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Optical nonlinearity enhancement through correlated microstructure

M. F. Law, Y. Gu, and K. W. Yu
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~Received 1 June 1998!

Optical nonlinearity is sensitively dependent on the microstructure in composites. In this paper, we analyze
a model of correlated microstructure and examine the effect on the optical nonlinearity in the quasistatic limit.
We perform numerical simulations on random-impedance networks that consist of metallic and dielectric
bonds. The results show that the absorption peak can be separated from the nonlinearity enhancement peak so
that the figure of merit may be increased. Thus, it may be possible to achieve an even larger optical nonlin-
earity than that reported in the literature.@S0163-1829~98!09043-2#
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The optical properties of granular materials have attrac
much interest. Many experiments were performed on co
posites of small metallic particles embedded in a dielec
host, in an attempt to sort out the physical origin of t
anomalously large infrared absorption.1–3 It was suggested
that correlation and clustering effects may be the reason
the enhancement.4 Recently, the optical nonlinearity of nano
structured composites has attracted much attention.5 In par-
ticular, the metal clusters exhibit strong nonlinear optical
sponse when they are structured on the nanometer s
through the local-field and geometric-resonance effects,
flected in the spectral function.6

In this paper, we analyze a theoretical model of a cor
lated microstructure, which can be induced by thermal
nealing, during which large clusters of like materials grow
the expense of small clusters. To examine the impact o
microstructure on the optical nonlinearity in the quasista
limit,7 we consider the displacement-field response of
form D5(e1xuEu2)E, wheree is the dielectric constant an
x is the third-order nonlinear susceptibility. It is convenie
to introduce correlation through the power spectrum of
dielectric-constant fluctuations.8 It was shown that long-
range correlations can modify both the structural and
namical properties of the percolating clusters.9

For numerical simulations, a composite medium is con
niently modeled by a random-impedance network. We s
focus only on two-dimensional networks that correspond
thin films. The generalization to three dimensions
straightforward.10 Note that the problem of solving the ele
tric field in a dielectric medium in the quasistatic limit is th
same problem of solving that in a conducting medium. T
thermodynamic limit corresponds to an infinite network s
(L→`), which can never be achieved due to the limitati
of computer resources. In what follows, the finite-size eff
will be justified.

We generate a correlated network by assigning a rand
numbere (0<e<1) to each site of the square lattice. F
two neighboring sites with random numbersea andeb , the
following rule applies:11 If ( ea1eb)/2<p8, then the bond
between the sites is assigned with the valuee1 , otherwise the
bond is assignede2 . The actual volume fractionp of e1
bonds is related top8 by p52p82 for p8<1/2 and p51
22(12p8)2 for p8.1/2. In this way, a site with a largee
value is more likely to be surrounded bye2 bonds, and vice
PRB 580163-1829/98/58~19!/12536~4!/$15.00
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versa. As a result, larger clusters are formed; the actup
dependence of the weights of typical clusters can
calculated.12 The enhancement of larger clusters will chan
the spectral density function, thereby having a pronoun
effect on the optical absorption and nonlinearity.6 These re-
sults are general and apply to various short-range correla
models.

Consider a random-impedance network between two p
allel plates at unit potential difference, the effective line
and nonlinear response functions are given by13

ee5(
a

eadva
2 , ~1!

xe5
1

L2(
a

xaudvau2dva
2 , ~2!

where the summation is over all bonds anddva is the ~gen-
erally complex! potential difference across the bonda, to be
solved when allxa is being set to zero. We apply Kirch
hoff’s law to each of the nodes to obtain a set of simul
neous equations relating the potential of the node (vn) with
those of its four neighboring ones (vm’s!:

(
m51

4

em~vm2vn!50. ~3!

Writing the equations in a matrix form, we obtain a matr
M of size L(L21)3L(L21); M consists of nonzero ele
ments along the five diagonals. This property helps us
optimize the calculation of the inverseM 21. The effective
response is obtained by taking an ensemble average ov
sufficiently large number of samples.

Below we shall use the spectral representation,14,15 which
is a rigorous mathematical formalism of the effective diele
tric constant. It offers the advantage of separation of mate
parameters from the geometric information, which are c
tained in the spectral functionm(s). Moreover,m(s) satis-
fies the sum rule@Eq. ~5! below#, which implies that an in-
crease ofm(s) in some region must be balanced by
decrease of that in the other region. Hence, the absorptio
directly linked to the behavior ofm(s). We calculatem(s)
via the limiting process6
12 536 ©1998 The American Physical Society



rv

fo
e

an

ed

k,

r

-
no
ns
t

m

s is

ks
so-

en-
sig-

ll-
in

ri-
uous
ge
c-

-

n

nt
he
-
r,

n to
en

m
lot

e

are
ase
n-
cal
e to

s

n

PRB 58 12 537BRIEF REPORTS
m~s!5 lim
h→01

2
1

p
Im w~s1 ih!, ~4!

where w512ee /e2 and s5e2 /(e22e1). We choose the
real part ofs at 100 equally spaced values across the inte
0<s8<1 and the imaginary parth50.002, which is small
enough by checking the sum rule:

E
0

1

m~s8!ds85p. ~5!

A smaller value ofh or a finer spacing ofs give the reso-
nance spectrum in more detail. An alternative method
finding the spectral function is recently demonstrated in R
15, in which Kirchhoff’s equations are transformed into
eigenvalue problem via the~lattice! Green’s-function formal-
ism.

Consider a metal-dielectric composite in whiche1 is me-
tallic ande2 is dielectric.16 The metallic response is assum
to obey the Drude free-electron model:

e1~v!512
vp

2

v~v1 ig!
, ~6!

where vp is the plasma frequency andg is the damping
constant. For metal, the plasma frequencyvp'1016, being
in the ultraviolet. We chooseg50.01vp , which is the typi-
cal value of a good metal, ande251.77, which is the dielec-
tric constant of water for model calculations. In this wor
only the metallic part is taken to be nonlinear,17 i.e., x250.

We performed numerical simulations on various netwo
sizes. After comparing the results fromL510 and 12, we
conclude thatL512 is sufficient for the present investiga
tion. A further increase in the network size results in
significant difference. It is because the optical respo
arises from the geometric resonances, rather than from
percolating effects. Each data point represents an ense
average over 1000 random samples ofL512.

In Fig. 1 we plot the spectral functionm(s) of the corre-
lated network for the various volume fractionp of metallic

FIG. 1. The spectral function of correlated networks plotted a
function of s. ~a! p50.1, ~b! p50.3, ~c! p50.5, and~d! p50.9.
Results for the uncorrelated networks are plotted for compariso
al
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bonds. The spectral function for the uncorrelated network
also plotted for comparison. Forp50.1, the uncorrelated
network is dominated by small clusters of a few bonds~the
lattice-animal limit15!. There are several pronounced pea
arounds50.3, 0.5, and 0.7, which represent geometric re
nances by small clusters of up to two bonds.15 However, in
the correlated networks, larger clusters are significantly
hanced at the expense of smaller ones; we observed a
nificant enhancement of the spectral function in the smas
region. These results are in accord with those reported
Ref. 4. Since the sum rule@Eq. ~5!# must be obeyed, the
spectral function has to be decreased in the large-s region.
As a result, the absorption spectrum will be redshifted.

For p50.3, the metal bonds form larger clusters of va
ous sizes. The spectral density becomes a broad contin
function and the pronounced peaks diminish in the ran
0.3<s<0.7. For the correlated networks, the spectral fun
tion becomes large nears50. It is evident that the correla
tion leads to a decrease of the~finite-size! percolation thresh-
old ~as compared topc50.5 for the uncorrelated networks!.

For largerp, e.g., p50.5 and 0.9, the spectral functio
m(s) becomes large towardss50, signifying a percolation
transition in both types of networks. However, a significa
difference between the two networks still persists in t
small-s region. Thep50.5 spectral density is a broad con
tinuous function without any significant feature. Howeve
for p50.9, the pronounced peaks appear again in additio
the s50 Drude peak. It is due to a formal relation betwe
the p50.9 andp50.1 cases.

Next we examine the absorption, which is calculated fro
the imaginary part of the dielectric constant. In Fig. 2 we p
the absorption spectrum for various values ofp. As evident
from the figures, the smallp results are well described by th
lattice-animal limit, while the largep results are in accord
with the presence of clusters of various sizes. The results
quite similar to those of the spectral function, i.e., a decre
of absorption in the visible range is predicted. Experime
tally, a suppression of absorption is desirable for practi
applications while we have demonstrated that it is possibl
realize this suppression by correlated microstructures.

The optical nonlinearity is plotted in Fig. 3. Forp50.1,

a

.

FIG. 2. The absorption Im(ee) plotted against frequencyv. ~a!
p50.1, ~b! p50.3, ~c! p50.5, and~d! p50.9.
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the optical nonlinearity is found to be enhanced over
uncorrelated networks nearv/vp50.7 and 0.9 as a result o
correlation. However, from Fig. 2, the absorption ne
v/vp50.9 is also increased. Fortunately, forv/vp'0.7, the
absorption is about the same for both networks. It is th
beneficial to introduce the correlation in this frequency
gion. For p50.3, sharp resonances occur in the hig
frequency region, resulting in a nonlinearity enhancem
over the uncorrelated networks in the region 0.7,v/vp
,1. From Fig. 2 again, we find that this region coincid
with the region (0.7,v/vp,0.8), where the absorption i
suppressed. Introducing the correlation in this frequency
gion is thus beneficial for practical purpose. Forp50.5, the
nonlinearity is enhanced in the region 0.8,v/vp,1. For p
50.9, an enhancement can be found in the low-freque
regionv/vp'0.3, as well as at frequencies near the plas
frequencyv5vp .

In order to illustrate the enhancement more clearly,
plot in Fig. 4 the figure of merit~FOM!, defined as the ratio
of the third-order nonlinear susceptibility to the absorptio
For p50.1, the FOM nearv/vp'0.7 is found to be en-
hanced, in accordance with the above analysis of the op
nonlinearity. Moreover, the FOM nearv5vp is more than
double that of the uncorrelated networks. Forp50.3, a large
FOM is obtained in the full rangev/vp.0.6, while the en-
hancement is a few times near the plasma frequency.

FIG. 3. The nonlinearity enhancementuxeu/x1 plotted against
frequencyv. ~a! p50.1, ~b! p50.3, ~c! p50.5, and~d! p50.9.
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results forp50.5 and 0.9 are quite similar. A larger FOM
generally obtained in the high-frequency region.

In this paper, the suppression of absorption and the c
comitant enhancement of optical nonlinearity by correla
microstructures are demonstrated. The predicted enha
ment of the present paper may have relevance to a re
optical-nonlinearity experiment on Au:SiO2 composites,18 in
which a large enhancement was obtained for annea
samples. Through the separation of the absorption peak f
the nonlinearity enhancement peak, it may be possible
achieve even larger optical nonlinearity than that reported
Ref. 18. Further numerical simulation on other short-ran
correlation models reveals that the correlated microstruc
affects the optical nonlinearity enhancement in a sim
way:19 The absorption spectrum is redshifted while the op
cal nonlinearity is enhanced in the visible range. As a res
the FOM is enhanced. In closing, it is worth extending t
present investigations to microstructures with the long-ra
correlation9 or anisotropy.19 We expect that such microstruc
tures will have pronounced effects on the optical nonlinea
enhancement.

This work was supported by the Research Grants Cou
of the Hong Kong SAR Government. K.W.Y. acknowledg
useful conversations with Professor Ping Sheng.

FIG. 4. The figure of merit plotted against frequencyv. ~a! p
50.1, ~b! p50.3, ~c! p50.5, and~d! p50.9.
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