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We study phase transitions in uniformly frustrated SU(N)-symmetric (21e)-dimensional lattice models
describing type-II superconductors near the upper critical magnetic fieldHc2(T). The low-temperature
renormalization-group approach is employed for calculating the beta functionb(T, f ) with f an arbitrary
rational magnetic frustration. The phase-boundary lineHc2(T) is the ultraviolet-stable fixed point found from
the equationb(T, f )50, the corresponding critical exponents being identical to those of the nonfrustrated
continuum system. The critical properties of the SU(N)-symmetric complex Ginzburg-Landau model are then
examined in (41e) dimensions. The possibility of a continuous phase transition into the mixed state in such
a model is suggested.@S0163-1829~98!00441-X#
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I. INTRODUCTION

The challenging problem of the critical behavior of
type-II superconductor near the upper critical magnetic fi
Hc2(T) has a rich and long history going back to the semi
paper by Eilenberger1 ~see also Ref. 2!. It has been recog
nized for some time that an external magnetic field dra
cally changes the critical properties of superconductors.
magnetic field hinders the growth of the thermal fluctuatio
in the plane perpendicular toH, since the growth of their
correlation length is restricted by the magnetic-length sc
l 5Ahc/eH, which is much shorter than the coheren
length j. This effect of dimensional reduction results in a
enhancement of the longitudinal fluctuations leading, in p
ticular, to the increase of the lower critical dimension from
to 4.

If critical fluctuations are ignored, the uniform frustratio
~in the language of spin models of the vortex lattice! even-
tually leads to a continuous phase transition into the Abri
sov flux lattice state. On the one hand, in contrast to me
field theory, the standard renormalization-group~RG!
approach in 62e dimensions, in fact, failed so far to yiel
insight on the nature of the phase transition due to the
pearance of an infinite number of invariant charges~relevant
scaling variables! inherent to the nonrenormalizable sca
f4 field theory in a field.3 Physical arguments~presented,
e.g., in Ref. 2! support the existence of a first-order meltin
transition for the flux lattice. On the other hand, however,
conventional 1/N expansion, when applied to th
SU(N)-symmetric Ginzburg-Landau~GL! model with anN-
component order parameter, gives a second-order phase
sition above four dimensions.4–6 The question of the natur
of the phase transition from the normal into the mixed st
of a type-II superconductor remains therefore an open p
lem, even before the effects of impurities and the topi
PRB 580163-1829/98/58~18!/12404~7!/$15.00
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question of the vortex glass are to be considered. In
paper we wish to investigate what is to some extent a n
question, namely the nature of this phase transition whe
periodic-lattice potential is coupled to the superconduct
order parameter.

It was shown some time ago7,8 that the interaction be-
tween thermal fluctuations and the underlying crystal latt
can restore the phase transition into the mixed state. It is w
known that the vortex lattice state has two broken symm
tries: ~i! phase coherence, that is, off-diagonal long-ran
order, and~ii ! translational symmetry. Including the intera
tion with an underlying lattice means that the translatio
symmetry is explicitly broken and lattice effects~for in-
stance, Harper’s broadening and splitting of the Landau l
els suppressing infinite degeneracy of the energy spectr!
become particular acute.

Lattice models of superconductors were introduced lo
ago and are of great interest by their own accord, being
ployed to study phase transitions in uniformly frustrat
XYmodels,9 or in some artificial condensed matter structur
like two-dimensional~2D! Josephson-junction arrays subje
to a magnetic field10 or in opals filled with a semiconducto
or a metal.11

Naturally, according to a naive point of view, near cri
cality the correlation lengthj diverges and the system shou
‘‘forget’’ about the discreetness of the underlying lattic
however, this turns out not to be the case. In fact, in
continuum limit some specific uniformly frustrated lattic
models have been shown not to be equivalent to the con
tional GL model.9 If lattice effects are taken into account, i
the long-wavelength limit one obtains an infinite set of e
fective ~renormalizable! GL Hamiltonians corresponding to
different rational values of the frustrationf 5F/F0, where
F5Ba2 is the magnetic flux per plaquette andF05hc/2e
the elementary flux quantum.5,9
12 404 ©1998 The American Physical Society
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The main goal of the present paper is to consider
critical behavior of lattice models of type-II superconducto
in the normal phase aboveHc2(T). We shall apply the stan
dard low-temperature RG approach that was first introdu
and developed in Refs. 12 and 13. The method was
exploited for studying critical phenomena in superconduct
~with B50) in Ref. 14. We will show how the presence of
lattice induces a second-order phase transition in dimens
d521e, by giving explicitly the phase boundary in the low
temperature limit.

The remainder of this paper is organized as follows.
Sec. II, the critical behavior of the (21e)-dimensional
SU(N)-symmetric lattice model is considered by means
the low-temperature RG approach. Section III deals with
standard GL model in 41e dimensions, therefore in the ab
sence of the underlying lattice, and we show that the ph
transition appears to be again of second order, althoug
remains impossible to reach a conclusion about the natur
the phase transition ind53. Section IV contains a discus
sion of our results and of related issues in which lattice
fects may play an important role and some concluding
marks.

II. VORTEX-LATTICE PHASE TRANSITION
IN 2 1e DIMENSIONS

A. Effective action and low-temperature expansion

We begin by considering the classical Hamiltonian of t
SU(N)-symmetric nonlinear sigma model, defined on
square lattice with periodic boundary conditions:

H52J(
^ i , j &

uSi
aexp~ iAi j !2Sj

au2. ~2.1!

This is indeed the lattice version of the GL Hamiltonian,Si
a

being aN-component complex unit vector with the constra
Si

aSi
a* 51, a51,2,. . . ,N, andJ is a coupling constant. Her

^•••& indicates that the summation is over all neare
neighboring sites, as usual.Ai j is a bond angle such that th
sum around a plaquette is given by

(
plaquette

Ai j 52p f ~2.2!

with f 5p/q the so-called frustration;p andq are here mu-
tually prime integers andAi j is defined by

Ai j 5
2p

F0
E

i

j

dxmAm , ~2.3!

whereAm5(2By,0,0) is the vector potential of the uniform
magnetic fieldB along thez axis. From Eq.~2.2! it follows
that the magnetic flux through a plaquette is assumed to
rational fraction of the magnetic-flux quantumF0.

Consider the partition function associated with Eq.~2.1!,
namely,

Z5E )
i

dNSid
NSi* expH 2

H

T J d~Si
aSi

a* 21!. ~2.4!
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Notice that the Hamiltonian in Eq.~2.1! has both a global
non-Abelian SU(N) symmetry and a local U(1) one whil
the fixed-length constraint imposed on the local spins
O(2N) symmetric.

The main steps in our calculations are as follows.
carry out the weak-coupling expansion for the theory giv
by Eq. ~2.1! a formal procedure based on integrating out t
high-frequency components of the local spinsSi

a will be ap-
plied. We shall make use of the following parametrization
spin variables15

Sk
b5pk

b , b51,2,. . . ,N21

pk
25pk

bpk
b* , ~2.5!

Sk
N5A12pk

2exp~ ifk!,

wherepk
b are small and slowly varying fluctuations about t

Nth-component’s direction. Substituting the representat
Eq. ~2.5! into Eq.~2.4! and integrating out the modulusuSk

Nu,
one arrives at the Lagrangian

Z5E )
i

dN21p id
N21p i* exp$2H/T%,

H5H01Hint ,
~2.6!

H052J(
^ i , j &

up i
bexp~ iAi j !2p j

bu2,

Hint52J(
^ i , j &

uA12p i
2exp~f i2f j1Ai j !2A12p j

2u2.

Here the Jacobian factor equals unity. The advantages of
parametrization are quite evident because ifT→0 the spin-
wave fieldsp i

b can be treated as free lattice fields. As the
fields fluctuate, a contribution to the effective action for t
phasesf i will arise. At the same time, the fieldf( i ) does
not react back ontop i

b in the renormalization procedure.
The calculations in the one-loop approximation may

readily carried out by means of the standard momentu
shell recursion relation technique developed in Ref. 16~see
also Refs. 15 and 17!. To produce a systematic low
temperature perturbation theory one has to expand non
earities such asA12p i

2 in Hint in powers of p i
2 and to

integrate out short-wavelength degrees of freedom. Let
decompose the Fourier-transformed spin field according

pb~q!5p,
b ~q!1p.

b ~q!,

pb~q!5p,
b ~q!, 0,q,L8, ~2.7!

pb~q!5p.
b ~q!, L8,q,L

with the purpose of integrating out the short-waveleng
fields p.

b (q). HereL andL8 are momentum cutoffs andq
stands here for the reciprocal lattice coordinates. Calc
tions in the lowest order of perturbation theory yield
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Hint

T
5

2

T(
^ i , j &

cos~f i2f j1Ai j !S 12
1

2
^p i

2&2
1

2
^p j

2& D ,

(2.8)

where the angular bracketŝ•••& stand for the straigh
Gaussian integration over the modesp.(q), and J is ab-
sorbed inT. From Eq.~2.8! the temperature renormalizatio
is easily seen to be

1

T8
5

1

T
~12^p i

2&!. ~2.9!

Setting the magnetic field~or, equivalently, the frustration!
to zero one may easily take the long-distance limit of
model and find the bare propagator for thep.

b (q) fields,
namely,

Gab~q!5^p.
a ~q!p.

b ~2q!&5
T

q2
dab . ~2.10!

The most divergent part of the Goldstone propagator beha
like 1/q2 for smallq, giving rise to the dominant logarithmi
term in ^p i

2&5(N21)ln(L/L8). Carrying out the trivial cal-
culations as described in detail in Ref. 15, one is led to
familiar expression for the one-loop beta function

b~T!5~d22!T2
~N21!T2

p
. ~2.11!

The problem now is to extend this approach to the uniform
frustrated model of Eq.~2.1!, that is when the magnetic fiel
is switched back on.
t
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B. Lattice-frustrated models

Since we are, in this paper, interested in the critical
havior of the lattice-frustrated model, we shall first of a
note some properties of the Azbel-Harper-Hofstadter ope

tor L̂ ~Refs. 18–21! describing a 2D Bloch charged partic

subject to a uniform magnetic field. HereL̂ is the inverse of
the quadratic part of the actionH0 , which one may formally
regard as the electron-hopping Hamiltonian. Using a co
pact notation, the HamiltonianH0 in Eq. ~2.6! can be rewrit-
ten as

H05(
n

pn
b* L̂pn

b , ~2.12!

where by definition~due to the choice of the most conve

tional Landau gauge! L̂ acts on the Bloch wave function in
the following way:

L̂pb~n!5exp~ ikx!pk
b~n21!1exp~2 ikx!pk

b~n11!

12 cosS ky12p
np

q Dpk
b~n!, ~2.13!

pb~n!5exp~ ikn!pk
b~n!,

wheren51, . . . ,q is a coordinate in the magnetic cell an
the wave vectork ranges over the reduced Brillouin zone
2p/a,kx,p/a, 2p/qa,ky,p/qa. It is worth noting
that if n labels the components of aq-component ‘‘vector’’

pk
b(n), then the operatorL̂ acts as aq3q Hermitian matrix.

In the case ofq54 one has, for example
L̂5S 2 cos~kx! exp~2 iky! 0 exp~ iky!

exp~ iky! 2 cos~kx12p f ! exp~2 iky! 0

0 exp~ iky! 2 cos~kx14p f ! exp~2 iky!

exp~2 iky! 0 exp~ iky! 2 cos~kx16p f !

D . ~2.14!
al
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Therefore, this HamiltonianH0 can be thought of as tha
corresponding to a particle hopping alongq sites around a
ring.22,23The spectrum ofH0 is known to possess a finite s
of q magnetic subbands, each state in these subbands b
q-fold degenerate instead of the infinite degeneracy inhe
to the continuous problem.23

The magnetic translational symmetry properties res
from the local-gauge invariance of the lattice theory, E
~2.1!. This implies that under the translationr→r1a the
propagator in Eq.~2.10! transforms as follows:

Gab~r1a,r 81a!5expH ip

F0
@B3a#~r2r 8!J Gab~r ,r 8!.

~2.15!

From Eq. ~2.15! it follows that Gab(r ,r 8) at coinciding
points does not depend onr . On the other hand, for the
ing
nt

lt
.

propagator from Eq.~2.15! one has the resolvent spectr
decomposition

Gab~r ,r 8!5dab(
n51

q

(
a51

q

(
k

Enk
21Cnka~r !Cnka* ~r 8!,

~2.16!

where n51, . . . ,q labels the magnetic band number, a

Cnka(r ) are eigenfunctions ofL̂ defined in the magnetic
Brillouin zone, 2p/a,kx,p/a and 2p/qa,ky,p/qa,
forming the basis of theq-dimensional irreducible projective
representation of the magnetic-translation group. The ex
energy spectrumEnk does not depend on the quantum nu
ber a51, . . . ,q.

There exists a remarkable property of the energy spect
resulting from the local-gauge invariance of the latti
theory, Eq.~2.1!. From this local-gauge invariance it follow
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that Enk depends onk only through the parameterD52
2cos(qkx)2cos(qky) and of course onq ~Ref. 24!

Enk5En~D,q!. ~2.17!

From the point of view of the critical properties of the no
linear s model under consideration, one can see that o
states lying near the bottom of the lowest magnetic subb
(n51) are relevant. Here it works in a similar way, as in t
well-known lowest-Landau level~LLL ! projection approxi-
mation for the continuous theory.

Within the effective-mass approximation the energy sp
trum as a function of a quasimomentum near the band’s
tom (D50) reads

E1k5e0~q!1
e2~q!

2
$~qkx!

21~qky!2%, ~2.18!

with e0,2(q) being coefficients of the Taylor expansion
E1k in powers ofk. Heree2(q)21 is proportional to an ef-
fective mass in the (x,y) plane,e0(q) being proportional to
a chemical potential. It is here rather essential that the ef
tive mass and chemical potential are some functions ofq.

In order to findb(T) we have to calculatêp i
2&, which is

given by

^p i
2&5 (

a51

q

Gaa~r ,r !5q(
n51

q

(
k

Enk
21. ~2.19!

The factorq appears as a result of the degeneracy of
spectrum and summation overa. Making use the effective-
mass approximation for the lowest magnetic subband,
evaluating the integral overk in Eq. ~2.19!, we arrive at the
following expression

^p i
2&5q(

k

2e2~q!21

~qkx!
21~qky!21m0

2
5

2~N21!q

e2~q!
ln

L

L8
.

~2.20!

Here,m0
252e0(q)/e2(q) denotes some effective mass. Wi

the help of Eqs.~2.9! and ~2.20!, one can readily derive the
beta function in the one-loop approximation

b~T,q!5~d22!T2
2~N21!qT2

pe2~q!
. ~2.21!

This expression is the lattice version of Eq.~2.11!. It leads to
the nontrivial ultraviolet-stable fixed point located at

T* ~q!5
~d22!pe2~q!

2~N21!q
. ~2.22!

We see that, in fact, Eq.~2.22! gives the phase-transition lin
Hc2(T) of the lattice model, Eq.~2.1!. The peculiarity of the
beta function, Eq.~2.21!, lies in its explicit dependence o
the frustrationq revealing a multifractal-type structure. Th
follows from the properties of the spectrum of a single el
tron in a magnetic field and a periodic potential~leading to
the so-called ‘‘Hofstadter’s butterfly’’ multifracta
structure19,20!. From the physical point of view this peculia
ity looks quite natural since the phase-transition tempera
must depend on the applied magnetic field. After settingq
ly
d

-
t-

c-

e

d

-

re

51, or H50, e2(q) becomese2(1)52 and the function
b(T) coincides with Eq.~2.9!.

The critical exponent for the correlation lengthn follows
immediately by differentiating Eq.~2.21! at the fixed point.
Keeping only the leading term ine one obtains

n52
1

b8~T* !
5

1

e
. ~2.23!

To determine Fisher’s critical exponenth one may apply the
conventional momentum-shell RG approach to first orde
e as described in detail in Refs. 16 and 17. After carrying
the standard RG computational procedure, we are led to
following expression

h~T!522d1
~2N21!qT

pe2~q!
. ~2.24!

Note that Eqs.~2.22! and ~2.24! yield the usual one-loop
resulth5 e/2(N21).

We have seen above that the (21e)-dimensional
frustrated-lattice model undergoes acontinuousphase transi-
tion on the coexistance curveHc2(T) and is characterized by
universal critical exponents, which we have calculated.
physical interpretation of this conclusion is quite simple: t
infinite degeneracy inherent to a charged particle moving
uniform magnetic field is lifted by a commensurate poten
suppressing the dimensional reduction effect and favor
the flux lattice state.6 At least at the lowest order ine the
frustrationq drops out of the critical exponents, these bei
identical to those for the conventional O(2N)-symmetric
Heisenberg ferromagnet. ForN51 the expressions obtaine
above obviously show a singularity in the factor 1/(N21),
which reflects the special properties of the neutral 2DXY
model.

III. WEAK-COUPLING EXPANSION
FOR THE GINZBURG-LANDAU MODEL

The approach that has been developed until now may
extended to the continuous GL model subject to a unifo
magnetic fieldB in d541e dimensions, in the spirit of the
work of Lawrie and Athorne.14,25This model is described by
the Hamiltonian

H5E ddxUS ]m1 i
2p

F0
AmDCaU2

, ~3.1!

where the summations overm51, . . . ,d and a51,...,N are
understood in Eq.~3.1!. Here C5@C1 , . . . ,CN# is an N-
component complex order parameter, the fixed-length c
straintuCu251 being imposed on the local fields. The vect
potentialAm is now taken within the symmetric gauge

A5
1

2
B3r , ~3.2!

where B is taken along thez axis. The partition function
associated with Eq.~3.1! reads

Z5E )
a51

N

DCaDCa* expS 2
H

T D d~ uCu221!. ~3.3!
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We shall make use of the same parametrization ofCa ex-
ploited in Sec. II

Cb~r !5pb~r !, b51,2,. . . ,N21,

p2~r !5pb~r !pb* ~r !, ~3.4!

CN~r !5A12p2~r !exp@ if~r !#.

Inserting Eq.~3.4! into Eq. ~3.3! and integrating out the
uCNu, we obtain the effective Hamiltonian convenient f
generating the low-temperature expansion

H5E ddxFUS ]m1 i
2p

F0
AmDpbU2

1S ]mf1
2p

F0
AmD 2

1~]mA12p2!2G . ~3.5!

Observe that no Jacobian arises from the elimination
uCNu. To determine the temperature renormalization in
lowest order of perturbation theory, we have to take in
account only the first two relevant terms in Eq.~3.4! and
disregard the third one describing the interaction between
transverse degrees of freedompb . The RG equation ob-
tained in this way is

1

T8
5

1

T
@12^p2~r !&s#, ~3.6!

where ^•••&s stands for integrating over the shor
wavelength transverse fieldspb .

Notice that the non-gauge-invariant correlation functio

Gab~r ,r 8!5^pa~r !pb~r 8!& ~3.7!

is the Green function of thed-dimensional Schrodinger op
erator

S 2 i ]m2
2p

F0
AmD 2

Gab~r ,r 8!5dabd~r2r 8!. ~3.8!

The exact solution of Eq.~3.8! in an arbitrary gauge reads26

Gab~r ,r 8!5dabexpS 2 i
2p

F0
E

r

r8
dxmAmD

3~4p!~22d!/2E
0

`

du
u~22d!/2

2 sinh~uv/2!

3expH 2
~z2z8!2

4u
2

v

8

3cothF1

2
uv@~x2x8!21~y2y8!2#G J ,

~3.9!

wherev5 2eB/c is the cyclotron frequency~here we have
set\51 and 2m51) andz andz8 are (d22)-dimensional
longitudinal coordinates. The integral in Eq.~3.9! is taken
over the straight line connecting the pointsr and r 8.

Near the phase boundaryHc2(T), only the lowest-Landau
level gives a dominant contribution to the gauge-invari
f
e
o

e

t

quantityG(r ,r ) entering Eq.~3.6!. The LLL approximation
leads to a nice simplification of Eq.~3.9!,

Gab~r ,r 8!5dabexpH 2 i
2p

F0
E

r

r8
dxmAm

2
v

8
@~x2x8!21~y2y8!2#J

3~4p!2 d/2E
0

`

duu~22d!/2

3expH 2
uv

2
2

~z2z8!2

4u J . ~3.10!

In going from Eq.~3.9! to Eq. ~3.10!, we have made the
following substitution in Eq. ~3.9!: coth(uv/2)→1 and
sinh(uv/2)→ 1

2 exp(uv/2) ~justified by the limitB→` of the
LLL approximation!.

To make further calculations more transparent, we w
make use of the mixed coordinate-momentum representa
for Gab(r ,r 8). After carrying out the Fourier transformatio
in the longitudinal variablesz,z8, Eq. ~3.10! becomes

Gab~x,x8,y,y8,k!5dab expH 2 i
2p

F0
E

r

r8
dxmAm

2
v

8
@~x2x8!21~y2y8!2#J v

k21j2
,

~3.11!

wherek is ad2 2-dimensional vector andj is a correlation
length in the longitudinal directions. The important concl
sion one may draw from Eq.~3.11! is that a dimensiona
reduction effect takes place in the physics of our model,
~3.1!. We have also set an irrelevant factor to unity.

With the result of Eq.~3.11! at hand, we can now readily
evaluatê p2(r )&s ,

^p2~r !&s5
~N21!v

p
ln

L

L8
. ~3.12!

Equations~3.6! and~3.12! yield the beta function in the one
loop approximation as well as the phase boundary, nam

b~T,B!5~d24!T2
~N21!v

p
T2,

~3.13!

T* ~B!5
p~d24!

~N21!v
,

It is remarkable that the calculation of the critical exponen
like the one carried out in Sec. II, leads now to the sa
universal values as given by Eqs.~2.22! and~2.24!, indepen-
dently of B.

We have seen that in contrast to the results obtained,
in Ref. 3 for the (62e)-dimensional case, acontinuous
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phase transition occurs in the GL model in 41e dimensions.
It is described by the critical exponents of th
O(2N)-symmetric Heisenberg ferromagnet~in the one-loop
approximation!. From the field-theoretical point of view w
are now dealing with the dimensional reduction effect with
the Abelian Higgs model defined by an Euclidean Lagra
ian, Eq. ~3.1! ~or, equivalently, in theN-component scala
QED!, in a large external magnetic field. The analogous
fect was recently shown to occur also in the conventional
spinor QED subject to an extremely high magnetic field l
in a vicinity of a neutron star.27

IV. CONCLUSIONS

It has been shown that the (21e)-dimensional
SU(N)-symmetric uniformly frustrated lattice spin mod
undergoes a second-order phase transition, described b
universal critical exponents of the O(2N)-symmetric Heisen-
berg ferromagnet irrespectively of the value of the frust
tion. Our calculations provide no evidence of a first-ord
phase transition. This result was found to hold both for
(21e)-dimensional lattice model as well as for th
(41e)-dimensional continuous GL model in an applie
magnetic field. The occurrence of the second-order ph
transition is in this case in contrast to the RG calculatio
carried out in (62e)-dimensions.3 Contrary to the conven
tional RG approach based on thef4 theory,9 the low-
temperature RG approach employed in this paper works
an arbitrary rational value of the frustrationf 5F/F0. It al-
lows us to compute the phase-transition boundary
Hc2(T), which is a very difficult calculation problem within
the standardf4 theory. In the case of the lattice model, th
coexistence curve exhibits a very complicated structure~in
fact, reminiscent of the ‘‘devil’s staircase’’9 inherited from
the Hofstadter’s butterfly’s structure19,20!, which can be de-
termined only numerically for all integer values ofq.

Our treatment can be easily extended to the large-N limit.
But the situation here is somewhat unclear since differ
groups of researchers have come to different conclus
concerning the nature of the transition. On the one hand,
.
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results—being in good agreement with those obtained wit
the 1/N expansion by Radzihovsky6 and by the authors o
Ref. 5—give evidence in favor of a continuous pha
transition.28 In particular, the nontrivial fixed point respon
sible for the second-order phase transition was found. Mo
over, from the equation for the correlation lengthj it follows
that there is a divergence ofj at criticality. One the other
hand, the calculation of the effective potential within the 1N
expansion as presented in Ref. 4, gives evidence for a fi
order phase transition. The origin of this discrepancy in c
clusions is rather subtle and probably lies in noncommuta
ity of the large-N limit and the thermodynamic limit~see, for
a discussion, Ref. 6!.

The main problem still open for future research is how
extend the results obtained by means of the low-tempera
RG approach to theN51 case. Thus, we have seen that t
underlying lattice plays an essential important role near
upper critical magnetic fieldHc2(T) restoring~like weak dis-
order! the continuous phase transition into the flux-latti
state. This is indeed the main result of our paper and we h
commented in the Introduction on possible direct appli
tions of the model we have studied.
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