YA

>
=

<7 and over many disorder configuratiofia thousand, 0.12

typically). The procedure outlined above was carried out

with segments of length =20 up toL =2000, examining in 010 . -

each case the decay rate(@} as a function ot., for several 0.5 0.6 0.7 0.8 0.9 1.0
different values of the nonlinearity parameferThe casey c k

=0 is well known and leads to an exponential decay of the

transmissivity with system size. Fer>0 we found that this FIG. 4. Transmittingdark and nontransmittingclean regimes

behaviorpersistsat smallL (L <200) with decay ratetarger ~ for a plane wave across a nonlinegy/{V=1) segment I =50)

than in the case of absence of nonlinearity. More exactlyWwith 0<€,<0.3 (a) and 0<€,<0.6 (b). In (c), an enlargement of
(T)~exd —B(x)L] with B an increasing function of. This  the region indicated irib) is shown.

is vividly illustrated in Fig. %a). For largeL values, the

transmissivity seems to converge slowly to a power-law bewhere by means of the elegant invariant embedding method
havior [Fig. 5b)]. The latter feature has also been observeda power-law decay of transmissivity at large slab sizes was
in a related model, theontinuousnonlinear random slab, obtained’
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10 —r ate localization in the absence of nonlinearity. On the con-
trary, in the second case, the effect of nonlinearity seems to
reinforce that of disorder, giving rise to an exponential de-
crease in transmissivity even stronger than in the pure
Anderson case, at least for not very large segments. This
qualitative difference is due to the widely different nature of
the excitation: In the localized excitation case, the propaga-
tion is aided by two factors: an initial, localizgtsoliton-
like” ) state, whose mobility tends to be favored by nonlin-
earity, and the loss of incoherent random scattering from the
random site energies, due to the loss of site superposition.
3 This nonlinearity effect will ultimately disappear due to the
T | spreading of the initial pulse, since the DNLS equatith
40 80 120 160 200 does not really support discrete solitdfisand the system
will ultimately revert back to an Anderson-like system. The
situation for the extended excitation case is different, and can
10— — e be understood qualitatively by starting wigp=0 and in-
1 creasingy in a perturbative manner. For strictly zero, the
probability profile inside the slab, possesses on average, an
exponential envelopbg,|2~exda(L—n)], for 0<n<L. If
we now increaseg from zero, we have, according to E®)
an additional site energy term — y exg2«(L—n)], which
quickly supersedes the random site energigs and the
transmission problem becomes one of a plane wave going
1 through very high, correlated barriers, the hight of which
o ngg’\‘/’ E increases very rapidly with the length of the slab. To aid in
a Q;L'ov 1 visualization, let us replace these exponential barriers with
an effective constant-height barriBgs. As is well known,
104 | \\ 3 in this case, only plane waves with wave vectors greater than
0 10 1000 arcco$l—(E./2V)] can propagate through(¥ong) slab. In
our caseEq will be of the form— y exp(yL), implying that,
as soon ayx# 0, there will be a strong inhibition of trans-

FIG. 5. Disorder- and wave vector-averaged transmissivity ofNittance across the slab both as a functionyaind (more
plane waves across a disordered, nonlinear segment, as a functisifongly as a function ofL. Contrary to the case of the
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of segment sizénumber of realizations used: 10@a) 0<e,<1.  localized excitation, the nonlinear effect does not “wear
(b) Same as in(a), but for 0<e,<0.1 and largery andL values. ~ Out” in space, since the portion of the wave function inside
Note that the horizontal scale is now logarithmic. the slab is unnormalized.

We conclude from the present study that the presence of
Discussion.The effect of nonlinearity in a discrete nonlinearity in a low-dimensional, discrete Anderson system,
Anderson system is qualitatively different for the localized favors (inhibits) the propagation of initially localizedex-
and extended excitations. In the first case, the presence fnded excitations.
nonlinearity delays the onset of localization by generating a The author is grateful to G. P. Tsironi. Cretg and D.
subdiffusive propagation for “intermediate” times dit  Hennig (U. Berlin) for useful discussions. This work was
leas) Vt~10%, much greater than the one required to genersupported in part by FONDECYT Grant No. 1970460.
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