
PHYSICAL REVIEW B 1 NOVEMBER 1998-IIVOLUME 58, NUMBER 18
Nonstationary state of superconductors: Application to nonequilibrium tunneling detectors

Yu. N. Ovchinnikov* and V. Z. Kresin
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

~Received 15 May 1998!

The nonequilibrium state of a superconductor caused by an external source~e.g., x or g rays! and its
relaxation dynamics are studied. Microscopic theory allows one to evaluate the distribution functions and
characteristic time scales for all cascade stages. The appearance of quasiparticles in the nonequilibrium state
leads to an additional contribution to the tunneling current. The time dependence of the current flowing through
a superconducting tunneling detector is evaluated.@S0163-1829~98!07441-4#
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I. INTRODUCTION

This paper is concerned with nonequilibrium superco
ductivity. We focus on the situation when such a state
created in a superconductor by incoming radiation~e.g., by x
or g rays!. The energy input leads to a transition into
excited state corresponding to a quasuparticle with ene
E0@Ṽ, whereṼ'VD (VD is the Debye energy, andD is
the energy gap!. As a result, the relaxation process will in
volve many collisions, leading to the appearance of ma
new quasiparticles. In other words, a decrease in the en
of the initial electronic excitation is accompanied by an
crease in the number of quasiparticles. This relaxation p
cess, called a cascade, is a nonstationary phenomeno
microscopic description of this phenomenon is interesting
its own sake, but, in addition, is directly related to the pro
lem of making sensitive superconducting detectors. The a
of superconducting detectors has attracted a lot of inte
~see, e.g., Refs. 1–4!.

As is known, the cascade consists of three stages.2,5,6 The
first stage corresponds to the energy intervalE1,«,E0 ,
E1>Ṽ, Ṽ>VD . This high-energy region is dominated b
electron-electron collisions, and the time scale for this st
is very short ('1024 ms). During the second stage (D,«
,E1), the electron-phonon scattering plays an import
role ~see, e.g. Refs. 2 and 7!. By the end of this stage,
noticeable number of quasiparticles are concentrated in
region near the edge,«'D; note that this region correspond
to the peak in the superconducting density of states.
final, third stage («'D) is also dominated by the electron
phonon interaction. During this stage, the recombination p
cess is very important.

The relaxation process has been described in severa
teresting papers~see, e.g., Refs. 5 and 8–10!. Reference 5
contains a phenomenological model which has been use
many articles. A detailed microscopic treatment for the c
close to equilibrium has been developed in Ref. 8; see
Ref. 10. In this paper we focus on the cascade which
strong nonstationary process. It is essential also that this
cess creates also a nonequilibrium state of the phonon
system.

In this paper we consider an isotropic gapped superc
ductor; in addition, we assumeṼ@D. The majority of con-
ventional superconductors belong to this category. We
PRB 580163-1829/98/58~18!/12416~6!/$15.00
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cuss briefly the case of the high-Tc oxides in Sec. IV.
If the superconductor is a part of a tunnel junction, th

deviation from equilibrium leads to the appearance of
additional tunnel current; this factor is the key to the ope
tion of a tunneling detector.

As was mentioned above, the microscopic description
the relaxation process is directly related to the making
superconducting detectors. Indeed, an analysis of the de
tor, its parameters, and the time dependence of the tunne
current needs to be based on a theory of the cascade. On
study different types of detectors~see, e.g., Refs. 4 and 7!,
the relaxation process~cascade! is a key ingredient for all of
them. In this paper we apply our theory to tunneling det
tors.

The structure of the paper is as follows. The main eq
tions are introduced in Sec. II. The different steps of t
relaxation process~cascade! are described in Sec. III. Sectio
IV contains a general discussion and a comparison with
experimental data.

II. NONSTATIONARY STATE: CASCADE

The most general description of the nonequilibrium st
is provided by the time-dependent Green’s functio
method.11,12 Based on this method, Larkin and one of th
authors have shown13,14 that the evolution of a nonstationar
system is described by the equation

] f

]t
Tr~ ĝRt̂z2 t̂zĝ

A!524I ph~ f !24I ee~ f !24Jt~ f !. ~1!

Here ĝR(A) are the retarded and advanced Green’s functi
integrated over the energyj of the normal state. Such inte
grated Green’s functions were introduced in Refs. 15 and
and have the following matrix form:

ĝR~A!56@~«6 id!22uDu2#21/2M̂ . ~2!

The upper and lower signs correspond toĝR andĝA, respec-
tively, and

M̂5S «
2D*

D
2« D . ~28!

In Eq. ~1!, f is a scalar function directly related to the distr
bution function~see below and the Appendix!, I ph and I cc

describe the electron-phonon and electron-electron c
12 416 ©1998 The American Physical Society
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sions, respectively, andt̂z is the usual Pauli matrix. The las
term in Eq. ~1! is the tunneling term, which needs to b
included if, in addition, there is also a tunneling chann
present, e.g. The superconductor serves as a tunneling
trode~this is the case for tunneling detectors!, D is the energy
gap, and«5Aj21D2. We consider the case of the usu
isotropic gapped superconductor without magnetic imp
ties. The case of high-Tc oxides will be discussed later. Th
electron-phonon collision integral can be written in t
form:13

I ph5
il

4p E dVp1
E d«1

2p
Tr„d̂ p̄~«!d̂ p̄1

~«1!$D̂ p̄2 p̄i
~«12«!

3@ f p̄~«!2 f p̄1
~«1!#1@Dp̄2 p̄1

R ~«12«!

2Dp̄2 p̄1

A ~«12«!#@12 f p̄~«! f p̄1
~«1!#%…. ~3!

Herel5png2/2 is the electron-phonon coupling constant~n
is the density of states;g is the matrix element!, d p̄5(ĝp̄

R

2ĝp̄
A)/2, and DR(A) is the retarded~advanced! phonon

Green’s function, so that

D
k̄

R
~v!5D

k̄

A*
~v!5V2~ k̄!@V2~ k̄!2~v1 id!2#21 ~38!

and

D̃ p̄~v!5~Dp̄
R2Dp̄

A!„112Nph~ uvu!…sgnv. ~388!

N(v) is the phonon distribution function. In equilibrium, th
scalar functionf has the formf 5tanh(«/2T), as can be veri-
fied by a direct calculation. For a nonequilibrium state,

f 5122n~«!, ~4!

wheren(«) is the quasiparticle distribution function. Sinc
Dp̄

R(v)2Dp̄
A(v)52 ipV( p̄)•@d„v2V( p̄)…2d„v1V( p̄)…#

and u p̄2 p̄1u>2pF̂sin(u/2), whereu is the angle betweenp̄
and p̄1 , we obtain, from Eq.~3!,

I 1
ph
„n~«!…5lE

u«1u.D
d«1S «12«

Ṽ
D ««12D2

x~«!x~«1!

3$@112N~ u«12«u!#~n«1
2n«!

1~n«1n«1
22n«n«1

!u~«12«!

2~n«1n«1
22n«n«1

!u~«2«1!%, ~5!

where Ṽ5spF ~s is the sound velocity! and x(«)5@(«
1 id)22D2#1/2. Note that Eq.~5! is valid for any deviation
from equilibrium. If we assume thatn5n01n1 with n1
!n0 , we recover an expression, linear inn1 , which can be
obtained with the use of the Bogolubov transformation~see
Refs. 17, 18, and also 19!.

Incoming radiation~e.g., x rays! exites an electron into
Eexc[E0 , so thatE0@VD , D. As was mentioned above, th
consequent relaxation process~cascade! consists of three
stages. At the end of the first stage, the electronic excita
energy decreases down to a valueE1>Ṽ ~in the usual metals
Ṽ>VD). During this first fast stage ('10214 s), electron-
electron collisions play the dominant role. As a result,
l
ec-

l
i-

n

e

number of excited quasiparticles increases~at the end of the
stage, it is of the order ofE0 /Ṽ), while the average energ
decreases down to the valueE1>Ṽ.

During the second stage, electron-phonon collisions
come dominant. Let us focus on this important stage.

III. RELAXATION PROCESS: MAIN EQUATIONS

A. Region D<«<E1 , E1>Ṽ

As was noted above, during this stage of the relaxat
the termI ph becomes dominant. Based on Eq.~5!, we obtain
the following system of equations for the distribution fun
tions of quasiparticlesn(«) and phononsN(«):

]n~«!

]t
52lF S «3

3Ṽ2D n~«!1E
«

`

d«1S «12«

Ṽ
D 2

n~«1!

1E
0

`

d«1S «11«

Ṽ
D 2

N~«11«!G , ~6!

]N~«!

]t
5lS «

Ṽ
D 2F E

«

`

d«1n~«1!

1E
2`

2«

d«1@12n~«1!#2N~«!«G . ~68!

The first two terms on the right-hand side~RHS! of Eq.
(68) describe the increase in a number of phonons cause
the Cherenkov radiation of electrons and holes, correspo
ingly. The last term on the RHS of Eq. (68) describes the
process of pair creation.

Let us consider Eqs.~6! and (68) in more detail. It is
important that the characteristic time for these equation
~we puth51)

tch5D21~Ṽ/D!2. ~688!

This will be verified below. In a first approximation, one ca
neglect the derivative]N(«)/]t. Indeed,]N(«)/]t;N/tch
;ND3/V2, whereas the last term on the RHS of Eq.~6!,
l(«/V)2N«;Nl«3/V2;NlV@]N/]t. The self-
consistency of such a picture will be confirmed below. O
can see directly from Eq. (68) that this leads to the relation

N~«!52«21E
«

`

d«1n~«1!. ~7!

We also took into the account the fact thatn(«)512n
(2«); indeed, charge inbalance contributes to higher
proximations only.

Inserting the expression~7! into Eq. ~6!, we arrive, after
some manipulations, at the following equation for the qua
particle distribution functionn(«,t):

]n~«,t !

]t
52S l

3D S «3

V2Dn~«,t !1S 2l

V2D
3E

«

`

d«1«1~«12«!n~«1 ,t !. ~8!
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Equation~8! is one of the main equations of our theory. It
significant that one can obtain an analytical solution of E
~8!. Indeed, integrating over«, one obtains

]

]t E0

`

d«n~«,t !5S 2l

3 D Ṽ22E
0

`

d« «3n~«,t !. ~88!

It is important to recognize that there is also an integral
the motion

E5E
0

`

n~«,t !« d«5const. ~9!

As was noted above, our goal is to solve Eq.~8!. We are
seeking a solution in the form of a steplike function:

n~«,t !5n~ t ! @0,«,g~ t !#;
~10!n~«,t !50 @«.g~ t !#.

With the use of Eq.~10!, we obtain

n~ t !5const3g22~ t !. ~11!

Based on Eqs.~8!, ~9!, and~11! we find

]

]t
g21~ t !5S l

6Ṽ2D g2~ t !. ~12!

The solution of Eq.~13! has the following form:

g~ t !5Ṽ@11~l/2!Ṽt#21/3. ~13!

Therefore, the solution of Eq.~8! is @see Eqs.~10!, ~11!, and
~13!#

n~«,t !5H n0@11~l/2!Ṽt#2/3Ṽ22 @0,«,g~ t !#

0 @«.g~ t !#.
~14!

Hereg(t) is determined by Eq.~13! andn05const~see be-
low! Note that the characteristic time for the second state
indeed, of the order oftph5D21(Ṽ/D)2. This estimate fol-
lows from Eq. ~13!; one should putg>D, sinceD corre-
sponds to the end of this cascade stage.

The expression~14! allows us to evaluate the dependen
ñ(t), that is, the time dependence of the number of exc
tions present in the system during the second stage of
cascade. Indeed,

ñ[ñ~ t !5E
0

`

d« n~«,t !. ~15!

With the use of Eqs.~13!, ~14!, and ~15!, we arrive at the
following result:

ñ5ñ~0!@11~l/2!Ṽt#1/3. ~16!

Here ñ(0) is the number of excitations att50 ~the begin-
ning of this stage!. Therefore, the constantn0 @see Eq.~14!#
can be written asn05ñ(0)V21.

Consider the important case when the supercondu
forms a part of a tunnel junction. Then the relaxation proc
and the appearance of quasiparticles result in a tunne
current. The expression for this current follows directly fro
Eq. ~16!:

j ~ t !5 j 1~11at !1/3. ~17!
.

f
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-
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Herea5(l/2)Ṽ; j 1[ j 1(0) is the value of the current at th
beginning of the present cascade stage. Thus the elec
phonon relaxation channel, which is dominant forD,«
,V, leads to a rise in the number of electronic excitatio
with time: }(11aṼt)1/3.

By the end of the second stage of the relaxation proc
the number of excitations has increased, while their aver
energy has come down to a value on the order ofD.

B. Final stage of the cascade„«'D…

Let us turn to an analysis of the final stage of the rela
ation process. As stated before, at the end of the second s
the electronic excitations have energy on the order ofD. As
a result, phonons emitted during the final stage of the c
cade have energieshV&D, and so they are characterized b
a relatively large mean free pathl ph

f .
The evolution of the distribution function is described b

an equation which follows from Eq.~5!:

]n~«!

]t
52n~«!E

D

«

d«1W«,«1

2 1E
«

`

d«1n~«1!W«,«1

2

2E
2`

2D

d«1n~«!@12n~«1!#W««1

1

2g̃n~«!u~«1eV2D2!. ~18!

Here

W««1

2 5l«21@~«2«1!/Ṽ#2~««12D2!~«1
22D2!1/2,

W««1

1 5l«21@~«1u«1u!/Ṽ#2~«u«1u1D2!~«1
22D2!1/2,

g̃5~g/D !~«1eV!@~«1eV!22D2
2#21/2, ~188!

whereD is the junction thickness.
The first two terms on the RHS of Eq.~18! describe the

Cherenkov radiation of phonons; the third term correspo
to the recombination effect, that is, to electron-hole ann
lation accompanied by the formation of a Cooper pair. T
last term in Eq.~18! is the tunneling current~we again focus
on the case when the superconductor is a part of a tu
junction!. The tunneling coefficientg can be expressed in
terms of the normal resistanceRn of the barrier: namely,

g2152e2nSRn , ~19!

wheren is the density of states in the normal metal andS is
the area of the junction. As is known, the superconduct
density of states is peaked nearD. If the voltageeV is such
that D1eV is close toD2 , then one can simplify Eq.~18!
~see the Appendix! and write

]w̃/]t528l~D/Ṽ!2w̃22g̃w̃. ~20!

We have introduced the quantityw̃5*D
`d« «(«2

2D2)21/2n(«), which is proportional to the full number o
excitationsw: that is,w5nVw̃.

The first term in Eq.~20! describes the recombinatio
phenomenon@see the discussion following Eq.~18!#, and the
second term corresponds to tunneling through the adju
junction. The solution of Eq.~20! is
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w̃~ t !5w̃mf ~ t !, ~21!

where f (t)5G@(w̃m1G)exp(g̃t)2w̃m#21, G5g̃(Ṽ/D)2/8l.
The tunneling current is proportional to the number

excitations. Consequently, we can write

j ~ t !5 j mf ~ t !, ~22!

where j m is the magnitude of the current at the beginning
the final stage andf (t) is defined by Eq.~21!. Therefore, the
tunneling current varies with time as described by Eq.~22!.

IV. DISCUSSION: TUNNELING DETECTORS

Equations~8!, ~14!, ~18!, and~21! describe the dynamic
of the relaxation phenomenon. The electron-phonon inte
tion plays a key role for energies«,Ṽ. This region can be
separated into two stages~second and third stages of th
cascade, see above!.

~i! D,«,Ṽ. This stage lasts up totch (0,t,tch), tch
>D21(V/D)2.

~ii ! «'D, t.tch.
As a result of many collisions, the relaxation process

accompanied by the creation of quasiparticle electronic e
tations. The number of excitations depends on time, and
dependence is described by Eqs.~16! and ~21!.

A description of the nonstationary dynamics is, of cour
interesting for its own sake. But it is also important for t
production of a superconducting detector~e.g., an x-ray de-
tector!. Indeed, detector behavior is directly related to va
ous features of the relaxation process~see above! and to the
cascade dynamics.

In this paper we focus on tunneling detectors. Other ty
of detectors will be analyzed elsewhere. If the superc
ductor forms a part of a tunneling junction, then the inco
ing radiation is manifested in the appearance of an impu
of tunneling current@see Eqs.~17! and ~22!#. The current
increases during the time intervaltch (0,t,tch) @see Eq.
~17!# and then decreases, in accordance with Eq.~22!. If
W̃m!G, this decrease is exponential. Therefore, the time
pendence of the tunneling current is

j ~ t !5 j 1~11at !1/3, 0,t,tch, tch5D21~Ṽ/D!2,

j ~ t !5 j m exp~2g̃t !; t.tch, ~23!

where j m> j 1(11atch)
1/3, a5(l/2)Ṽ, and the currentj 1

corresponds to the beginning of the second stage of the
cade;g̃tch!1.

Experimentally, the dependencej (t) has been studied in
number of papers~see, e.g., Refs. 20–23!. The dependence
~23! is in good agreement with the data. The current pu
indeed, contains an initial sharp increase followed by ex
nential decay~see Fig. 1!. Such a dependence has been o
served in Ref. 20 for the Nb/Al-Al2O3-Al/Nb junction. A
similar dependence was observed in Refs. 20–23. Base
Eq. (69), one can estimate the rising timetch. With the use
of valuesṼ5spF'53102 K, D'0.3 meV, we obtaintch
'102 ns, and this is in agreement with the data.20–23 In ad-
dition, the decay time is described by the exponential dep
dence @cf. Eq. ~23!#; according to Refs. 20 and 21,tdec
greatly exceedstch; tdec'5 – 10ms.
f
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Note the important feature that it is helpful to use
asymmetric junction (D2ÞD1) with an applied voltageeV
close to the valueD22D1 . In this case the tunneling curren
corresponds to the maximum of the superconducting den
of states.

Note also that the detector should be used at a tempera
T!D1 ,D2 . Then one can neglect the contribution of therm
excitations@nth}exp(2D1,2/T)#. Otherwise, they will also
contribute to the tunneling current, interfering with the cu
rent due to the cascade. As a result, detectors based on
nary low-temperature superconductors need to be use
very low temperatures. The use of the superconducting
ides such as Nd-Ce-Cu-O and Ba-Ca-Bi-O can be benefi
~see below!. For example, a detector with Ba-Ca-Bi-P can
used at temperaturesT,20 K, that is, above the liquid hy
drogen temperature.

The total time dependence ofj is presented in Fig. 1.
High-Tc oxides. The analysis described above was co

cerned with ordinary superconductors. They are charac
ized by a well-defined energy gap; moreover, the condit
V@D is also satisfied. Let us discuss now the special cas
the high-Tc oxides. First of all, note that the above analysis
fully applicable to such oxides as Nd-Ce-Cu-O or Ba-C
Bi-O. Indeed, they have well-defined energy gaps; in ad
tion, Ṽ@D (D>6.5 meV,Ṽ540 meV for the Nd-based cu
prate andD56.5 meV, Ṽ550 meV for Ba-Ca-Bi-O!. Note
that according to Ref. 24, the La-Sr-Cu-O compound a
has a sharp gap structure.

FIG. 1. Time dependence of the current:~a! general shape of
the current pulse and~b! dependencej (t)/ j , plotted on a logarith-
mic scale. The parameters used here arel50.5, Ṽ553102 K,
tch5102 ns, andg21543102 ns.
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The situation is different for Y-Ba-Cu-O~YBCO! and
other high-Tc cuprates. First of all, the position of the peak
the superconducting density of states is such thatṼ'2D.
Therefore, the second and third stages of the cascade p
cally coincide. The inequalityV@D is needed during the
second stage for a noticeable number of quasiparticle
collect at the edge«'D during the second stage. This
important for detector efficiency. The absence of such a s
makes use of the aforementioned materials less efficien
addition, YBCO and Bi- and Tl-based superconductors
not have a sharply defined gap spectrum. They displa
gapless structure: that is, there are electronic states pre
down to«50. As a result, the recombination peak is not
sharp as for other superconductors. Note also that above
have assumed the absence of magnetic scattering. This i
the case for the aforementioned cuprates,25,26 and the relax-
ation channels for these materials should be treated s
rately.

Therefore, the Nd-based cuprate and Ba-Ca-Bi-O
probably, the best candidates for use in tunneling detect

The relaxation process in high-Tc oxides can be used in
order to study the pairing mechanism. Indeed, the relaxa
phenomenon has been used~see, e.g., Refs. 27–29! in order
to generate phonons withV'2D during the recombination
stage. The generation of phonons was caused by
electron-phonon coupling. Since 2D'Ṽ for the high-Tc cu-
prates, such as YBCO, Bi-based oxides, etc., one can
clude that the matrix elements for interaction with virtu
(V'Ṽ) and real (V'2D) phonons are similar. Therefore
intensive generation of phonons by recombination would
a strong indication of an important phonon contribution
the pairing. This could be detected with the use of a sec
junction separated by a barrier, allowing the phonons to
transmitted. We will discuss this question in more det
elsewhere.

V. SUMMARY

In this paper we have described the nonequilibrium s
caused by an external source~e.g., x rays! and the relaxation
process~cascade! in isotropic gapped superconductors. T
relaxation is accompanied by many collisions and by
generation of quasiparticles. As a result, we are faced wi
nonstationary phenomenon and, consequently, with ti
dependent dynamics. The cascade consists of several s
The number of quasiparticles initially increases@during the
time interval tch given by Eq. (69)#; this is followed by an
exponential decrease@Eqs.~21! and~23!#. We have obtained
analytical expressions@Eqs. ~14!, ~16!, and ~21!# describing
the time dependence of the relaxation process.

A study of the relaxation process is important for the d
sign of superconducting detectors. The current pulse i
tunneling detector is evaluated and is described by Eq.~23!.
This universal temperature dependence is in a good ag
ment with the data.20–23
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APPENDIX

~I! The nonstationary state of homogeneous supercond
ors is described by the time-dependent Green’s functionĝk,
which can be written in the following matrix form:

ĝk5ĝRf̂ 2 f̂ ĝA, f̂ 5 f 1tzf 1 . ~A1!

Heref and f 1 are scalar functions,tz is the Pauli matrix, and
ĝR and ĝA are the retarded and advanced Green’s functio

The equations forĝk were obtained by Larkin and one o
the authors13,14 and have the following general form:

] f

]t
Tr~gRtz2tzg

A!2
] f

]«
TrS ]D̂

]t D ~gR2gA!

22i f 1Tr D̂tz~gR2gA!

1
] f 1

]t
Tr D̂tz

]~gR1gA!

]«
524I 1

coll~ f !, ~A2!

] f 1

]t
Tr~gRtz2tzg

A!1
] f

]«
Tr tz

]D̂

]t
~gR1gA!

1
i

2

] f

]«
Tr tz

]2D̂

]t2

]~gR2gA!

]«
22i f 1Tr~gRD̂1D̂gA!

1
] f 1

]t
Tr D̂

]~gR2gA!

]«
524I 2~ f 1!. ~A3!

Assume that the order parameter depends weakly on t
This corresponds to the condition that the number of p
ticles in the nonequilibrium state be relatively small. In t
absence of magnetic impurities one can use the expres
~A2! and putf 150.8 As a result, one obtains Eq.~1!.

~II ! Consider Eq.~18! and write«5D1x, «15D1y. We
obtain

]n~x!

]t
52

0.86lx7/2

ADV2
n~x!1

l

&V2 Ex

`

dy n~y!~x1y!

3~x2y!2~Dy!21/22
8lD5/2

&V2 E
0

` dy n~x!n~y!

Ay

2g
n~x!~D1eV!

dA~D1eV1x!22D2
2

. ~A4!

The density of states is peaked nearD. As a result, for the
quantity

w̃5E
D

` A2d«

A«22D2
n~«!>E

0

` dx

AxD
n~x!, ~A5!

which is proportional to the total number of excitations, w
obtain Eq.~20!.
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