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Quantum depinning of a domain wall in a magnetic field

Gwang-Hee Kim*
Department of Physics, Sejong University, Seoul 143-747, Korea

~Received 3 June 1998!

We investigate the quantum tunneling of a domain wall placed in a magnetic field at an arbitrary angle.
Using classical soliton solutions, we derive a domain wall mass which depends on the magnetic field and find
that the tunneling time and the crossover temperature strongly depend on the direction of the magnetic field.
The results are also discussed at finite temperature.@S0163-1829~98!09641-6#
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I. INTRODUCTION

In recent years, small magnetic particles have emerge
good candidates to display quantum behavior at a ma
scopic scale.1 One such system is nonuniform magne
structure exhibiting a domain wall which is a soliton co
necting two stable spin configurations separated by an
ergy barrier associated with magnetocrystalline anisotro
In general, a domain wall is pinned by an impurity, loweri
the anisotropy energy locally.2 At finite temperature, there is
a jumping of a domain wall induced by thermal fluctuatio
whose rate is proportional to exp(2U/kBT) whereU is the
height of energy barrier related to the pinning energy.3 At a
temperature low enough to neglect the thermal activat
depinning of a domain wall may occur due to quantum tu
neling by applying an external magnetic field. In order fo
system to be a good example for quantum tunneling,
energy barrier through which it tunnels should be low a
narrow, and the effective mass of the system be not too la
in which the tunneling rate becomes large enough for obs
ing quantum tunneling of a domain wall~QTDW! involving
;104 spins. In this situation, the magnetic field is a go
physical quantity to control the height and width of the b
rier and the effective mass of the system. For the dynam
process, it is also important to consider the effect of
environments on the quantum tunneling rate caused by
coupling between the domain wall and magnons,4,5 photons,5

phonons,4–6 nuclear spins,7,8 eddy current, and Stone
excitations.9 Even though some of them are an unsuspec
influence on the quantum dynamics depending on the si
tion, many studies have shown that they are not str
enough to make QTDW unobservable.

Experiments which indicate the possible presence of t
neling of a domain wall have been reported. By measur
the electrical resistance of Ni wire with diameters betwe
20 and 40 nm, Hong and Giordano10 studied the motion of
magnetic domain walls and observed a flattening of the t
perature dependence of the mean switching field and a s
ration of the width of the escape field distribution belo
;5 K. Even though they proposed that a domain wall
capes from its pinning sites by QTDW below;5 K, their
measurements raise several questions, among them wh
the crossover temperature from thermally activated
quantum-mechanical decay is two or three orders of ma
tude higher than the one predicted by current theories.1 For
the present it is not easy to perform a direct compari
PRB 580163-1829/98/58~18!/12138~9!/$15.00
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between theoretical and experimental results.
A few theoretical studies of QTDW have been around

some time. Egami11 gave a theoretical suggestion that t
temperature-independent magnetic aftereffects observe
low temperature by Barbara and collaborators12 might origi-
nate from the quantum diffusion of domain walls. Howev
his idea is only applicable to an extremely narrow w
whose width is of the order of the lattice constant and pinn
by the crystal potential itself, which is contrary to typic
walls having a thickness of;100 Å and being pinned by an
impurity. Even though several workers13 suggested the tun
neling of a domain wall by using the WKB method, QTDW
did not receive wider attention until Stamp4 investigated
QTDW based on the Heisenberg model with a uniaxial
isotropy. By using a classical solution of the plane dom
wall coupled to a point defect, he estimated the tunnel
rate and contributions of magnons and phonons in term
the coercive field, saturation magnetization, exchange,
anisotropy constants. Later, Chudnovsky, Iglesias,
Stamp5 ~CIS! developed a formulation of the problem whic
takes the curvature effects of a domain wall into consid
ation, and confirmed Stamp’s work that the quantum tunn
ing of a domain wall may reveal itself at a macroscopic lev
Besides the magnon and phonon studied by Stamp
briefly touched the effects of conduction electrons, photo
and the mobility of the domain wall. Since then, QTDW h
been the subject of considerable theoretical interest. Am
them, recently, Braun, Kyriakidis, and Loss14 ~BKL ! found
that the WKB exponent and the crossover temperature ar
different functional forms than that found by CIS and t
sources for these discrepancies are different soliton mass
functional dependence of the pinning potential on the co
civity.

Up to now theoretical studies for QTDW were confined
the condition that the magnetic field be applied in the op
site direction to the initial easy axis. In this work we wi
extend the previous considerations to a system with a m
netic field applied at some angle to the easy axis of mag
tization. We will show that the WKB exponent depends
uH via (11n tanuH)1/2 and the crossover temperature onuH
via (11n tanuH)21/2 wheren will be discussed later. It im-
plies that no tunneling is expected when the field is perp
dicular to the easy axis. Also, we will present numeric
results for the WKB exponent below the crossover tempe
ture and discuss the thermal correction to the quantum
neling rate.
12 138 ©1998 The American Physical Society
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This paper is organized as follows. In Sec. II, we brie
discuss the domain wall dynamics for a ferromagnet by us
the classical equation of motion. Applying an external ma
netic field with a general direction (uH), we derive the ef-
fective domain wall mass which includes the field directio
In Sec. III, we perform the approximation of the potential
the smalle limit and find the expression which shows th
explicit dependence of the physical parameters for the g
eral form of the potential. Within the instanton approach,
obtain theuH dependence of the WKB exponent atT50 for
a specific pinning potential and estimate its magnitude
various magnetic materials.14 These considerations will b
extended to finite temperature in which the quantum a
thermal fluctuation coexist. In Sec. IV, we numerica
present theuH dependence of the tunneling time and t
crossover temperature for the materials considered in
III, and give the validity of the results derived near a clas
cal depinning field.

II. FORMULATION OF THE PROBLEM

In this section, we consider the domain wall of the sl
geometry, as shown in Fig. 1. We work with the systems
assuming that the domain wall thicknessl is sufficiently
larger than the lattice constanta between spins in which a
continuum approximation for the magnetizationM is valid.
Since the phenomena considered occur at a temperatur
below the Curie temperature, the magnitude of the magn
zationM0 is constant. However, its directionM̂ can change
depending on the energy which is composed of the magn
anisotropy energy, the exchange energy, and the demag
zation energy. As we introduce the anglesu and f for the
direction of M in the spherical coordinate system, the d
namics ofM̂ is determined by the least-action trajectory
the action

S@M ~r ,t !#5E H M0

g
@cosu~r ,t !21#

df~r ,t !

dt

1E@M ~r ,t !#J dtd3r , ~1!

whose classical trajectory satisfies the well-known Land
Lifshitz equation15

dM

dt
52gM3

dE

dM
, ~2!

whereg5gmB /\ is the gyromagnetic factor. Here we no
that the first term of the integrand in Eq.~1! has no classica

FIG. 1. A configuration of magnetization is shown in a thin lo
slab geometry where the wall plane is parallel to the easy axisz)
and the spin configuration spatially varies along in thex direction.
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analog which is called the Wess-Zumino term of the s
system16 and whose phase space is the (1% 1)-dimensional
space with the Poisson bracket relations of the spin ang
momentum.17

For our study of the dynamics ofM̂ we take the biaxial
symmetry whose magnetic anisotropy energy density
given by

Ea52K iM̂ z
21K',aM̂ y

2 , ~3!

whereK i andK',a are the parallel and transverse anisotro
constants. The easy axis is represented by6M̂ z and the easy
plane is perpendicular toM̂ y . Since the exchange energ
density is expressed asEex5(C/2)(¹M̂ )2 where C is an
exchange constant, the energy density in the action~1! is
given by

E@u~r ,t !,f~r ,t !#5K isin2u1K'sin2fsin2u

1
1

2
C@~¹u!21~¹f!2sin2u#, ~4!

where E[Ea1Eex1K i to makeE(u,f) zero at the easy
axis,K'[K',a12pM0

2, and 2pM0
2 comes from the demag

netization energy for the slab geometry.
Following the analysis discussed in Ref. 14, for t

sample with widthw,pAC/2K' we can treat the system a
quasi-one-dimensional. The domain wall corresponding
the energy density is perpendicular to thex axis, where the
magnetization rotates in the easy plane~xz plane! and
changes in thex axis. The wall position is centered atQ
along thex axis. From Eq.~2! the soliton solution which
describes the motion of the domain wall is given by

us~x2Q!52 arctan expS x2Q

l D , ~5!

Q̇5kv0

sinfscosfs

A11k sin2fs

, ~6!

wherek5K' /K i andv05gA2CKi/M0 . We note here that
us→0 ~p! at t→` (2`) for a given spatial positionx. The
width of the wall is given by

l5
l0

A11k sin2fs

, ~7!

where l05AC/2K i is the width of the static wall which
represents a compromise between exchange and aniso
energy. Assuming thatQ̇ is much smaller than the Walke
critical velocityv0(A11k21),2 the components of the mag
netization are approximately given by

M̂ x.sechS x2Q

l D F12
1

2
S Q̇

kv0
D 2G , ~8!

M̂ y.sechS x2Q

l D S Q̇

kv0
D , ~9!
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12 140 PRB 58GWANG-HEE KIM
M̂ z.tanhS x2Q

l D , ~10!

and the corresponding energy becomes, from Eq.~4!,

E d3rE@us~r ,t !,fs~r ,t !#.2AwA2CKi1
1

2
MQ̇2,

~11!

with the wall mass

M5Aw

M0
2

g2K'

A2K i

C
, ~12!

where Aw is the cross sectional area of the sample. As
noted in Eqs.~8!, ~9!, and ~10! a static domain wall only
rotates in the easy plane. However, as it moves, the s
precess and a component of the magnetization out of
plane,M̂ y , appears withM̂ y}Q̇ in Eq. ~9!. Thus, the inertial
term in Eq.~11! is closely related to the precession of t
spins. If defects are present in the samples, they can pin
domain wall. Assuming that the radiusR corresponding to
the defect volume is much smaller than the wall thicknessl,
the wall is pinned by a potential form4

Vp~Q!52V0sech2~Q/l0!, ~13!

with V0 proportional to the volume of the defect, where w
have replacedl by l0 and neglected the higher order
O(V0 /E0) with E052AwA2CKi. Also, assuming that a
concentration of defects is small, the pinning energies
come small, in which the radius of curvature of the wall
much larger thanl. Since it is shown5,18 that weak curvature
has very little effect on wall tunneling, the wall can be a
sumed to be flat and remained flat during the tunneling p
cess.

If we now apply an external magnetic field in thexz
plane, its energy is written as

E d3rEH@M ~r ,t !#52AwE dx~M0HzM̂z1M0HxM̂x!

.22AwM0HzQ1pAwlM0Hx

3S k11

2 D S Q̇

kv0
D 2

, ~14!

where Eqs.~8! and~10! were inserted. Thus, from Eqs.~11!,
~13!, and~14! we obtain the total energy for the wall:

E d3r ~E1EH!5
1

2
MeffQ̇

21Vp~Q!2hzQ, ~15!

where Meff5M1pAwl0M0Hx(k11)/(kv0)
2 and hz

52AwM0Hz .

III. QUANTUM TUNNELING OF THE DOMAIN WALL

Before we get into a discussion of the specific form of t
pinning potential such as Eq.~13!, we consider an arbitrary
pinning potential which might be useful for a situation lik
many random impurities. Since the external magnetic fi
brings the system into a metastable state, the domain
s
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e

he
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-
-
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can tunnel out of the potential. As the magnetic field cont
ues to increase, the metastable minimum can disappear
the domain wall moves classically. This critical magne
field is called a classical depinning field~CDF!. In order to
make the potential barrier small and narrow which is t
optimum condition for the observability of tunneling even
as we shall see, we concentrate ourselves on the neigh
hood of the CDF. In this situation, let us define the poten
to be

U1~Q!5Vp~Q!2hzQ2@Vp~Q0!2hzQ0#, ~16!

where (Q0 ,0) is the metastable point ofU1(Q). Expanding
the pinning potentialVp(Q) aroundQ5Qi which is theQ
coordinate of the inflection point ofVp(Q), we obtain an
approximate form of the potential given by19

U~q!.@Vp8~Qi !2hz#~q2q0!1
Vp

~n!~Qi !

n!
~qn2q0

n!,

~17!

where U(q)[U1(Q), q5Q2Qi , q05Q02Qi(,0), and
the higher-order terms are neglected. Noting thatVp

(2)(Qi)
50, n is greater than 2. In order thatU(q) have a metastable
state, we needVp8(Qi).hz andVp

(n)(Qi),0, andn should be
odd. Since the local minimum vanishes forhz>Vp8(Qi) in
Eq. ~17!, Vp8(Qi) becomes the CDF. DenotingVp8(Qi) to be
hz

c , from Eq. ~17! the metastable pointq0 is given by

q052F ~n21!!

uVp
~n!~Qi !u

hz
ceG1/~n21!

, ~18!

where e512hz /hz
c512h/hc and hz

c@5Vp8(Qi)#
5hccosuH . In a magnetic field lower than CDF, the doma
wall can make a tunnel through the potential barrier. Th
according to the standard instanton method (t[ i t ), we can
obtain the tunneling rate given by

G5C0A B

2p
v texp~2B!, ~19!

wherev t is a characteristic tunneling frequency which is
the order of the barrier frequencyv0 andB (5Scl /\) deter-
mined by the classical trajectory from the Euclidean actio

SE5E
2b\/2

b\/2

dtF1

2
MeffS dq

dt D 2

1U~q!G , ~20!

with b51/kBT. In Eq. ~19!, C0 is the preexpotential facto
which stems from the quantum fluctuations around the le
action trajectory.

Applying the scale transformations to the action~20!, we
obtain

SE5F ~n21!!

uVp
~n!~Qi !u

G3/2~n21!

~hc
ze!~n12!/2~n21!AMeff

3E
2L/2

L/2

dt̃F1

2 S dq̃

dt̃
D 2

1Ũ~ q̃!G , ~21!

whereq52q0q̃, t5 t̃/t0 , andL5b\t0 with
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FIG. 2. Theq̃ dependence of the scaled potentialŨ(q̃) for different values ofn, wheren53 ~a!, 5 ~b!, 7 ~c!, and` ~d!. Note that
(21,0) and~1, 222/n! are the metastable point and the barrier, respectively.
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~hc

ze!~n22!/2~n21!

AMeff
F uVp

~n!~Qi !u
~n21!! G1/2~n21!

, ~22!

and Ũ(q̃)5q̃112(q̃n11)/n. As is shown in Fig. 2, theq̃
position of the barrier is 1 which is independent ofn, the
height of barrierŨm52(121/n), and the scaled barrier fre

quency ṽ0@5A2Ũ9(q̃m)#5(n21)1/2 which characterizes
the width of the top of the barrier frequency hindering t
tunneling process. From Eq.~21! the extremal trajectory sat
isfies

d2q̃

dt̃2
2~12q̃n21!50, ~23!

with the periodic conditionq̃( t̃)5q̃( t̃1L). From now on
let us consider the specific pinning potential~13!, in which
V(3)(Qi) is the first nonvanishing term in Eq.~17!.

A. QTDW at zero temperature

With the boundary conditionsq̃(6`)50 and q̃(0)5q̃0

at T50 whereq̃0 is the exit point of the potentialŨ(q̃), the
solution of Eq.~23! for n53 becomes

q̃~ t̃ !53 sech2~ t̃/& !21. ~24!

The substitution of this solution into Eq.~21! with n53
gives a simple formula for the WKB exponentB,

B~uH!5B0A11n tan uH, ~25!

where

B05
12323/4

5
me5/4, ~26!
m5
Aw

g\
M0

3/2A C

K iK'

AHz
c, ~27!

n5
p

4
M0Hz

cS 1

K i
1

1

K'
D , ~28!

Hz
cS 5

hz
c

2AwM0
D 5

2A6

9

V0

AwM0
AK i

C
, ~29!

Hc5
Hz

c

cosuH
. ~30!

Up to the numerical factor the expression~25! can be ob-
tained from the ratio of the barrier heightUm to the barrier
frequency ve without knowing the explicit form of the
bounce solution~24!. By using the general form of the po-
tential ~17!, the height of barrier and the barrier frequenc
which represents the frequency of small oscillations arou
the minimum of the inverted potential2U(q) are given by

U052F ~n21!!

uVp
~n!~Qi !u

G1/~n21!

~hc
ze!n/~n21!S 12

1

nD , ~31!

ve5
@~n21!! #~n22!/2~n21!

@~n22!! #1/2

3
~hc

ze!~n22!/2~n21!uVp
~n!~Qi !u1/2~n21!

AMeff

. ~32!

Thus, with the help of Eq.~13!, Meff , andhz in Eq. ~15!, its
ratio for n53 becomes

U0

\ve
5

5

36
B~uH!, ~33!
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FIG. 3. TheuH dependence of the relative WKB exponentB(uH)/B0 for the samples~a! YIG, ~b! Ni, and ~c! SrRuO3.
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where 5/36 is a typical numerical constant for linear-~or
quadratic-! plus-cubic potential.20

The angular dependence ofB is plotted in Fig. 3 for fer-
romagnetic samples of yttrium iron garnet~YIG!, Ni, and
SrRuO3 by using the physical values given in Table I.
these materials it rises sharply asuH approachesp/2 in ac-
cordance with the fact that atuH5p/2 the potential forQ
created by impurities is not deformed by the magnetic fi
and the position of the domain wall at the pinning cente
not metastable any more. In YIG and Ni the behavior of
ratio B(uH)/B0 is almost flat foruH not close top/2. How-
ever, in SrRuO3 it has a strong dependence on the orientat
of the field because of a largen mainly originating from a
larger coercivityHz

c compared with the coercivities for YIG
and Ni. It would therefore be interesting to study the angu
dependence of the WKB exponent in SrRuO3.

In order to obtain the complete form of the tunneling ra
G, we need to calculate the preexponential factorC0 in Eq.
~19! which comes from the fluctuation about the least-act
trajectory. Since the potential is of the formq2q3 in our
case, the preexponential factor becomesC054A15, which is
the same as the result in the potential of the formq22q3.21

From the bounce~24! and the scaling parameter~22! for n
53 the angular dependence of the characteristic tunne
frequency is represented asv t(uH)5v t

0/A11n tanuH with
v t

05g(2e)1/4(Hz
cK' /M0)1/2. Writing the tunneling rate as
d
s
e

n

r

n

g

G5A exp(2B), A depends on the orientation of the ma
netic field through (11n tanuH)21/4. Noting theuH behav-
ior of B andA, the tunneling rate decreases asuH increases.

B. QTDW at finite temperature

In this case the classical trajectoryq̃cl( t̃) which mini-
mizes the action satisfies Eq.~23! with period L. The peri-
odic solutions areq̃0(51) andq̃( t̃), determined by

1

2 S dq̃

dt̃
D 2

5q̃112
q̃311

3
2Ẽ~L!, ~34!

whereẼ is determined by the condition that the period of t
motion is equal toL. For the constant solutionq̃0 the clas-
sical action becomes, from Eqs.~21!, ~22!, and~31!,

SE
cl5S05b\U0 , ~35!

and the escape rate

G0}exp~2S0 /\!5exp~2U0 /kBT!, ~36!

which is the Boltzmann formula representing a pure therm
activation. In the case that the solution of Eq.~34! is a peri-
odic function with periodL5L(T), q̃cl( t̃) can be expanded
into a Fourier series:
0
8

TABLE I. Saturation magnetizationM0 , easy-axis anisotropy constantK i , shape anisotropyK'.2pM0
2 for a thin film, exchange

constantC, wall width l0 , and coercivityHz
c taken from Ref. 14 for various materials and the corresponding parametern. Also, the WKB

exponentB0 , the characteristic frequencyv t
0 , the tunneling timeG0

21 , and the crossover temperatureTc(uH50) are obtained from a given
value ofe.

M0

@Oe#
K i

@105 erg/cm3#
K'

@105 erg/cm3#
C

@1026 erg/cm3#
l0

@Å#
Hz

c

@Oe#
n e

@1023#
B0 v t

0

@108/sec#
G0

21

@sec#
Tc(0)
@mK#

YIG 196 0.25 2.4 0.86 414 10 0.068 5 30 6.20 528 1.5
Ni 508 8 16 2 112 100 0.075 4 31 29.7 385 7.1
SrRuO3 159 20 1.6 0.046 11 104 8.43 5 22 222 5.4631023 42.9
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FIG. 4. Temperature dependence of the WKB exponent:B(T)/B(0) vs T/Tc . The solid line is obtained from the numerical integratio
of Eq. ~21! by using the bounce solution of Eq.~34! and dotted line is the Boltzmann formula for comparison.
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q̃cl~ t̃ !5 (
n52`

`

q̃nexp~ i ṽnt̃ !, ~37!

where q̃n’s are Fourier coefficients andṽn52pn/L. The
differential equation~23! for q̃cl( t̃) is then transformed into

2ṽn
2q̃n2dn,01 (

n52`

`

q̃n2mq̃m50, ~38!

and the integral part of the action~21! in the t̃ space is
expressed as

I[L (
n52`

` F S q̃n1
2

3D dn,01
1

2
q̃n

2ṽn
2

2
1

3 (
m52`

`

q̃nq̃n2mq̃mG , ~39!

which further reduces to

I 5L (
n52`

` F2

3
~ q̃n11!dn,01

1

6
q̃n

2ṽn
2G , ~40!

by making use of the relationship given by Eq.~38!.
Now let us defineTc to be the temperature at which th

periodic solutionq̃cl( t̃) of Eq. ~34! approaches the consta
solutions q̃0 . In the limit of T&Tc , the thermal bounce
q̃cl( t̃) oscillates around the bottom of the inverse poten
2Ũ(q̃). In this situationq̃0 and q̃61 are dominant in the
Fourier series~37! of the thermal bounceq̃cl( t̃), which is
reduced to22,23

q̃cl~ t̃ !5q̃012q̃1cos~ṽ1t̃ !, ~41!
l

with q̃1(Tc)50. By using the fact thatq̃051 and q̃150 at
T5Tc and solving Eq.~38!, we can obtain the temperatur
dependence of two Fourier coefficients,

q̃05S T

Tc
D 2

, q̃15
1

&
A12S T

Tc
D 4

, ~42!

andLc5&p which leads to an expression forTc :

Tc5
Tc~0!

A11n tan uH

, ~43!

where

kBTc~0!5
\

&p
~2e!1/4A~gHz

c!S 2gK'

M0
D . ~44!

Substituting the coefficients~42! into the integral~40!, the
WKB exponent of Eq.~21! is approximately given by

SE
min

\
'

U0

kBT F123S 12
T

Tc
D 2G . ~45!

The thermal action~45! should be compared with the actio
~35! of the constant pathq̃0 because the smallest of the tw
determines the actual escape rate of Eq.~19!. Since SE

min

,S0, the functional integral for the decay is dominated
the thermal bounce forT&Tc . HenceTc is the temperature
in which quantum mechanics starts to make an effect on
WKB exponent, i.e., the crossover temperature from
thermal to the quantum regime. Also, we note that since
Boltzmann formula~36! derived from the constant pat
q̃cl( t̃)5q̃0 is valid aboveTc , the thermal bounce degene
ates into a constant path forT>Tc .

The bounce solution of Eq.~34! is found numerically in
the entire range of temperaturesT<Tc and its numerical
integration in Eq.~21!, using this solution, gives us the WKB
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TABLE II. Equivalent expressions for coefficientVp
(3)(Qi) of the highest important term in Eq.~17!, the

attempt frequencyva around the metastable minimum, the barrier frequencyve , the bounce frequencyv t ,
and the height of barrierU0 for the given pinning potential~13!, wheren53 andQi5l0 arctan(1/)). v t

0

andhz
c are given in the text.

Vp
(3)(Qi) va5ve (52v t) U0

4hc
z/l0

2 (2uVp
(3)(Qi)uhc

ze)1/4/AMeff

4&
3

(hc
ze)3/2/uVp

(3)(Qi)u1/2

2
32A6

9
V0(K i /C)3/2 2v t

0/A11n tanuH

A6
27

V0e3/2
til

a
-
ic
-
ng
n
ic

ie
te

in-
re-
rier,
king
exponent. Figure 4 plots the ratioB(T)/B(0) versusT/Tc ,
where the value of the integral part of the action~21! at T
50 is 24&/5 and B(Tc)/B(0)55p/18. For 0<T&0.6Tc
B(T).B(0), and the WKBexponent starts to deviate from
the B(0) at aboutT.0.6Tc and continues to decrease un
T5Tc .

We shall now consider the rate formula for a pure therm
activation regime~thermal hopping! and for temperatures be
yond the crossover region but well below the pure class
escape regime~quantum corrections!, where quantum correc
tions to the classical escape rate become increasi
important.24 Above Tc the effect of quantum fluctuations o
the rate emerges through the preexponential factor in wh
the rate is expressed as25

G5
va

2p
cqexp~2bU0!, ~46!

whereva andU0 are given in Table II. Also, the factorcq
arising from fluctuations about the stationary trajector
q̃( t̃)561 is determined by carrying out the Gaussian in
grals over the sets of amplitudes$q̃n% in the Fourier series
and its resultant expression is then given by
l

al

ly

h

s
-

cq5 )
n51

`
vn

21va
2

vn
22ve

2 , ~47!

wherevn52pn/b\ andve is given in Table II. Using the
infinite product representation of the sinh function,

)
n51

`
vn

2

v21vn
2 5

b\v/2

sinh~b\v/2!
, ~48!

we obtain the factor

cq5S ve

va
D sinh~b\va/2!

sin~b\ve/2!
. ~49!

In the classical limit (T@Tc), the factorcq approaches unity,
so that

G5
v t

0

pA11n tan uH

exp~2bU0!. ~50!

In the quantum correction regime the average energy is
creased in the well and the effective height of barrier is
duced because a particle is thermally excited to the bar
which leads to the enhancement of the escape rate. Ta
FIG. 5. TheuH dependence of the tunneling timeG21(uH) for the samples~a! YIG and ~b! Ni. Inset:G21(uH) for SrRuO3.
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FIG. 6. TheuH dependence of the relative crossover temperatureTc(uH)/Tc(0) for the samples~a! YIG, ~b! Ni, and ~c! SrRuO3.
nd

ro

n-
he
in

e

of

toni-
of

r
nt.

ing
the factor~49! as the exponential of a sum of logarithms a
expanding each logarithm in powers ofb\, its approximate
form is given by

cq.expF1

3 S \v t
0

kBT D 2 1

11n tan uH
G , ~51!

which indicates a thermally assisted quantum tunneling p
cess.

IV. DISCUSSION AND CONCLUSIONS

In Fig. 5 we have illustrated the tunneling time with co
crete number for various materials given in Table I. T
typical angles expected to tunnel out of a potential with
experimentally reasonable tunneling timeG21(uH) are 0
-

<uH,90° for YIG and Ni, and 0<uH,16° for SrRuO3 in
the case ofe.O(1023). The tunneling time changes mor
apparently in SrRuO3 than in YIG and Ni.

By using Eq.~43!, we obtain the angular dependence
the crossover temperatureTc , as is shown in Fig. 6. AsuH

increases, the crossover temperature decreases mono
cally. As noted in this figure and in Table I, the shape
Tc(uH)/Tc(0) and the order of magnitude ofTc(0) for YIG
are the same as those for Ni. However, for SrRuO3 they are
strikingly different due to the large value of the parameten
for SrRuO3, as previously discussed in the WKB expone
Thus, in order to obtain the angular dependence ofTc as well
as the higher magnitude ofTc(0) in QTDW, it would be
more desirable to choose SrRuO3 for future experiments.

In this paper we have considered the quantum depinn
FIG. 7. Thee dependence of the scaled WKB,B̄([B/m), where~a! the numerical result from the exact potential~16! and ~b! the
approximate result~26! in the smalle limit.
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of a domain wall placed at some angle with the magne
field. In the limit of small e the potential was expande
around the inflection point and the WKB exponent found
the general pinning potential up to a numerical constant.
the specific pinning potential we have obtained a magn
field dependence of the WKB exponent, the oscillation f
quency, the tunneling time, and the crossover tempera
based on the instanton approach. Comparing the approxim
WKB exponent with the exact numerical calculation, t
limit of the applicability of the results ise&0.01 which is
shown in Fig. 7. At finite temperature we have discussed
thermal ~quantum! correction to the quantum~thermal! es-
cape rate. Finally, using the physical quantities taken fr
Table I, we have performed concrete estimations for theuH
.

t

-

c

r
or
ic
-
re
ate

e

dependence of the WKB exponent and the crossover t
perature for specific magnetic materials. As a good candid
for observing these behaviors experimentally, we have s
gested a material with a large coercivity such as SrRu3
which gives a largen.
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