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Transport of localized and extended excitations in a nonlinear Anderson model
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We study the propagation of electrons~or excitations! through a one-dimensional tight-binding chain in the
simultaneous presence of nonlinearity and diagonal disorder. The evolution of the system is given by a
disordered version of the discrete nonlinear Schro¨dinger equation. For an initially localized excitation we
examine its mean square displacement^n2(t)& for relatively long timesVt;104, for different degrees of
nonlinearity. We found that the presence of nonlinearity produces a subdiffusive propagation^n2(t)&;ta, with
a;0.27 and depending weakly on nonlinearity strength. This nonlinearity effect seems to persist for a long
time before the system converges to the usual Anderson model. We also compute the transmission of plane
waves through the system. We found an average transmissivity that decays exponentially with system size
^T&;exp(2bL), whereb increases with nonlinearity. We conclude that the presence of nonlinearity favors
~inhibits! the propagation of localized~extended! excitations.@S0163-1829~98!06340-1#
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In condensed matter the presence of nonlinearity can
to the formation of localized mobile excitations~such as po-
larons!, while the presence of disorder produces localiz
modes whose mobility is inhibited, most notably in low
dimensional systems~Anderson localization!. Thus, it is in-
teresting to consider the combined effect of the simultane
presence of nonlinearity and disorder on localization a
transport properties of a typical low-dimensional system1

With that idea in mind, we consider in this work the prop
gation of a generic quasiparticle~electron or exciton! in a
one-dimensional chain in the tight-binding formalism. D
to a strong interaction between the quasi-particle and
vibrational degrees of freedom of the chain, and assum
that the vibrational time scale is much shorter that the h
ping time scale, the effective electronic evolution equation
given by the discrete nonlinear Schro¨dinger ~DNLS! equa-
tion:

i
dCn

dt
5~en2xnuCnu2!Cn1V~Cn111Cn21!, ~1!

whereCn(t) is the probability amplitude of finding the exc
tation on siten at time t, en represents the site energies of
one-dimensional crystal,V is the nearest-neighbor hoppin
term, andxn is the nonlinearity parameter, proportional
the square of the~strong! electron-phonon coupling on siten.
The special casexn50 and en random, describes a one
dimensional Anderson model characterized by having al
its eigenstates localized and a completely inhibited electro
transport.2 In a previous work3 we considered the specia
case of Eq.~1! where the disorder resides entirely in th
nonlinearity parameter:en5const andxn5x or zero with
50% probability, that is, a nonlinear random binary allo
The excitation was initially placed on a single impurity s
and both probability profile and mean square displacem
were studied for relatively long times. We found that
threshold of nonlinearity exists, (x/V)crit;3.2, below which
the excitation propagates throughout the chainballistically
~i.e., like a free particle!. Above threshold, there is partia
localization ~self-trapping! around the initial site, while the
untrapped portion escapes to infinity also in a ballistic m
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ner. The transmission of plane waves across the sys
showed a powerlike decay as a function of system size. S
the DNLS equation is obtained from the coupled system
the quasiparticle and vibrational degrees of freedom in
limit of a negligible oscillator inertia~antiadiabatic limit! we
also examined the effect of a finite oscillator inertia on t
self-trapping properties exhibited by the DNLS equation. W
found that such inertia~treated in a semiclassical way! does
not alter the existence of a nonlinearity threshold for se
trapping or the ballistic character of the propagation.4 The
above properties differ markedly from the well-know
‘‘Anderson localization’’ phenomenon, where the presen
of a finite concentration of~linear! uncorrelated disorde
completely inhibits the quasiparticle propagation, giving r
to a saturation of its mean-square displacement and an e
nential decrease of the transmissivity of plane waves w
system size.2

In the present work we study the rather complement
case, taking in Eq.~1! xn5const[x and en randomly dis-
tributed in a finite interval. The model to consider can th
be taken as an Anderson model with a nonlinear backgrou

Localized excitation.For a fixed value ofx and a given
random $en% configuration, with21,en,1, we compute
the time evolution of the quasiparticle, which is initiall
placed completely on a single site~‘‘site zero’’!, and exam-
ine its mean square displacement in time:

u~ t !5 (
m52`

`

m2uCm~ t !u2 ~2!

followed by an average over a number of disordered
energy realizations, obtaininĝu(t)&. The system of equa
tions ~1! is solved numerically by means of a fourth-ord
Runge-Kutta algorithm. Numerical precision is checked
monitoring the conservation of probability~norm!
(nuCn(t)u251. In order to avoid undesired boundary effec
a self-expanding lattice was used.3 We computed̂ u(t)& up
12 547 ©1998 The American Physical Society
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to times of the order ofVtmax5104, averaging over 100 dis
order configurations of the chain, going fromx50 up tox
55V. Results are shown in Fig. 1. The casex50 shows the
typical saturation in̂ u(t)& evidencing a complete quasipa
ticle localization. However, whenxÞ0, Anderson localiza-
tion is destroyed and the quasiparticle propagates in a
diffusive way, i.e., for long timeŝu(t)&;ta with a,1. A
minimum-squares fit findsa quickly reaching and staying
close to 0.27, forx>1 ~see Table I!. At this point it is
interesting to point out that all the subdiffusive exponents
substantially smaller than the one conjectured by Shepe
sky (a52/5), based on a somewhat unclear analogy w
dynamical localization in the kicked rotator model.5 An ex-
amination of the fluctuationssu in u(t) revealed that these
grow at the same rate as the mean square displacement~Fig.
2!. This behavior has also been observed in models descr
by long-range random interactions.6 A sample-to-sample ex
amination of the time-averaged probability at the initial s
revealed the presence of a nonlinear trapping regime su
imposed on a background of Anderson localization. The
set of this nonlinear trapping is realization dependent
determined mainly by the disorder environment around
initial site. In some cases, this disorder may hold the exc
tion longer in the vicinity of the initial site, allowing nonlin
earity to self-trap more easily; or it may increase the lo
hopping from the initial site, in which case a stronger no

FIG. 1. Disorder-averaged~100 realizations! mean square dis
placement of an initially localized excitation, for different values
the nonlinearity parameter (21,en,1).

TABLE I. Subdiffusive exponent for the long time disorde
averaged~100 realizations! propagation of an initially localized ex
citation, for several different values of the nonlinearity parame
(21,en,1).

x/V a

0 0.02
0.2 0.08
1 0.282
2 0.287
3 0.262
4 0.265
5 0.266
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linearity is needed to self-trap. Figure 3 compares
realization- and time-averaged probability at the initial s
with the case of no disorder. The beginning of nonline
trapping starts aroundx52V, on average. Clearly, the pres
ence of disorder smears considerably the onset of nonlin
trapping.

What happens in the limitt→`? Given thatuCnu2 must
necessarily decrease during propagation due to normaliza
~barring coherent motion, not observed in our case!, the ef-
fect of nonlinearity decreases in time~and space! and, from
Eq. ~1!, we expect that after a sufficiently long time, th
model should reduce to the Anderson model. Therefore,
observed subdiffusive propagation should eventuallysatu-
rate. We followed u(t) for particular disorder realizations
up to times of 33104 V without observing a discernible
saturation.

From Fig. 1 we also observe that, for a given time,^u(t)&
increases with nonlinearity up tox/V;2. Thereafter, its am-
plitude decreases with increasing nonlinearity. This can

r

FIG. 2. Fluctuationssu5A^u2&2^u&2 in the mean square dis
placement of an initially localized excitation as a function of tim
for different nonlinearity parameter values (21,en,1).

FIG. 3. Disorder- and time-averaged probability at the init
site ^^P0&&5(1/tmax)*0

tmax^P0(t)& dt, of an initially localized excita-
tion, as a function of nonlinearity~full line! @21,en,1, tmax

;O(102), 100 realizations#. The case of no disorder is also show
for comparison~dashed line!.
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understood as the effect of nonlinear self-trapping, wh
begins aroundx/V52 on average, according to Fig. 3
where a finite fraction of the excitation begins to locali
around a narrow vicinity of the initial site. Since the fractio
of the excitation that can propagate is now effective
smaller, this renormalizeŝu(t)& to smaller values asx is
increased.

Extended excitation.We now consider a segment of ou
disordered and nonlinear material, embedded in a linear,
riodic chain between sitesn50 andn5L. Let us look for
stationary solutions of Eq.~1! of the form Cn(t)5fnexp
(2iEt). We obtain

Efn5~en2xufnu2!fn1V~fn111fn21!. ~3!

In particular, we consider the propagation of plane wa
across the segment. We put

fn5 HR0eikn1R1e2 ikn, n<0
R2eikn, n>L, ~4!

which impliesE52V cos(k). For a given segment of lengt
L its transmissivity is estimated as follows: given a disord
configuration and a wave vectork, we putR251 ~Ref. 7! at
n5L and iterate backwards using Eq.~3! until we reach the
beginning of the segment, whereR0 is computed. The trans
missivity is thenT5uR2u2/uR0u2. This method for obtaining
T, using a ‘‘fixed output’’ circumvents eventual problem
with multiestability.3,8 In Figs. 4~a!–4~c! we show transmit-
ting ~dark! and nontransmitting regimes~clear! for a segment
of length L550 and a given disorder realization wit
two different disorder widths: 0,en,0.3 @Fig. 4~a!# and 0
,en,0.6 @Fig. 4~b!#. Each diagram was obtained by assig
ing arbitrarily a passing~nonpassing! character to a given
wave vectork, whoseT was above~below! a preset cutoff.
The diagrams feature the presence of several bran
~tongues! responsible for multiestability and a highly irregu
lar, fractal-like shape. As the width of the disorder is i
creased, the transmitting region ‘‘evaporates’’ somewhat,
creasing its total area but creating new tongues and m
irregular features. In Fig. 4~c! we show an enlargement of th
region indicated in Fig. 4~b!, depicting the presence of eve
smaller tongue structures. These irregular features are sim
to the ones obtained for a nonlinear chain in the absenc
disorder.8

For a given segment of lengthL we computed an averag
transmissivity^T& by averaging over all wave vectors 0<k
<p and over many disorder configurations~a thousand,
typically!. The procedure outlined above was carried o
with segments of lengthL520 up toL52000, examining in
each case the decay rate of^T& as a function ofL, for several
different values of the nonlinearity parameterx. The casex
50 is well known and leads to an exponential decay of
transmissivity with system size. Forx.0 we found that this
behaviorpersistsat smallL(L,200) with decay rateslarger
than in the case of absence of nonlinearity. More exac
^T&;exp@2b(x)L# with b an increasing function ofx. This
is vividly illustrated in Fig. 5~a!. For largeL values, the
transmissivity seems to converge slowly to a power-law
havior @Fig. 5~b!#. The latter feature has also been observ
in a related model, thecontinuousnonlinear random slab,9
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where by means of the elegant invariant embedding met
a power-law decay of transmissivity at large slab sizes w
obtained.9

FIG. 4. Transmitting~dark! and nontransmitting~clear! regimes
for a plane wave across a nonlinear (x/V51) segment (L550)
with 0,en,0.3 ~a! and 0,en,0.6 ~b!. In ~c!, an enlargement of
the region indicated in~b! is shown.
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Discussion.The effect of nonlinearity in a discret
Anderson system is qualitatively different for the localiz
and extended excitations. In the first case, the presenc
nonlinearity delays the onset of localization by generatin
subdiffusive propagation for ‘‘intermediate’’ times of~at
least! Vt;104, much greater than the one required to gen

FIG. 5. Disorder- and wave vector-averaged transmissivity
plane waves across a disordered, nonlinear segment, as a fun
of segment size~number of realizations used: 100!. ~a! 0,en,1.
~b! Same as in~a!, but for 0,en,0.1 and largerx and L values.
Note that the horizontal scale is now logarithmic.
s

of
a

-

ate localization in the absence of nonlinearity. On the co
trary, in the second case, the effect of nonlinearity seem
reinforce that of disorder, giving rise to an exponential d
crease in transmissivity even stronger than in the p
Anderson case, at least for not very large segments. T
qualitative difference is due to the widely different nature
the excitation: In the localized excitation case, the propa
tion is aided by two factors: an initial, localized~‘‘soliton-
like’’ ! state, whose mobility tends to be favored by nonli
earity, and the loss of incoherent random scattering from
random site energies, due to the loss of site superposit
This nonlinearity effect will ultimately disappear due to th
spreading of the initial pulse, since the DNLS equation~1!
does not really support discrete solitons,10 and the system
will ultimately revert back to an Anderson-like system. Th
situation for the extended excitation case is different, and
be understood qualitatively by starting withx50 and in-
creasingx in a perturbative manner. Forx strictly zero, the
probability profile inside the slab, possesses on average
exponential envelopeufnu2;exp@a(L2n)#, for 0,n,L. If
we now increasex from zero, we have, according to Eq.~3!
an additional site energy term;2x exp@2a(L2n)#, which
quickly supersedes the random site energiesen , and the
transmission problem becomes one of a plane wave go
through very high, correlated barriers, the hight of whi
increases very rapidly with the length of the slab. To aid
visualization, let us replace these exponential barriers w
an effective constant-height barrierEeff . As is well known,
in this case, only plane waves with wave vectors greater t
arccos@12(Eeff/2V)# can propagate through a~long! slab. In
our case,Eeff will be of the form2x exp(gL), implying that,
as soon asxÞ0, there will be a strong inhibition of trans
mittance across the slab both as a function ofx and ~more
strongly! as a function ofL. Contrary to the case of the
localized excitation, the nonlinear effect does not ‘‘we
out’’ in space, since the portion of the wave function insi
the slab is unnormalized.

We conclude from the present study that the presence
nonlinearity in a low-dimensional, discrete Anderson syste
favors ~inhibits! the propagation of initially localized~ex-
tended! excitations.
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