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Evolution of antiferromagnetic short-range order with doping in high-Tc superconductors
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Within the framework of thet-J model, the evolution, with hole doping, of the antiferromagnetic~AF!
correlation length and the spin correlation function in high-Tc superconductors are studied. The dynamic spin
susceptibility has been calculated by using a two-time Green’s function method that allows one to take into
account both electron and AF spin correlation. A comparison of our results with NMR and neutron scattering
data shows that the model is able to reproduce the main features of the temperature and doping dependences
of the AF correlation length in both the pure Heisenberg antiferromagnet~e.g., La2CuO4) and doped com-
pounds~e.g., La22xSrxCuO4). @S0163-1829~98!07541-9#
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I. INTRODUCTION

From an experimental point of view, the magnetic pro
erties of the normal state of high-Tc superconductors
~HTSC’s! are now relatively well understood. It has be
established by neutron scattering1 that the antiferromagnetic
~AF! long-range order of the parent compounds is lost up
doping, but that AF short-range order~SRO! is still present
in superconducting compounds. Also, these experime
show that SRO decreases with increasing temperature
doping. Therefore, the understanding of the evolution of
normal state magnetic properties of CuO2 planes with doping
is believed to be a key to elucidate the unusual propertie
HTSC’s.

The hole dynamics in an AF background is perfectly d
scribed by the dynamic spin susceptibility which pr
vides direct information about the low-energy excitati
spectrum and its evolution with doping. Much work has be
devoted to calculations of the susceptibility. Usually, the
ries start from thet-J model2 and make use of variou
methods like the diagrammatic,3,4 projection,5 slave-boson6,7

or slave-fermion,8,9 and the extended Dyson representat
method.10 However, in spite of considerable progress,
theories have some disadvantages which are mainly
nected with the use of either the mean-field approximat
for the local constraints of operators or the random ph
approximation~RPA!. Therefore, it is tempting to investigat
the dynamic spin susceptibility within a constraint-fr
theory which may be based, as a natural starting point, on
presentation of thet-J model in terms of Hubbard operator
This presentation obeys rotational symmetry of the spin c
relation functions and automatically guarantees the exclu
of double occupancy. Moreover, such a technique allows
to take into account the magnetic effects near half-filling
the energy bands where the RPA does not work.11

The spin part of thet-J model can be modeled by a spin
1/2 Heisenberg antiferromagnet on a square lattice. The t
modynamic properties of the Heisenberg model have b
investigated by analytical methods such as the tw
dimensional~2D! quantum nonlinears model,12,13 modified
spin-wave theory,14 Schwinger-boson mean-field theory,15

isotropic spin-wave theory,16 and the Green’s function
method.17 The first three theories are valid, however, only
PRB 580163-1829/98/58~18!/12486~9!/$15.00
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sufficiently low temperaturesT. For example, the most de
tailed results for the nonlinears model were obtained in the
renormalized classical regime whereT!2prS (rS is the
stiffness!. However, in doped HTSC’s,rS is likely to be
small, thus decreasing the temperature range over which
renormalized classical behavior holds.18

In case of the modified spin-wave14 as well as the
Schwinger-boson mean-field15 theories, the temperature re
striction is given byT,0.9J. Moreover, if one extends thes
theories to doped compounds, the commutation relations
tween the fermioniclike~holes! and bosoniclike~spins! op-
erators must be obeyed. This can be accomplished only
assuming some kind of mean-field constraints for the ope
tors in the hopping term of thet-J model; this procedure
restricts, as mentioned above, the validity of the approach
is also difficult to extend the isotropic spin-wave theory
Sokol et al.16 to doped antiferromagnets, because it is u
clear how to insert the hopping term into the linearizati
procedure used for the spin operator equations of motion

On the other hand, the Green’s function method is ap
cable at all temperatures and it naturally allows one to co
prise the hopping term since the method uses the Lee alg
for Hubbard operators. The original Green’s function meth
introduced by Tyablikov19 is very successful in the study o
3D magnetic systems where the decoupling procedure yi
a spin-wave spectrum which depends on the spontane
magnetization,̂ Sz&. However,^Sz& always vanishes in 1D
and also in 2D Heisenberg systems at nonzero temperat
Therefore, Kondo and Yamaji17 ~KY ! proposed a new de
coupling scheme which they applied to the study of the sp
1/2 isotropic Heisenberg chains. Their results are consis
with numerical calculations for finite chains.20 In case of the
2D Heisenberg model, the original KY method was succe
fully applied by Fukumoto and Oguchi21 and, with a semi-
phenomenological improvement, by Shimahara a
Takada.22

In this paper, we extend, based on the Hubbard-oper
presentation, the KY theory to thet-J model. Using the
Green’s function method we calculate, as a function of d
ing and temperature, the dynamic spin susceptibility, the s
correlation functions, and the AF correlation length.

The paper is organized as follows. In Sec. II, the Gree
function method is applied to calculate the dynamic s
12 486 ©1998 The American Physical Society
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susceptibility. In Sec. III, we compare our results for t
static spin susceptibility, the correlation functions, the int
nal energy, and the temperature dependence of the AF
relation length with experimental results for La2CuO4 and
with Monte Carlo calculations. Finally, Sec. IV presents t
doping dependence of the AF correlation length toget
with an investigation of SRO suppression at zero tempe
ture.

II. DERIVATION OF THE SUSCEPTIBILITY

Our starting point is thet-J Hamiltonian written in terms
of the Hubbard operators:

Ht-J5Ht1HJ5 (
i , j ,s

t i j Xi
s0Xj

0s1(
i . j

Ji j S SiSj2
1

4
ninj D .

~1!

In Eq. ~1!, Si are spin-1/2 operators at the lattice sitesi , Ji j is
a measure of the AF coupling between nearest-neighbor
i , j , andXi

s0 are the Hubbard operators that create an e
tron with spins at sitei . The hopping integralt i j describes
the motion of electrons without causing a change in th
spins. The spin and density operators are defined as follo

Si
s5Xi

ss̄ , Si
z5

1

2(s sXi
ss ,

ni5(
s

Xi
ss ~s52s̄ ! , ~2!
-
or-

r
a-

es
c-

ir
s:

with the standard normalizationXi
001Xi

111Xi
2251. With-

out loss of generality, we can measure all energies from
center of gravity of the band.

A. Evaluation of commutators

Since the dynamic spin susceptibilityx12(q,v) depend-
ing on wave vectorq and frequencyv is given by the two-
time retarded Green’s function

x12~q,v!52g2mB
2^^Sq

1uS2q
2 &&v , ~3!

it can be calculated by using the Heisenberg equations
motion. Here,Sq

1 is the Fourier transform ofXi
10Xj

02 :

Sq
15

1

N (
k,i , j

Xi
10Xj

02exp@ i ~k1q!•r j2 ik•r i #. ~4!

Green’s functions satisfy the equation

v^^AuB&&v5^@A,B#&1^^@A,H#uB&&v , ~5!

where@A,B# denotes the commutator of the two operatorsA
and B. HereH is the Hamiltonian of the system and^•••&
denotes the thermal average:

^BA&5
i

2pE2`

`

dv
@^^AuB&&v1 i«2^^AuB&&v2 i«#

exp~v/kBT!21
. ~6!

When evaluating Eq.~3! with the help of Eq.~5!, we have
to calculate the commutator@Xi

10Xj
02 ,H#, with H given by

Eq. ~1!, and the thermal average^@Xi
10Xj

02 ,S2q
2 #&. We get
he Stoner
d

e,
@Xi
10Xj

02 ,Ht#5(
s

t js@Xi
10Xs

02~12Xj
11!1Xi

10Xs
01Sj

1#2(
s

t is@~12Xi
22!Xs

10Xj
021Si

1Xs
20Xj

02#, ~7!

@Xi
10Xj

02 ,HJ#5
1

2(s
Jjs@Xi

10Xj
01Ss

12Xi
10Xj

02Xs
11#2

1

2(s
Jis@Ss

1Xi
20Xj

022Xs
22Xi

10Xj
02#, ~8!

and

^@Xi
10Xj

02 ,S2q
2 #&5

1

AN
@^Xi

10Xj
01&eiqr j2^Xi

20Xj
02&eiqr i#.

It should be emphasized that these results are still exact and that they differ from the corresponding expressions in t
theory of metals where one neglects electron correlations. In Eq.~7!, terms containingSj

1 or Si
1 appear because Hubbar

operators do not possess the fermionic commutation relations.
In order to proceed, we employ certain approximations. To evaluate the terms in Eq.~7!, we use the decoupling procedur

namely, Hubbard-I, as proposed by Hubbard and Jain.23 The procedure implies the following substitutions:

Xi
10Xs

02Xj
11→~12d i j !^Xj

11&Xi
10Xs

02 , Xi
10Xs

01Sj
1→^Xi

10Xs
01&Sj

1,

Xi
22Xs

10Xj
02→~12d i j !^Xi

22&Xs
10Xj

02 , Si
1Xs

20Xj
02→^Xs

20Xj
02&Si

1 . ~9!

The terms in Eq.~8! can be calculated in the RPA, yielding

Xi
10Xj

01Ss
1→~12d i j !^Xi

10Xj
01&Ss

11d i j Xi
11Ss

1, Xi
10Xj

02Xs
11→~12d i j !^Xs

11&Xi
10Xj

021d i j Si
1Xs

11,

Ss
1Xi

20Xj
02→~12d i j !^Xi

20Xj
02&Ss

11d i j Ss
1Xi

22, Xs
22Xi

10Xj
02→~12d i j !^Xs

22&Xi
10Xj

021d i j Xs
22Si

1 . ~10!
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In each replacement, the first term on the right-hand s
agrees with the usual result of the RPA. The second te
always rejected in the RPA, is responsible for the spin-s
correlations between Cu spins and, hence, becomes very
portant in the case of the low-dimensional spin syste
treated in this work.

We note that, in the absence of long-range order, the
eragê Xm

ss& does not depend on the index and, according
Eq. ~2!, ^X11&5^X22&5(12d)/2, whered is the number
of extra holes, due to doping, per one planar Cu21.

B. Fourier transform of Green’s function

We substitute Eqs.~7!–~10! into Eq. ~5!, perform a Fou-
rier transform, and obtain the following:

~v1Ek2Ek1q!^^Xk
10Xk1q

02 uSq
2&&v

5~nk2nk1q!1
12d

2
v^^Sq

1uS2q
2 &&v

1@~«k1Jq!nk2~«k1q1Jq!nk1q#^^Sq
1uS2q

2 &&v

1
11d

2

J

AN
(
l ,r

eiqr l^^Sl
zSl 1r

1 2Sl
1Sl 1r

z uS2q
2 &&v .

~11!

Here,Ek is the energy of holes and«k is their kinetic energy
in the absence of correlations.Ek and«k are related to each
other by

«k52t~coskx1cosky!, Ek5
11d

2
«k , ~12!

wheret is the hopping integral betweennearestneighbors;t i j
values for hopping to other neighbors have been neglec
Similarly, Ji j has been replaced by the nearest-neighbor c
pling constantJ. We used the abbreviationJq5J(cosqx
1cosqy).
’s
e
,

in
m-
s

v-
o

d.
u-

In Eq. ~11!, the momentum distribution functionnk

5^Xk
10Xk

01&5^Xk
20Xk

02& is determined by the one-particl
Green’s function̂ ^Xk

0suXk
s0&&v , which we calculated in the

Hubbard-I decoupling approximation similar to the case
scribed above. We obtain

nk5
11d

2
~12 f k

h!,

where f k
h(2Ek1m)5@exp(2Ek1m)/kBT11#21 is the Fermi

function of holes andm is the chemical potential which is
related tod by

2d

11d
5

1

N(
k

f k
h .

For the same reason which we mentioned above@follow-
ing Eq.~7!#, the expression~11! differs from the correspond
ing result of the Stoner theory insofar as products l
«k^^Sq

1uS2q
2 &&v do not appear and the last term of Eq.~11! is

absent.

C. Calculation of the spin-spin correlation term

We will now calculate the last term on the right-hand si
of Eq. ~11!; this term describes the correlations between
spins. Since the spin Green’s function

Gq~v!5
1

AN
(
l ,r

eiqr l^^Sl
zSl 1r

1 2Sl
1Sl 1r

z &&v

is the same as that for a pure Heisenberg antiferromagn21

it may be derived within the~KY ! decoupling procedure.17

This technique allows one to explain gross features of
magnetic properties of the two-dimensional Heisenberg a
ferromagnet, and this for all temperatures.21 Following Ref.
21, we get
vGq~v!54~12gq!F(
r

^Sl
zSl 1r

z &1
z2

2
^^Sq

1uS2q
2 &&vG1

J

AN
(

l ,rÞr8
@^^Sl 1r

z Sl 1r8
z Sl

12Sl
zSl 1r2r8

z Sl 1r
1 uS2q

2 &&v

2^^Sl
zSl 1r8

z Sl 1r
1 2Sl

zSl 1r
z Sl 1r2r8

1 uS2q
2 &&v1^^Sl

1Sl 1r8
2 Sl 1r

1 2Sl
1Sl 1r

1 Sl 1r2r8
2 uS2q

2 &&v/2

2^^Sl 1r8
1 Sl

2Sl 1r
1 2Sl

1Sl 1r2r8
1 Sl 1r

2 uS2q
2 &&v/2#eiqr l, ~13!
ly,

the
s.
s;
1

rk
ly
ndi-
in-
where z is the number of nearest neighbors of spinl and
gq5(2/z)(a51

z/2 cosqa . Note that the hopping termHt does
not contribute toGq(v) in the Hubbard-I approximation.

Kondo and Yamaji17 decoupled the higher-order Green
function by using the following scheme:

Sl
zSl 1r8

z Sl 1r
1 →a^Sl

zSl 1r8
z &Sl 1r

1 ,

Sl 1r
z Sl 1r8

z Sl
1→b^Sl 1r

z Sl 1r8
z &Sl

1 ,

Sl
1Sl 1r8

2 Sl 1r
1 →a^Sl

1Sl 1r8
2 &Sl 1r

1 1b^Sl 1r8
2 Sl 1r

1 &Sl
1 ,
and similarly for the other Green’s functions. While usual
in the decoupling of Green’s functions, one setsa5b51,
Kondo and Yamaji introduceda,bÞ1. A valueaÞ1 pre-
serves the important property that spin operators obey
relation ^Si

2&53/4 which should hold at all temperature
The parameterb has been introduced for flexibility reason
it can be defined in various ways. For simplicity, in Ref. 2
the assumptiona5b has been made, as in the original wo
of Kondo and Yamaji.17 In this case, the theory is complete
self-consistent. However, as we shall see below, the co
tion a5b underestimates the role of the next-nearest sp
spin correlations. Therefore, in our theory,b is a variational
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parameter whose value is obtained by a comparison w
experiment under the assumption that this value does
depend on doping and temperature.

Evaluation of Eq.~13! then yields

vGq~v!54zc1~12gq!1
vq

2

J
^^Sq

1uSq
2&&v . ~14!

Here,vq is the energy of the magnetic excitations,

vq
25

J2zg2

2
~12gq!~g11gq!, ~15!

g1 ,g2 are abbreviations which stand for

g15@114~z21!bc214auc1u#/g2 , g254azuc1u,
~16!

andc1 ,c2 denote the nearest and next-nearest spin-spin
relation function, respectively, of Cu spins:

c15
1

z(r
^Si

zSi 1r
z &, c25

1

z~z21! (
rÞr8

^Si
zSi 1r2r8

z &.

~17!

Thus, the essential parameters ofvGq(v) are a, b, c1,
andc2.

D. Final result

Inserting Eq.~14! into Eq. ~11! and taking into accoun
the relationSq

15(kXk
10Xk1q

02 /N, which follows from Eq.
~4!, our result for the dynamic spin susceptibility become

x12~q,v!5
vx0~q,v!14Jzc1~12gq!Z~q,v!

vx1~q,v!1~v22vq
2!Z~q,v!

, ~18!

where

x0~q,v!5(
k

f k
h2 f k1q

h

v1Ek2Ek1q
,

x1~q,v!5Jqx0~q,v!1(
k

«kf k
h2«k1qf k1q

h

v1Ek2Ek1q
,

Z~q,v!5(
k

1

v1Ek2Ek1q
.

x0(q,v) denotes the dynamic susceptibility of free hole
x1(q,v) has a similar meaning as the exchange enhan
ment factor in the RPA, where, however, the second term
x1(q,v) is equal to 1. In our theory, this second term is d
to the strong electron correlations and provides the cor
concentration behavior ofx12(q,v) at half-filling (d50).23

Z(q,v) is a convenient abbreviation.
Our result forx12(q,v) agrees with special cases treat

in the literature. IfJ50, we have agreement with the relatio
derived by Hubbard and Jain.23 For JÞ0 but without AF
correlations, our result is consistent with results of Refs.
and 25.

Finally, we have to determine self-consistent equatio
for the parametersc1 , c2 , and a. We can express thes
parameters in terms ofx12(q,v) by using the relation
th
ot

r-

.
e-
of

ct

4

s

2^Sl
zSm

z &5^Sl
1Sm

2&, which holds for the isotropic Heisenber
term in Eq.~1!, and the thermal average definition of Eq.~6!.
When taking the average, we have replaced the integra
over v by summation over Matsubara’s frequencies,vm
52pmT, wherem52`,...,21,0,1,...,`. We get

1

2
5kBT(

q,m
x12~q,ivm! , ~19!

2c15kBT(
q,m

gqx12~q,ivm! , ~20!

2~z21!c25kBT(
q,m

~zgq
221!x12~q,ivm!. ~21!

We conclude this section by addressing the relation
tween the width of the conduction band,Ek , and the hopping
integralt. The width, as given by Eq.~12!, is doping depen-
dent, where the reduction factor (11d)/2 is due to the strong
electron correlations. However, this reduction is not su
cient to reconcile results of experiments and Monte Ca
~MC! calculations.26 The origin of this discrepancy arise
from the fact that the AF spin correlations reduce the wid
of the conduction band.

The reduction effect cannot be treated in the Hubbar
approximation we used above. Roth27 improved the
Hubbard-I approximation by introducing the nonperturbat
two-pole ansatz for the one-particle spectrum. It can
shown that this ansatz is essentially equivalent to the M
Zwanzig projection technique28,29 and is strongly related to
the moments method.30 Since then, this new approach ha
been studied by many authors,24,29,31–33and became a gen
eral method to treat approximately, with no need for a sm
parameter,34 the quasiparticle spectrum and the spectral d
sity in an interacting system. The reliability of the metho
has been demonstrated by comparison with exact diago
ization results.33

Using the Roth method, one finds32 that the hopping inte-
gral t is reduced by AF correlations, resulting in an effecti
value

te f f5tS 11
4^SiSj&1

~11d!2 D ,

where^SiSj&153c1 is the nearest-neighbor spin correlatio
function. This effect, which has recently been discussed
Refs. 35 and 36, is easily understood because a hole w
moving through the Cu lattice retains its spin orientatio
From now on we replacet by te f f .

III. CORRELATION LENGTH IN THE 2D HEISENBERG
ANTIFERROMAGNET

In order to check our theory, we consider the case of
two-dimensional Heisenberg antiferromagnet~with z 5 4!
where numerical results for the relevant parameters are
ready known. Since nowf k

h50, the low-energy excitations
predicted by thet-J model are spin waves with energiesvq .
In the limit of T50, the self-consistent equations~19!–~21!
can be solved exactly. With the help of Eqs.~16! and ~17!,
we obtain
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c25
16uc1u21

12
, g25

4

3
~1112c2b!, g151, ~22!

andc1 is determined from the equation

b~16uc1u21!5
96c1

2I 2

~124uc1u!2
21, ~23!

where I 5(8/p2)E2(1/A2)2(2/p)50.842 and E(x) is a
complete elliptic integral.

Numerical values of these parameters may be comp
with data of the literature by considering the static susce
bility xS and the magnetic excitation spectrumvq . HerexS
is equal to (1/2)x12(0,0).11 Then, Eq.~18! becomes

xS5
2uc1u
Jg2

.

We takeb52.5, because this value, as we shall see bel
provides the best fit of our calculated AF correlation leng
to experimental data. Then, Eqs.~22! and ~23! yield c1
520.115,c250.07,g254.133, andxS50.055/J.

These results agree quite well with those of various ot
theories.~i! The values ofc1, c2, andxS agree remarkably
well with those of a modified spin-wave theory,14 namely,
c1

SW520.112, c2
SW50.068, andxS

SW50.045/J. ~ii ! Our xS

value is compatible with the resultsxS50.043/J and xS
50.06/J of the nonlinears model12 and isotropic spin-wave
theory,16 respectively.~iii ! The original KY procedure, with
a5b, gives c1

KY520.104, c2
KY50.055, g2

KY52.82, and
xS

KY50.073/J which all are close to our result.~iv! Finally,
our results for xS , c1, and the internal energyu56c1

520.69 agree quite well with Monte Carlo data:xS
MC

50.0446/J,37 c1
MC520.112, anduMC520.6693.38

According to Eq.~15!, the excitation spectrum become
for T50, vq52JZc(12gq

2)1/2 with Zc5Ag2/251.44. The
structure ofvq agrees with the result of many other theori
for antiferromagnets and our value forZc is consistent with
Zc51.36 obtained by Sokolet al.16 using the isotropic spin-
wave model.

Having established the basic reliability of our model, w
will now evaluate the AF correlation length. Let us consid
the spin-spin correlation function̂S(0)•S(r )& for spins re-
siding, for example, along thex axis of a square lattice. Uti
lizing the relation ^Sl

xSm
x &5^Sl

ySm
y &5^Sl

zSm
z & and Eqs.~6!

and ~18!, we have

^S~0!•S~r !&5
6Juc1u

N (
q

~12gq!cosqxr

vq
coth

vq

2kBT
.

~24!

Since the main contribution to the sum arises fromq values
which are close to the AF wave vectorQ5(p/a,p/a), we
can replace this sum by an integral over vectorsq2Q and
Eq. ~24! reduces to

^S~0!•S~r !&5~21!r
24uc1ukBT

Jg2p
K0„2A~g121!r /a…,
ed
i-

,

r

r

wherea is the lattice period andK0(x) is the modified Besse
function. In the limit of large separationsx, whereK0(x)
;exp(2x)/Ax, we get

^S~0!•S~r !&;~21!rAj

r
exp~2r /j!,

wherej is the AF correlation length and given by

j5
a

2Ag121
. ~25!

Our correlation function has a distance dependence whic
of the same shape as that given by the nonlinears model.12

We will now investigate the temperature dependence
the correlation length for a temperature range where the
equality a2/j2!1 holds; this even refers to temperatur
around 500 K as the numerical result will show. Substituti
g1 , as taken from Eq.~25!, into Eqs.~19! and~21!, we solve
these equations forj:

j

a
;

JAg2

kBT
exp~2prs /kBT!. ~26!

The temperature dependence ofj, expressed by the exponen
tial and the preexponential factor 1/T, again agrees with the
result of the spin-wave~SW! theory. The appearance of th
factor 1/T in our and in the KY and SW theories is an artifa
of the mean-field approach. Chakravartyet al.12 eliminated
this artifact by taking into account two-loop renormalizatio
group corrections.

In Eq. ~26!, rs is called the stiffness; it is given by

rs5
Jg2

64uc1u @1232uc1uK2~1/A2!A2/p4g2#, ~27!

whereK(x) is a complete elliptic integral.
We now determine numerical values for the temperat

dependence ofj in La2CuO4 using the experimental valuesJ
5 0.12 eV~Ref. 39! anda 5 3.79 Å, and treatingb as the
only adjustable parameter. The best fit to the experime
data ~see Fig. 1!, which were deduced from neutro
scattering,40 was obtained withb52.5. Obviously, the in-
equalitya2/j2!1 is fulfilled.

For comparison, we have also calculatedj by using the
original KY procedure whena5b ~dashed line in Fig. 1!.
Although this procedure is capable of reproducing the te
perature dependence, it fails to give the absolute value oj;
at low temperatures the discrepancy is a factor of 10. T
failure is connected, as we mentioned above, with unde
timating, in the original KY theory, the role of the nex
nearest spin-spin correlations. Indeed, an increase of
value of these correlations~expressed byc2) causes an ex-
tension of the AF short-range order and, consequently,
enhancement ofj. Since, in our theory,b enters in the com-
bination bc2, we can realize thej enhancement, even a
fixed J, by increasing the value ofb.

By solving Eqs.~22! and ~23! and using Eq.~27!, we
determined, forT50, how 2prS /J depends on the anisot
ropy 12a/b ~see Fig. 2! and how the ratioa/b varies with
b ~inset in Fig. 2!. While a/b depends only very weakly on
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b, the stiffness is very sensitive tob. In case of the KY
procedure, wherea5b5111/2I 251.705, the stiffness be
comes

2prS
KY

J
5

p

4I 2S 112I 22
8

p2
K2~1/A2!I D 50.0797 ,

which is an extremely small value. However, in our modelb
is a parameter fixed to the value 2.5 by the fit to experime
data, resulting in a stiffness~see Fig. 2! which is 4.8 times
larger than the KY value. This strong dependence of
stiffness and hence the even stronger dependence ofj on the
a/b anisotropy explains why our model fits the correlati
length data better than the KY procedure does.

In Fig. 3, we compare our correlation length results w
numerical MC data.41 The agreement is fairly well except fo
a range aroundT50.5J. In principle, the agreement betwee
theory and MC calculations can be improved by makingb
temperature dependent as done by Winterfeldt and Ih42

who extractedb(T) values from MC data in their treatmen

FIG. 1. The calculated temperature dependence~solid line! of
the antiferromagnetic correlation lengthj compared with experi-
mental data~solid circles! ~Ref. 40! for La2CuO4 and with the result
~dashed line! following from the original Kondo-Yamaji procedur
~Ref. 17!.

FIG. 2. The calculated dependence of the stiffness 2prS /J on
the anisotropy 12a/b. Inset:a/b as a function ofb.
al

e

of the 2D Heisenberg model. However, the improveme
became noticeable only above 600 K which is a tempera
range beyond our present interest.

IV. CORRELATION LENGTH AT FINITE DOPING

We turn now to the calculation of the temperature a
concentration dependence of the correlation lengthj for fi-
nite doping. We first note that this can be accomplished
again using Eq.~25!, and this for the following reason. In
stead of obtainingj from the exponentional decay of th
spin-spin correlation function at large separations, it may
derived from the expansion of the static susceptibil
x12(q) taken around the AF wave vectorQ.43 For this case,
Eq. ~18! becomes

x12~Q2q!5
32uc1u

Jg2@4~g121!1q2a2#
.

According to Ref. 43, the quantity 4(g121)1q2a2 is equal
to a2/j21q2a2 and, therefore, we findj25a2/4(g121)
which is identical to Eq.~25!. Again, g1 should be derived
from the self-consistent equations~19!–~21!, however taking
into account now the hole subsystem’s contribution
x12(q,v).

A. Derivation of the correlation length formula

In Eq. ~19!, x12(q,ivm) is given by Eq.~18!. Since
x12(q,ivm) itself strongly peaks atq5Q, we replaceq by
Q in the functionsx0(q,ivm), x1(q,ivm), and Z(q,ivm),
since they vary weakly withq nearQ as we have shown by
numerical calculations~not reproduced here!. In order to cal-
culate x0(Q,ivm), x1(Q,ivm), and Z(Q,ivm), we define,
for the conduction bandEk , the density of states function in
the following way:

w~E!5
1

N (
k

d~E2Ek!.

For N→`, w(E) becomes

FIG. 3. The calculated temperature dependence of the AF
relation length~open circles! compared with MC data~solid circles!
~Ref. 41!.
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w~E!5
1

2t̃p2
K~A12E2/16t̃ 2!, 24 t̃<E<4 t̃ ,

with the abbreviationt̃ 5te f f(11d)/2. Then, substituting
w(E) into Eq. ~19! and performing the integration overE,
we find

1

2
5

16uc1ukBT

Jg1g2p
K~1/g1!

12kBT (
q,m51

`
ym116Juc1u~12gq!

um
2 1vm

2 1vq
2

, ~28!

where

ym5
8te f f~11d!

p
E

21

1

dg
gK~A12g2! f g

h

g21ṽm
2

ṽm
A11ṽm

2

K~1/A11ṽm
2 !

,

ṽm5
vm

8 t̃
, ~29!

and

um
2 5

32te f f
2 ~11d!

p
E

21

1

dg
g2K~A12g2! f g

h

g21ṽm
2

3
ṽm

A11ṽm
2

K~1/A11ṽm
2 !

22Jym , ~30!

with f g
h5@exp(24t̃g1m)/kBT11#21 being the Fermi func-

tion of holes. At small hole concentrationsd, Eqs.~29! and
~30! become

ym5
8pte f fd

K~1/A11ṽm
2 !

ṽm

A11ṽm
2

1O~d2!,

um
2 52~2te f f2J!ym . ~31!

For d values up to 0.1,O(d2) is at most 15% of the tota
result. The elliptic integral in the expression forym appears
because of the Van Hove singularity in the density of sta
of the conduction bandEk .

Equation~28! is the starting point for the calculation ofj.
First, we rewrite part of the sum on the right-hand side in
following way:

2kBT (
q,m51

`
16Juc1u~12gq!

um
2 1vm

2 1vq
2

52kBT (
q,m51

`
16Juc1u~12gq!

u1
21vm

2 1vq
2

2S1 , ~32!

where
s

e

S152kBT (
q,m51

` 16Juc1u~12gq!~um
2 2u1

2!

~um
2 1vm

2 1vq
2!~u1

21vm
2 1vq

2!
.

The summation overm in the first term on the right-hand
side of Eq.~32! is performed exactly. Inserting the resul
into Eq. ~28!, we arrive at

1

2
5

16kBTuc1u

Jg1g2p
K~1/g1!1S22S1

116Juc1u(
q

~12gq!

3F coth@~Avq
21u1

2!/2kBT#

2Avq
21u1

2
2

kBT

vq
21u1

2G , ~33!

with

S252kBT (
q,m51

`
ym

um
2 1vm

2 1vq
2

.

To calculate the sum overq in Eq. ~33!, we expand allvq
2

around the AF vectorQ and make the expansions

cothx5112 (
m51

`

exp~22mx!,

K~1/g1!5 ln~4g1 /Ag1
2 21!1O~g1

2 21!.

Then, our result for the correlation length in doped samp
becomes

j

a
5

JAg2

u1
@12exp~2u1 /kBT!#exp~2pr̃s /kBT! , ~34!

whereu1 is obtained from Eq.~30! for m51.
For smalld values up to 0.1@see note below Eq.~31!#, u1

2

reduces to

u1
25

8p2d

~11d!

kBT

A11ṽ1
2

2te f f2J

K~1/A11ṽ1
2!

and the stiffnessr̃s becomes

r̃s5rs2Jg2~S22S1!/32uc1u ,

where

rs5
Jg2

64uc1uF12
32A2uc1u

A21l2

3K2~A12l/A21l2/A2!A2/p4g2G ,

l5
u1

JAg2

.



-

tio

a

th

en

e

n
lity
l-

a-

-

g
n-
r-

has
-
he

the
ing

ent
ad-
i-

har-
s.’’
ce:

ree
es

-

our

is-

ure
at

ur
ing
he
tral

e
ic
r-
fer-
la-

he
e-
e
es
o-

nd
nge

PRB 58 12 493EVOLUTION OF ANTIFERROMAGNETIC SHORT-RANGE . . .
Similar to Eqs.~22! and~23!, we can calculate the corre
lation functionsc1 andc2 in doped samples forT50. Solv-
ing Eqs.~19! and ~21! leads to

c25
16uc1u21

12
1

2

3
S̃2, g25

4

3
~1112c2b!, g151,

~35!

and

b~16uc1u2118S̃2!5
96c1

2~ I 2A2g2S̃1/8!2

~124uc1u22S2!2
21, ~36!

where

S̃152kBT (
q,m51

` 16J~12gq
2!~um

2 2u1
2!

~um
2 1vm

2 1vq
2!~u1

21vm
2 1vq

2!
,

S̃252kBT (
q,m51

` ymgq
2

um
2 1vm

2 1vq
2

,

to be taken in the limitT→0. Equations~35! and ~36! re-
duce, as they should, to Eqs.~22! and ~23! when d ap-
proaches zero, because bothym andum are;d in this limit;
see Eq.~31!.

B. Discussion and comparison with experiments

We solved Eqs. ~35! and ~36! numerically for
La1.86Sr0.14CuO4, using the parametersd50.14,J50.12 eV,
and J/t50.3, which is reasonable for thet-J model.44 Our
result isc1520.066,c250.043, andg253.03. Compared
to the pure Heisenberg antiferromagnet, the spin correla
functions are now reduced by a factor;2 and the stiffness
r̃S, which is now 0.11rS

AF , can be regarded as negligible at
hole concentration of;0.14. Forte f f , we obtain 0.156 eV;
hence, the conduction band is 4.5 times narrower than in
noninteracting case, in agreement with MC calculations.45

We will now discuss the doping and temperature dep
dence of the correlation length as given by Eq.~34!. We first
note that, ford→0, its solution smoothly goes over into th
result for the Heisenberg antiferromagnet, that is, Eq.~26!.
Next, we remark that for all realistic temperatures a
already small hole concentrations, the inequa
exp(2u1 /kBT)!1 is fulfilled. For larger doping, the inequa
ity holds even better. For example, let us taked50.04,
J50.12 eV,T51000 K, andte f f50.1 eV which corresponds
to a width of the conduction band of;0.4 eV as observed
experimentally in HTSC’s and confirmed by MC calcul
tions within the t-J model.26 This then leads to
exp(2u1 /kBT);0.3 and Eq.~34! becomes

j

a
5

JAg2

u1
exp~2pr̃s /kBT!. ~37!

Thus,j turns out to be proportional to 1/Ad in good agree-
ment with neutron scattering experiments46 and Monte Carlo
calculations.26 Equation~34! is more complex than the ‘‘sim
n

e

-

d

pler’’ relation j5a/Ad used in fitting the neutron scatterin
data.46 It should be stressed that the origin of the proportio
ality j}1/Ad, in our model, arises from strong electron co
relations.

The temperature dependence of the correlation length
been a controversial topic. In Eq.~37!, the temperature ap
pears not only in the exponential function but also in t
parameteru1 which is essentially proportional toAT. It
is satisfying that this temperature dependence of
preexponential factor agrees with the result of scal
theories.47,48

Thus, our theory predicts a temperature-dependentbehav-
ior of j even in doped samples. This conclusion is consist
with recent neutron scattering and NMR and nuclear qu
rupole resonance~NQR! experiments. In neutron exper
ments with La1.86Sr0.14CuO4 single crystals,49 the authors
discovered ‘‘that the normal state magnetic response is c
acterized by nearly diverging amplitude and length scale
Indeed, j displays a noticeable temperature dependen
when increasing the temperature fromTc535 K to 300 K,j
decreases by a factor of 4.8 which is close to the ratioj(35
K!/j(300 K);3.6 we calculated by settingj5JAg2a/u1

and thus neglecting the stiffness. Moreover, our results ag
even quantitatively with experiment. For example, our valu
of j~35 K!58.10a andj~300 K!52.23a are in good agree-
ment with j~35 K!57.7a and j~300 K!51.6a
found in neutron scattering.49 A NMR-NQR detection of a
temperature-dependentj has been reported by Curroet al.50

who investigated YBa2Cu4O8 and applied the scaling hy
pothesis of Barzykin and Pines.51

Finally, we comment on a special consequence of
approximate decoupling procedure. According to Eq.~34!, j
diverges atT50 even in doped compounds, and this d
agrees with experimental facts.46 The origin of this disagree-
ment is connected with using the KY decoupling proced
which, probably, overestimates the role of AF correlations
low temperatures. Indeed, according to Eq.~18!, there is no
contribution from the hole subsystem tox12(q,v) at v
50, and hence, the AF long-range order persists atT50 for
any hole concentration. Thus, further improvement of o
theory in this temperature limit can be achieved by tak
into account higher orders of the equation of motion for t
Green’s functions, where nonzero weight of the hole spec
function atv50 is expected.

V. CONCLUSION

Using the two-time Green’s functions method within th
framework of thet-J model, we have calculated the dynam
spin susceptibility of CuO2 planes in high-temperature supe
conductors by taking into account both electron and anti
romagnetic spin correlations. The strong electron corre
tions modify the results of the RPA and hence t
susceptibility and thus provide the correct susceptibility b
havior at half-filling. The effects of AF correlations wer
considered within a short-range order theory which provid
a systematic treatment of spin correlations in terms of tw
spin correlation functions of arbitrary range. It was fou
that the hole dynamics rapidly suppresses the short-ra
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order, and this suppression is reflected in the reduction of
stiffness of the system. We have further shown that
model is able to reproduce the main features of the temp
ture and doping dependences of the antiferromagnetic co
lation length in both the pure Heisenberg antiferromag
and doped compounds.
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