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Exact relations for the spin-correlation functions for an interacting electron gas
in a nonuniform magnetic field
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Without any approximation, exact relations for the spin-density correlation functions in an interacting elec-
tron gas under an arbitrary nonuniform external magnetic field are obtained by making use of the nonpertur-
bative canonical formulation of quantum many-body thedryToyoda, Ann. Phys(N.Y.) 173 226(1987].

The obtained results contafasum rules, a finite-temperature generalized Ward-Takahashi relation, as well as
a finite-temperature version of the Nambu-Goldstone theorem with respect to the spontaneous symmetry
breaking of the spin-rotational symmetfi50163-182@8)04027-3

[. INTRODUCTION define a model Hamiltonian and the correlation functions
that are considered in this work. In Sec. Ill, Basum rule for

Quantum many-body effects in an electron gas under #e electron number-density response function is derived. An
magnetic field have been attracting much attention forf-sum rule for the spin-density response function is also de-
decades. The density correlation function and the spin-rived in Sec. IV. A finite-temperature generalized Ward-
density correlation functions of the electrons are of vital im- Takahashi relation is calculated in Sec. V. Exact relations for
portance in the study of the many-body effettéWhile the _spin—correlation functions are obtaiped i.n Sec. VI. Conclud-
density correlation function has been calculated for the fred"g remarks and discussions are given in Sec. V.
three- and two-dimensional electrons in a uniform external
magnetic field;> *the calculation of the many-body effects 1. MODEL HAMILTONIAN AND RESPONSE FUNCTIONS
on the correlation functions seem to be extremely difficult

even with the aid of powerful approximation schemes Sucnalectrons in an external magnetic field. The electrons are

as the random-phase approximation, quantum linked clustgfoqcrihed in terms of the second quantized field operators,
expansions, etc. Therefore, in such a situation it is importante * the electron Scfidinger field. We therefore start with

to derive exact relations for correlation functions, such aspe equal-time anticommutation relations for the electron
frequency sum rules or Ward-Takahashi relations, which cafie|q operators,

be used to determine adjustable parameters or to examine the

consistency of approximations and models. Concerning the wa(x),%(x/)]z W, (X) ¢;(X')+ ,pg(x/)%(x)
correlation functions of an electron gas in a strong uniform

magnetic field, a number of useful frequency sum rules have = 04p0(X—X"), 2.9

(kj)een_tglven |r; '?.ef' f7 Ht(_)wev?r, thfe?um ;gle folr t:\e SPIN" \where the Greek subscripts denote the electron-spin vari-
ensity correlation function of an interacting electron gas in, oo ie.a,8=1,]. Throughout this paper we use Ein-

an arbitrary magnetic field, whose magnitude and direCtio.%tein’s convention with respect to the summation over the

can be a function of the space coordinate, has not been rigy,;, yariables unless there is a remark that the summation is
orously derived to the best of the authors’ knowledge. not taken. We assume the Hamiltonian

The aim of this paper is to derive several exact relations,
|nclud|_ng thef.-sum rule .and Ward-Takahas_m relatlpns, for H=Ha+Hg+Himp+Hin. 2.2
the spin-density correlation functions of the interacting elec-
tron gas under an arbitrary magnetic field without any ap-The first term is the kinetic energy
proximational procedures. Our derivation is based on the
nonperturbative canonical formulation of quantum many- 3ot
body theory'? whose usefulness has been proved in a num- HA:f d*Xha () NA(V) Pra(X), 23
ber of applicationd3~1” Although we consider the electrons
in the three-dimensional space, the results can cover the twavith
dimensional case with a slight modification.

Our results aref-sum rules for the retarded density and —h
spin-density correlation functions, a finite-temperature gen- ha(V)= 2m zk:
eralized Ward-Takahashi relation, and a set of relations for
the spin-correlation functions including a finite-temperaturewherem, —e, u, andA, are the electron mass, the electron
version of the Nambu-Goldstone theorem for spontaneousharge, the chemical potential, and the vector potential, re-
breaking of the spin-rotational symmetry. spectively. The coupling between the electron spin and the

This paper is organized as follows: In the next section weexternal magnetic field is given by the Pauli spin term

Let us first define a model Hamiltonian for interacting

2 ie

2
0k+ hC Ak(X)) — M, (24)
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i _pt i

He=222 [ xS B0 Ul as0. (29 RO =D oag ¥t (243
K and also in the Schdinger picture

whereg is the electrong factor, ug=e#f/2mc is the Bohr ) )

magneton, and* (k=1,2,3) are Pauli spin matrices. The S =L 050 = S(%,0), (2.19

interaction between impurity atoms and the electrons is as- L . .
. . where the subscripgi indicates the operator is in the Heisen-
sumed to be described bycanumber spin-independent po-

. berg picture. The retarded spin-density response function is
tential Uy, ;
P defined as

Himp= f A3XU i p(X) (%) (%) (2.6 ARGEX )= =i 6(t=t )([Sy(x1),SL(X ,t)]),

It should be noted here that an extension of the present for- (219

mulation to a spin-dependent potential is straightforwardand its Fourier transform with respect to the time variables is
The electron-electron interaction term is assumed to be of thgiven by
form

AR(x,t;x’,t'):i fw AR(X’X/;w)e—i(t—t')wdw.
Him:%fdgxf d3x" Yl () Ph(x") ] or | A
(2.1

X v/ !
X Uin(X=X) hp(X") Yol X).. 2.7 If the external magnetic field is uniform, we can introduce
We do not specify a particular form for the interelectronthe spatial Fourier transform
potentialU;,;. We simply assume that the potential is inde-

pendent of the electron-spin variables. In Sec. VIII we shall Rio eir ern 3 Rt
discuss the effects of a spin-dependent electron-electron in- Ajf(XEXE) = (2m)* d*kdwAjj(k;w)
teraction on the results. ‘ o ,

The number density of electrons with spinis given by X @k =iet=t g, (2.17

H T
X, =V (Xt)¥,(xt no « sum, 2.8
PalXl) (xO¥ 060 A m @8 Ill. THE f-SUM RULE FOR THE DENSITY RESPONSE

where the superscriplt means the operator is in the Heisen- FUNCTION
berg picture. We also defing”(x,t) == p"(x,t) and p(x , , _
= 91(?(,O). In terms of thesrf:z$ect)ron ntfrﬁf:)er-)densify( o)pera- In.thls section we dgrlve th.ésum rule for the retarded

tors, the retarded density response function and its Fourieqens'ty response functlon_ de_fmed in S_ec. ”'. There are two
transform with respect to the time variables can be define&ssent'al steps in the derivation. One is the integration over

a4 w, which leads to the equal-time condition. The other is the
time derivative of the field variables, which can be calculated
Dzﬂ(x,t;x’,t’)z—i 0(t—t’)<[p';(x,t),p2(x’,t’)]), by making use of the Heisenberg equation of motion. Con-

(2.9  sequently, the entire calculation reduces to the evaluation of
various equal-time commutators. The equal-time commuta-

and tors can be rigorously evaluated by virtue of the equal-time
1 = canonical anticommutation relatigg.1).
Dsﬁ(x,t;x’,t’)= —_ f Dsﬁ(x,x’;w)e*i“*”‘”dw, We begin with the differentiation of Eq2.10 with re-
27 ) o spect tot, which immediately gives
(2.10
where we have used the grand canonical ensemble expecta—i f” DR (x.x' do=i ﬁ DR (x.t:x' ' }
tion value 27 | Papxxi@)odo=i 5 Dap(utx.t) t=t’
3.1
Tr{e_,BH. . } ( )
“>Ew- (2.1) Using the definition of the retarded response functi@:9),
its time derivative can be expressed as
If the external magnetic field is uniform, the density response
function has translational invariarideand we can define the ¢ R o _ R oo
spatial Fourier transform 7t Dapi X’ ) = —id(t—t Hpa(X:t),pp(X",0)])
1 H
R vl ) — 3 R . ) , apa(xat) P
Paglotx’ ! )‘<zw>4fd kdwD gk ) —i6(t—t >< — e )| ).
 eikx=x) —iw(t=t") (2.12 (3.2

To discuss the correlations or the fluctuations in the electrohe equal-time commutator in the first term on the right-
spin, it is useful to define the electron spin-density operatohand side simply vanishes. Thus we obtain the equal-time
in the Heisenberg picture limit of the time derivative of the response function,
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H H H ’
[% DSﬁ(X!t;X/,t’)} =—j 9(0)< [apa(x’t) ,pZ(X',t)}> . [[pa(X,t),HS(t)],pﬁ(X 1t)]

ot
t=t/ gu ,
(3.3 =~ =5~ sgn@)sgnB) 8(x—x')
The time derivative of the density operator on the right-hand X[B(X)-Sy(x,t)— 3(x)S3 (x,0)]. (3.7

side is given by the Heisenberg equation of motion,
Note that this term vanishes if the summation oweasr 8 is

taken. The contribution from Eq3.6) is found to be

[[pR(xt),HA(DT,p5(xX )]
1 _z2
= = [pa(x.t),Ha(t) - 6a,;(p2<x,t>v26<x—x'>

p;] 1
— Pa == [pG(x1),H(b)]

+ Hs(t) + Himp(t) + Hint(t)]
) +2k akpg(x,t)ﬂké(x—x’)) (no @ sum. (3.8
=_r1" +

7 PO HAD+HSD]. (34 Substituting these results, Eq8.7) and(3.8), into Eq.(3.3),
we obtain
To obtain the last line we observe that the density operators
commute withH;,, andH;,,. That is, the explicit forms of | J o o
the impurity potentiald;,, and the electron-electron interac- | gt Dap(x, X", 1)
tion potentialU,,, do not affect the derivation of the-sum
rule, as long as the two Hamiltonian terms commute with the 0(0)< [&pa( 1)

—i

- ot

t=t/

electron number-density operator. = (X' )
On the other hand, the Pauli spin term in the Hamiltonian

does not commute with the number-density operator. Using i

the explicit form of the Pauli spin term and the basic equal- ~ 7 5 z <[[Pa(x 1),HAD], P,G(X D)
time anticommutation relation we find

x|~

oMt H(D)] ([l (), Hs(D1,p (X" ,O])

98 [0
2 K

XLpa X040 0L, WX D) + o 92 Sora)sgrt BB - (S(x0)

3|;* ,\,I

§ AL Bap(PT (X)) 3 8(x—x")}

. Qup

_ T

=i == sgra)[BOOXW ,(x,1) 0, ¥, (X,1) |3 —B3(x)S3(x,t)}  (no a sum), (3.9
gu where we have useé(0)= 3 in accordance with its Fourier

=i Tg sgna)[B(X) X Sy(x,t)]3, (3.5 transform. From this equation we find the final form of the

f-sum rule:

where sgfw) is defined as sgif=1 and sgn)=—1. Simi-

larly, the equal-time anticommutation relation and the ex5— f wDaﬁ(x X";w)dw
plicit form of the kinetic energy Hamiltonian given by Egs.

(2.3) and(2.4) yield

it
:% 5aﬁ{<pa(x)>V25(X_X’)
h
[pa X t) H _Ihz ak(z_ \I, (X t)(ak ak)q}a(x t) +V5(X_X,)'V<p (X)>}
—miCAk(x)pg(x,t)] (no a sum. +%sgr(a)sgr(ﬂ)5(x—X’)
(3.6 X{B(x)-(S(x)) = Ba(X)(S3(x))} (no a sum.

Now that we have obtained the time derivative of the elec- (3.10

tron number-density operator in the commutator on the rightThis is the newf-sum rule for the electron number-density
hand side of Eq(3.3), our next step is to evaluate the com- response function for the interacting electron gas in an arbi-
mutator with the aid of Eq(2.1). The contribution from the trary magnetic field. If one takes summation oweor 3, the
spin term(3.5) can be calculated as last term vanishes due to the sign functions, recovering the
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well-known f-sum rule for the electron-density responseThe time derivative of the spin-density operator on the right-
function? The B-field dependent second term is our new hand side can be calculated by making use of the Heisenberg
result. equation of motion,

If the external magnetic field is uniform, the above sum
rule can be written as P
it E S;—|(X!t):[SIH(X1t)!HA(t)+ HS(t)

1 (= R
— J’ oDk w)dw

em +Himp(t)+ Hint(t)]- (45)
== 3 Bk2<Pa>+ 28 sgr(a) Because of Eq(4.3) the following two commutators simply
vanish,
Xsgr(B){B-(S)—Bx(S;)} (no a sum,  (3.11) |
X,1),Himp(1)1=0, 4.6
where the functiod?(k; ) has been defined in E(.12. [SH(x,1), Himp(V)] (4.6
IV. THE f-SUM RULE FOR THE SPIN-DENSITY [Su(x,1),Hin(1)]=0, 4.7

RESPONSE FUNCTION
. ) ) ) and the right-hand side of E¢4.5) reduces to
Following the previous section, we now consider the re-

tarded spin-density response function and derive the corre- P
spondingf-sum rule. The derivation is similar to that given i — S (x D) =[S.(x.t) Ha( T[S (x.1) He(t
in the previous section. The basic ingredients in the deriva- ot SHOGD =[S HAMD T+ S (1), Ho(O]:

tion are various equal-time commutators, which are almost (4.9
equivalent to the commutators appeared in the previous sec-
tion. The first commutator on the right-hand side of E48 can

From the Fourier transform of the spin-response functionpe evaluated using the basic equal-time anticommutation re-
Eq. (2.16), similarly to Eq.(3.1), we have lation,

— |- AR X" w)wdw=i iA-R(xt'x’ t')

2 ) X ot MiEXGE) [S<xt>HA<t>]— Eak H(x,1)

4.

By virtue of the definition of the spin-response function +iAk(x)S (X, t)] 4.9
(2.19, the right-hand side can be expressed in terms of hc

equal-time commutators,
where we have defined

Jd
lim — AR(x,t;x/,t")

v ot 1K=V () o5 TP p(x,1). (4.10
=—i lim S(t—t"){[Su(x,1),Sy(X",1)]) Using formula(4.3), we also find
t'—t
o aSL(x,t)
=i lim at—t){ |———.Sy(x.t) ] ). (42 [SL(x.1), Hs(t)]—lg,usz eijkBj(X)S(x,1). (4.11

t'—t

Thel comdmu'tz;to;] in 'Fge ]firEst 2te1rm on the right-hand can beg it ting these results, Eqd.9) and(4.12), into (4.8) we
evaluated with the aid of Eq2.1), obtain the equation of motion for the spin-density operator,

[SHO6D,SHOX,D]=1280x=x") 2 £SO,

i2e
— Ik i
3 |h SH(x t)y=—=— E A Ty t)+ A(X)Sy(x,t)

where g is the antisymmetric tensor. Becausg =0 in ) K
the present case, the commutator in the first term on the +'9MB% ; eikB;(X)Sy(x. ). (412
right-hand side of Eq.4.2) vanishes. Consequently, Eq.

(4.2) reduces to Note that the equation does not contain the electron-impurity

> or the electron-electron interaction terms, because they are

aSL(x,1)
at

assumed to be spin independent. If they have spin depen-
dence, additional terms emerge on the right-hand side.
(4.9 Now the commutator in Eq4.4) can be written as

J )
lim EAﬁ(x,t;x',t’)=—io(0)<[ ,SH(X',t)
t' —t
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Takahashi relatiod (FTGWTR) within the framework of
the Matsubara’s finite-temperature Green'’s function theory.
The mHeisenberg picture is defined as

J . )
iﬁ[ﬁ SL(x,1),S4(X,t)

_ 32 i
:_ﬁE TR x 1) S, (X't +|2_eA — a(l)HT — (U H7—
am 4 O OGSy D1+ 22 Ax) Po(x,7) =7y (x)e = (X). (5.0
Throughout this and the following sections we use the nota-
X[SL(X,1),SL (X, )]t +ig s> EimnBm(X) tion x=(x,7). We assume the same model Hamiltonian de-
m,n fined in Sec. Il,
X[SH(x,1),84(x", 1)]. (4.13 H=HA(7T)+Hs(7) + Himp(N +Hi(7). (5.2
The commutator in the first term on the right-hand side cary| the terms in the Hamiltonian are the same as those given
be evaluated by making use of £¢.3), in Egs. (2.2—(2.7) except the operators are defined in the

7-Heisenberg picture. We start with the identity for the time-

ik j ' _ T !
[0, S D ]= 26 o (X O W o (X, 1) 3 S(X—X") ordered product of the field operatifs

: . w1k
Fi23% e b, T 1pu(0u, O X))
(4.19

=8(—7)\T , ' Tron
Substituting Egs(4.3) and (4.14) into Eq. (4.13, we find (7= ) Tailpa(X). 4,0 1 (X))

+8(7— )T Ah, (X)) poa(X), H(X") ]}

J . )
if] — Sy(x,1),S4(X",1) Ap (X
gt TR s 220 gt (5.3
T

_ %2 _z2

=—— pu(X,D)V2S(X—X') + — where the notatiof {---} stands for the time-ordered prod-
m m uct with respect tar. With the aid of Eqg.(2.1), the commu-
XV S(X=X") -V pp (%) — 20 ugd(X—x') tators in the first and the second terms on the right-hand side

_ can be calculated. Then, the above identity reduces to
X{B(X)- Sy(x,1) = Bi(X)Sy(x,1)}. @15

This is still an operator relation. Taking the ensemble aver=— TAp.(X)#,(x")¢H(x")}

age we obtain the final result T
L o = = Sap SX=X)T Lt (X VYUKV }+ 80 S(X—X")
— | wARxXX;0)dw 9p (X
ol XT AU PO+ T ;’i L 0uion|.
if i%
=2|—m<p(x)>V25(x—x’)+2|—mVé(x—x’)~V<p(X)> (5.4

ig The r derivative of the number-density operator in the third
MB , : . . )
+ S(x—Xx"){B(X) - (S(x)) = B;{(x){S,(x))}, term can be obtained by making use of the Heisenberg equa

h tion of “motion”
(4.1 P -1 -1
which is the f-sum rule for the retarded spin-density re- 57 Pa(X)= 5= [pa(X),H]= 7= [pa(X),Ha(7)
sponse function. If the external field is uniform, this sum rule
reduces to +Hg(7) +Himp(7) +Hin( 7) ]. (5.9

1 (= As the commutator calculations are essentially same as those
> f wAR(K,w)dw carried out in the previous sections in the derivation of the
TS f-sum rules, we immediately obtain

I 9k g s g 41D dpx) -1
- 2m <p> A { < > I<Si>} . pO‘:'T :T lim {hA(V)—hA(_Vm)}lﬂl(Xm)lﬂa(X)
X!H*}X
V. FINITE TEMPERATURE GENERALIZED W-T Qug " .
RELATIONS —i 5 Sgr(a); &ij3Bi () Ye(X) o (%),
In the previous two sections we have used the Heisenberg (5.6)

picture for the electron Schdinger field operator. In this
and the following sections we use theHeisenberg picture which corresponds to E@4.12). By virtue of this result, the
in order to derive the finite-temperature generalized Wardeperator relation(5.6) yields
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operators are in theHeisenberg picture. Thederivative of
im | 8¢a0za) 7 hA(V)+ P hA(—V"’) the spin-density operator in the second term is given by Eq.
X" —x (4.8) by changing the picture from the Heisenberg picture to
g the ~Heisenberg picture. The contributions from the impu-
+i— Sgr(a{)[B(X)Xa'gg]s rity term and the electron-electron interaction term vanish.
The remaining two terms correspond to E@s9) and(4.11),
><TT{lﬁg(Xm)lﬂg(X)lﬂM(X/)l/IT(X”)} respecyvely. Ther integration of the left-hand side of Eq.
(6.2 gives
= BB =X )T L () PLX")}
B J
+ 84y X=X T b (X ) ()} fo d7 —— TAS()S(x")}
(no a sum. (5.7) =Si(x,B1)S|(x', 7))~ (X', 7)S(x,0). 6.3

In order to rewrite this operator relation as a finite-
temperature generalized Ward-Takahashi relation, we intrg,
duce the temperature Green’s functions

Therefore, if we make the integration of Eq(6.2) and take
%he grand canonical ensemble average, the left-hand side
vanishes due to the cyclic invariance of the trice,

(T PLXH = GanlXX"), (5.9 o
and J dTO-,— (TASI(X)S;(x")})=0. (6.9
0 T
(TAWLX) (X, (X ) (X"} The next step is to integrate both sides of E&j2) over the
__ ANTATIVL AR entirex space. Then, the first term on the right-hand side of
(TALL )P (X ) (X)) o (X")}) Eq. (6.2 yields
=—Ghpa(XX X", X") (N0 o sum. (5.9
h
Then Eq.(5.7) can be written as f d3xfﬂ dré(r— 7 ){[Si(x),S(x")])
0
J
x!rlfo 6§a5§a hA(V)+ aTm h hA(_v )] :ZIZk 8ijk<Sk(X,)>! (65)

and the second term gives

g ’ 4 n
+i —sgr(a)[B(x)Xo-ﬂ]SGgﬂ (XXX, X™)

— 00 (X=X By (X, X") + 8,1, (X~ X") G (X' X) f d3xfﬁth<TT[ 53{90() sj(x')}>
0 T
(no @ sum. (5.10

L ) —igug 5 [A
This is the FTGWTR for the electrons under an arbitrary =7 2 g | d°x d7By(x)
magnetic field. kol 0

X(TAS(X)S;(x)}). (6.6
VI. EXACT RELATIONS FOR THE SPIN-DENSITY
CORRELATION FUNCTIONS Thus we obtain the following exact relation:

The derivation of the finite-temperature generalized Iie
Ward-Takahashi relation in the previous section can be X & (S(X))= 5 o7 > E 'k'j d3x J dr' By(x')
straightforwardly applied to obtain more physically direct K K

relations, i.e., some exact relations between the spin-density ne
correlation functions. We first define the spin-density opera- XTASCDS0h- €7
tor in the ~~Heisenberg picture, This can also be written as
S1(X) = (X) 0 gibp(X). (6.1 i o

Then the identity corresponding to E¢.4) is (SON=Z7 ah f d’ ,f dr _B‘(X,)Ek
J
- TAS(0S(x)} X(TAS(X) S0} + 2 Bi(x')

= 8(r— S0, S(x)]+T, S‘( ) L 5(x )] (6.2) X(TAS(X)S(X)}) - (6.8

The commutator in the first term is essentially the same a# is straightforward to extend this result to higher order cor-
that given by Eq(4.3). The only difference is that here the relation functions. Starting with the identify
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i ‘ ’ n i 1 3/ 3y M ' . "
- TAS(0S(x)Sd(x")} Hin(7) zfd x fd X"Us(|X' =X"])S(x',7) - S(X", 7).
(7.9
= (7= )TAIS(0),.§(X)IS(X)} Due to such a spin dependence, theerivative of the spin-
+ (71— TAS(X)[SI(X), S(X") ]} density operator now has the new term
d 1 ! " ! "
+TT[ S0 Sj(x’)Sk(x”)], 69  [S00.Ha(I=} [ & | @xuglx-x)
we can similarly obtain sz‘, [S(X,7),S(X", T)S(X",7)].
(7.2

§|: {eii(TAS(X)S(X) ) + ei{TAS;(X)S(X) )}

It is straightforward to calculate the commutator on the
right-hand side of Eq(7.2) and to find that the commutator

_ % J' daxfﬂﬁdel: E £i1m By (X) vanishes after the integration over the entirspace,
0 m
X<TT{Sm(X)Sj(X’)Sk(X")}>. (610) f d3XEk [Si(X,T)ySk(X"T)Sk(X’I,T)]

This can be readily generalized to

=i2> > s”k{Jd3x5(x—x’)—f d3x5(x—x”)]
i

2 2 & (TS, 008, (DS 0w XS (X, 1) S(X",7)
=0. (7.3
XS, ()-S5 (X)) Hence we find
gus ph
=5 | o[4S S s | axso0 -0 (7.4
X(T,{Sm(x)Sjl(xl)---SJ-N(xN)}>. (6.1)  Consequently, because of tkentegration in Eqs(6.5) and

(6.6), the final result(6.7) is not affected by the spin-

To the best of the authors’ knowledge, the res(8t3), (6.9), dependent interactigﬂ.l) added to the Hamiltonian.
(6.10, and(6.11) are new. It should be also noted that these _ 10 S€€ the relation between E.7) and the Nambu-
relations have been derived without any approximations. Coldstone theorem, it is sufficient to observe that
M;(x)= lim (S;(x)) (7.5
VII. DISCUSSIONS AND CONCLUDING REMARKS B0
can be regarded as the order parameter for the spontaneous

We have derived sum rules, a FTGWTR, and a set 0foken spin-rotational symmetiy.If the system is symmet-
exact relations for the spin-density correlation functions.. under spin rotationM;(x) must vanish. Therefore, if
Among these results, the exact relations obtained in the Iasm(x) does not vanish iln the zero magnetic field I,imit

I )

) ; . X eMi(x) is nothing else but the order parameter of the sponta-
relation (6.8) illustrates the response of the spin density of heous symmetry breaking. The nonvanishikg(x) also

the system of interacting electrons to an arbitrary EXtemaaneans that the right-hand side of £6.8) does not vanish
magnetic field that is coupled with the electron spin via the ' ’

interaction HamiltoniarHg given by Eq.(2.5. The correla- gug s, [P, , )
tion functions express the response of the electron spin to théM == f d°x fo dr [_Bi(x )Ek (TASX)S(x)})
perturbation caused by the external magnetic field. Thes&°
correlation functions depend on the magnetic field.
The relation(6.8) can be regarded as a finite-temperature ~ + >, Bk(X’)<TT{Si(X')Sk(X)}>] #0. (7.6
version of Nambu-Goldstone’s theorem. In order to realize a k
spontaneous breaking of the spin-rotational symmetry, it iSThis is the finite-temperature version of the Nambu-
necessary to include a spin-dependent electron-electron inteGoldstone theorerh:*8%In order to relate the singularity of
action. Then, as a consequence of cooperative phenomenathe spin-correlation functions, (T {S(x')S(x)}) or
may be possible to have a spin-ordered state that breaks tKi@ {S.(x’)Sc(x)}), to Nambu-Goldstone bosons, one can
spin-rotational symmetry of the original Hamiltonian at suf- perform analytic continuation with respect to the frequency
ficiently low temperaturé® to obtain the real-time response functidfsn such a case,
Here we show that the resul8.8), (6.10, and(6.11) are  the poles of the response functions may be expected to show
unchanged at the presence of a spin-dependent electrothe excitation spectrums of magndfigturther detailed dis-
electron interaction in the Hamiltonian, cussions will be given in a forthcoming paper.
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