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Effect of anisotropic impurity scattering in superconductors
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We discuss the weak-coupling BCS theory of a superconductor with impurities, accounting for their aniso-
tropic momentum-dependent potential. The impurity scattering process is considered-mdtré&x approxi-
mation and its influence on the superconducting critical temperaiuiestudied in the Born and unitary limit
for ady2_,2- and ([d,2_ 2+ s)-wave superconductors. We observe a significant dependence of the pair-breaking
strength on the symmetry of the scattering potential and classify the impurity potentials according to their
ability to alterT.. A good agreement with the experimental data for Zn doping and oxygen irradiation in the
overdoped cuprates is foun50163-182¢08)05542-§

l. INTRODUCTION normalized (rdSn(k)=1) angle-resolved FS density of
states. Particularly low- suppression is predicted for
Several experiments probing the effect of impurities or(ef)2=1, that is for the anisotropy of the scattering potential
lattice defects on superconductivity in the cuprates have begf phase with the order parameter, which in the case of the
carried out~22in order to get more insight into the symmetry dy2_,2-wave superconductor correspondsf((k)~kf— kf,.

of the superconducting sta’Fe. .5258 most thoroughly S_tUdieQ\);ithin this approach we were also able to understand quan-
defects are Zn and Ni substituti on the planar Cu sites titatively the irradiation daff in Y-123.

and irradiation-induced oxygen vacancie$?in the copper Through th tulation of th ic § fth

oxygen planes. Yet the results are difficult to explain within rough the postulation ot the analylic form of the square

a standard Abrikosov-Gorkov-type theory of impurity vglue of the impurity potential this apprqach_has been de-

scattering® for the scenario of the-wave superconductivity, S|gneq for the second—ordgr Born appmxmauon_and cannot
é)e efficiently extended to include multiple impurity scatter-

which is predicted to be extremely suppressed by th L
impurities?*~2" This issue was critically examined by Radtke N9 Processes. Such a generalization is important from the

et al24 who considered isotropic nonmagnetic impurity Scat_t.heoretical and experimgntal points of vigw, especiglly in the
tering in the Born approximation and obtained the criticallight of the re_cent expenments suggesting a possible strong
temperature in both weak- and strong-coupling approackclose to unitary scattering by Zn atoms in Y-123 and
close to the Abrikosov-Gorkov scaling function. A compari- Lao—xSkCu0Q, (La-214 compounds. For that purpose a
son to the electron irradiation dafan YBa,Cu,0,_(Y-123)  model based on the assumption of the impurity potential and
showed that the theoretically predict&dwas about twice as not its square value is needed.

much reduced by the impurities than observed. This incon- In this paper we study in thematrix approximation the
sistency can be settled down within the weak impurity scatpair-breaking effect of the nonmagnetic impurities with the
tering model if the impurity scattering rate a factor of 3 lessanisotropic momentum-dependent factorizable potential. The
than the one deduced from the transport measurements iisfluence on the superconducting transition temperature is
assumed®2! which is equivalent to an introduction of two analyzed quantitatively in the Born and unitary scattering
separate relaxation time scales—one defining the scatterirlgnits. In particular, we find that the scattering from impurity
time in pair-breaking processes and the other representingptential in phase with the order parameter leads to a stron-
the transport scattering time. Such a distinction occurs natuger suppression of the critical temperature than from the im-
rally as a consequence of an impurity momentum-dependemurity potential orthogonal to the superconducting state. On
scattering probability® The issue of a possible anisotropy in the other hand, the superconducting state appears very robust
the impurity scattering potential was suggested in a discusto the potential scattering with its maxima in the region of
sion of the irradiation data by Giapintzales al*® where the  the nodes of the order parameter. Finally, we find that the Zn
authors evoked a model by Milliet al?® A more general and electron irradiatio; suppression data in Y-123 and
formulation of the problem was given in our previous La-214 are in the range predicted by our model.

paper’® where the effective correlation between two impu-  This work is organized as follows. In Sec. I, we intro-
rity vertex functions was assumed in the forfwg|?  duce the anisotropic momentum-dependent impurity poten-
+|wq|?f (k) f(k"), with |w,| and|w;| representing isotropic tial. In Sec. Ill, we derive the expressions necessary for the
and anisotropic impurity scattering amplitude, respectivelyanalysis of the scattering process of arbitrary strength. In
and f(k) determining the symmetry of the impurity Sec. IV, we obtain the self-energies due to impurity scatter-
potential®® Our analysis showed that the symmetry of theing at the superconducting—normal-state phase transition
anisotropic potential is an important factor and a significantvhich allows the evaluation of the critical temperature. Then
reduction in the pair-breaking strength appears for large valwe examine analytically Born and unitary scattering limits.
ues of (ef)2=[fedSn(k)e(k)f(k)]?, where [¢dS, de- In Sec. V, we calculate numerically the critical temperature
notes integration over the Fermi surfa€s) andn(k) isthe  for d- and (d+s)-wave superconducting states in the pres-
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ence of impurities accounting for their anisotropic potentialCu0, planes'®~?? Therefore, on a short length scale of the
of p-, d-, f-, andg-wave symmetry in Born and unitary limit. order of magnitude of the lattice constant a given impurity
In Sec. VI, we compare the results with data on Zn-dopant produces the same potential of the same orientation
substituted and irradiated overdoped La-214 and optimallyhroughout the crystal. On the other hand, on a large length
doped Y-123 samples. In Sec. VII, we present our concluscale the impurity distribution in the system is random and
sions. Except for comparing to the experimental data we ashe Abrikosov-Gorkov's methdd of averaging the Green’s

sumefi=kg=1 in the calculations. functions is applicable.
We have not made any assumption about the electron en-
Il. IMPURITY SCATTERING POTENTIAL ergy band yet and we use a general formalism deriving the

. ) ) ) ) ) equations valid for an arbitrary Fermi surface. For the com-
As the impurity scattering strength is rather impossible o, tational simplicity, however, the numerical results are ob-
be determined from first principles, the information about theizined for a cylindrical FS This approximation allows to
scattering process is usually deduced from a comparison Qk,qy the effect of the anisotropy of the impurity potential
the experimental data Wlth. the theoretical mpdels_. The,sﬁlone. The anisotropy of the Fermi surface may equally en-
models _ assume a certain phenomenological - impuritiance or suppress the pair-breaking effect of the impurities.
potentiaf*242%30:%2=34hich s verified by a fit to the avail- Tpe getailed quantitative calculations are needed to answer
able data. We proceed in the same way by analyzing thg,is question which is beyond the scope of the present paper.
impurity scattering potential of the factorizable form For the numerical calculations we take the functfgk)
N , in the scattering potentigll) proportional to the harmonic
v(kkD=vitval(T(k’). @ functions which in a polar angle notation read k#)(and
The above interaction consists of two channels—the isotrocos(¢), wherel is an integer number. Therefore we study the
pic scattering channel with the scattering amplituge and  effect of the basis elements in a space of the functions deter-
the anisotropic one determined by the scattering strength mined by a two-dimensional momentum vector.
and momentum-dependent functidfk). We assume that
the f(k) average value over the Fermi surfadéd) Ill. T-MATRIX APPROXIMATION
= [rdSin(k) f (k) =0. Therefore,f(k) is orthogonal to the FOR THE SELF-ENERGY
isotropic s-wave term in a sense of a scalar product defined . . :
as thepFS integral and in consequence a syn?metry other than We study the effggt of potentla'l scattenr)g by spinless,
the identity is introduced into the impurity potential. An ad- noninteracting Impurities on the single-particle propagator
ditional normalizatior{f?)=1 givesv, the meaning of the for superconducting electrons
scattering strength magnitude in the anisotropic channel. The A TR iaA & 1
chosen potential depends on the absolute orientations in the O (K@) =Li07000= 7300~ A(K)i 72072 k)] @)
crystal of the incoming and outgoin¢scatteredl particles
momenta, not only on the angle betwdeandk’. The usu-  Hereé is the quasiparticle energw=7T(2m+1), where
ally assumed isotropic conditiotiof a sphericalcylindrical T is the temperature anh is an integers;, o (j=1,2,3)
in two dimensions constant energy surface and the scatterare the Pauli matrices anth, o, are the unit matrices in
ing probability dependent only on the angle of deflexion areparticle-hole(Namby and spin space, respectively. The or-
broken heré® This leads to a momentum dependence of theder parameteA(k) is defined as
time between scattering events determined by the imaginary
part of the self-energy and a momentum-dependent relax- Ack)=Ae(k), )
ation time in the Boltzmann equatiéfh® This second quan- wheree(k) is a momentum-dependent real function which
tity is worth mentioning as it provides the information about may belong to a one-dimensiondID) irreducible represen-
the normal-state transport properties and can be used as g&ition of the crystal point group or may be given by a linear
additional physical assessment of the phenomenologicalombination of the basis functions of different 1D represen-
model®® A constraint on the potentidll) which follows im-  tations. We normalize(k) by taking its average value over
mediately from the analysis of the normal-state properties ishe Fermi surfacde?)=1. This normalization givea the
a nonzero value of the scattering amplitude in the isotropigneaning of the magnitude of the order parameter. The self-
channelv;. A lack of the swave scattering may lead in energyi(k,w) and consequently the Green’s functif.
some cases to an infinite value of some elements in the d@)] have been obtained by applying Abrikosov-Gorkov’s
conductivity tensof’ that is to nonphysical transport prop- techniqué® of averaging over the coordinates of the impuri-

erties. . . o ties and depend on only one momentum vedtodn this
The anisotropic potential from E€l) distinguishes a cer-  apnroximation

tain set of coordinates which we think should coincide with

the main directions in the crystal. This assumption seems i(k,w)=n:r(k,k,w), (4)
rather plausible because the impurity potential is determined A

by the dopant atom itself as well as its substitution site in thevhere n is the impurity concentration and obeys the
crystal. The potential produced by a given sort of impurity Lippmann-Schwinger equatidh®*40-*3

(defecy may be considered unique since the impurities tend

to selectively substitute at characteristic sites in the crystal. 7 PR, , - A" Tk Lo’

The Zn and Ni atoms occupy the in-plane Cu sité%and Tk’ w)=v(kk H% v (k)G 0)T(K" k', 0).
the electron irradiation displaces the oxygen atoms from the (5)
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Since the scattering potential for a single electron 0i(®)=0io(®) To0o+ Ji1(@) T102+ Gio( @) To07y

a(k,k’)zv(k,k,)}s&o (6) +gi3(w)3'35'o. (9)
is momentum-dependefEq. (1)], the vertex parﬁ'(k,k’,w)
is a function of two momenté andk’. Therefore it should  The expression for the one-particle Green’s function is then
be evaluated from Ed5) using the explicit form ob (k,k")
first, and then the self-energy can be obtained according to

Eq. (4) by takingk’ =k. We proceed to a solution by defin- iZ)}o&OJrEk}gz}oJrZ(k)i3—2&2+Z’(k)3—1&2

ing G(k,w)=— 7o 2728
(ko) %+ g5 — AX(k)+ A" 3(Kk)
Gi(@) =2 f(k)G(kw), =012 ™ (10
and expanding all matrix quantities as with @=w+i3y(K, ), ~§k=§k+23(k,w), Z(k)=A(k)
S = e s ~n —i25(k,), andZ’(k)=21(k,w). The formal solutions for
2(k,w) =X (k@) Too0+ 2 1(K, @) 7105+ 25(K, 0) 7207 the self-energie& (k,») (j=0,1,2,3) obtained through Egs.
+33(k,w) 7300, (8 (4 and(5) read

3(k,®)=5;(v; ,va,80,91,02)U(vi ,v4,80.01,82) +5(va,0i,02,81,90)U(va,vi,82,91,80) F4(k)

+[t3-j(vi,0a,00,01,02) +t3-j(va,vi,02,01,90) 1F(K). (11)
|
Note a permutationv;«sv,, go-0J,, in the arguments of a,=—i911(1— 4029 —va(i913921+ 915920~ 910920),
the anisotropic part§proportional tof(k) and f2(k)] of
2j(k,) in Eq. (11). The functionss;, t;, andu are given az=—010(1—v2023) —va(013920— 19129211t 1911027),
by a series of equations (15

o bo=(1—vigoz)ap+vi(i9o221— 190182~ Joc3)
So(vi,va,90,91,92) = agC3+a,Cr+a,C1 +asCo, ) )
b;=(1-vigoz)as+vi(igoR0+igoc@2+ J0d3),
S1(vi,0a,00,81,82) = AgCa+a1C3+ia,Co—ia3C, . .
121,00, 80.81.82) = 80Co + 1G5 20 s bo=(1—vigoz)az+vi(9o223— 190180~ 190cA1):
S5(vi,04,80,01,02) =aC1—ia1Co+asC3+iascs,

b3=(1—vigoz)as—vi(JozA2 1+ Y0121+ JooRo), (16)
$3(vi,0a,80,01,02) = AgCo+ia1Cy —ia,Co+a3Cs ,(12) Co=v; *d - 1013,
:. 71 71 —_ .
tj(vi,va.00.01,02) =ving(cj+ci+cs—cd) 2, C1=lva "0 by 0igiz,
(13 Co=—iv, 'd b~ vigus,
Aa A 1102 2 2 2v-1
U(vi,va,90.91,92) =vjv, nd™(Co+ci+cs—cs) c3=—v, 'd " bs+vigso. 17

(14
The self-energies can be evaluated with a simultaneous so-

with d=—g2y+ 9%+ 9%,+g2; and the coefficients, ,¢; (] lution of the gap equation

=0,1,2,3) determined by 1@, elementdEgs.(7) and(9)] 1 .
given by the integrals of the products of the Green’s function ~ A(K)io,=—T, >, 5 Vi e tr[ (714 72)G(K )]
G(k,w) and appropriate powers of the impurity potential @ K (18
anisotropy functionf(k). These coefficients are introduced
in order to shorten and simplify the notation of the self-whereV, ,,=—Voe(k)e(k’), Vo>0, is the pair potential.
energy functions. We define them in the sequential formulahe above lengthy expression have been derived without any
with a use of additionab; parameters additional constraints and are fundamental to the consider-
ations within the model. This generally complicated problem
simplifies with the assumption of particle-hole symmetry of
a9=013(1— 03923 —va(912922F 911921— 910920) s the excitation spectrum. It has been shown by Hirschfeld
et al*! that in this case thé; component of the integrated
a1=1012(1—v2023) +v4(i9130925— 911920+ 910021 s Green'’s function §43) may be neglected in the presence of
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s-wave scatterers. Inclusion of higher-order angular momenspectrum, takeg;;=0 (i=0,1,2) and check if this condition
tum waves in the scattering potential makes this analysiteads to a vanishing self-ener@)s.

considerably more difficult. In this paper, however, we cal-

culate the self-energies at the phase transition and for that IV. SELF-ENERGY AT PHASE TRANSITION

purpose we need to show only the consistency of the as- We consider the effect of anisotropic impurity scattering
sumption33;=0 at the critical temperatur&.. In the fol-  on the critical temperature. At the superconducting—normal-
lowing we assume a particle-hole symmetry of the energystate phase transition the gap equati®® transforms into

e(k)+ (LM[21(k,0)/Aly—o+ (LH)[Z (K, w)/Ala—0
[w+iZ(K,0)a—o]*+[ &+ 2a(K,@)a—o]

1=VOTC§“; }k) e(k)

(19

In order to findT, the self-energies in thA—0 limit are to

be obtained. For the sake of convenience we introduce new [Z2(K,@)/A]y=0=~ —~
parametersc;=1/(mNgv;) and c,=1/(mNgv,) describing 0
the scattering strength in the isotropic;X and anisotropic 1

(c,) channel, respectivelyN, represents the overall single- + a1 (gzz/A)A of2(k)
spin density of states at the Fermi level. A new measure of

impurity concentrationl'=n/(7N,) is also used. Taking (22
into account that o) a—o=—i7Ng sgn) and @, a-o

=(Qgoo)a—o [because of normalizatioff?y=1] we obtain where

Cile (902/A)a=0

sgnw),

oK, w)p—o=—iT

1 1
2
aZTngTl”k)}Sg“w)’ Lo

(20) 77_No(goz )a=o0

1
c+1 F< >
wo

i = +T(c2+1)° !t ffy 1 /A
Ia)_o (cat1) 5)_0 N, (922/A)a=0

c -1

a
+

C: +1 ci+1

Calculation of [3(k,w)/A]a—¢ and [Z,(k,w)/Alx—g

23(k,@)p=0=T| 7=

Z(k)}. (21 =(cf+1)

guantities is more tedious and requires a solution of two sets X
of two linear equations which determine four unknowns 23
(9j1/A)a=0, (9j2/A)a=0 (j=0,2) (note thatgy;=gy,=0 @3
because  of (f)=0).This procedure leads to
[El(k,w)/A]A:():O and and
1 f2 21-1
a2 c2 - 2 1l =V 12
(gzzlA)A o=—i(cgt1l)||cg+1— F<Z)> ci+1l F<Z)o>) r <5)o>
ef2 1
X c+1-T(=— (24)
wo Wo @
|
with Do=w+iZ(K,w)r—o. In the following subsection_s Eo(k,w)A:():—iwnNo[vi2+v§f2(k)]sgr(w), (25)
we consider the above self-energies in the Born and unitary
scattering limits. 23(kvw)A:O:n[Ui+Uaf2(k)]- (26)
A. Born scattering ThoughZ 5 is nonzero, it may be absorbed into the chemical

When both isotropic and anisotropic impurity scatteringPotential and its effect vanishes in the Born scattefihigor
channels are in the Born scattering regime, tgz1(v;N,  [22(K,w)/A]y— we obtain
<1), c;>1(vNg<<1) only the lowest order terms in the
impurity potential play role in the self-energies. Keeping up _ " o0\ 2
to the square terms in; (v,) we obtain from Eqgs(20) and [2a(k,)/Als-o=imnNo[vi(e) +o3(e ) 2(k)] — —
(21) (27)

gr()
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It is noteworthy that apart from the average value of theIn(TC/TC0)=(<e>2—1){\If[1/2+nNoviZ/(ZTc)]—‘lf(1/2)}.
order-parameter symmetry functiof@), a term reflecting

the overlap betweere(k) and f?(k) influences the self- B. Unitary scattering
energy [2(k,w)/A]p—g. The limit of v,=0 gives the
standard sswave impurity scattering in the Abrikosov-
Gorkov approximatioft with

The limit of the resonant impurity scattering in both iso-
tropic and anisotropic channels, i.e;—0, c,—0 in Egs.
(20) and(21) leads to

Zo(k,@)a-0= ~imNgo’sgr @), 3o(k,)s—o=—iT[1+f2(k)]sgr{w) (29)
_ 2 and ;(k,w) s —o=0 which is consistent with the assumption
[2a(k@)/Als=o=TmnNovi(e)sgrie)/o, of particle-hole symmetry of the excitation spectrum. The
and the critical temperature determined by unitarity limit in Egs.(22)—(24) gives

r

X

|
_ 1\ e 1\\71 2 )
(EZ(k"“)/A)A—OZ'FHl_r<a_o> <5)_o>+ 1_F<H)_>) <0>+f(k)}
2
]sgr(w).

S STy R E e .

The impurity potential may lead to the strong scattering in one channel and weak scattering in another. If the strong scattering
takes place in the isotropic channel and the scattering in the anisotropic one is in the Born limit, then we deal with a case of
the isotropic unitary scattering:>*4°-43The opposite case with the strong scattering in the anisotropic channel and the weak
scattering in the isotropic one is equivalent to a nonphysical situation of unitary scattering in the anisotropic channel alone as
discussed in Sec. Il.

V. CRITICAL TEMPERATURE

The critical temperature in the weak-coupling BCS approximation is determined by the equation

|n(:—°)=ﬂc2 [L; i) S ANLZa(k )/ ALy ot (UN[25(K,w)/A]s0_ SOM) 0

0 mNo [w+iZo(k,®)a=0]*+[ &t 2a(k, ®)a=0]? o |

where because of the momentum-dependent self-energies thtéher words, in the Boltzmann equation based analysis of the
summations over the quasimomentum vedtaestricted to  transport properties the-wave scattering amplitude couples
the Fermi surface and Matsubara frequengyneed to be toO the 1-cos(®) term in the collision integral. Therefore, in
performed numerically. We do the calculations in two differ- & fit to the real systems thpwave scattering can be consid-
ent scattering regimes—Born and unitary for theave or-  €red only as one of the components in the anisotropic chan-
der parameter. Finally the results for this)-wave super- nel of the impurity potential coexisting with some other

conductor are discussed briefly. In order to proceed furthehlgher-order harmonics. In order to emphasize this different

feature of thep-wave potential among the other basis func-

one has to choose a function describing the anisotropy of thg, s e present the momentum-dependent scattering with

impurity potential. We study the functions given by the sub-yarious amounts of the-wave potential in a separate figure.
sequent harmonics as they represent an orthonormal and The anisotropic impurity scattering is compared to the
complete set in the intervaD,27] and can be used for the isotropic one of the same scattering strength. It means that
Fourier expansion of any regular function. Harmonics up towe discuss the effect of substituting a part of a given isotro-
the fourth order are analyzed and the results are extended pc impurity potentialv o with an anisotropic term. The am-
higher-order harmonic functions. It is important to realizeplitude of the replaced isotropic potentigf, and the ampli-
that the impurity potential op-wave anisotropy shows a tudes of the isotropic and anisotropic scattering channels in
particular property. Given by si# or cos¢ function it rep- the studied potential are related through _the formulas
resents a small-angle scattering which is relatively unimpor=@vo, anduv,=(1—a)vo, where the coefficienty(0<«

tant in contributing to the resistivity of the normal state. <1) defines the partition of the potential.

Taken even together with thewave scattering channel it
results within the linear-response approximation to the dis-
tribution function in not well-defined intergrals determining  The impurity scattering is analyzed as a function of the
the dc conductivity for some electric-field orientatidfidn pair-breaking parametdr’=wn Novg (vo=vj+v,) which

A. Born scattering
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FIG. 1. Normalized critical temperatuf’feC/TCO of the d,2_2-wave superconductor as a function of the normalized impurity scattering
rate F’/(ZwTCO) in the Born limit for the impurity potential symmetrgsolid curves from the top sin 2¢, sin 3¢ and higher-order

harmonics, cos@. The amount of anisotropy in the potential @ (1—«)~0.17 @,/v;=0.2), (b) (1—a)=~0.33 (v,/v;=0.5), (¢

(1-a)=0.5 (va/vi=1.0), (d) (1— a@)=~0.67 v,/v;=2.0), (6) (1— a)=~0.83 (v,/v;=5.0). The higher-order harmonics split in this case
into (from the top: sin 4¢, cos 35, sin 3p, cos 4p. The dashed line represents isotropic suppression of the critical temperature.

includes the overall scattering strength that is, takes bothy e(k)=1, the T, equation(30) along with Egs.(25) and
isotropic and anisotropic channels into account. It is conve¢27) do not lead to a change of the critical temperature in
nient to use the ratio,/v;=(1— a)/a to define a particular

potential.

agreement with the Anderson’s theorét.
1. s-wave superconductor

2. d-wave superconductor
The critical temperature for al,2_,2-wave supercon-
We note, before discussing the unconventional supercorductor that is fore(k)~(k)2(—k§) is presented for a large
ductivity, that for the isotropis-wave superconductor, given range ofv,/v; ratio values in Fig. 1. The major common

PRB 58
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feature of these diagrams is a lowEf suppression by the 10
anisotropic impurity scattering compared to the isotrdgic
wave one. According to their effect on superconductivity 0.8

the anisotropic potentials can be classified in three groups
defined by the functiorf(k): cos 2p, sin 2¢, higher-order

: , . 06
harmonics. The first of them, determined B{k) ~ cos 2p, T
leads to the strongedt, suppression. In this case the direc- o/ 084

tions of the maximum impurity scattering correspond to the
maxima of the order parameter and most of the pair-breaking
process takes place in this region. Therefore, the suppression 02
of superconductivity is particularly strong. However, for the

level of anisotropy up to (¥ a)~0.5 (v,/v;=1) the de- ,
pairing effect of impurities is reduced with increasing con- 0.00 005 0.10 0.15 020 025 0.30 0.35
tribution of cos 26 scattering compared to the isotropic scat- '/ (2nT,,)

tering. Further increase of the anisotropic part in the impurity

potential up to a level (+ @)=0.6 (v,/vi=1.5) almost
does not change the pair-breaking effect. When the contrib
tion of the anisotropy exceeds this level the impurity effect
on T, is enhanced and finally for (1 «) of the order of 0.83
(valv;=5) becomes comparable to the one of theave ) ) ) ) )
scatterers as it is shown in Fig(el The out-of-phase scat- the anisotropic scattering strength equal to the |sotr9p|c one
tering takes place fof (k)~sin 2¢. This function is a 45° (va/vi=1) leads to almost the same result as the third- and
rotation in thexy plane of the order-parameter function fourth-order harmonics. This approximately universal behav-
e(k)~cos 2p, that is, the impurity potential maxima corre- [0 fpr harmonics _from the third to the tenth order is shown
spond to the superconducting gap nodes and vice versa. IR Fig. 2. Concluding we may say that to a good accuracy the
this way the impurity pair-breaking effect is minimized. The anisotropy of the impurity potential given by the harmonics
suppression of the critical temperature is reduced by an inef the order higher than two yields an approximately univer-
creasing amount of the anisotropic scattering in the impurity@l Tc suppression. It is also worth mentioning that except
potential. For largey,/v;, however, the shape of the sup- for the isotropic scattering the critical temperature goes to a
pression lines changes slightly and a small enhanced sug€ro value asymptotically. The asymptotic tails start at very
pression can be observed for some impurity concentratiolfW temperatures of the order of magnitude of 10 (not
[Fig. 1(e)]. In general, the anisotropic impurity potential seen at the figure scaleshere the fluctuation effects become
given by a function orthogonal to the order parameter is lesgnportant and may destroy superconductivity.

pair breaking tharf(k)~e(k). The T, suppression by the Remembering that this potential cannot be considered on
third- and fourth-order harmonics is less than the one ofts own without any higher-order admixture, we show the
cos 2p but it exceeds that of sing It is also decreasing for pair-breaking effect of thg-wave scattering in the aniso-
an increasing level of anisotropy in the impurity potential uptropic channel for different , /v; values in Fig. 3. Compared

to (1—a)=~0.5, then the pair-breaking effect of impurities to the other harmonicéFigs. 1, 3 it yields the lowestT,
practically saturates. The curvature of the graphs changes auppression. This fact can be explained by an effectively
some points, however, and the normalized critical pair-

FIG. 2. Shaded area represents the effect of the anisotropic im-
dqurity potentials given by cdsp and sinl¢ functions for 3<I
<10 and (- a)=0.5 (v, /v;=1.0) in thed,>_,2>-wave state in the
Born limit.

breaking parameteﬂ?’/(Zcho), at whichT,~0 may in- 1.0
crease in some cases. It is worth observing that the critical
temperature is almost equally suppressed by the impurity 08 |

potentials given by the third- and fourth-order harmonics for
v, values up taw,/v;=1. This is particularly true for small
anisotropic scattering levels. When the contribution of the 06|
anisotropic channel in the impurity potential is larger, the T./ T,
differences are more pronounced. Nevertheless, even for the 04
amplitudes ratio as high as,/vi=2 (1—a~0.67) the
curves differ only near a zero value of the critical tempera-
ture and the normalized critical pair-breaking parameters,
F’/(ZWTCO), of these four harmonics are within an interval

of the order of magnitude of IG. For the sake of transpar- 0‘%,00 o,'go 0.40 o.éo 0.80 1,'00 1.20
ency we present the cogp3scattering effect only in Fig. '/(2rT,,)

1(d). Though the curves of different harmonics overlap for “
the most of the critical temperature range for the amplitude  FiG. 3. Thed,. ,-wave stateT,, suppression by the Born scat-
in the anisotropic scattering channel five times as much agying p-wave impurity potential withf (k) =sin ¢ (or cos¢) and
the one in the isotropic channel,/v;=5, they split dis-  the anisotropic scattering strength{%) (v,/v;) equal to(from
tinctly at a low temperature of about @2 [Fig. 1(€)]. A the top 0.83(5.0), 0.67(2.0), 0.50(1.0), 0.33(0.5), 0.17(0.2). The
study of the higher-order harmonics up to the tenth order fotsotropic scattering is shown with the dashed line.

02
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10 R causes a split in the suppression of the critical temperature by
| the p-wave anisotropic channel scattering.
08\ ;
\
\ B. Unitary scattering
\ . .. .. .
06 ¢ \ ] The relation determining the partition of the scattering
T[Ty \ amplitudes between the isotropic and anisotropic channels,
04t |\ ; vitvaf(K) (k") =voat+vo(1—a)f(k)f(k’), holds as long
4 as these amplitudes are finite. In the case of the resonant
02 | 4 scattering we make an approximationugfandv , diverging
! to infinity. Therefore we cannot control the relative scatter-
! ing strengths in both channels and these processes become
0. 1 1 L . . . .
00 01 02 03 04 05 06 07 independent. Each part of the impurity potential enters the

) self-energy function$Egs. (20)—(24)] through variables;
I'/(2nTy) andc,. It is important to note that the self-energies depend
onc; andc, parameters separately so they are functiong of
FIG. 4. Normalized critical temperatufig, /T, for the (dyz-y2 andc, and not of any combination of thefike c,/c; for
+s)-wave superconductoK€)=0.1) as a function of the normal- instance. In the unitarity limitc;— 0, c,— 0 and the contri-
ized impurity scattering rat€’/(2«T, ) in the Born limit for the  putions from the isotropic and anisotropic channels are in
impurity potential symmetry(solid curves from the top cos¢,  fact equal. Similarly to the Born scattering limit, we want to
sin¢, sin 2p, sin3p and higher-order harmonics, co$2The  discuss the effect of an anisotropic impurity potential that
amount of anisotropy in the potential is £lx)=0.5 (va/vi  replaces the isotropic one. In order to do an appropriate com-
:1_.0). The o_Iashed curve represents the effect of the isotropic imparison we need to refer to the isotropic scattering in two
purity scattering. channels or equivalently to a regular isotropic scattering in
) ) o one channel with a doubled impurity concentration. 2
small-angle scattering of thewave potential. If it is given

4 Hdl. § . Therefore, to compare the anisotropic unitary scattering with
by a cos¢ function then mostly the quasiparticles with their 5 corresponding isotropic one, the impurity concentration for

momenta parallel to the axis are affected, and for the sth  the anisotropic scattering model must be half of the concen-
function representing the impurity potential the electronsyation of thes-wave impurities. We take the impurity con-

moving along they axis are being scattered. Thus we dealcentration equal tm/2 for the two-channel anisotropic po-
with a weak practically one-dimensional scattering in a two-entjal and the results are plotted as a functior'6f=2I"

dimensional space. The pair-breaking effect of both basisn/(N,), wheren is the real impurity concentration the

functions cosp and sing is the same within the accuracy of same as in the Abrikosov-Gorkov scaling function for the
the numerical calculations. Worth observing is also a featurg.\yave scattering. That is, the two-channel scattering poten-
of a reducedT, suppression with an increasing amount oftja| is averaged over two impurities so there is only one
p-wave scattering in the impurity potential. However, atscattering channel per impurity present. This procedure in-
large amplitudes in the anisotropic channel (vi~5) the  troduces the anisotropic scattering potential of the form

initial suppression of the critical temperature can be engiven by Eq.(1) and the same scattering strength as the
hanced. Characteristic is also a clear asymptotic decrease @btropic one in the unitarity limit.
the critical temperature to its zero value.

Any impurity po.tent.ial given by Eq(;) can be repre- 1. s-wave superconductor
sented as a combination of the potentials based on single
harmonics. Therefore, we expect that the pair-breaking effect The lack of influence of the potential anisotropic impurity
will be given by an appropriate superposition of the effectsscattering in the unitary limit on the critical temperature
discussed above. can be shown rigorously for a small concentration of the

defects n/(wNpy)<1, when the self-energies.y(k)a-o
3. (d+s)-wave superconductor = _IEF[(lk)Jr fZ(}()]?lgn@()zggfqﬁ (28)|] and [2,(k)/A]s-0
=- r=ol/w [EQ. . For a larger impurity concen-

AS.' an example OT adyz_y2+ ) -wave superconducto'r we trationoa nurgerical analysis confirms this result with a very

consider the one with agwave admixture of 10%. This is
; . good accuracy.

the order of magnitude of thewave level which cannot be
ruled out by the angle-resolved photoemission spectroscopy
measurements in the cupraf@$® The normalized to unity 2. d-wave superconductor
order parameter is given then bye(k)=(cos 2p The effect of the anisotropic unitary scattering on a
+s)/{(cos 2p+5s)?) ™2 wheres=(0.05/0.99}2 and its FS  d,2_,2-wave superconductor is shown in Fig. 5. The same
average(e)= 0.1, corresponds to 10% of tlsavave fraction  general rule as for the Born scattering holds here. The weak-
in the (dy2_y2+s)-wave superconductor. The results for est pair-breaking effect is caused by the impurity potential
va/vi=1 are shown in Fig. 4. Even a small amount of theinvolving sin 2 and most suppression is seen for the poten-
s-wave component, which is not destroyed by the potentiatial containing cos &, that is the anisotropic scattering chan-
scattering, results in a robustnessTgfcompared to the pure nel in phase with the order parameter. All the other harmon-
d-wave superconductdFig. 1(c)] and its asymptotic reduc- ics orthogonal to cos yield a moderate suppression of the
tion. A change in the symmetry of the order parameter als@ritical temperature comparable to the isotropic scattering.



PRB 58 EFFECT OF ANISOTROPIC IMPURITY SCATTERIS . . . 12 449
10 1.0
08 } 08 |
06 | 0.6}
T./T, T./T,
\
04t N\ 04}
02} 02t
\
\ \
\
0.0 .

: . 0.0 b
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FIG. 5. Normalized critical temperaturél /T, of the FIG. 6. Normalized critical temperatuf®, /T, of the (d,2_y2
dy2_,2-wave superconductor as a function of the normalized impu-+s)-wave superconductox¢)=0.1) as a function of the normal-
rity scattering ratd™'/(27 T, ) in the unitary limit for the impurity  ized impurity scattering rate'/(27 T ) in the unitary limit for the
potential symmetry(solid curves from the tgp sin 2¢ (and p- impurity potential symmetry(solid curves from the top sin 2¢
wave), sin 3p and higher-order harmonics, co$2 The dashed (and p-wave), sin 3 and higher-order harmonics, co$2 The
curve represents the effect of the isotropic impurity scattering.  dashed curve represents the effect of the isotropic impurity scatter-

ing.
They also form an almost universal suppression curve. A
study of theT reduction by the harmo_nics of_ the order up to quirement is equivalent to a constralyT, = const in the
ten shows the same approximate universality as that in Fi 0
2, with the differences in the normalized critical pair-
breaking parameteE’/(Zcho), of the order of 103, The

qdnitarity limit and may be obeyed in the overdoped systems
where the critical temperature decreases with increasing hole
i ] _ concentratiort’ There are also indications that a large re-
curves of the third- and fourth-order harmonics overlap ingjqyga| resistivity due to Zn atoms in the cuprates corresponds
Fig. 5. A particularly interesting feature of the resonant scatyg an impurity potential scattering in the unitary liriiThus,
tering is the strong pair-breaking effect of the c@s@niso- e consider the case of the unitary scattering focusing on the
tropic potential. It destroys superconductivity even fastefaffect of zn dopant. Working in the Born scattering limit
than the isotropic impurities. Another characteristic fact isrequires an estimation of the impurity scattering potential
practically the same critical temperature dependence on thghich can be obtained from the residual resistivity in the
impurity concentratiorii.e., not distinguishable in Fig)%or  normal stat€?21:2428.30 that analysis a clear distinction
the p-wave scattering in the anisotropic channel and €n 2 petween the impurity scattering lifetime and the transport
scattering potential. Similarly to the weak scattering limit, re|axation time, which may differ if the impurity potential is
except for thes:wave scattering the suppression of superconypisotropic?® is needed. In order to compare our unitary
ductivity at low T, is asymptotic, however not seen at the scattering results with the experiment we have to convert the
scale of Fig. 5. pair-breaking parametd?'/(27 T, ) into the impurity con-

centration. Asl'' =n/(mNg) only the values of the density
of states on the Fermi surface and the critical temperature in

A (dy2_y2t+s)-wave superconductor is more robustthe absence of impurities are needed for that purpose. The
against the impurity scattering due to a nonzewave com-  density of states at the Fermi level is estimated from the
ponent. Since cos¢2 function is no longer in phase with the measurements of the specific-heat jump at the phase transi-
order parameter its pair-breaking effect is lowered and betion AC.1*® We employ the BCS weak-coupling relation
comes even less than the isotropic one for low critical temAC/yT.~1.43 to obtain the normal-state Sommerfeld con-
peratures. The results for the same level ofdiveave partin  stant y which gives the density of states through
a (dy2—y2+s)-wave order parameter as the one discussed ir=272k2N,/3. It is important to note that the strong-coupling
the Born limit are shown in Fig. 6. It is worth mentioning correction&®*° as well as the interaction with impurits
that thep-wave scattering leads again to the safesup-  may change this relation significantly and in consequence
pression as the sing2anisotropic potential. alter the overall density of states. It may result in a wide
range ofT, solutions>3 Because of a difficulty in the sepa-
ration of lattice and electron contributions to the specific heat
the thermodynamic experiments provid€ values with the

In the overdoped samplek. /T, data points plotted vs accuracy depending on the quality of a sample. For high
impurity concentration form a universal curve independentpurity, fully oxygenated Y-123 compound grown in BazrO
of the critical temperature in the absence of impuritfe¥.  the mean-field component of the electronic specific-heat
Such a universal scaling behavior is characteristic of the imjump is estimated as 562 (mJ/K2 mole) *8°4%%|n the La-
purity limited superconductivity provided the pair-breaking 214 system this quantity is in the range of 14
parameter™'/(27T. ) does not change witf, . This re- =5 (mJ/K mole) 485 There is no specific-heat jump ob-

3. (d+s)-wave superconductor

VI. COMPARISON TO EXPERIMENT
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nzn (% per Cu site) (a)
FIG. 7. Critical temperature of Zn-substituted optimally doped 108

Y-123 samples vs impurity concentration percent per planar Cu site,
n;,. The data are taken from Refs. Ifllled circleg, 14 (open
squarey 15 (diamond$, 16 (open circley 17 (filled squares The

area between the curves of the same sort corresponds to the pair-

081

breaking effect of the unitary scattering impurities of the following 06 r

anisotropies: sin@ (solid), cos 3» and higher-order harmonics T,/ T,

(long dashey cos 25 (dashedl The isotropic impurity scattering is 04

represented by the dot-dashed curves.

served at the phase transition in the Bi-2122 compdfind, 0.2 |

thus the present method of obtaining the density of states

cannot be applied in this case. We discuss the experimental 0.0

results in this system together with Y-123 and La-214 com-

pounds more extensively in Ref. 53. The density of states (b) nz, (% per Cu site)

calculated from the abov&C values are used for the evalu- N )
ation of the impurity concentration, which is represented as !G- 8. Critical temperature of Zn-substituted La-214 samples
the percent number of impuritiédefects per planar Cu site. VS ImPurity concentration per cent per planar Cu sitg,. The data

We do the calculations with a fixed density of states as we d(?éteict;ksﬂrflrec’:ifte& ggilteadrys‘ﬁiﬁtre:res é?g\?vrr'] ig??\;?cfz:ﬁct;egm
not have any quantitative data showing its change with dop-eratures:(a) T.,=30K, (b) T,,—36 K. The impurity potentials

ing or disorder. Therefore, the results are not really universa . . o
and depend on the critical temperature in the absence of in{gepresented by different curves agree with the notation in Fig. 7.
purities T, . We group them according to the values of the ] o
critical temperature of a pure system. In the optimally dopedSUQQESt a possible sample dependence of the effective impu-

Y-123 compoundr,_varies in a very narrow range of values rity scattering ca}used, for msta'nce., by the differences in a
0 sample preparation or Zn substitution processes. Even small

and for the theoretical calculation we takg =91 K. The  cnanges in the hole concentration alter the electronic density
phase diagrams for tri*wave superconductor together with of states at the Fermi level and result in a modified impurity
the experimental data of Zn-doped sampie¥ are shown in scattering rate.

Fig. 7. The scattering effect of a given potential corre§ponds According toTCO values, we gather the experimental data
to the area between two curves of the same style, for instangg, Zn-doped La-214 in two groups corresponding Tig

the solid lines stand for the sirf2impurity potential. This qual to 30 K[Fig. 8@] (Ref. 1 and 36 K[Fig. &b)].%* For

broadened range of values stem from the uncertainty in th le off. ~30 K th . tal . fth
estimation of the FS density of states, that is, from the accu- € Ssampie off ¢, ~ € expenmental Suppression ot the

racy of theAC values. We note, that all the experimental cfitical temperature is _in the range of_anisotrppic scattering
points fall in the region of the theoretically predictdd  determined by sin [Fig. 8a)]. The pair-breaking effect of
suppression by the unitary impurity scattering. InterestinglyZn atoms in the samples characterizedToy~36 K is on

the pair-breaking effect of Zn atoms in certain samples corthe edge of anisotropic scattering in higher-order harmonics
responds to the resonant scattering in a different anisotropisut also right in the middle of sing based anisotropic scat-
channel of the impurity potential. We can clearly distinguishtering. As we can see, the quantitative calculations for La-
data that can be approximated by the scattering potential814 compound contain a large uncertainty margin which is
given by cos 2 and sin 26 functions. The rest of the experi- caused by a lack of a precise value of the specific-heat jump
mental points lie in the range of isotropic scattering or an-at the phase transition and consequently of the electron den-
isotropic scattering with higher-order harmonics. Althoughsity of states on the Fermi surface. The error in the experi-
the critical temperatures of the analyzed samples are vemnentally estimated magnitude AiC is of the order of 36%.
close, we do not see a universal suppression dependence asA similar analysis of Ni-substituted samples shows that
in Bi-2122 and La-214 compound$?’ This feature may the pair-breaking effect in the unitary limit is stronger than
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other set of electron irradiation data representing the change
of the critical temperature with defect concentration. The
analysis by Tolpyget al?! shows that the initial; suppres-
sion for low-energy(100 ke\) electron irradiation reported

by Legriset al?? agrees with the one shown in Fig. 10. For
higher-energy electrofT, is reduced initially about twice

as much as in Ref. 21 which becomes in the range of the
sin 2¢ determined behavior for low defect concentration.

VII. CONCLUSIONS

We have studied the pair-breaking effect of the aniso-
tropic impurity scattering in thé-matrix approximation for
ny: (% per Cu site) dye_y2-wave and @2_y2+s)-wave superconductors. The
Born and the unitary limits have been discussed analytically
FIG. 9. Critical temperature of Ni-substituted optimally doped and numerically. Although limited to the employed phenom-
Y-123 samples vs impurity concentration percent per planar Cu sitegnological model the conclusions we draw should be sugges-
nyi- The data are taken from Refs. 1@pen circley 14 (filled  tive to a larger class of potentials capturing the feature of
squarey 15 (diamonds, 18 (open squargs The theoretically cal-  anisotropy.
culated unitary scattering curves correspond to the potentials de- \We have shown, that the effect of the anisotropic impurity
scribed as in Fig. 7. scattering can be considered in four groups for the Born scat-
tering and three groups in the case of unitary scattering
observed experimentally. For the sake of comparison Wgyhich are determined by the form of the functib(k) de-
present Ni-doped Y-123 compound d&té"*>*®and our the-  fining symmetry of the scattering potential. In both scattering
oretical curves for the resonant scattering in Fig. 9. Les$imits the strongest suppression of the critical temperature is
difference between the experimental and theoretical results issysed by the impurity potential given Hiyk)~cos 2
seen for La-214% Although this comparison is suggestive \which is in phase with the order parameter for the
for a weak potential scattering, the detailed calculations irstate and overlaps significantly with thel,¢_,2+s)-wave
the Born scattering limit giving the critical temperature de-gtate of a majod-wave component. The pair-breaking effect
pendence on the residual resistivftyare needed in order to o this potential with a large amount of anisotropic amplitude

draw more firm conclusions. o _ _ can be comparable with the one of the isotropic scattering in
Finally we discuss the electron irradiation experiments ine Born limit and exceeds thewave impurity effect in the
19-22 o . .. .. . . . .
Y-123. The results for low-energy60—120 keV inci-  ynjtary limit. This issue is particularly important as it shows

dent electrons read from Eig. 12 of.Ref. 21 are shown in Figthat a weak reduction df, due to anisotropy of the impurity
10. The experimental points are in the range of the pairpotential proportional to the superconducting order param-
breaking effect of the scattering potential with the anisotropyater which follows from the weak-scattering modés not a
given by sin 2. The initial T, suppression, however, is general feature of the anisotropic impurity scattering. An-
more gradual than the one obtained from the theoretical caliner class is defined biy(k) ~ sin 2. It leads to the lowest

culation and cannot be explained by the standard impuritympurity pair-breaking effect in the case of the unitary scat-
pair-breaking mechanism. Unfortunately, we do not have anyering and second lowest for the Born limit. This kind of
scattering is maximal in the direction of the nodes of the
order parameter and it vanishes where the gap function has
its maxima. Therefore, the effective scattering is minimized
by the symmetry of the impurity potential. Any other func-
tion orthogonal to thed-wave order parameter results in a
rather universal . suppression and falls into the third group
of the potentials. The pair-breaking in this case is less than
that of the isotropic scattering but it exceeds the one of
sin 2¢ based potential, and in the unitary limit is very close
to the isotropic scattering. Resonant scatterers irpthave
channel lead to the sanie suppression as thdtwave scat-
tering given by sin & function. In the Born scattering limit,
0.0 . . . . however, thep-wave anisotropic scattering results in the
0.0 2.0 4.0 6.0 8.0 10.0 lowest T, suppression.
10 defects) (% per Cu site) We have _compared our results for tdig@_yz-v_vave super--
conductor with the experimental data assuming that the im-

FIG. 10. Critical temperature of optimally doped Y-123 sample PUrity potential is close to the unitary limit. Within the ac-
with in-plane oxygen vacancies induced by 60—120 keV electrorfuracy of our calculations the Zn atoms can be considered as
irradiation (Ref. 21) vs defect concentration percent per planar Cuthe resonant scatterers in overdoped La-214 and Y-123 com-
site, Niogefecty- The theoretically calculated unitary scattering pounds. The pair-breaking effect of the structure defects pro-
curves correspond to the potentials described as in Fig. 7. duced by the electron irradiation is also in the range of mag-
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