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Conductance suppression in normal-metal–superconductor mesoscopic structures
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Using a scattering matrix approach and quasiclassical Green’s function technique, we calculate the conduc-
tance of the superconductor–normal-metal~S/N! system~see Fig. 1!. We establish that the difference between
the superconducting and normal state conductance (dG5Gs2Gn) is negative for large S/N interface resis-
tances (RS/N) and changes sign with decreasingRS/N. @S0163-1829~98!03742-4#
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I. INTRODUCTION

Recent studies of transport properties of mesosco
normal-metal–superconductor~N/S! structures~see Refs. 1,
2!, have revealed a number of new physical phenomena.
amples include the measured subgap conductance
superconductor–insulator–normal-metal~SIN! junctions,3–6

oscillations in the magnetoconductance of N/S systems w
normal or superconducting loops,7–12 and the nonmonotonic
dependence of the conductance on temperature
voltage.10,13 Although the majority of experimental resul
have been successfully explained, there are some which
main anomalous. In particular the increase in resistanc
diffusive N/S systems in a certain temperature range be
Tc ~Refs. 14–17! has remained unexplained for a number
years. An early theoretical prediction18 that superconductiv-
ity induced conductance suppression is a generic featur
N/S nanostructures was followed by quantitative theories
this effect in the ballistic and Anderson localized regions19 as
well as in resonant structures.20 However a quantitative
theory in the diffusive region has remained elusive. Seve
authors have suggested possible explanations of this puz
phenomenon. In the simplest~Ref. 14! the resistance chang
dRs5Rs2Rn is determined by a change in the interface
sistanceRb which is larger in the superconducting state th
in the normal state. Another possibility is presented in Re
21, 22 where a two-dimensional, multiprobe geometry w
considered. The currentI a passes through two contacts o
one side of the normal film contacting a superconductor
the voltageVb is measured between two probes located
the opposite side of the normal film. The authors of Refs.
22 showed that the quantityRab5Vb /I a may exhibit an in-
crease belowTcs compared with its normal state value.
this geometry the spatial distribution of the current is no
uniform. However in some experiments, the geometry is
most one dimensional with the current distribution across
width of the normal film almost uniform. Therefore th
mechanism may not be responsible for all the experime
observations of enhanced resistance.

In this paper we suggest an alternative mechanism wh
determines the change in resistancedRs ~or the conductance
dGs'2dRs /Rn

2) of the structure shown in Fig. 1. We wi
PRB 580163-1829/98/58~18!/12338~6!/$15.00
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show thatdRs may be positive if the interface resistanceRb
is large enough compared with the resistance of the met
film in the normal stateRn . The variationdRs is determined
by two factors: a variation of the shunting interface res
tancedRb , leading to a positive change in resistance an
variation of the normal film resistance due to a condens
induced by the proximity effect. In view of these conflictin
effects it is not obvious what signdRs will adopt for any
given parameters of the system. In what follows we use t
methods to study the change in resistance, namely an
lytical quasiclassical technique and a numerical scatte
approach. The scattering approach2 complements the quasi
classical method, and enables us to probe areas of param
space which lie outside the region of validity of the latter

II. QUASICLASSICAL THEORY

Consider the diffusive regime where the mean free pat
shorter than any other characteristic length in the system~ex-
cept the Fermi wavelength!. Such a case is realized in mo
experiments performed on metallic films or on doped se
conductors. For diffusive S/N mesoscopic structures, eq
tions for the quasiclassical Green’s functions were deriv
many years ago and are presented~in the most convenien
form suitable for the present analysis! in Larkin and Ovchin-
nikov’s paper.23 These equations must be supplemented
boundary conditions at the S/N interface derived by Zaitse24

~see also Refs. 25, 26! and have been used extensively f
the theoretical study of transport properties of S/N mes
copic structures.27–37

FIG. 1. The structure considered.
12 338 ©1998 The American Physical Society
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In this paper we shall assume that the proximity effec
weak, i.e., the amplitude of the condensate induced in
normal film is small. We will show that this is true for struc
tures where the S/N interface resistance (Rb), in the normal
state, exceeds the resistance of the normal film. When
condition is satisfied, the condensate functions obey the
earized Usadel equation and the distribution function ob
the equation~see Refs. 29, 34!,

L2]x@~12m!]xf #5 f gbGbq@xP~S/N!#, ~1!

where the functionq(x) is equal to 1 in the S/N region an
zero otherwise,m5 1

8 Tr(F̂R2F̂A)2 andF̂R(A) is the retarded
~advanced! Green’s function,gb5rL2/Rbhd5gb1(L/L1),
gb1 is the ratio of the normal film resistance to the S
resistance,Rbh is the S/N interface resistance per unit area
the normal state, andr andd are the specific resistivity an
the thickness of the normal film. The functionGb(x) deter-
mines the local normalized conductance of the S/N interf
in the superconducting state,

Gb~x!5nsnn1
1

8
Tr~ F̂R1F̂A!~ F̂s

R1F̂s
A!, ~2!

where the density of states~DOS! in the superconductorns

5Re„(e1 iG)/A@(e1 iG)22D2#… and nn is the DOS in the
normal film ~for simplicity we assumenn51, i.e., theS and
N metals are regarded as identical apart from the crit
temperature, we also assume thatTcn50). G is the damping
rate in the excitation spectrum of the superconductor. T
first term in Eq.~2! describes the contribution of the quas
particle current to the conductance~if G50 it differs from
zero only at energiesueu.D). The second term is due t
Andreev reflection and describes a conversion of the lo
energy quasiparticle current into the condensate curren~if
G50, the current is not zero forueu,D). The condensate
functions F̂s

R(A) in the superconductor are assumed und
turbed by the proximity effect@this is true provided thatD
@gb5Kb

2D, whereKb
25(Rbhds)21], and they are equal to

F̂s
R~A!5 i t̂yFs

R~A! , ~3!

whereFs
R(A)5D/A@(e1 iG)22D2#. Assuming that the right-

hand side of Eq.~1! is a small perturbation we easily find
solution for

f 5H H J1Fx1E
0

x

dx1~m1mb!G J , 0,x,L1 ,

@J~x2L1!1 f ~L1!#, L1,x,L,

~4!

where J1 and J are the energy-dependent integration co
stants. The currentI through the system is expressed in ter
of J ~see Refs. 33, 34!,

I 5~sd/2e!E deJ~e!. ~5!

The functionmb in Eq. ~4! is given by

mb5~gb /L2!E
0

x

dx1x1Gb~x1!. ~6!
s
e
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n-
s

e

l

e

-

-

-
s

In the reservoirs the distribution function has the equil
rium form

f ~e,L !5Fv5@ tanh~e1eV!b2tanh~e2eV!b#/2, ~7!

where b5(2TkB)21. By matching the functions and the
derivatives atx5L1 and using Eq.~7!, we find for the ‘‘par-
tial current’’ J(e)

J~e!5~Fv /L !@12^m&1 l 1~mb12^mb&1!#. ~8!

The angle brackets mean a spatial averaging over the reg
(0,L) and (0,L1); mb15mb(L1), l 15L1 /L. With the aid of
Eqs.~5! and ~8!, we find the normalized difference betwee
the differential conductances of the system in the superc
ducting state and the normal state

dS5
Gs2Gn

Gn
52E

0

`

debFv8$^m&1 l 1@^mb2mb
n&1

2~mb12mb1
n !#%/@11gbl 1

3/3#. ~9!

HereGs,n5(dI/dV)s,n is the differential conductance below
and aboveTcs ; mb

n is the functionmb(x) in the normal state:
mb

n5gbx2/2L2, Fv85]Fv /](eVb).
Let us discuss the physical meaning of the different ter

in Eq. ~9!. The first term gives a positive contribution todS
(^m& is negative). This term arises from the renormaliz
tion of the normal film conductance caused by the induc
condensate. This has been calculated in several papers34–37

where it was established that this term has a nonmonot
voltage and temperature dependence decreasing to ze
@eV,T#50 and@eV,T#@eL (eL5D/L2 is the Thouless en-
ergy!. The second term in Eq.~9! determines the change i
conductance due to different values of the S/N interface
sistance in the normal and superconducting states. The
tribution of this term todS is negative because the S/N in
terface resistance in the superconducting state is larger
the normal state interface resistance~as long as the barrie
transparency is not too high!. Let us estimate the magnitude
of these terms. Ifgb is small, the second term in Eq.~2! ~the
subgap conductance! is small compared with the first term
Therefore at low temperatures the contribution caused by
second term in Eq.~9! is related to a change in the DOS o
the superconductor. This yields

dSDOS'2gbl 1
3/3. ~10!

As we shall see, the amplitude of the condensate functi
F̂R(A) induced in the normal film by the proximity effect is o
the ordergbl 1 , i.e., of the order of the ratio of the norma
film and the S/N interface resistances. The characteristic
ergy of decay ofF̂R(A)(e) is the Thouless energyeL . Thus
the contribution todS from the proximity effect@the first
term in Eq.~9!# is ~if eL,T!D and l 1!1),

dSpr'gb
2l 1

2 . ~11!

Comparing Eqs.~10! and ~11!, we see that the sign ofdS
changes from negative to positive asgb increases and
dSmin'2l1

4 is reached whengb' l 1 .

In order to finddS, we need to calculateF̂R(A). As noted
above, in the limit of a weak proximity effect the functio
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F̂R(A) obeys the linearized Usadel equation which may
presented in the form~see, for example, Refs. 33, 34!,

]xxF̂
R~A!2~kR~A!!2F̂R~A!52~gb /L2!F̂s

R~A!q@xP~S/N!#,
~12!

where (kb
R(A))25(72i e1g)/D, g is the depairing rate in

the normal film. The solution to Eq.~12! satisfying the
boundary conditionsF̂R(A)(6L)50 is the function

F̂5~gb /u2!F̂sH @12c2 cosh~kx!#, 0,x,L1 ,

$s1 sinh@k~L2x!#%, L1,x,L.
~13!

Here u5kL, c25cosh(u2)/cosh(u), s15sinh(u1)/cosh(u),
u1,25kL1,2, L25L2L1 . For convenience we have droppe
the indicesR(A). One can see from Eq.~13! that at charac-
teristic energiese'eL!D the amplitude ofF̂R(A) is of the
ordergbl 1 . It is worth noting that ifl 1!1 ~this condition is
satisfied in most experiments!, then the magnitudegbl 1 cor-
responding to the actualgb is of the orderl 1

2, i.e., asl 1 is
small, the proximity effect is small.

FIG. 2. The two curves show the dependence ofdS on gb , for
the solid curvel 150.4 and for the dashed curvel 150.2, where
both curves have the parametersG50.1(5G/eL), D510
(5D/eL), g50(5g/eL), a51.0@5a/(2TKB)#, and V50
(5V/eL).

FIG. 3. The dependence of the conductance variationdS on
temperature forgb51.5,0.7,G50.1, l 150.4, D510, g50, andV
50.
e

From Eq.~13!, we can find the quantitieŝm&, mb1 , and
^mb1&. Substituting them into Eq.~9!, we obtain the varia-
tion of the normalized conductancedS as a function of tem-
peratureg1 , l 1 , etc.~see the Appendix!. In the general case
the expression fordS has a rather complicated form, but ma
be simplified drastically by taking the zero-bias, zer
temperature limit, in which casedS becomes

dS05gbl 1
3Fgbl 1S 12 l 1

4

15D2
1

3G . ~14!

In this case the contribution due to the variation of t
normal region conductance goes to zero@the term^m& in Eq.
~9!#. The variationdS is caused by a change in the S/
interface conductanceGb ; the first term in Eq.~2! gives a
negative contribution, and the second term~i.e., the subgap
conductance! gives a positive contribution. This expressio
also changes sign atgbl 1'1/3. However, in this case th
condensate amplitude is not small, and strictly speaking,
~14! is not valid whengbl 1 is of order 1. Nevertheless, w
show later using numerical calculations that this conclus
regarding the change in sign ofdS remains valid in the zero-
bias, zero-temperature limit. Figure 2 shows the depende
dS(gb) for l 150.2 andl 150.4. We see that in accordanc
with qualitative speculations given above,dS is negative at

FIG. 4. Dependence ofdS on gb , for differing depairing rates
g50,0.4,0.8, withG50.1, l 150.4, D510, andV50.

FIG. 5. Dependence ofdS on V for G50.1, l 150.4, D510, g
50, gb51.5, anda51.0.
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PRB 58 12 341CONDUCTANCE SUPPRESSION IN NORMAL- . . .
small gb , reaching a minimum with increasinggb and then
changing sign. The magnitude ofdSmin decreases with de
creasingl 1 and depends on temperature in a complica
nonmonotonic way~see Fig. 3!.

In Fig. 4 we show the dependence ofdS on g ~g may
increase by applying an external magnetic field,g;H2), the
effect of a negativedS becomes more pronounced. This b
havior is quite clear from a physical point of view. The a
plied magnetic field suppresses the proximity effect, but
fects the DOS only weakly. Therefore the relati
contributiondSDOS increases with increasing magnetic fiel
A similar situation takes place in fluctuation paraconduct
ity in layered superconductors where an increase in the
sistance due to superconducting fluctuations is enhance
the magnetic field.38

In Fig. 5 we plot the voltage dependence ofdS. One can
see that two maxima exist in this dependence; one is clos
zero bias and another one located ateV'D. A similar volt-
age dependence of the phase coherent conductance has
ffi
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observed in the recent work of Ref. 39. We note that
though the effect of the conductance decrease is sm
(<5%), in dimensional units the conductance decreasedG
may be much larger than the quantum conductance 2e2/h
(dG@2e2/h). Only in this limit can we use quasiclassic
theory.

III. NUMERICAL SIMULATIONS

In this section we use the scattering approach reviewe
Ref. 2 to determinedS, for a tight binding lattice with the
geometry of Fig. 1. In the linear-response limit, at zero te
perature, the conductance of a phase-coherent structure
be calculated from the fundamental current volta
relationship,40–44

S I 1

I 2
D5S a11 a12

a21 a22
D S v12v

v22v D , ~15!

where, at finite temperatures,
S a11 a12

a21 a22
D 5

2e2

h E
0

`

dES 2
] f ~E!

]E D S N1
1~E!2R0~E!1Ra~E! Ta8~E!2T08~E!

Ta~E!2T0~E! N2
1~E!2R08~E!1Ra8~E!

D . ~16!
tor

ites
20

rder
ues
re-

ig.

ver-
Equation~15! relates the currentI i from a normal reser-
voir i to the voltage differences (v j2v), wherev5m/e ~m
is the chemical potential of the superconductor!. The ai j ’s
are linear combinations of normal (T0 ,R0) and Andreev
(Ta ,Ra) scattering coefficients. The primes on the coe
cients refer to quasiparticles originating from the right-ha
reservoir, while the coefficients without primes refer to p
ticles from the left reservoir. SettingI 15I 52I 2 and solving
Eq. ~15! the two probe conductance is~see Ref. 45!,

G5
a11a222a12a21

a111a221a121a21
. ~17!

As noted in Ref. 45 in the presence of disorder, the v
ous transmission and reflection coefficients can be comp
by solving the Bogoliubov–de Gennes equation on a tig
binding lattice of sites, each labeled by an indexi and pos-
sessing a particle~hole! degree of freedomc( i ) @w( i )# @c~w!
is the particle~hole! wave function#. In the presence of loca
s-wave pairing described by a superconducting order par
eterD i , this takes the form

Ec i5e ic i2(
d

t~c i 1d1c i 2d!1D iw i ,

Ew i52e iw i1(
d

t~w i 1d1w i 2d!1D i* c i . ~18!

In what follows, in the normal diffusive region, the on
site energye i is chosen to be a random number, uniform
distributed over the intervale021 to e011, whereas in the
cleanN regionse i5e0 . In theS region, the order paramete
is set to a constant,D i5D0 , while in all other regions,D i
-
d
-

i-
ed
t-

-

50. The nearest neighbor hopping elementt merely fixes the
energy scale~i.e., the bandwidth!, wherease0 determines the
band filling. In what follows we chooset51. By numeri-
cally solving for the scattering matrix of Eq.~18!, exact re-
sults for the dc conductance can be obtained.22,41,44 In the
zero bias, zero temperature limit, Eq.~17! is greatly simpli-
fied and reduces to

G5T01Ta1
2~RaRa82TaTa8!

Ra1Ra81Ta1Ta8
. ~19!

For the structure shown in Fig. 1, with a superconduc
of length 2L1 and a barrier resistanceR, evaluation of this
expression yields results for^Gn&, ^Gs&, and^dG& shown in
Table I. In each case, the normal diffusive region is 40 s
wide and 64 sites long. The superconductor is of width
sites withD050.1 (D050) in the superconducting~normal!
state. Results are obtained by averaging over 100 diso
realizations, yielding an estimated error in the mean val
of approximately 0.04. The first row of the table shows
sults forL1530, R52 and demonstrates that a negativedG

TABLE I. The numerical results for the structure shown in F
1, for various lengths of superconductor (L1) with various barrier
resistances~R!. The conductances shown are the ensemble co
ages.

L1 R ^Gn& ^Gs& ^dG&

30 2 3.70 3.40 20.30
30 0.5 4.10 4.26 0.16
20 2 2.93 3.06 0.14
30 2 3.79 3.47 20.33
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can indeed occur, and comparison with theR50.5, shows
that lowering the interface resistance causesdG to change
sign. As discussed previously, this result was expected
though could not be proved using quasiclassical theo
Also, as discussed previously, whenL1 is decreased~e.g., to
L1520 with R52) the table shows thatdG changes sign
and becomes positive. Finally, to examine the effect o
magnetic field, the fourth row of the table shows results w
a magnetic field applied to the normal region~corresponding
to 0.8 flux quanta through the whole structure!. This demon-
strates that the introduction of a magnetic field cause
negativedG to become more negative in agreement with
quasiclassical approach but in conflict with experimental e
dence.

Finally we note that at a finite temperature (kBT5eL),
where the full integral of Eq.~16! needs to be evaluated, w
find for the structure of row 1 in the table,^Gn&53.68,
^Gs&53.56, ^dG&520.12, which confirms the predictio
made using the quasiclassical approach, that the onse
superconductivity causes a drop in the conductance of
structure, even at finite temperatures.

IV. DISCUSSION

We have demonstrated that superconductivity-indu
conductance suppression is an inherent property of the s
ture of Fig. 1. The suppression of the conductance at t
peratures belowTcs is <5% and it is enhanced by the ap
plication of a magnetic field. In the experiment of Ref.
l-
y.

a
h

a
e
i-

of
e

d
c-
-

a stronger effect (10– 20 %) is observed, which decrea
when a rather weak magnetic field is applied. Meanwhile
the experiment of Ref. 17 a small increase of the resista
DR was observed~less than 1%! and this effect of positive
DR ~negativeDG) was enhanced by applying a weak ma
netic field. The results of the latter experiment are in qua
tative agreement with our theoretical results. A quantitat
comparison is difficult to carry out as the value ofgb which
is crucial in the theory is unknown. If we accept that t
conductances of the S/N interfaces~there were several supe
conducting strips on theN film! are comparable, i.e.,gb

'1 and l 1'1/2, then we obtain fordS'gbl 1
3/3<5%. As

noted in Ref. 17 the effect of positiveDR and its magnetic
field dependence is very sensitive to technological treatm
This suggests that the magnitude of this effect is depend
both on the geometry of the structure and on the fabrica
method used. For the future, it would be of interest to co
firm this experimentally by measuring the conductance
S/N structures of the type shown in Fig. 1 with differe
ratios of the normal channel and S/N interface resistance
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APPENDIX

Using Eq.~12! we easily find the expression for the quantities in Eq.~8!. We have

^m&52
1

2
@ uFsu2^ubu2&1Re~^b2&Fs

2!#, ~A1!

whereFs is defined in Eq.~3!,

^ubu2&5
gb

2

uuu4 H l 1F11
uc2u2

2 S sinh~2lu8!

2l 1u8
1

sinh~2l 1u9!

2l 1u9 D22 ReS c2

sinh~ l 1u!

l 1u D G1 l 2

us1u2

2 S sinh~2l 2u8!

2l 2u8
2

sin~2l 2u9!

2l 2u9 D J ,

~A2!

^b2&5
gb

2

u4 H l 1F11
c2

2

2 S sinh~2l 1u!

2l 1u
11D22c2

sinh~ l 1u!

l 1u G1 l 2

s1
2

2 S sinh~2l 2u!

2l 2u
21D J , ~A3!

mb12mb1
n 5gbl 1

2H ns21

2
1

gb

2
Re

A

u2 F1

2
2c2S sinh~u l 1!

u l 1
2

cosh~u l 1!21

~u l 1!2 D G J , ~A4!

^mb&12^mb
n&15gbl 1

2H ns21

6
1

gb

2
Re

A

u2F1

6
2

c2

~u l 1!2 S cosh~u l 1!112
2 sinh~u l 1!

u l 1
D G J , ~A5!

c25cosh(ul2)/cosh(u), s15sinh(ul1)/cosh(u), u5kL, A5uFsu22Fs
2 , u85Re@u#, u95Im@u#.
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