PHYSICAL REVIEW B VOLUME 58, NUMBER 18 1 NOVEMBER 1998-II

Low-temperature renormalization-group study of uniformly frustrated models
for type-Il superconductors

Giancarlo Jug
Max-Planck Institut fu Physik komplexer Systeme, AuRenstelle Stuttgart, Heisenbergstrasse 1,
Postfach 800665 D-70569 Stuttgart, Germany

Boris N. Shalaev
A. F. loffe Physical & Technical Institute, Russian Academy of Sciences, 194021 St. Petersburé, Russia
and Max-Planck Institut fuPhysik komplexer Systeme, D-70569 Stuttgart, Germany
(Received 28 May 1998

We study phase transitions in uniformly frustrated SIQ{symmetric (2+ €)-dimensional lattice models
describing type-1l superconductors near the upper critical magnetic feldT). The low-temperature
renormalization-group approach is employed for calculating the beta fungfdnf) with f an arbitrary
rational magnetic frustration. The phase-boundary ling(T) is the ultraviolet-stable fixed point found from
the equations(T,f)=0, the corresponding critical exponents being identical to those of the nonfrustrated
continuum system. The critical properties of the S){symmetric complex Ginzburg-Landau model are then
examined in (4 €) dimensions. The possibility of a continuous phase transition into the mixed state in such
a model is suggestefiS0163-18208)00441-X

I. INTRODUCTION question of the vortex glass are to be considered. In this
paper we wish to investigate what is to some extent a new

The challenging problem of the critical behavior of a question, namely the nature of this phase transition when a
type-Il superconductor near the upper critical magnetic fieldperiodic-lattice potential is coupled to the superconducting
H(T) has a rich and long history going back to the seminalorder parameter.
paper by Eilenbergér(see also Ref. )2 It has been recog- It was shown some time a§b that the interaction be-
nized for some time that an external magnetic field drastitween thermal fluctuations and the underlying crystal lattice
cally changes the critical properties of superconductors. Thean restore the phase transition into the mixed state. It is well
magnetic field hinders the growth of the thermal fluctuationsknown that the vortex lattice state has two broken symme-
in the plane perpendicular tH, since the growth of their tries: (i) phase coherence, that is, off-diagonal long-range
correlation length is restricted by the magnetic-length scal®rder, and(ii) translational symmetry. Including the interac-
/=+/hcleH, which is much shorter than the coherencetion with an underlying lattice means that the translational
length £. This effect of dimensional reduction results in an symmetry is explicitly broken and lattice effectéor in-
enhancement of the longitudinal fluctuations leading, in parstance, Harper’s broadening and splitting of the Landau lev-
ticular, to the increase of the lower critical dimension from 2€ls suppressing infinite degeneracy of the energy spegtrum
to 4. become particular acute.

I critical fluctuations are ignored, the uniform frustration ~ Lattice models of superconductors were introduced long
(in the language of spin models of the vortex lattiesen- ago and are of great interest by their own accord, being em-
tually leads to a continuous phase transition into the Abrikoployed to Study phase transitions in uniformly frustrated
sov flux lattice state. On the one hand, in contrast to meanX Ymodels? or in some artificial condensed matter structures
field theory, the standard renormalization-groyG) like two-dimensional2D) Josephson-junction arrays subject
approach in 6- e dimensions, in fact, failed so far to yield to @ magnetlc fielt? or in opals filled with a semiconductor
insight on the nature of the phase transition due to the aper a metaft!
pearance of an infinite number of invariant chargegevant Naturally, according to a naive point of view, near criti-
scaling variablesinherent to the nonrenormalizable scalar cality the correlation lengtlj diverges and the system should
¢* field theory in a field Physical argumentgpresented, “forget” about the discreetness of the underlying lattice;
e.g., in Ref. 2 support the existence of a first-order melting however, this turns out not to be the case. In fact, in the
transition for the flux lattice. On the other hand, however, thecontinuum limit some specific uniformly frustrated lattice
conventional 1N expansion, when applied to the models have been shown not to be equivalent to the conven-
SU(N)-symmetric Ginzburg-Landa(GL) model with anN-  tional GL modeP If lattice effects are taken into account, in
component order parameter, gives a second-order phase trdfe long-wavelength limit one obtains an infinite set of ef-
sition above four dimensiorfs® The question of the nature fective (renormalizablg GL Hamiltonians corresponding to
of the phase transition from the normal into the mixed state.dlfferent rational values of the frustratidn=®/®,, where
of a type-Il superconductor remains therefore an open prob® =Ba” is the magnetic flux per plaquette adth=hc/2e
lem, even before the effects of impurities and the topicathe elementary flux quantur?.
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The main goal of the present paper is to consider théNotice that the Hamiltonian in Eq2.1) has both a global
critical behavior of lattice models of type-Il superconductorsnon-Abelian SUN) symmetry and a local U(1) one while
in the normal phase abowé.,(T). We shall apply the stan- the fixed-length constraint imposed on the local spins is
dard low-temperature RG approach that was first introduce®(2N) symmetric.
and developed in Refs. 12 and 13. The method was first The main steps in our calculations are as follows. To
exploited for studying critical phenomena in superconductorgarry out the weak-coupling expansion for the theory given
(with B=0) in Ref. 14. We will show how the presence of a by Eq.(2.1) a formal procedure based on integrating out the
lattice induces a second-order phase transition in dimensiorsigh-frequency components of the local sp8fswill be ap-
d=2+ ¢, by giving explicitly the phase boundary in the low- plied. We shall make use of the following parametrization of

temperature limit. spin variable®
The remainder of this paper is organized as follows. In
Sec. I, the critical behavior of the (Re¢)-dimensional S=md, b=12...N-1
SU(N)-symmetric lattice model is considered by means of
the low-temperature RG approach. Section Il deals with the 2_ _b_bx
T= T (2.5

standard GL model in 4 ¢ dimensions, therefore in the ab-
sence of the underlying lattice, and we show that the phase N - _
transition appears to be again of second order, although it S = V1 miexpli ¢,

remains impossible to reach a conclusion about the nature of b ) )
the phase transition id=3. Section IV contains a discus- wherer, are small and slowly varying fluctuations about the

sion of our results and of related issues in which lattice efNth-component's direction. Substituting the representation
fects may play an important role and some concluding reEd. (2.9 into Eq.(2.4) and integrating out the modulyS, |,

marks. one arrives at the Lagrangian
Il. VORTEX-LATTICE PHASE TRANSITION z:f IT d¥-2adN =¥ expl — HITY,
IN 2 + e DIMENSIONS i
A. Effective action and low-temperature expansion H=Hq+Hipy,
We begin by considering the classical Hamiltonian of the (2.6)

SU(N)-symmetric nonlinear sigma model, defined on a

square lattice with periodic boundary conditions: Ho=—J>, |7ribexp(iAij)— 7ij|2,

(.5
H=—-J, |SPexpiA;)—SY2. (2.1)
<iyj>| I 2l Hin=—32 [V1-nlexp(éi— b+ Aj) —V1-m7 2.

(i.j)
Here the Jacobian factor equals unity. The advantages of this
parametrization are quite evident becaus&-0 the spin-
wave fields7 can be treated as free lattice fields. As these
fields fluctuate, a contribution to the effective action for the
phasesg; will arise. At the same time, the fielg(i) does
not react back onter? in the renormalization procedure.
The calculations in the one-loop approximation may be
Ajj=2mf (2.2) readily carri_ed out _by means of the standard momentum-
plaquette shell recursion relation technique developed in Ref(dde
also Refs. 15 and 17 To produce a systematic low-
with f=p/q the so-called frustratiorp andq are here mu- temperature perturbation theory one has to expand nonlin-

This is indeed the lattice version of the GL Hamiltoni&,
being aN-component complex unit vector with the constraint
S$$*=1,a=1,2,...,N, andJis a coupling constant. Here
(---) indicates that the summation is over all nearest
neighboring sites, as usud;; is a bond angle such that the
sum around a plaquette is given by

tually prime integers and; is defined by earities such as/1—#? in H, in powers of 72 and to
integrate out short-wavelength degrees of freedom. Let us
27 (i decompose the Fourier-transformed spin field according to
Aij:(}T ) dXILAM’ (23)
0Ji

m(a)=72(q)+72(q),
whereA ,=(—By,0,0) is the vector potential of the uniform
magnetic fieldB along thez axis. From Eq.(2.2) it follows ()= wi(q), 0<qg<A’, 2.7
that the magnetic flux through a plaquette is assumed to be a
rational fraction of the magnetic-flux quantudn,.
Consider the partition function associated with E211),
namely,

(@) =72(q), A'<g<A

with the purpose of integrating out the short-wavelength
fields 72 (q). Here A and A’ are momentum cutoffs angl

7= dVS dNS* expl — — ' S(SPSA* —1). (2.4 stands here for the reciprocal lattice coordinates. Calcula-
f H Sd7S p[ T] (S5 ). 24 tions in the lowest order of perturbation theory yield
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Hinte 2 ) B. Lattice-frustrated models

T Tm) cod i~ ¢+ Aij)| 1 2<Tr'> 2<7T ar Since we are, in this paper, interested in the critical be-
(2.8) havior of the Iattic_e-frustrated model, we shall first of all

where the angular brackets --) stand for the straight not? some properties of _th.e Azbel-Harper-Hofstadter o_pera-

Gaussian integration over the modes (q), andJ is ab- tor L (Refs. 18—2]1 describing a 2D BIoAch charged patrticle

sorbed inT. From Eq.(2.8) the temperature renormalization subject to a uniform magnetic field. Hekeis the inverse of

is easily seen to be the quadratic part of the actidty, which one may formally
regard as the electron-hopping Hamiltonian. Using a com-
1 1 ) pact notation, the Hamiltoniald, in Eq. (2.6) can be rewrit-
e (1—(m)). (2.9  tenas
Setting the magnetic fieléor, equivalently, the frustration _ bx{ _b
to zero one may easily take the long-distance limit of the Ho ; ™" L7, (212

model and find the bare propagator for th@(q) fields,

namely, where by definition(due to the choice of the most conven-

tional Landau gaugel. acts on the Bloch wave function in
T the following way:
Gap(@)=(m2(D72(—q))= 5. (2.10 )
q LP(n)=exp(iky) m2(n—1) +exp( —ik,) 72(n+1)
The most divergent part of the Goldstone propagator behaves
like 1/g? for smallq, giving rise to the dominant logarithmic +2 cos( k,+ 277@
term in(72)=(N—1)In(A/A’). Carrying out the trivial cal-
culations as described in detail in Ref. 15, one is led to the b ) b
familiar expression for the one-loop beta function m(n)=exp(ikn) m,(n),
2 wheren=1,... g is a coordinate in the magnetic cell and
(N=D1)T D .
B(T)=(d—2)T— ——. (2.11)  the wave vectok ranges over the reduced Brillouin zone:
™ —mla<k.,<wla, —w/qa<k,<w/qa. It is worth noting

The problem now is to extend this approach to the unlformlythat if n labels the components of ggcomponent “vector”
frustrated model of Eq2.1), that is when the magnetic field wk(n) then the operatdr acts as @ x q Hermitian matrix.

72(n), (2.13

is switched back on. In the case ofj=4 one has, for example
2 cogky) exp(—iky) 0 expiky)
- expliky) 2 cogk,+27f) exp(—iky) 0
[ = _ ) (2.19
0 expiky) 2 cogk,+4f) exp( —iky)
exp(—iky) 0 expiky) 2 cogk,+67f)

Therefore, this HamiltoniatH, can be thought of as that propagator from Eq(2.15 one has the resolvent spectral
corresponding to a particle hopping aloggsites around a decomposition
ring.2223The spectrum oH, is known to possess a finite set

of g magnetic subbands, each state in these subbands being a 43
g-fold degenerate instead of the infinite degeneracy inherent  Gan(r.r')= 5ab21 21 D EndV (D W (r),
to the continuous problert. et (2.1

The magnetic translational symmetry properties result
from the local-gauge invariance of the lattice theory, Eq.wheren=1,... q labels the magnetic band number, and
(2.2). This |_mpI|es that under the translat|cr_n—>r+a the W,,.(r) are eigenfunctions of. defined in the magnetic
propagator in Eq(2.10) transforms as follows: Brillouin zone, —m/a<k.<w/a and —w/qa<k,<w/qa,
_ forming the basis of thg-dimensional irreducible projective
, I , , representation of the magnetic-translation group. The exact
Gap(r+ar +a):exp[30[8><a](r—r )}Gab(r,r ). energy spectrunk,,, does not depend on the quantum num-
(215 bera=1,...g.
There exists a remarkable property of the energy spectrum
From Eq. (2.19 it follows that G,(r,r’) at coinciding resulting from the local-gauge invariance of the lattice
points does not depend an On the other hand, for the theory, Eq.(2.1). From this local-gauge invariance it follows
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that E,,, depends ork only through the parametek=2 =1, or H=0, e,(q) becomese,(1)=2 and the function
—cosfk)—cos@k,) and of course o (Ref. 24 B(T) coincides with Eq(2.9).
The critical exponent for the correlation lengthfollows
E=E,(A,Q). (217  immediately by differentiating E¢(2.21) at the fixed point.

From the point of view of the critical properties of the non- Keeping only the leading term ia one obtains

linear & model under consideration, one can see that only 1 1
states lying near the bottom of the lowest magnetic subband p=— =—. (2.23
(n=1) are relevant. Here it works in a similar way, as in the B'(T*) €

well- kn?wn rllowest-.Landau rl]eve(ILLL) projection approxi- 14 getermine Fisher's critical exponentone may apply the

mation for the continuous theory. conventional momentum-shell RG approach to first order in
Within the ef_fectlve-mass_approx|mat|on the energy Spec o5 described in detail in Refs. 16 and 17. After carrying out

trum as a function of a quasimomentum near the band’s boly,g gtandard RG computational procedure, we are led to the

tom (A=0) reads following expression

€

Erc=eo(q)+ f) {(gko®+(gk)?, (.18 A(T)=2—d+ 2-Dat

) (2.24

with ey Aq) being coefficients of the Taylor expansion of Note that Egs.(2.22) and (2.24 yield the usual one-loop
E, in powers ofk. Heree,(q) ! is proportional to an ef- result = e/2(N—1).
fective mass in thex,y) plane,ey(q) being proportional to We have seen above that the 42)-dimensional
a chemical potential. It is here rather essential that the effedrustrated-lattice model undergoes@ntinuousphase transi-
tive mass and chemical potential are some functiong.of  tion on the coexistance curé,,(T) and is characterized by
In order to findB(T) we have to calculatér?), which is  universal critical exponents, which we have calculated. A
given by physical interpretation of this conclusion is quite simple: the
infinite degeneracy inherent to a charged particle moving in a
s~ d . uniform magnetic field is lifted by a commensurate potential
<7Ti>:aZl Gaa(r:r):qnzl ; Enk - (219 suppressing the dimensional reduction effect and favoring
the flux lattice stat8.At least at the lowest order ia the
The factorg appears as a result of the degeneracy of thdrustrationq drops out of the critical exponents, these being
spectrum and summation over Making use the effective- identical to those for the conventional QN2-symmetric
mass approximation for the lowest magnetic subband, anHeisenberg ferromagnet. Fbr=1 the expressions obtained
evaluating the integral ovée in Eq. (2.19, we arrive at the above obviously show a singularity in the factorN/ 1),

following expression which reflects the special properties of the neutral 2D
model.
2 2e,(q) ! 2(N-1)qg A
(7 >ZQ§k: (qk)?+ (gk)2+m2 (0 G Ill. WEAK-COUPLING EXPANSION
A% 0 (2.20 FOR THE GINZBURG-LANDAU MODEL

Here,mSZZeo(q)/ez(q) denotes some effective mass. With  The approach that has been developed until now may be
the help of Egs(2.9) and(2.20), one can readily derive the extended to the continuous GL model subject to a uniform

beta function in the one-loop approximation magnetic fieldB in d=4+ e dimensions, in the spirit of the
work of Lawrie and Athorné®?° This model is described by
2(N—1)qT? the Hamiltonian
B(T,q)=(d=2)T— ————— (2.21)
mey(q) ; 20 2
This expression is the lattice version of Eg.11). It leads to H_J d*| 9t QTOA#)\P‘”‘ ' @D

the nontrivial ultraviolet-stable fixed point located at .
where the summations over=1,... d anda=1,...N are

(d—2)me,(q) understood in Eq(3.1). HereW=[¥,,... ¥y] is anN-

“2(N-1)q (2.22 component complex order parameter, the fixed-length con-
q straint|/w'|?=1 being imposed on the local fields. The vector

We see that, in fact, Eq2.22) gives the phase-transition line potentialA,, is now taken within the symmetric gauge

Heo(T) of the lattice model, Eg2.1). The peculiarity of the

beta functipn, Eq(2.21), lies in i_ts explicit dependence on A= Eer, (3.2

the frustrationq revealing a multifractal-type structure. This 2

follows from the properties of the spectrum of a single elec

tron in a magnetic field and a periodic potentieading to

the so-called “Hofstadter's butterfly” multifractal

structuré®?9. From the physical point of view this peculiar- N

ity looks quite natural sinc.e the phasg-trgnsition tempe.rature 7= f H D‘IfaD\If;ex% _ ﬂ) s(|w2-1). (3.3

must depend on the applied magnetic field. After setting a=1 T

T*(q)=

‘where B is taken along the axis. The partition function
associated with Eq3.1) reads
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We shall make use of the same parametrizationVgfex-  quantity G(r,r) entering Eq(3.6). The LLL approximation
ploited in Sec. Il leads to a nice simplification of E¢3.9),
\I’b(l’)zﬂ'b(r), b=l,2,...,N—1, 2 ,
;
Gp(r,r')=8,ex —i—f dx, A
ab( ) ab % (I)O ; YY)

w2 (r)=ap(r) i (r), (3.9
W(r)=V1-m?(r)exdip(r)]. — %[(x—x’)2+(y—y’)2]]

Inserting Eq.(3.4) into Eqg. (3.3 and integrating out the
|¥y|, we obtain the effective Hamiltonian convenient for
generating the low-temperature expansion

H= f d9x
+((9ﬂm)2 i (3.5 In going from Eq.(3.9 to Eq. (3.10, we have made the

following substitution in Eg.(3.9): cothw/2)—1 and

Observe that no Jacobian arises from the elimination ofinh(w/2)— zexplw/2) (justified by the limitB— o of the

|Wy|. To determine the temperature renormalization in the-LL approximation). . .

lowest order of perturbation theory, we have to take into 10 make further calculations more transparent, we will

account only the first two relevant terms in E®.4) and make use of the mixed coordinate-momentum representation

disregard the third one describing the interaction between thir Gap(r.r"). After carrying out the Fourier transformation

transverse degrees of freedom,. The RG equation ob- In the longitudinal variables,z’, Eq. (3.10 becomes

tained in this way is

X (4r)" dlzfxduu(z—d)/z
0

2
+

2T
(?M'i'l (DTQAM T

2m |\ uo (z—2')?

, , 27T r’
Gap(X, X", Y,y K)= 6,p X —|¢Tojr dx,A,

i 1—(m? 3.6
;—f[ (m(r))sl, (3.6
w
where (---)s stands for integrating over the short- —g[(X—X')ZJF(y—Y')Z] 55
wavelength transverse fields, . k*+¢
Notice that the non-gauge-invariant correlation function (3.1
Gan(r,r")=(ma(r)mp(r')) (3.7 wherek is ad— 2-dimensional vector andis a correlation

is the Green function of the-dimensional Schrodinger op- |€ngth in the longitudinal directions. The important conclu-
erator sion one may draw from Eq3.11) is that a dimensional

reduction effect takes place in the physics of our model, Eq.
2 2 (3.1). We have also set an irrelevant factor to unity.
—id,— (FA,L) Gap(r,r')=3dap6(r—r"). (3.9 With the result of Eq(3.11) at hand, we can now readily
0 evaluate(72(r))s,

The exact solution of Eq3.8) in an arbitrary gauge reatfs
(N-Do A

. 2 (r! 2 = 7 |n—
Gab<r.r'>=fsabeXp(—|(ITJr dxMA#) (m0)s=———In" @12
a2 [* u2-dz2 Equations(3.6) and(3.12 yield the beta function in the one-
X(4) fo dum loop approximation as well as the phase boundary, namely,
(Z_Z’)Z ® (N—l)w
X exp — - TP,
p{ 4u 8 B(T,B)=(d=4)T T
1 , , (3.13
Xcotf{iuw[(x—x’) +(y—-y’) ]” T (B) = m(d—4)
(B)= (N-1Do’

(3.9

wherew= 2eB/c is the cyclotron frequencthere we have It is remarkable that the calculation of the critical exponents,
seth=1 and 2n=1) andz andz’' are d—2)-dimensional like the one carried out in Sec. Il, leads now to the same
longitudinal coordinates. The integral in E.9) is taken universal values as given by Ed2.22) and(2.24), indepen-
over the straight line connecting the poimtandr’. dently of B.

Near the phase boundal,(T), only the lowest-Landau We have seen that in contrast to the results obtained, e.g.,
level gives a dominant contribution to the gauge-invariantn Ref. 3 for the (6-¢)-dimensional case, &ontinuous
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phase transition occurs in the GL model in-4 dimensions. results—being in good agreement with those obtained within
It is described by the critical exponents of thethe 1N expansion by Radzihovskyand by the authors of
O(2N)-symmetric Heisenberg ferromagn@ the one-loop Ref. 5—give evidence in favor of a continuous phase
approximation. From the field-theoretical point of view we transition?® In particular, the nontrivial fixed point respon-
are now dealing with the dimensional reduction effect withinsible for the second-order phase transition was found. More-
the Abelian Higgs model defined by an Euclidean Lagrangover, from the equation for the correlation lengtk follows

ian, Eq.(3.2) (or, equivalently, in theN-component scalar that there is a divergence df at criticality. One the other
QED), in a large external magnetic field. The analogous efhand, the calculation of the effective potential within thi 1/
fect was recently shown to occur also in the conventional 40expansion as presented in Ref. 4, gives evidence for a first-
spinor QED subject to an extremely high magnetic field likeorder phase transition. The origin of this discrepancy in con-

in a vicinity of a neutron staf’ clusions is rather subtle and probably lies in noncommutativ-
ity of the largeN limit and the thermodynamic limitsee, for
IV. CONCLUSIONS a discussion, Ref.)6

The main problem still open for future research is how to

It has been shown that the +{2)-dimensional e€xtend the results obtained by means of the low-temperature
SU(N)-symmetric uniformly frustrated lattice spin model RG approach to th&l=1 case. Thus, we have seen that the
undergoes a second-order phase transition, described by tHaderlying lattice plays an essential important role near the
universal critical exponents of the O3-symmetric Heisen-  upper critical magnetic fielti .,(T) restoring(like weak dis-
berg ferromagnet irrespectively of the value of the frustra-ordey the continuous phase transition into the flux-lattice
tion. Our calculations provide no evidence of a first-orderstate. This is indeed the main result of our paper and we have
phase transition. This result was found to hold both for thecommented in the Introduction on possible direct applica-
(2+ €)-dimensional lattice model as well as for the tions of the model we have studied.
(4+ e)-dimensional continuous GL model in an applied
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