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Evolution of antiferromagnetic short-range order with doping in high-T . superconductors
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Within the framework of thet-J model, the evolution, with hole doping, of the antiferromagnéf€)
correlation length and the spin correlation function in highsuperconductors are studied. The dynamic spin
susceptibility has been calculated by using a two-time Green’s function method that allows one to take into
account both electron and AF spin correlation. A comparison of our results with NMR and neutron scattering
data shows that the model is able to reproduce the main features of the temperature and doping dependences
of the AF correlation length in both the pure Heisenberg antiferromagnet, LaCuQ,) and doped com-
pounds(e.g., L _,Sr,CuQy). [S0163-18208)07541-9

I. INTRODUCTION sufficiently low temperature$. For example, the most de-
tailed results for the nonlinear model were obtained in the
From an experimental point of view, the magnetic prop-renormalized classical regime whefe<2mpg (pg is the
erties of the normal state of high: superconductors stiffnesg. However, in doped HTSC'spg is likely to be
(HTSC'’s are now relatively well understood. It has beensmall, thus decreasing the temperature range over which the
established by neutron scattertrthat the antiferromagnetic renormalized classical behavior hoffs.
(AF) long-range order of the parent compounds is lost upon In case of the modified spin-wateas well as the
doping, but that AF short-range ordé8RO is still present  Schwinger-boson mean-fiéfitheories, the temperature re-
in superconducting compounds. Also, these experimentstriction is given byl <0.9]. Moreover, if one extends these
show that SRO decreases with increasing temperature anbeories to doped compounds, the commutation relations be-
doping. Therefore, the understanding of the evolution of theween the fermioniclikgholes and bosoniclike(sping op-
normal state magnetic properties of Gu@anes with doping erators must be obeyed. This can be accomplished only by
is believed to be a key to elucidate the unusual properties aissuming some kind of mean-field constraints for the opera-
HTSC's. tors in the hopping term of the-J model; this procedure
The hole dynamics in an AF background is perfectly de-restricts, as mentioned above, the validity of the approach. It
scribed by the dynamic spin susceptibility which pro-is also difficult to extend the isotropic spin-wave theory of
vides direct information about the low-energy excitationSokol et al® to doped antiferromagnets, because it is un-
spectrum and its evolution with doping. Much work has beerclear how to insert the hopping term into the linearization
devoted to calculations of the susceptibility. Usually, theo-procedure used for the spin operator equations of motion.
ries start from thet-J modef and make use of various On the other hand, the Green’s function method is appli-
methods like the diagrammatié,projection® slave-bosof’  cable at all temperatures and it naturally allows one to com-
or slave-fermiorf;® and the extended Dyson representationprise the hopping term since the method uses the Lee algebra
method'® However, in spite of considerable progress, allfor Hubbard operators. The original Green’s function method
theories have some disadvantages which are mainly corintroduced by Tyabliko¥? is very successful in the study of
nected with the use of either the mean-field approximatiorBD magnetic systems where the decoupling procedure yields
for the local constraints of operators or the random phasa spin-wave spectrum which depends on the spontaneous
approximationRPA). Therefore, it is tempting to investigate magnetization(S,). However,(S,) always vanishes in 1D
the dynamic spin susceptibility within a constraint-free and also in 2D Heisenberg systems at nonzero temperatures.
theory which may be based, as a natural starting point, on th€herefore, Kondo and Yamaji (KY) proposed a new de-
presentation of the-J model in terms of Hubbard operators. coupling scheme which they applied to the study of the spin-
This presentation obeys rotational symmetry of the spin cord/2 isotropic Heisenberg chains. Their results are consistent
relation functions and automatically guarantees the exclusiowith numerical calculations for finite chaif$In case of the
of double occupancy. Moreover, such a technique allows on2D Heisenberg model, the original KY method was success-
to take into account the magnetic effects near half-filling offully applied by Fukumoto and Ogucfiiand, with a semi-
the energy bands where the RPA does not work. phenomenological improvement, by Shimahara and
The spin part of theé-J model can be modeled by a spin- Takada??
1/2 Heisenberg antiferromagnet on a square lattice. The ther- In this paper, we extend, based on the Hubbard-operator
modynamic properties of the Heisenberg model have beepresentation, the KY theory to theJ model. Using the
investigated by analytical methods such as the twoGreen’s function method we calculate, as a function of dop-
dimensional2D) quantum nonlineas- model!**®modified  ing and temperature, the dynamic spin susceptibility, the spin
spin-wave theory? Schwinger-boson mean-field thedry, correlation functions, and the AF correlation length.
isotropic spin-wave theor}f, and the Green's function The paper is organized as follows. In Sec. Il, the Green’s
method!’ The first three theories are valid, however, only atfunction method is applied to calculate the dynamic spin
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susceptibility. In Sec. 1ll, we compare our results for thewith the standard normalizatiog™+ X;" *+ X, ~=1. With-
static spin susceptibility, the correlation functions, the inter-out loss of generality, we can measure all energies from the
nal energy, and the temperature dependence of the AF cogenter of gravity of the band.

relation length with experimental results for JGuO, and

with Monte Carlo calculations. Finally, Sec. IV presents the A. Evaluation of commutators

doping d d f the AF lation length togeth
oping dependence o1 e correlation ‘ength together Since the dynamic spin susceptibility, _ (g, ) depend-

with an investigation of SRO suppression at zero tempera- A
ing on wave vector and frequencyw is given by the two-

ture. _ ;
time retarded Green'’s function
IIl. DERIVATION OF THE SUSCEPTIBILITY X (0,0) =~ g2u3((S1S” N 3)
Our starting point is thé-J Hamiltonian written in terms it can be calculated by using the Heisenberg equations of
of the Hubbard operators: motion. Here,S; is the Fourier transform ok;"°X}™:
1
_ _ 00+/00 _ = 1 _ . .
Ht-J—HﬂLHJ—i;ﬂ L XX +iz>j Jij<35j 4ninj>- S;:NkZij X X0 "exdi(k+aq)-rj—ik-ri]. (4
&Y -
. . . _ Green’s functions satisfy the equation
In Eq.(1), S are spin-1/2 operators at the lattice site; is
a measure of the AF coupling between nearest-neighbor sites o{(A|BY),=([A,B])+{({[A,H]|B)),,, (5)

FE a0 _
] an'd Xi are the. Hgbbard operators that create an eIeCwhere[A,B] denotes the commutator of the two operatlrs
tron with spino at sitei. The hopping integra;; describes

the motion of electrons without causing a change in thei ggiégﬁi ':he":fr;gle;grgltgman of the system arfel--)
spins. The spin and density operators are defined as followgz ge:

— _ [ * [<<A|B>>w+is_<<A|B>>w—is]
ST=X, SZ%; o X7, <BA>_EJ_md‘” expw/kgT)— 1 '

When evaluating Eq.3) with the help of Eq(5), we have
(27 o calculate the commutatdX; °X?~ ,H], with H given by

(6)

=2 X7 (0=-0),

- Eq. (1), and the thermal averag{exﬁox?_ ,S_q])- We get
[X;" X9~ ,Ht]=§ tjs[xr"x;"u—xr+>+xi+°><2+sr]—25 tisl (1=X; )X XY™+ S X O%P7], @)
+0y0— 1 +0y0+ ot +0y0—y++ 1 + v/ — 0y 0— ——y+0y0—
[XTOXP™ Hl= 520 X7 O ST =X OXTXS 1= 520 Sl SOXTOX)T =X XX, ®)
and

1
WN

It should be emphasized that these results are still exact and that they differ from the corresponding expressions in the Stoner
theory of metals where one neglects electron correlations. I(Bgterms containingsf or S" appear because Hubbard

operators do not possess the fermionic commutation relations.
In order to proceed, we employ certain approximations. To evaluate the terms () Bge use the decoupling procedure,
namely, Hubbard-I, as proposed by Hubbard and %4ithe procedure implies the following substitutions:

(XX ST )= —=[(X"OXP ) eiami— (X 0%} )el "]

XOXEX] T (1= a0 XK, XK S (OS]

X TXSOXD ™= (1= 83X XX, STXTOXP ™= (X OXT)S . 9)
The terms in Eq(8) can be calculated in the RPA, yielding
xﬁox?*sgeu— 5”)<xi+°x?+>ss+ +8;X s, Xi*OX?’X;+—>(1— 5i,-)<x;*>xi+°x?* +8;STXS T,

s;xi‘ox?‘ﬂ(l— 5ij)<xi‘°x?‘>s;+ SiSIX T, x;‘xﬁox?‘e(l— 5ij)<x;‘)xi+0x?‘+ SiXs S’ . (10)
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In each replacement, the first term on the right-hand side In Eq. (11), the momentum distribution functiom,
agrees with the usual result of the RPA. The second terms (X, °X?*)=(X, °X?") is determined by the one-particle
always rejected in the RPA, is responsible for the spin-spinsreen’s function(X2?|X7°)),,, which we calculated in the

correlations between Cu spins and, hence, becomes very iy phard-1 decoupling approximation similar to the case de-
portant in the case of the low-dimensional spin systeMSribed above. We obtain

treated in this work.

We note that, in the absence of long-range order, the av-
erage(Xy’) does not depend on the index and, according to

EQ. (2), (XTF)=(X"")=(1-8)/2, wheres is the number
of extraholes, due to doping, per one planar’Cu
B. Fourier transform of Green'’s function

We substitute Eqs.7)—(10) into Eq. (5), perform a Fou-
rier transform, and obtain the following:

(0 Ex= i ) (X Xk ol S o
1-6 e
=(n— nk+q)+ Tw«sq |qu>>a)
+[(8k+Jq)nk_(8k+q+Jq)nk+q]<<sa—|8:q>>w
1+6 J E iqr| /) czat ‘7 g
+T\/_Nl,p eSS, — S S ,IS" ) -
(13)

Here,E, is the energy of holes ang], is their kinetic energy
in the absence of correlations, ande, are related to each
other by

1+6
By

wheret is the hopping integral betweearesineighborst;;

&= 2t(cosk,+ cosk,), (12

€k

1+6
n="5—(1-fD),

where fJ)(— Ey+ ) =[exp(—Ey+u)/ksT+1] 7t is the Fermi
function of holes andu is the chemical potential which is
related tod by

26 1q
1+6 N& K

For the same reason which we mentioned aldokow-
ing Eq.(7)], the expressiolill) differs from the correspond-
ing result of the Stoner theory insofar as products like
sk<<S§|SZq)>w do not appear and the last term of E#jl) is
absent.

C. Calculation of the spin-spin correlation term

We will now calculate the last term on the right-hand side
of Eqg. (11); this term describes the correlations between Cu
spins. Since the spin Green'’s function

1 )
Gqlw)= TN% eSS, ,~ S S N

is the same as that for a pure Heisenberg antiferromagnet,
it may be derived within théKY) decoupling procedur¥.

values for hopping to other neighbors have been neglectedhis technique allows one to explain gross features of the
Similarly, J;; has been replaced by the nearest-neighbor coumnagnetic properties of the two-dimensional Heisenberg anti-

pling constant]. We used the abbreviatiod,=J(cosgj
+cosgqy).

22 ~
wGqy(@)=4(1- )| 2 (S, )+ 5 (SIS 9o

J
+ —
N

ferromagnet, and this for all temperatufég-ollowing Ref.
21, we get

S (S, S, S SIS, SIS

lp#p

_<<SZSZ+prSI++p_ S|ZS|Z+pSI++p_pr|S:q>>a)+<<s|+$_+p’3++p_ S+SI++pS_+p_p,|S:q>>w/2

- <<S++p’s_s|++ll_ S|+SI++/J—P’ _+p|S:q>>w/2]eiqua

where z is the number of nearest neighbors of spiand
yq=(2/z)2§’ilcosqa. Note that the hopping terrHl, does
not contribute toGy(w) in the Hubbard-I approximation.

Kondo and Yamafi’ decoupled the higher-order Green’s
function by using the following scheme:

SETREIEEIC ST
S S ST BS80S
S'S., S5 ,—a(S'S, )8, +B(S,,SL,)S"

13

and similarly for the other Green’s functions. While usually,
in the decoupling of Green’s functions, one sats 8=1,
Kondo and Yamaji introduced,B+#1. A valuea+#1 pre-
serves the important property that spin operators obey the
relation (S?)=3/4 which should hold at all temperatures.
The parameteB has been introduced for flexibility reasons;

it can be defined in various ways. For simplicity, in Ref. 21
the assumptiomr= 8 has been made, as in the original work
of Kondo and Yamajt. In this case, the theory is completely
self-consistent. However, as we shall see below, the condi-
tion &= B underestimates the role of the next-nearest spin-
spin correlations. Therefore, in our theog s a variational
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parameter whose value is obtained by a comparison witR(S'Sz)=(S"S.), which holds for the isotropic Heisenberg
experiment under the assumption that this value does natrm in Eq.(1), and the thermal average definition of E6).

depend on doping and temperature.
Evaluation of Eq(13) then yields

2
0Go(0)=420,(1= 7))+ SH(S] IS )0 (19

Here, w, is the energy of the magnetic excitations,

, J%z9-
0. ,g_ are abbreviations which stand for
9+ =[1+4(z—1)Bcy+4alcy|l/g-, 97=4a2|01|& "
1

When taking the average, we have replaced the integration
over w by summation over Matsubara’'s frequencias,
=27mT, wherem=—x,...,—1,0,1,..,0. We get

1 .
5 =keT2 x+-(qQiom), (19
q,m
2c1=kBTqu Yox+ (Qion), (20)

2<z—1>c2=kBTqu (2Y2~Dxs-(Qioy). (2D

We conclude this section by addressing the relation be-

andc,,c, denote the nearest and next-nearest spin-spin Cokyeen the width of the conduction bari,, and the hopping

relation function, respectively, of Cu spins:

1 1
Clzgg <SZS’|Z+p>' CZZZ(Z_ 1)

S (SIS
p#p
17
Thus, the essential parameters ©G,(w) are @, B, cy,
andc,.
D. Final result

Inserting Eq.(14) into Eq. (11) and taking into account
the relation S; = =,X; °X7 /N, which follows from Eg.

(4), our result for the dynamic spin susceptibility becomes

_ oxo(q,0) +4326(1- y)Z(q,0)
wx1(0,0)+ (0~ 03)Z(q,0)

X+-(0,0) ., (18

where

E fE_frk]Jrq
Xo(Q, )= ¥ wtE—Eng’

h h
exfk—errqfieg

x(@0)=Joxo(G.0) + 2 = g~ "

1
Z(q,0)=2,

k otE— Ek+q.

integralt. The width, as given by Eq12), is doping depen-
dent, where the reduction factor {15)/2 is due to the strong
electron correlations. However, this reduction is not suffi-
cient to reconcile results of experiments and Monte Carlo
(MC) calculations’® The origin of this discrepancy arises
from the fact that the AF spin correlations reduce the width
of the conduction band.

The reduction effect cannot be treated in the Hubbard-I
approximation we used above. R®thimproved the
Hubbard-1 approximation by introducing the nonperturbative
two-pole ansatz for the one-particle spectrum. It can be
shown that this ansatz is essentially equivalent to the Mori-
Zwanzig projection techniqd&?® and is strongly related to
the moments methot!. Since then, this new approach has
been studied by many authd??°31-33and became a gen-
eral method to treat approximately, with no need for a small
parameter” the quasiparticle spectrum and the spectral den-
sity in an interacting system. The reliability of the method
has been demonstrated by comparison with exact diagonal-
ization results®

Using the Roth method, one findghat the hopping inte-
gralt is reduced by AF correlations, resulting in an effective

value
teff:t( 1+

where(S;S;);=3c; is the nearest-neighbor spin correlation
function. This effect, which has recently been discussed in

4<33j>1)
(1+6)2)’

xo(q,w) denotes the dynamic susceptibility of free holes.Refs. 35 and 36, is easily understood because a hole when
x1(9,0) has a similar meaning as the exchange enhancgnoving through the Cu lattice retains its spin orientation.

ment factor in the RPA, where, however, the second term ofyom now on we replaceby t

eff:

x1(0,w) is equal to 1. In our theory, this second term is due
to the strong electron correlations and provides the correct,, CORRELATION LENGTH IN THE 2D HEISENBERG

concentration behavior of . _(q,w) at half-filling (6=0) .22

Z(q,w) is a convenient abbreviation.

Our result fory, _(g,w) agrees with special cases treated

ANTIFERROMAGNET

In order to check our theory, we consider the case of the

in the literature. 1fJ=0, we have agreement with the relation two-dimensional Heisenberg antiferromagrieith z = 4)

derived by Hubbard and Jaf.For J#0 but without AF

where numerical results for the relevant parameters are al-

correlations, our result is consistent with results of Refs. 24eady known. Since novfIE=O, the low-energy excitations

and 25.

predicted by the-J model are spin waves with energieg .

Finally, we have to determine self-consistent equationdn the limit of T=0, the self-consistent equatiof9)—(21)
for the parameterg,, c,, and «. We can express these can be solved exactly. With the help of E¢$6) and (17),
parameters in terms of . _(q,w) by using the relation we obtain
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16/c,|—1 4 wherea s the lattice period anly(x) is the modified Bessel
Co=—5 —» 9-=3(1+12B), g+=1, (22 function. In the limit of large separations whereKq(x)
~exp(=x)/\/X, we get
andc, is determined from the equation

(S(0)-S(r))~(—1)" \/gexp(—r/E),

96c212
B(18cy|—1)= (1—4|cy))? -1 23 where¢ is the AF correlation length and given by
where | = (8/72)E2(1/\/2)— (2/w)=0.842 andE(x) is a . a (25
complete elliptic integral. ¢= 2V, -1

Numerical values of these parameters may be compared
with data of the literature by considering the static susceptiOur correlation function has a distance dependence which is
bility xs and the magnetic excitation spectrusy. Herexs  of the same shape as that given by the nonlireanodel’?

is equal to (1/2), _(0,0) ! Then, Eq.(18) becomes We will now investigate the temperature dependence of
the correlation length for a temperature range where the in-

2/cy| equality a?/£2<1 holds; this even refers to temperatures

Xs= around 500 K as the numerical result will show. Substituting

Jg- g, , as taken from Eq25), into Egs.(19) and(21), we solve

We takeB=2.5, because this value, as we shall see belowt,hese equations fof:

provides the best fit of our calculated AF correlation length oo
to experimental data. Then, Eq&2) and (23 yield ¢, EN 9- exp2mps/ksT). (26)
=-0.115,¢c,=0.07,g_=4.133, andys=0.0550. a kgT

These results agree quite well with those of various othe
theories.(i) The values ofc,, c,, and x5 agree remarkably
well with those of a modified spin-wave thedfynamely,
csW=-0.112,¢5"=0.068, andy3"=0.0450. (i) Our xs
value is compatible with the resultgs=0.0430 and xg
=0.060 of the nonlineaw model? and isotropic spin-wave
theory2 respectively (iii) The original KY procedure, with
a=p, gives cX'=-0.104, c5¥=0.055, g"=2.82, and
x5Y=0.0730 which all are close to our resultiv) Finally,
our results forys, ¢4, and the internal energy=6c, Jg_
=—0.69 agree quite well with Monte Carlo datg¥“ pS:W[1_32|Cl|K2(1/\/E)\/2/7749—]! (27)
=0.04460,% c/"°=-0.112, anduM®= —0.6693® !

According to Eq.(15), the excitation spectrum becomes, whereK(x) is a complete elliptic integral.
for T=0, wq=2JZ(1— yg)lfz with Z.=\/g_/2=1.44. The We now determine numerical values for the temperature
structure ofw, agrees with the result of many other theoriesdependence of in La,CuQ, using the experimental valuds

The temperature dependencetpexpressed by the exponen-
tial and the preexponential factorTl/again agrees with the
result of the spin-wavéSW) theory. The appearance of the
factor 17T in our and in the KY and SW theories is an artifact
of the mean-field approach. Chakravaetal? eliminated
this artifact by taking into account two-loop renormalization-
group corrections.

In Eq. (26), ps is called the stiffness; it is given by

for antiferromagnets and our value B is consistent with = 0.12 eV(Ref. 39 anda = 3.79 A, and treating3 as the
Z.=1.36 obtained by Sokadt al® using the isotropic spin- only adjustable parameter. The best fit to the experimental
wave model. data (see Fig. 1, which were deduced from neutron

Having established the basic reliability of our model, wescattering,’ was obtained with3=2.5. Obviously, the in-
will now evaluate the AF correlation length. Let us considerequalitya?/£2<1 is fulfilled.
the spin-spin correlation functiofS(0)- S(r)) for spins re- For comparison, we have also calculagdy using the
siding, for example, along theaxis of a square lattice. Uti- original KY procedure whenv= g (dashed line in Fig. 1
lizing the relation(S‘'Sk)=(S'S")=(SS:) and Egs.(6) Although this procedure is capable of reproducing the tem-
and (18), we have perature dependence, it fails to give the absolute valug of
at low temperatures the discrepancy is a factor of 10. This
® failure is connected, as we mentioned above, with underes-
cotr‘? 4 timating, in the original KY theory, the role of the next-
keT nearest spin-spin correlations. Indeed, an increase of the
(24 value of these correlation@xpressed by,) causes an ex-
tension of the AF short-range order and, consequently, an
enhancement of. Since, in our theoryp enters in the com-
bination Bc,, we can realize th& enhancement, even at
fixed J, by increasing the value @8.
By solving Egs.(22) and (23) and using Eq.(27), we
determined, fofT=0, how 2wpg/J depends on the anisot-
24cy|kgT

_ v T ropy 1— a/B (see Fig. 2 and how the ratiax/ 8 varies with
(8(0)-Sr)=(=1) Jg_ 7 Ko@\(g+~Dr/a), B (inset in Fig. 2. While /8 depends only very weakly on

6J 1- )
(S(0)-S(1) = L,Cllg( YOO

Wq

Since the main contribution to the sum arises frqmalues
which are close to the AF wave vectQ=(=/a,w/a), we
can replace this sum by an integral over vectprsQ and
Eq. (24) reduces to
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FIG. 1. The calculated temperature dependeisodid line) of
the antiferromagnetic correlation lengéthcompared with experi-
mental datdsolid circleg (Ref. 40 for La,CuQ, and with the result
(dashed lingfollowing from the original Kondo-Yamaji procedure
(Ref. 17.

FIG. 3. The calculated temperature dependence of the AF cor-
relation length(open circley compared with MC datésolid circles
(Ref. 41).

of the 2D Heisenberg model. However, the improvements
became noticeable only above 600 K which is a temperature
range beyond our present interest.

B, the stiffness is very sensitive 18. In case of the KY
procedure, wheree=8=1+1/212=1.705, the stiffness be-
comes

27TpKY IV. CORRELATION LENGTH AT FINITE DOPING
S

T 8
= 1+212— = K2(112)1 | =0.0797,

J 4 - We turn now to the calculation of the temperature and

concentration dependence of the correlation lerggtbr fi-
which is an extremely small value. However, in our mogel, nite doping. We first note that this can be accomplished by
is a parameter fixed to the value 2.5 by the fit to experimentahagain using Eq(25), and this for the following reason. In-
data, resulting in a stiffnessee Fig. 2 which is 4.8 times stead of obtainingt from the exponentional decay of the
larger than the KY value. This strong dependence of thespin-spin correlation function at large separations, it may be
stiffness and hence the even stronger dependené¢®ofthe  derived from the expansion of the static susceptibility
al B anisotropy explains why our model fits the correlation y_. _(q) taken around the AF wave vect@:.*® For this case,
length data better than the KY procedure does. Eq. (18) becomes
In Fig. 3, we compare our correlation length results with
numerical MC datd! The agreement is fairly well except for 32/c,|
a range around@=0.5J. In principle, the agreement between _ 2,21°
theory and MC calculations can be improved by makihg J9-[4(g. ~D+a7a]
temperature dependent as done by Winterfeldt and*dhle According to Ref. 43, the quantity (¢ — 1)+ qg2a? is equal
who extracted3(T) values from MC data in their treatment to a%¢2+qg%a? and, therefore, we findt?=a?/4(g, —1)
which is identical to Eq(25). Again, g should be derived

X+-(Q—q)=

FIG. 2. The calculated dependence of the stiffnespg/J on

the anisotropy * a/B. Inset: a/ 8 as a function ofB.

0.5 from the self-consistent equatiofi9)—(21), however taking
ho into account now the hole subsystem’s contribution to
04t | %o, g . X+-(0,0).
- ‘s 109 . A. Derivation of the correlation length formula
\c‘f 03115 20 25 M In Eg. (19), x+_(q,ioy) is given by Eq.(18). Since
& B M x+—(0,iwy) itself strongly peaks aj=Q, we replaceqg by
0.2t M Q in the functionsy(q,i wm), x1(0,i @), and Z(q,i w.y),
. * since they vary weakly witly) nearQ as we have shown by
o1 . numerical calculationénot reproduced hejeln order to cal-
e culate xo(Q,iwy), x1(Q,ioy), and Z(Q,iw,,), we define,
for the conduction ban#, , the density of states function in
0.0~ s : the following way:
0 0.05 0.1
1-o/B

1
W(E)=N§k: S(E—Ep).

For N— o, w(E) becomes
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[

16J|cq|(1— v4) (62— 67)
S;=2kgT > 2 |21| 2q2 m212'
am=1 (0 + o+ 0g) (01 + on+ o)

with the abbreviationt =t.;{(1+ 8)/2. Then, substituting The summation ovem in the first term on the right-hand

w(E) into Eqg. (19) and performing the integration ovét,
we find

1_ 16|Cl|kBTK 1
E_ Jg+g—7T ( g+)
Z upt 168[c|(1—
+2kBTE m - |;|( 2'}’q), 28)
qm=1 0m+wm+wq

where

Btorr(1+ 5)11 YK(V1I= A onVi+ed
= d'y y
K(1/N1+w02)

Um

™ -1 72+a)2m

On=—, (29
8t
and
. 3z§ff(1+5)f1 . Y’K(V1=9)fh
m w -1 4 yz—l—Z)rzn
omV1+ 02
X — 2y, (30)

K(1/V1+ w2

with f';z[exp(—47y+,u)/kBT+1]‘1 being the Fermi func-
tion of holes. At small hole concentratiods Egs.(29) and
(30) become

87Tteff5 :Um

+0(8%),

Um

_K(1/J1+6§) \/1+Z)2m

0 =2(2t 1= ) U (31)

side of Eq.(32) is performed exactly. Inserting the results

into Eq. (28), we arrive at

1 16kgT|c4]

=———K(1/ +S,—S
2 Jg,g.m (194)+S—S;
+16J[cy| X (1-yg)

q

cott (Vawli+ 62)/2kgT] kg
X —
2\ o+ 07

. (39
wé-i— 0%

with

[

S,=2kgT X,

am=1 03+ wh+ wf

Um

To calculate the sum ovey in Eqg. (33), we expand allwg
around the AF vectof and make the expansions

cothx=1+2 2 expl—2mx),
m=1

K(1/g,)=In(4g, /\g; —1)+0(g; — 1).

Then, our result for the correlation length in doped samples

becomes
J _ ~
gz ag [1—exp — 6, /kgT)]exp(27ps/kgT), (34)
1

where 6, is obtained from Eq(30) for m=1.
For smallé values up to 0.]see note below Eq31)], 6?
reduces to

826  kgT 2tesi—J

6=
(1+9) 1+ 32 K(WN1+ 22

For & values up to 0.10(46%) is at most 15% of the total and the stiffnesp becomes

result. The elliptic integral in the expression fay, appears

because of the Van Hove singularity in the density of states

of the conduction bané, .
Equation(28) is the starting point for the calculation &f

First, we rewrite part of the sum on the right-hand side in the

following way:

16]|Cl|(l_ Yq)

2kgT
5 E 0r2n+ wrzn-l- wg

g,m=1

16*]|Cl|(1_7q) s
T2, 2., 2 b

q

=2kgT >

g,m=1

(32
0%—0— wﬁ]-i- w

where

Pps=ps—J9-(S,—S))/32cy,

where

g [l_ 32y2|c,|
ST N

XK (N1=M\2+\22)V2imtg |,
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Similar to Egs.(22) and(23), we can calculate the corre- pler” relation é=a/+/8 used in fitting the neutron scattering

lation functionsc, andc, in doped samples foF=0. Solv-
ing Egs.(19) and(21) leads to

C16cy -1 2, 4 i1 4
Cz—TJrgSz, 97—5( +12c,8), 9:+=1,
(35
and
~  96c3(1—+/2g_S,/8)2
18y~ 1+ 88y = A V2GS o

(1—4|cq|—2S,)?
where

- ” 16J(1— y2)( 62— 62)
SlZZkBT 2 ( 'Yq ( m 1

am=1 (624 w3+ wé)( 02+ w3+ wé) ,

2
UmYq

2, 2, 2
Ot ont g

S;=2keT 2,
g.m=1
to be taken in the limifT—0. Equations(35) and (36) re-
duce, as they should, to Eq&2) and (23) when § ap-
proaches zero, because bethand 8, are ~ ¢ in this limit;
see Eq(31).

B. Discussion and comparison with experiments

We solved Egs. (35 and (36) numerically for
Lay g5l 14CUQy, using the paramete®=0.14,J=0.12 eV,
and J/t=0.3, which is reasonable for theJ model?* Our
result isc;=—0.066,c,=0.043, andg_=3.03. Compared

data?® It should be stressed that the origin of the proportion-
ality £1/\/8, in our model, arises from strong electron cor-
relations.

The temperature dependence of the correlation length has
been a controversial topic. In E(B7), the temperature ap-
pears not only in the exponential function but also in the
parameterd; which is essentially proportional tq/T. It
is satisfying that this temperature dependence of the
preexponential factor agrees with the result of scaling
theories!’ 48

Thus, our theory predicts a temperatalependenbehav-
ior of ¢ even in doped samples. This conclusion is consistent
with recent neutron scattering and NMR and nuclear quad-
rupole resonancéNQR) experiments. In neutron experi-
ments with La ¢Sk, 1/CU0, single crystalé® the authors
discovered “that the normal state magnetic response is char-
acterized by nearly diverging amplitude and length scales.”
Indeed, ¢ displays a noticeable temperature dependence:
when increasing the temperature frang=35 K to 300 K, §
decreases by a factor of 4.8 which is close to the r&fRb
K)/£(300 K)~3.6 we calculated by setting=J+\/g_a/ 6,
and thus neglecting the stiffness. Moreover, our results agree
even quantitatively with experiment. For example, our values
of £(35 K)=8.10a and £(300 K)=2.23 are in good agree-
ment with &35 K)=7.7a and £&300 K=1.6a
found in neutron scatterirf]. A NMR-NQR detection of a
temperature-dependeéthas been reported by Curen al>°
who investigated YB#Cu,O3 and applied the scaling hy-
pothesis of Barzykin and Pinés.

Finally, we comment on a special consequence of our
approximate decoupling procedure. According to 84), ¢
diverges atT=0 even in doped compounds, and this dis-

to the pure Heisenberg antiferromagnet, the spin correlatioAdrees with experimental factThe origin of this disagree-

functions are now reduced by a facter? and the stiffness
Ps, Which is now 0.1p5"
hole concentration of-0.14. Fort.;, we obtain 0.156 eV,

ment is connected with using the KY decoupling procedure

can be regarded as negligible at a Which, probably, overestimates the role of AF correlations at

low temperatures. Indeed, according to Etf), there is no

hence, the conduction band is 4.5 times narrower than in thgontribution from the hole subsystem o, (q,®) at

noninteracting case, in agreement with MC calculatitns.

We will now discuss the doping and temperature depe

dence of the correlation length as given by E2f). We first

note that, for6— 0, its solution smoothly goes over into the

result for the Heisenberg antiferromagnet, that is, ).

=0, and hence, the AF long-range order persisit=a0 for

nany hole concentration. Thus, further improvement of our

theory in this temperature limit can be achieved by taking
into account higher orders of the equation of motion for the
Green'’s functions, where nonzero weight of the hole spectral

Next, we remark that for all realistic temperatures andUnction atw=0 is expected.

already small hole concentrations, the

ity holds even better. For example, let us take 0.04,

J=0.12 eV, T=1000 K, and.;=0.1 eV which corresponds

to a width of the conduction band 6f0.4 eV as observed

experimentally in HTSC’s and confirmed by MC calcula-

tions within the t-J model® This then leads to
exp(— 6, /kgT)~0.3 and Eq(34) becomes
JVg_ ~
SZ \ég_eXFXZWpS/kBT). (37
1

Thus, £ turns out to be proportional to {6 in good agree-
ment with neutron scattering experimefitand Monte Carlo
calculations’® Equation(34) is more complex than the “sim-

inequality
exp(— 6, /kgT)<<1 is fulfilled. For larger doping, the inequal-

V. CONCLUSION

Using the two-time Green’s functions method within the
framework of thet-J model, we have calculated the dynamic
spin susceptibility of Cu@planes in high-temperature super-
conductors by taking into account both electron and antifer-
romagnetic spin correlations. The strong electron correla-
tions modify the results of the RPA and hence the
susceptibility and thus provide the correct susceptibility be-
havior at half-filling. The effects of AF correlations were
considered within a short-range order theory which provides
a systematic treatment of spin correlations in terms of two-
spin correlation functions of arbitrary range. It was found
that the hole dynamics rapidly suppresses the short-range
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