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Quantum depinning of a domain wall in a magnetic field
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We investigate the quantum tunneling of a domain wall placed in a magnetic field at an arbitrary angle.
Using classical soliton solutions, we derive a domain wall mass which depends on the magnetic field and find
that the tunneling time and the crossover temperature strongly depend on the direction of the magnetic field.
The results are also discussed at finite temperaf@@163-18208)09641-9

I. INTRODUCTION between theoretical and experimental results.
A few theoretical studies of QTDW have been around for

In recent years, small magnetic particles have emerged aome time. Egamt gave a theoretical suggestion that the
good candidates to display quantum behavior at a macrademperature-independent magnetic aftereffects observed at
scopic scalé. One such system is nonuniform magnetic low temperature by Barbara and collaboratbraight origi-
structure exhibiting a domain wall which is a soliton con- nate from the quantum diffusion of domain walls. However,
necting two stable spin configurations separated by an erhis idea is only applicable to an extremely narrow wall
ergy barrier associated with magnetocrystalline anisotropywhose width is of the order of the lattice constant and pinned
In general, a domain wall is pinned by an impurity, lowering by the crystal potential itself, which is contrary to typical
the anisotropy energy localfyAt finite temperature, there is walls having a thickness of 100 A and being pinned by an
a jumping of a domain wall induced by thermal fluctuationsimpurity. Even though several workéfssuggested the tun-
whose rate is proportional to expU/kgT) whereU is the  neling of a domain wall by using the WKB method, QTDW
height of energy barrier related to the pinning enetdy.a  did not receive wider attention until Stafjnvestigated
temperature low enough to neglect the thermal activationQTDW based on the Heisenberg model with a uniaxial an-
depinning of a domain wall may occur due to quantum tun4sotropy. By using a classical solution of the plane domain
neling by applying an external magnetic field. In order for awall coupled to a point defect, he estimated the tunneling
system to be a good example for quantum tunneling, theate and contributions of magnons and phonons in terms of
energy barrier through which it tunnels should be low andthe coercive field, saturation magnetization, exchange, and
narrow, and the effective mass of the system be not too larg@nisotropy constants. Later, Chudnovsky, Iglesias, and
in which the tunneling rate becomes large enough for obsenstamp (CIS) developed a formulation of the problem which
ing quantum tunneling of a domain walQTDW) involving  takes the curvature effects of a domain wall into consider-
~10* spins. In this situation, the magnetic field is a goodation, and confirmed Stamp’s work that the quantum tunnel-
physical quantity to control the height and width of the bar-ing of a domain wall may reveal itself at a macroscopic level.
rier and the effective mass of the system. For the dynamicaBesides the magnon and phonon studied by Stamp they
process, it is also important to consider the effect of thebriefly touched the effects of conduction electrons, photons,
environments on the quantum tunneling rate caused by thand the mobility of the domain wall. Since then, QTDW has
coupling between the domain wall and magndnghotons,  been the subject of considerable theoretical interest. Among
phonong'=® nuclear spin® eddy current, and Stoner them, recently, Braun, Kyriakidis, and Ld4$BKL) found
excitations’ Even though some of them are an unsuspectethat the WKB exponent and the crossover temperature are of
influence on the quantum dynamics depending on the situaifferent functional forms than that found by CIS and the
tion, many studies have shown that they are not strongources for these discrepancies are different soliton mass and
enough to make QTDW unobservable. functional dependence of the pinning potential on the coer-

Experiments which indicate the possible presence of tuneivity.
neling of a domain wall have been reported. By measuring Up to now theoretical studies for QTDW were confined to
the electrical resistance of Ni wire with diameters betweerthe condition that the magnetic field be applied in the oppo-
20 and 40 nm, Hong and Giordadfiestudied the motion of  site direction to the initial easy axis. In this work we will
magnetic domain walls and observed a flattening of the temextend the previous considerations to a system with a mag-
perature dependence of the mean switching field and a satoetic field applied at some angle to the easy axis of magne-
ration of the width of the escape field distribution below tization. We will show that the WKB exponent depends on
~5K. Even though they proposed that a domain wall es-dy via (1+ v tan 6,)*? and the crossover temperature @n
capes from its pinning sites by QTDW below5 K, their  via (1+ » tan 6y) "2 where v will be discussed later. It im-
measurements raise several questions, among them whetties that no tunneling is expected when the field is perpen-
the crossover temperature from thermally activated tdicular to the easy axis. Also, we will present numerical
guantum-mechanical decay is two or three orders of magniresults for the WKB exponent below the crossover tempera-
tude higher than the one predicted by current thedriest  ture and discuss the thermal correction to the quantum tun-
the present it is not easy to perform a direct comparisomeling rate.
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z : : analog which is called the Wess-Zumino term of the spin
systen® and whose phase space is thep(ll)-dimensional
| 5 20T Tttt space with the Poisson bracket relations of the spin angular
HAUELLLVV LN momenturrt’
x ] s ] i For our study of the dynamics ofl we take the biaxial
y «— symmetry whose magnetic anisotropy energy density is
direction of domain wall given by

FIG. 1. A configuration of magnetization is shown in a thin long ~ ~ 5
slab geometry where the wall plane is parallel to the easy ais ( Ea=—KMz+tK, My, (3
and the spin configuration spatially varies along in xhdirection. .
whereK, andK, , are the parallel and transverse anisotropy
This paper is organized as follows. In Sec. Il, we briefly constants. The easy axis is represented-hy, and the easy
discuss the domaiq wall dynamics for a_ferromagnet by usinglane is perpendicular té,. Since the exchange energy
the classical equation of motion. Applying an external Mag-yensity is expressed @&,,=(C/2)(VM)2 where C is an

netic field with a general directiond(,), we derive the ef- exchange constant, the energy density in the actionis
fective domain wall mass which includes the field direction.given by

In Sec. lll, we perform the approximation of the potential in

the smalle limit and find the expression which shows the E[6(r,1), b(r,1)] =K SiR0+K, St psintd
explicit dependence of the physical parameters for the gen-
eral form of the potential. Within the instanton approach, we
obtain thed, dependence of the WKB exponentTat 0 for

a specific pinning potential and estimate its magnitude for
various magnetic materiat§. These considerations will be Where E=E,+E,+K; to makeE(6,¢) zero at the easy
extended to finite temperature in which the quantum andwxis, K, =K, ,+ 277M§, and ZWMS comes from the demag-
thermal fluctuation coexist. In Sec. IV, we numerically netization energy for the slab geometry.

present thed,, dependence of the tunneling time and the Following the analysis discussed in Ref. 14, for the
crossover temperature for the materials considered in Sesample with widthw<7/C/2K, we can treat the system as
[, and give the validity of the results derived near a classi-quasi-one-dimensional. The domain wall corresponding to

+%C[(V€)2+(V¢)Zsir120], (4)

cal depinning field. the energy density is perpendicular to thexis, where the
magnetization rotates in the easy plafez plane and
Il. FORMULATION OF THE PROBLEM changes in thex axis. The wall position is centered &t

. ) ) ) along thex axis. From Eq.(2) the soliton solution which
In this section, we consider the domain wall of the slabyescribes the motion of the domain wall is given by

geometry, as shown in Fig. 1. We work with the systems by

assuming that the domain wall thickneksis sufficiently x—Q

larger than the lattice constaatbetween spins in which a 04(x—Q)=2 arctan ex() x ) (5
continuum approximation for the magnetizatibhis valid.

Since the phenomena considered occur at a temperature far

below the Curie temperature, the magnitude of the magneti- . singsCos ¢
zation M, is constant. However, its directiddl can change vo V1+k sirPes
depending on the energy which is composed of the magnetic

anisotropy energy, the exchange energy, and the demagnetfherek=K, /K, andv,=yy2CK;/My. We note here that
zation energy. As we introduce the angiésind ¢ for the  6s—0 (m) att—o (—o) for a given spatial positior. The
direction of M in the spherical coordinate system, the dy-width of the wall is given by

namics ofM is determined by the least-action trajectory of

(6

the action N = Ao @
VI+K sitPy.
Mg dep(r,t)
SIM(r.H]= f (T[COS or0- 11— where \ o= JCI2K, is the width of the static wall which
represents a compromise between exchange and anisotropy
+E[M(r,t)]]dtd3r, (1) energy. Assuming thad is much smaller than the Walker
critical velocityv o( 1+ k—1),2 the components of the mag-

whose classical trajectory satisfies the well-known LandauP€tization are approximately given by
Lifshitz equatiort®

: 2
N x—Q 1/ Q
m_ L OE , Mﬁsec'( \ ){1_§(E0) } ©
at ™M @
where y=gug/# is the gyromagnetic factor. Here we note M :secVEX_Q) (g) (9)
that the first term of the integrand in E{.) has no classical Y A kv
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Mzztanl‘( Q), (10
A
and the corresponding energy becomes, from(&y.
1 .
Jd3rE[Hs(r,t),q&s(r,t)]zZAW\/ZCK”JrEMQZ,
11
with the wall mass
M=A Mo \/ZK” 12
Az N (12

where A,, is the cross sectional area of the sample. As is;
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can tunnel out of the potential. As the magnetic field contin-
ues to increase, the metastable minimum can disappear and
the domain wall moves classically. This critical magnetic
field is called a classical depinning fie{@DF). In order to
make the potential barrier small and narrow which is the
optimum condition for the observability of tunneling events
as we shall see, we concentrate ourselves on the neighbor-
hood of the CDF. In this situation, let us define the potential
to be

U1(Q)=Vp(Q)—h,Q—[Vp(Qo) —h,Qql,

where Qg,0) is the metastable point &f(Q). Expanding
the pinning potentiaV,(Q) aroundQ=Q; which is theQ
oordinate of the inflection point o¥,(Q), we obtain an

(16)

noted in Eqgs.(8), (9), and (10) a static domain wall only approximate form of the potential given 8y
rotates in the easy plane. However, as it moves, the spins

precess and a component of the magnetization out of the

plane,M,, appears wittM,Q in Eq. (9). Thus, the inertial

term in Eq.(11) is closely related to the precession of the

V(n) D)

(Q
U(@)=[Vy(Q)—hl(a=ao)+ ——;

(9"—dp),

(17)

spins. If defects are present in the samples, they can pin the

domain wall. Assuming that the radil® corresponding to
the defect volume is much smaller than the wall thickness
the wall is pinned by a potential fofin

Vp(Q) = —Vgsech(Q/\y), (13

where U(q)=U1(Q), 4=Q—Q;, qo=Qo— Qi(<0), and
the higher-order terms are neglected. Noting Mg?(Q;)
=0, n is greater than 2. In order théit(q) have a metastable
state, we nee¥ ;(Q;)>h, andvg‘)(Qi)<0, andn should be
odd. Since the local minimum vanishes fof=V(Q;) in

with V, proportional to the volume of the defect, where we Ed. (17), V(Q;) becomes the CDF. Denoting,(Q;) to be

have replacedh by Ay and neglected the higher order of
O(Vo/Ep) with Eq=2A,\2CK,. Also, assuming that a

concentration of defects is small, the pinning energies be-
come small, in which the radius of curvature of the wall is

much larger than. Since it is shown'® that weak curvature

has very little effect on wall tunneling, the wall can be as-

h$, from Eq.(17) the metastable poird, is given by

(n_l)l 1/(n—l)
=—|———hC , 18
o= vl ™ 19
where e=1—h,/hij=1-h/h, and h=V,(Q)]

sumed to be flat and remained flat during the tunneling pro=hccosé, . In a magnetic field lower than CDF, the domain

cess.
If we now apply an external magnetic field in the
plane, its energy is written as

f d3rEH[|v|(r,t)]=—AWf dx(MoH,M,+MgH,M,)

= _2AWM0HZQ+ WAW)\MOHX
: 2
k+1\[ O
7 ko) (14

where Eqs(8) and(10) were inserted. Thus, from Egdll),
(13), and(14) we obtain the total energy for the wall:

1 .
f d*r(E+En)= EMeﬁQ2+Vp(Q)_thr (19

where M g=M+7A N MHy(k+1)/(kvo)?
=2A,MH,.

and h,

IIl. QUANTUM TUNNELING OF THE DOMAIN WALL

Before we get into a discussion of the specific form of the

pinning potential such as E@13), we consider an arbitrary
pinning potential which might be useful for a situation like

wall can make a tunnel through the potential barrier. Then,
according to the standard instanton metheek{t), we can
obtain the tunneling rate given by

/B
Co > wexp(—B),

where w, is a characteristic tunneling frequency which is of
the order of the barrier frequeney, andB (=S /%) deter-
mined by the classical trajectory from the Euclidean action

) dq
Sg= f d eff
—Bhi2

dr
with B=1/kgT. In Eq. (19), C, is the preexpotential factor
which stems from the quantum fluctuations around the least-
action trajectory.
Applying the scale transformations to the acti@®), we
obtain

r (19

1 2
EM

T

+U(Q)}, (20

(n—l)! 3/2(n—1)
S m} (nee) ™ M
a2 _[1(dg\® - -
xf a7 5| =) +0@ |, (21)
—AR2 dr

many random impurities. Since the external magnetic field _ _
brings the system into a metastable state, the domain walthereq=—0qq0, 7= 7/79, andA = Bh 79 with
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FIG. 2. Theq dependence of the scaled potentiiq) for different values ofh, wheren=3 (a), 5 (b), 7 (c), and (d). Note that

(=1,0) and(1, 2—2/n) are the metastable point and the barrier, respectively.

hze)(n—Z)/Z(n—l) V(n) ) 1/2(n—1) A C
e S . (22 p= MG HZ, (27)
Meff (n_l)l ‘yh KHKL
andU(q)=q+1—(gq"+1)/n. As is shown in Fig. 2, the| ™ J1 1
position of the barrier is 1 which is independentrof the v=7MoH; K, + K. ) (28)
height of barrield,,=2(1— 1/n), and the scaled barrier fre-
quency wo[ = V—U"(qm,)]1=(n—1)Y? which characterizes . hS 26V, K,
the width of the top of the barrier frequency hindering the Hzl =5A My~ 9 AM, VT (29)
tunneling process. From E(R1) the extremal trajectory sat- " W
isfies c
__ 30
d% N ¢ cosfy (30
— - (1-g" =0, (23 _ |
dr Up to the numerical factor the expressi®b) can be ob-

with the periodic conditiorq(7)=q(7+A). From now on
let us consider the specific pinning potentiaB), in which
VE@)(Q)) is the first nonvanishing term in E¢L7).

A. QTDW at zero temperature

With the boundary conditiong(*=)=0 andq(0)=q,
at T=0 whereq, is the exit point of the potentidl (q), the
solution of Eq.(23) for n=3 becomes

q(7)=3 secR(7/v2)—-1. (24)

The substitution of this solution into Eq21) with n=3
gives a simple formula for the WKB exponeBt

tained from the ratio of the barrier heigbk, to the barrier
frequency w, without knowing the explicit form of the
bounce solutior(24). By using the general form of the po-
tential (17), the height of barrier and the barrier frequency
which represents the frequency of small oscillations around
the minimum of the inverted potentiat U(q) are given by

—1)1 1¥(n-1)

0:2{ (n—1)!

1
VIQ))] (héf)n/(nl)( 1- ﬁ)’ )

[(n—1)1]("-2/2n-1)
CeT T Tn—-2)1"

(hge)(nfz)IZ(nfl)|V§)n)(Qi)|1/2(n71)

\/Meﬁ

(32

B(6,4)=Bg\1+ v tan 6y, (25)
nee 4 Thus, with the help of Eq(13), M., andh, in Eq. (15), its
where ratio forn=3 becomes
By— -2 2% s 26 Yo _Opg 33
0o~ 5 ME ( ) ﬁwe_36 ( H)! ( )
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FIG. 3. The#, dependence of the relative WKB expon@(tf,)/B, for the samplega) YIG, (b) Ni, and(c) SrRuG.

where 5/36 is a typical num%rical constant for linetwr I'=A exp(—B), A depends on the orientation of the mag-
quadratic} plus-cubic potentiaf netic field through (# v tan é,) Y% Noting the 6, behav-

The angular dependence Bfis plotted in Fig. 3 for fer- jor of B andA, the tunneling rate decreasestsgincreases.
romagnetic samples of yttrium iron garngtlG), Ni, and

SrRuG; by using the physical values given in Table I. In B. QTDW at finite temperature
these materials it rises sharply as approachesr/2 in ac- . . - ' o
cordance with the fact that &ty = 7/2 the potential forQ In this case the classical trajectogy(7) which mini-

created by impurities is not deformed by the magnetic fieldnizes the action satisfies E@®3) with period A. The peri-
and the position of the domain wall at the pinning center isodic solutions are|y(=1) andq(7), determined by

not metastable any more. In YIG and Ni the behavior of the - ~
ratio B(6y)/B, is almost flat foré,, not close tom/2. How- 1 (dq) ~ g3+1

ever, in STRu@it has a strong dependence on the orientation 2
of the field because of a largemainly originating from a

larger coercivityH; compared with the coercivities for YIG whereE is determined by the condition that the period of the
and Ni. It would therefore be interesting to study the angulaiy,qtion is equal to\. For the constant solutiog, the clas-

=q+1- —E(A), (34)

dr

dependence of the WKB exponent in SrRUO , sical action becomes, from Eq1), (22), and(31),
In order to obtain the complete form of the tunneling rate
I', we need to calculate the preexponential facgrin Eq. SCE':SO:lgﬁUO, (35)

(19) which comes from the fluctuation about the least-action

trajectory. Since the potential is of the for\ym; g3 in our  and the escape rate

case, the preexponential factor becorégs-4/15, which is _ _ _

the same as the result in the potential of the farfn-g°.2 Toxexp(=So/f)=exp(~Uo/ksT), (36)
From the bouncé24) and the scaling parameté?2) for n  which is the Boltzmann formula representing a pure thermal
=3 the angular dependence of the characteristic tunnelingctivation. In the case that the solution of E84) is a peri-
frequency is represented ag(fy) = w¢/\1+ v tan 6y with  odic function with period\ = A(T), 9q(7) can be expanded
wl=y(2€)YAHSK, IMg)Y2 Writing the tunneling rate as into a Fourier series:

TABLE |. Saturation magnetizatioM,, easy-axis anisotropy constak, shape anisotrop}(i:Zﬂ-Mg for a thin film, exchange
constantC, wall width Ao, and coercivityH; taken from Ref. 14 for various materials and the corresponding paramei¢so, the WKB
exponenB,, the characteristic frequeney? , the tunneling timd“gl, and the crossover temperatdrg 6,,=0) are obtained from a given
value ofe.

Mo K, K, C Ao HS v € Bo o? Iyt T4(0)

[Oe] [10° erg/cnt] [10° erg/en?] [10 © erglen?] [A] [Oe€] [1073] [10%/sed [sed [mK]
YIG 196 0.25 2.4 0.86 414 10 0.068 5 30 6.20 528 1.50
Ni 508 8 16 2 112 100 0.075 4 31 29.7 385 7.18

SrRuG, 159 20 1.6 0.046 11 fo 8.43 5 22 222 54810 % 42.9
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FIG. 4. Temperature dependence of the WKB exponB(iT)/B(0) vsT/T.. The solid line is obtained from the numerical integration
of Eqg. (21) by using the bounce solution of E4) and dotted line is the Boltzmann formula for comparison.

oS - with g,(T.)=0. By using the fact thagj,=1 andq;=0 at
qc|(7)=nZ_oo gnexpliw,7), (37 T=T. and solving Eq(38), we can obtain the temperature
N dependence of two Fourier coefficients,
whereq,’s are Fourier coefficients ane,=2mn/A. The B T2 _ 1 T2
differential equatior(23) for q.(7) is then transformed into %Z(— , di=— 1—(—) : (42)
Te %) Te
- < and A .=v2 which leads to an expression fa,:
_wnqn_ﬁn,o'l' Z On-mdm=0, (38
T T.(0)
~ Te= ) (43
and the integral part of the actiof21) in the = space is V1+vtan 6y
expressed as where
- - 2 1. 7 29K
— 272 1
I=A > |G+ 5) Sno 5 Ga keTe(0)= ——(2¢)"" (yHﬁ)( ™ ) (44
B 1 Ew: ~ e~ o~ 39 Substituting the coefficienig2) into the integral40), the
m< o AnGn—m0m |, (39 WKB exponent of Eq(21) is approximately given by
hich further reduces t SE"_ Ug ?
which further reduces to hCEd ' PR _
7 KT 1 3( 1 T, (45
«® 2 - 1 — B . B
= A E Z (G +1)8 0t = qﬁwﬁ , (40) The thermal actior{45) s~hould be compared with the action
n=—w |3 T 6 (35) of the constant patly, because the smallest of the two

determines the actual escape rate of Eif). Since SI'™"
by making use of the relationship given by E§8). <%, the functional integral for the decay is dominated by
Now let us defin€T, to be the temperature at which the the thermal bounce foF<T,. HenceT, is the temperature
periodic solutionqy(7) of Eq. (34) approaches the constant in which quantum mechanics starts to make an effect on the
solutionsqy. In the limit of T<T,, the thermal bounce WKB exponent, i.e., the crossover temperature from the

~ ~ : : ._thermal to the quantum regime. Also, we note that since the
gq(7) oscillates around the bottom of the inverse pmem'alBoltzmann formula(36) derived from the constant path

—U(g). In _thls situationgo and g, are~do’r~n|nant.|n t.he 0a(7) =7, is valid aboveT,, the thermal bounce degener-
Fourier ser|e3s(37) of the thermal bounce(7), which is  4ia5'into a constant path fa=T
reduced t&*2 s

The bounce solution of Eq34) is found numerically in
o 5 o the entire range of temperaturds<T, and its numerical
ga(7)=9o+2q.co0 w1 7), (41)  integration in Eq(21), using this solution, gives us the WKB
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TABLE II. Equivalent expressions for coefficievff)(Qi) of the highest important term in E¢L7), the
attempt frequency, around the metastable minimum, the barrier frequengy the bounce frequenay, ,
and the height of barridd, for the given pinning potentiall3), wheren=3 andQ;=\, arctan(1¥3). w?
andh are given in the text.

Vg)s)(Qi) wa= g (=2wy) Uo
Zy 2 (3) Z _\1/4 4‘/2 z _\3/2 (3) 1/2
4heNg @IVR(Q)INz) My —- (h2*VP(Q))|
32,6 6
- TJ— Vo(K,/C)%? 20¥/\1+ v tan 4, g; Voe®?
exponent. Figure 4 plots the rat®(T)/B(0) versusT/T,, © w§+w§
where the value of the integral part of the acti@1) at T Cq= >, (47)

=0 is 24/2/5 and B(T,)/B(0)=>5m/18. For 0<T=<0.6T, 1wl Wl

B(T)~B(0), and t[e WKBexponent_ starts to deviate fm”? where w,=2mn/B# and w, is given in Table II. Using the
EPS_?(O) at aboutT=0.6T; and continues to decrease until jnfinite product representation of the sinh function,
=T..

We shall now consider the rate formula for a pure thermal o wﬁ Bl w2

activation regime{therma_ll hoppingand for temperatures be_- H 77 S ghai)’ (48)
yond the crossover region but well below the pure classical n=1 0" Ty Bhw
escape regiméuantum correctionswhere quantum correc- i
tions to the classical escape rate become increasingi{f€ oPtain the factor
important?* Above T, the effect of quantum fluctuations on )
the rate emerges through the preexponential factor in which _ (&) SinN(Bh w,/2) (49)
the rate is expressedZs 9 \w, sin(Bhwd2)
In the classical limit T>T), the factorc, approaches unity,
w, so that
I'= EquX[X—,BUO), (46)
of
I'= O)' (50)

— L _exp—BU
wherew, andU, are given in Table Il. Also, the factar, my1+vtan oy

arising from fluctuations about the stationary trajectones1n the quantum correction regime the average energy is in-
q(7)==*1 is determined by carrying out the Gaussian inte-creased in the well and the effective height of barrier is re-
grals over the sets of amplitudég,} in the Fourier series duced because a particle is thermally excited to the barrier,

and its resultant expression is then given by which leads to the enhancement of the escape rate. Taking
106 T T T T T T T
10
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FIG. 5. Thed, dependence of the tunneling tinte 1(6,) for the samplega) YIG and (b) Ni. Inset:I'"1(6,) for SrRuQ,
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FIG. 6. The#, dependence of the relative crossover temperafyté,)/T.(0) for the sampleg¢a) YIG, (b) Ni, and(c) SrRuG;.

the factor(49) as the exponential of a sum of logarithms and<¢,,<90° for YIG and Ni, and 6 6,,<16° for SrRuQ in
expanding each logarithm in powers g#, its approximate  ihe case 0fe=0(10"3). The tunneling time changes more

form is given by apparently in SrRu@than in YIG and Ni.
1 hed By using Eg.(43), we obtain the angular dependence of
t
Cq—exp[g ( keT

, (51  the crossover temperatuilg, as is shown in Fig. 6. Agy
increases, the crossover temperature decreases monotoni-
which indicates a thermally assisted quantum tunneling procally. As noted in this figure and in Table I, the shape of
cess. T.(64)/T:(0) and the order of magnitude @t.(0) for YIG
are the same as those for Ni. However, for SrRti@y are
strikingly different due to the large value of the parameter
V. DISCUSSION AND CONCLUSIONS for SrRuQ,, as previously discussed in the WKB exponent.
In Fig. 5 we have illustrated the tunneling time with con- Thus, in order to obtain the angular dependencg.ais well
crete number for various materials given in Table I. Theas the higher magnitude &f;(0) in QTDW, it would be
typical angles expected to tunnel out of a potential withinmore desirable to choose SrRufr future experiments.
experimentally reasonable tunneling tinkie *(6y) are 0 In this paper we have considered the quantum depinning

2 1
1+ v tan 64

100 T T T

10

0.1

0.01

16°

16*

165 1 1
1g* 16 0.01 0.1 1

€

FIG. 7. Thee dependence of the scaled WKE(EB/,u), where (a) the numerical result from the exact potentiab) and (b) the
approximate resulf26) in the smalle limit.
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of a domain wall placed at some angle with the magnetiadependence of the WKB exponent and the crossover tem-
field. In the limit of small € the potential was expanded perature for specific magnetic materials. As a good candidate
around the inflection point and the WKB exponent found forfor observing these behaviors experimentally, we have sug-
the general pinning potential up to a numerical constant. Fogested a material with a large coercivity such as SrRuO
the specific pinning potential we have obtained a magnetievhich gives a large.

field dependence of the WKB exponent, the oscillation fre-
guency, the tunneling time, and the crossover temperature
based on the instanton approach. Comparing the approximate
WKB exponent with the exact numerical calculation, the | am indebted to H. Fukuyama, D. S. Hwang, and H. C.
limit of the applicability of the results i€<0.01 which is  Jeong for many useful discussions. This work was supported
shown in Fig. 7. At finite temperature we have discussed thén part by the Basic Science Research Institute Program,
thermal (quantum correction to the quanturtherma) es-  Ministry of Education, Project No. BSRI-98-2415, and in
cape rate. Finally, using the physical quantities taken fronpart by the Non-Directed-Research-Fund, Korea Research
Table I, we have performed concrete estimations forahe Foundation, 1998.
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