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Exact relations for the spin-correlation functions for an interacting electron gas
in a nonuniform magnetic field

Tadashi Toyoda* and Masamichi Okada
Department of Physics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-12, Japan

~Received 25 November 1997!

Without any approximation, exact relations for the spin-density correlation functions in an interacting elec-
tron gas under an arbitrary nonuniform external magnetic field are obtained by making use of the nonpertur-
bative canonical formulation of quantum many-body theory@T. Toyoda, Ann. Phys.~N.Y.! 173, 226 ~1987!#.
The obtained results containf -sum rules, a finite-temperature generalized Ward-Takahashi relation, as well as
a finite-temperature version of the Nambu-Goldstone theorem with respect to the spontaneous symmetry
breaking of the spin-rotational symmetry.@S0163-1829~98!04027-2#
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I. INTRODUCTION

Quantum many-body effects in an electron gas unde
magnetic field have been attracting much attention
decades.1 The density correlation function and the spi
density correlation functions of the electrons are of vital i
portance in the study of the many-body effects.2–4 While the
density correlation function has been calculated for the f
three- and two-dimensional electrons in a uniform exter
magnetic field,1,5–11the calculation of the many-body effec
on the correlation functions seem to be extremely diffic
even with the aid of powerful approximation schemes su
as the random-phase approximation, quantum linked clu
expansions, etc. Therefore, in such a situation it is impor
to derive exact relations for correlation functions, such
frequency sum rules or Ward-Takahashi relations, which
be used to determine adjustable parameters or to examin
consistency of approximations and models. Concerning
correlation functions of an electron gas in a strong unifo
magnetic field, a number of useful frequency sum rules h
been given in Ref. 7. However, thef -sum rule for the spin-
density correlation function of an interacting electron gas
an arbitrary magnetic field, whose magnitude and direct
can be a function of the space coordinate, has not been
orously derived to the best of the authors’ knowledge.

The aim of this paper is to derive several exact relatio
including the f -sum rule and Ward-Takahashi relations, f
the spin-density correlation functions of the interacting el
tron gas under an arbitrary magnetic field without any
proximational procedures. Our derivation is based on
nonperturbative canonical formulation of quantum man
body theory,12 whose usefulness has been proved in a nu
ber of applications.13–17 Although we consider the electron
in the three-dimensional space, the results can cover the
dimensional case with a slight modification.

Our results aref -sum rules for the retarded density an
spin-density correlation functions, a finite-temperature g
eralized Ward-Takahashi relation, and a set of relations
the spin-correlation functions including a finite-temperatu
version of the Nambu-Goldstone theorem for spontane
breaking of the spin-rotational symmetry.

This paper is organized as follows: In the next section
PRB 580163-1829/98/58~3!/1210~8!/$15.00
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define a model Hamiltonian and the correlation functio
that are considered in this work. In Sec. III, anf -sum rule for
the electron number-density response function is derived.
f -sum rule for the spin-density response function is also
rived in Sec. IV. A finite-temperature generalized War
Takahashi relation is calculated in Sec. V. Exact relations
spin-correlation functions are obtained in Sec. VI. Conclu
ing remarks and discussions are given in Sec. VII.

II. MODEL HAMILTONIAN AND RESPONSE FUNCTIONS

Let us first define a model Hamiltonian for interactin
electrons in an external magnetic field. The electrons
described in terms of the second quantized field operat
i.e., the electron Schro¨dinger field. We therefore start with
the equal-time anticommutation relations for the electr
field operators,

@ca~x!,cb
†~x8!#[ca~x!cb

†~x8!1cb
†~x8!ca~x!

5dabd~x2x8!, ~2.1!

where the Greek subscripts denote the electron-spin v
ables, i.e.,a,b5↑,↓. Throughout this paper we use Ein
stein’s convention with respect to the summation over
spin variables unless there is a remark that the summatio
not taken. We assume the Hamiltonian

H5HA1HS1Himp1H int . ~2.2!

The first term is the kinetic energy

HA5E d3xca
†~x!hA~¹!ca~x!, ~2.3!

with

hA~¹!5
2\2

2m (
k

S ]k1
ie

\c
Ak~x! D 2

2m, ~2.4!

wherem, 2e, m, andAk are the electron mass, the electro
charge, the chemical potential, and the vector potential,
spectively. The coupling between the electron spin and
external magnetic field is given by the Pauli spin term
1210 © 1998 The American Physical Society
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HS5
gmB

2 E d3x(
k

Bk~x!ca
†~x!sab

k cb~x!, ~2.5!

whereg is the electrong factor, mB5e\/2mc is the Bohr
magneton, andsk (k51,2,3) are Pauli spin matrices. Th
interaction between impurity atoms and the electrons is
sumed to be described by ac-number spin-independent po
tential Uimp ,

Himp5E d3xUimp~x!ca
†~x!ca~x!. ~2.6!

It should be noted here that an extension of the present
mulation to a spin-dependent potential is straightforwa
The electron-electron interaction term is assumed to be of
form

H int5
1
2 E d3xE d3x8ca

†~x!cb
†~x8!

3U int~x2x8!cb~x8!ca~x!. ~2.7!

We do not specify a particular form for the interelectr
potentialU int . We simply assume that the potential is ind
pendent of the electron-spin variables. In Sec. VIII we sh
discuss the effects of a spin-dependent electron-electron
teraction on the results.

The number density of electrons with spina is given by

ra
H~x,t !5Ca

†~x,t !Ca~x,t ! ~no a sum!, ~2.8!

where the superscriptH means the operator is in the Heise
berg picture. We also definerH(x,t)5(ara

H(x,t) and r(x)
5rH(x,0). In terms of these electron number-density ope
tors, the retarded density response function and its Fou
transform with respect to the time variables can be defi
as2–4

Dab
R ~x,t;x8,t8![2 iu~ t2t8!^@ra

H~x,t !,rb
H~x8,t8!#&,

~2.9!

and

Dab
R ~x,t;x8,t8!5

1

2p E
2`

`

Dab
R ~x,x8;v!e2 i ~ t2t8!vdv,

~2.10!

where we have used the grand canonical ensemble exp
tion value

^•••&[
Tr$e2bH•••%

Tr e2bH . ~2.11!

If the external magnetic field is uniform, the density respon
function has translational invariance17 and we can define the
spatial Fourier transform

Dab
R ~x,t;x8,t8!5

1

~2p!4 E d3kdvDab
R ~k;v!

3eik~x2x8!2 iv~ t2t8!. ~2.12!

To discuss the correlations or the fluctuations in the elec
spin, it is useful to define the electron spin-density opera
in the Heisenberg picture
s-

r-
.
e

-
ll
in-

-
er
d

ta-

e

n
r

SH
i ~x,t ![Ca

†~x,t !sab
i Cb~x,t !, ~2.13!

and also in the Schro¨dinger picture

Si~x![ca
†~x!sab

i cb~x!5SH
i ~x,0!, ~2.14!

where the subscriptH indicates the operator is in the Heise
berg picture. The retarded spin-density response functio
defined as

L i j
R~x,t;x8,t8![2 iu~ t2t8!^@SH

i ~x,t !,SH
j ~x8,t8!#&,

~2.15!

and its Fourier transform with respect to the time variable
given by

L i j
R~x,t;x8,t8!5

1

2p E
2`

`

L i j
R~x,x8;v!e2 i ~ t2t8!vdv.

~2.16!

If the external magnetic field is uniform, we can introdu
the spatial Fourier transform

L i j
R~x,t;x8,t8!5

1

~2p!4 E d3kdvL i j
R~k;v!

3eik~x2x8!2 iv~ t2t8!dv. ~2.17!

III. THE f -SUM RULE FOR THE DENSITY RESPONSE
FUNCTION

In this section we derive thef -sum rule for the retarded
density response function defined in Sec. II. There are
essential steps in the derivation. One is the integration o
v, which leads to the equal-time condition. The other is
time derivative of the field variables, which can be calcula
by making use of the Heisenberg equation of motion. C
sequently, the entire calculation reduces to the evaluatio
various equal-time commutators. The equal-time commu
tors can be rigorously evaluated by virtue of the equal-ti
canonical anticommutation relation~2.1!.

We begin with the differentiation of Eq.~2.10! with re-
spect tot, which immediately gives

1

2p E
2`

`

Dab
R ~x,x8;v!vdv5 i F ]

]t
Dab

R ~x,t;x8,t8!G
t5t8

.

~3.1!

Using the definition of the retarded response function~2.9!,
its time derivative can be expressed as

]

]t
Dab

R ~x,t;x8,t8!52 id~ t2t8!^@ra
H~x,t !,rb

H~x8,t !#&

2 iu~ t2t8!K F]ra
H~x,t !

]t
,rb

H~x8,t8!G L .

~3.2!

The equal-time commutator in the first term on the rig
hand side simply vanishes. Thus we obtain the equal-t
limit of the time derivative of the response function,
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F ]

]t
Dab

R ~x,t;x8,t8!G
t5t8

52 iu~0!K F]ra
H~x,t !

]t
,rb

H~x8,t !G L .

~3.3!

The time derivative of the density operator on the right-ha
side is given by the Heisenberg equation of motion,

]

]t
ra

H~x,t !5
1

i\
@ra

H~x,t !,H~ t !#

5
1

i\
@ra

H~x,t !,HA~ t !

1HS~ t !1Himp~ t !1H int~ t !#

5
1

i\
@ra

H~x,t !,HA~ t !1HS~ t !#. ~3.4!

To obtain the last line we observe that the density opera
commute withHimp andH int . That is, the explicit forms of
the impurity potentialUimp and the electron-electron intera
tion potentialU int do not affect the derivation of thef -sum
rule, as long as the two Hamiltonian terms commute with
electron number-density operator.

On the other hand, the Pauli spin term in the Hamilton
does not commute with the number-density operator. Us
the explicit form of the Pauli spin term and the basic equ
time anticommutation relation we find

@ra
H~x,t !,HS~ t !#

5
gmB

2 E d3x8 (
k

Bk~x8!

3@ra
H~x,t !,Cm

† ~x8,t !smn
k Cn~x8,t !#

5 i
gmB

2
sgn~a!@B~x!3Cm

† ~x,t !smnCn~x,t !#3

5 i
gmg

2
sgn~a!@B~x!3SH~x,t !#3 , ~3.5!

where sgn~a! is defined as sgn(↑)51 and sgn(↓)521. Simi-
larly, the equal-time anticommutation relation and the e
plicit form of the kinetic energy Hamiltonian given by Eq
~2.3! and ~2.4! yield

@ra
H~x,t !,HA~ t !#5 i\(

k
]kH 2\

i2m
Ca

†~x,t !~]k2]Q k!Ca~x,t !

2
e

mc
Ak~x!ra

H~x,t !J ~no a sum!.

~3.6!

Now that we have obtained the time derivative of the el
tron number-density operator in the commutator on the rig
hand side of Eq.~3.3!, our next step is to evaluate the com
mutator with the aid of Eq.~2.1!. The contribution from the
spin term~3.5! can be calculated as
d

rs

e

n
g

l-

-

-
t-

†@ra
H~x,t !,HS~ t !#,rb

H~x8,t !‡

52
gmB

2
sgn~a!sgn~b!d~x2x8!

3@B~x!•SH~x,t !2B3~x!SH
3 ~x,t !#. ~3.7!

Note that this term vanishes if the summation overa or b is
taken. The contribution from Eq.~3.6! is found to be

†@ra
H~x,t !,HA~ t !#,rb

H~x8,t !]

5
2\2

m
dabH ra

H~x,t !¹2d~x2x8!

1(
k

]kra
H~x,t !•]kd~x2x8!J ~no a sum!. ~3.8!

Substituting these results, Eqs.~3.7! and~3.8!, into Eq.~3.3!,
we obtain

F ]

]t
Dab

R ~x,t;x8,t8!G
t5t8

52 iu~0!K F]ra
H~x,t !

]t
,rb

H~x8,t !G L
52

i

2

1

i\
^†@ra

H~x,t !,HA~ t !#,rb
H~x8,t !#&

2
i

2

1

i\
^†@ra

H~x,t !,HS~ t !#,rb
H~x8,t !‡&

5
\

2m (
k

]k$dab^ra
H~x,t !&]kd~x2x8!%

1
1

2\

gmB

2
sgn~a!sgn~b!$B~x!•^S~x,t !&

2B3~x!SH
3 ~x,t !% ~no a sum!, ~3.9!

where we have usedu(0)5 1
2 in accordance with its Fourie

transform. From this equation we find the final form of th
f -sum rule:

1

2p E
2`

`

vDab
R ~x,x8;v!dv

5
i\

2m
dab$^ra~x!&¹2d~x2x8!

1“d~x2x8!•“^ra~x!&%

1
igmB

4\
sgn~a!sgn~b!d~x2x8!

3$B~x!•^S~x!&2B3~x!^S3~x!&% ~no a sum!.

~3.10!

This is the newf -sum rule for the electron number-densi
response function for the interacting electron gas in an a
trary magnetic field. If one takes summation overa or b, the
last term vanishes due to the sign functions, recovering
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well-known f -sum rule for the electron-density respon
function.4 The B-field dependent second term is our ne
result.

If the external magnetic field is uniform, the above su
rule can be written as

1

2p E
2`

`

vDab
R ~k;v!dv

5
2 i\

2m
dabk2^ra&1

igmB

4\
sgn~a!

3sgn~b!$B•^S&2B3^S3&% ~no a sum!, ~3.11!

where the functionDab
R (k;v) has been defined in Eq.~2.12!.

IV. THE f -SUM RULE FOR THE SPIN-DENSITY
RESPONSE FUNCTION

Following the previous section, we now consider the
tarded spin-density response function and derive the co
spondingf -sum rule. The derivation is similar to that give
in the previous section. The basic ingredients in the der
tion are various equal-time commutators, which are alm
equivalent to the commutators appeared in the previous
tion.

From the Fourier transform of the spin-response functi
Eq. ~2.16!, similarly to Eq.~3.1!, we have

1

2p E
2`

`

L i i
R~x,x8;v!vdv5 i F ]

]t
L i i

R~x,t;x8,t8!G
t5t8

.

~4.1!

By virtue of the definition of the spin-response functio
~2.15!, the right-hand side can be expressed in terms
equal-time commutators,

lim
t8→t

]

]t
L i i

R~x,t;x8,t8!

52 i lim
t8→t

d~ t2t8!^@SH
i ~x,t !,SH

i ~x8,t !#&

2 i lim
t8→t

u~ t2t8!K F]SH
i ~x,t !

]t
,SH

i ~x8,t8!G L . ~4.2!

The commutator in the first term on the right-hand can
evaluated with the aid of Eq.~2.1!,

@SH
i ~x,t !,SH

j ~x8,t !#5 i2d~x2x8!(
k

« i jkSH
k ~x,t !,

~4.3!

where« i jk is the antisymmetric tensor. Because« i ik50 in
the present case, the commutator in the first term on
right-hand side of Eq.~4.2! vanishes. Consequently, Eq
~4.2! reduces to

lim
t8→t

]

]t
L i i

R~x,t;x8,t8!52 iu~0!K F]SH
i ~x,t !

]t
,SH

i ~x8,t !G L .

~4.4!
-
e-

-
st
c-

,

f

e

e

The time derivative of the spin-density operator on the rig
hand side can be calculated by making use of the Heisen
equation of motion,

i\
]

]t
SH

i ~x,t !5@SH
i ~x,t !,HA~ t !1HS~ t !

1Himp~ t !1H int~ t !#. ~4.5!

Because of Eq.~4.3! the following two commutators simply
vanish,

@SH
i ~x,t !,Himp~ t !#50, ~4.6!

@SH
i ~x,t !,H int~ t !#50, ~4.7!

and the right-hand side of Eq.~4.5! reduces to

i\
]

]t
SH

i ~x,t !5@SH
i ~x,t !,HA~ t !#1@SH

i ~x,t !,HS~ t !#.

~4.8!

The first commutator on the right-hand side of Eq.~4.8! can
be evaluated using the basic equal-time anticommutation
lation,

@SH
i ~x,t !,HA~ t !#5

2\2

2m (
k

]kH I H
ik~x,t !

1
i2e

\c
Ak~x!SH

i ~x,t !J , ~4.9!

where we have defined

I H
ik~x,t ![Ca

†~x,t !sab
i ]JkCb~x,t !. ~4.10!

Using formula~4.3!, we also find

@SH
i ~x,t !,HS~ t !#5 igmB(

k
« i jkBj~x!SH

k ~x,t !. ~4.11!

Substituting these results, Eqs.~4.9! and~4.11!, into ~4.8! we
obtain the equation of motion for the spin-density operat

i\
]

]t
SH

i ~x,t !5
2\2

2m (
k

]kH I H
ik~x,t !1

i2e

\c
Ak~x!SH

i ~x,t !J
1 igmB(

k
(

j
« i jkBj~x!SH

k ~x,t !. ~4.12!

Note that the equation does not contain the electron-impu
or the electron-electron interaction terms, because they
assumed to be spin independent. If they have spin dep
dence, additional terms emerge on the right-hand side.

Now the commutator in Eq.~4.4! can be written as
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i\F ]

]t
SH

i ~x,t !,SH
i ~x8,t !G

5
2\2

2m (
k

]kH @ I H
ik~x,t !,SH

i ~x8,t !#1
i2e

\c
Ak~x!

3@SH
i ~x,t !,SH

i ~x8,t !#J 1 igmB(
m,n

« imnBm~x!

3@SH
n ~x,t !,SH

i ~x8,t !#. ~4.13!

The commutator in the first term on the right-hand side c
be evaluated by making use of Eq.~4.3!,

@ I H
ik~x,t !,SH

j ~x8,t !#52d i j Ca
†~x,t !Ca~x,t !]kd~x2x8!

1 i2(
l

« i j l d~x2x8!I H
lk~x,t !.

~4.14!

Substituting Eqs.~4.3! and ~4.14! into Eq. ~4.13!, we find

i\F ]

]t
SH

i ~x,t !,SH
i ~x8,t !G

5
2\2

m
rH~x,t !¹2d~x2x8!1

2\2

m

3¹d~x2x8!•¹rH~x,t !22gmBd~x2x8!

3$B~x!•SH~x,t !2Bi~x!SH
i ~x,t !%. ~4.15!

This is still an operator relation. Taking the ensemble av
age we obtain the final result

1

2p E
2`

`

vL i i
R~x,x8;v!dv

5
i\

2m
^r~x!&¹2d~x2x8!1

i\

2m
¹d~x2x8!•¹^r~x!&

1
igmB

\
d~x2x8!$B~x!•^S~x!&2Bi~x!^Si~x!&%,

~4.16!

which is the f -sum rule for the retarded spin-density r
sponse function. If the external field is uniform, this sum ru
reduces to

1

2p E
2`

`

vL i i
R~k,v!dv

5
2 i\k2

2m
^r&1

igmB

\
$B•^S&2Bi^Si&%. ~4.17!

V. FINITE TEMPERATURE GENERALIZED W-T
RELATIONS

In the previous two sections we have used the Heisenb
picture for the electron Schro¨dinger field operator. In this
and the following sections we use thet-Heisenberg picture
in order to derive the finite-temperature generalized Wa
n

r-

rg

-

Takahashi relations12 ~FTGWTR! within the framework of
the Matsubara’s finite-temperature Green’s function theo
The t-Heisenberg picture is defined as

ca~x,t![e~1/\!Htca~x!e2~1/\!Ht[ca~x!. ~5.1!

Throughout this and the following sections we use the no
tion x[(x,t). We assume the same model Hamiltonian d
fined in Sec. II,

H5HA~t!1HS~t!1Himp~t!1H int~t!. ~5.2!

All the terms in the Hamiltonian are the same as those gi
in Eqs. ~2.2!–~2.7! except the operators are defined in t
t-Heisenberg picture. We start with the identity for the tim
ordered product of the field operators12

]

]t
Tt$ra~x!cm~x8!cn

†~x9!%

5d~t2t8!Tt$@ra~x!,cm~x8!#cn
†~x9!%

1d~t2t9!Tt$cm~x8!@ra~x!,cn
†~x9!#%

1TtH ]ra~x!

]t
cm~x8!cn

†~x9!J , ~5.3!

where the notationTt$¯% stands for the time-ordered prod
uct with respect tot. With the aid of Eq.~2.1!, the commu-
tators in the first and the second terms on the right-hand
can be calculated. Then, the above identity reduces to

]

]t
Tt$ra~x!cm~x8!cn

†~x9!%

52damd~x2x8!Tt$cm~x8!cn
†~x9!%1dand~x2x9!

3Tt$cm~x8!cn
†~x9!%1TtH ]ra~x!

]t
cm~x8!cn

†~x9!J .

~5.4!

The t derivative of the number-density operator in the th
term can be obtained by making use of the Heisenberg e
tion of ‘‘motion’’

]

]t
ra~x!5

21

\
@ra~x!,H#5

21

\
@ra~x!,HA~t!

1HS~t!1Himp~t!1H int~t!#. ~5.5!

As the commutator calculations are essentially same as t
carried out in the previous sections in the derivation of
f -sum rules, we immediately obtain

]ra~x!

]t
5

21

\
lim

x-→x

$hA~¹!2hA~2¹-!%ca
†~x-!ca~x!

2 i
gmB

2\
sgn~a!(

i j
« i j 3Bi~x!cj

†~x!sjz
j cz~x!,

~5.6!

which corresponds to Eq.~4.12!. By virtue of this result, the
operator relation~5.6! yields
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lim
x-→x

FdjadzaH ]

]t
1

1

\
hA~¹!1

]

]t-
2

1

\
hA~2¹-!J

1 i
gmB

2\
sgn~a!@B~x!3sjz#3G

3Tt$cj
†~x-!cz~x!cm~x8!cn

†~x9!%

52damd~x2x8!Tt$ca~x!cn
†~x9!%

1dand~x2x9!Tt$cm~x8!ca
†~x!%

~no a sum!. ~5.7!

In order to rewrite this operator relation as a finit
temperature generalized Ward-Takahashi relation, we in
duce the temperature Green’s functions

2^Tt$ca~x!cn
†~x9!%&5Gan~x,x9!, ~5.8!

and

^Tt$ca
†~x-!ca~x!cm~x8!cn

†~x9!%&

52^Tt$ca~x!cm~x8!cn
†~x9!ca

†~x-!%&

52Gam;na
II ~x,x8;x9,x-! ~no a sum!. ~5.9!

Then Eq.~5.7! can be written as

lim
x-→x

FdjadzaH ]

]t
1

1

\
hA~¹!1

]

]t-
2

1

\
hA~2¹-!J

1 i
gmB

2\
sgn~a!@B~x!3sjz#3Gzm;nj

II ~x,x8;x9,x-!G
52damd~x2x8!Gan~x,x9!1dand~x2x9!Gma~x8,x!

~no a sum!. ~5.10!

This is the FTGWTR for the electrons under an arbitra
magnetic field.

VI. EXACT RELATIONS FOR THE SPIN-DENSITY
CORRELATION FUNCTIONS

The derivation of the finite-temperature generaliz
Ward-Takahashi relation in the previous section can
straightforwardly applied to obtain more physically dire
relations, i.e., some exact relations between the spin-den
correlation functions. We first define the spin-density ope
tor in thet-Heisenberg picture,

Si~x![ca
†~x!sab

i cb~x!. ~6.1!

Then the identity corresponding to Eq.~5.4! is

]

]t
Tt$Si~x!Sj~x8!%

5d~t2t8!@Si~x!,Sj~x8!#1TtH ]Si~x!

]t
Sj~x8!J . ~6.2!

The commutator in the first term is essentially the same
that given by Eq.~4.3!. The only difference is that here th
o-

e

ity
-

s

operators are in thet-Heisenberg picture. Thet derivative of
the spin-density operator in the second term is given by
~4.8! by changing the picture from the Heisenberg picture
the t-Heisenberg picture. The contributions from the imp
rity term and the electron-electron interaction term vani
The remaining two terms correspond to Eqs.~4.9! and~4.11!,
respectively. Thet integration of the left-hand side of Eq
~6.2! gives

E
0

b\

dt
]

]t
Tt$Si~x!Sj~x8!%

5Si~x,b\!Sj~x8,t8!2Sj~x8,t8!Si~x,0!. ~6.3!

Therefore, if we make thet integration of Eq.~6.2! and take
the grand canonical ensemble average, the left-hand
vanishes due to the cyclic invariance of the trace,12

E
0

b\

dt
]

]t
^Tt$Si~x!Sj~x8!%&50. ~6.4!

The next step is to integrate both sides of Eq.~6.2! over the
entirex space. Then, the first term on the right-hand side
Eq. ~6.2! yields

E d3xE
0

b\

dtd~t2t8!^@Si~x!,Sj~x8!#&

52i(
k

« i jk^Sk~x8!&, ~6.5!

and the second term gives

E d3xE
0

b\

dt K TtH ]Si~x!

]t
Sj~x8!J L

5
2 igmB

\ (
k

(
l

« iklE d3xE
0

b\

dtBk~x!

3^Tt$Sl~x!Sj~x8!%&. ~6.6!

Thus we obtain the following exact relation:

(
k

« i jk^Sk~x!&5
gmB

2\ (
k

(
l

« iklE d3x8E
0

b\

dt8Bk~x8!

3^Tt$Sl~x8!Sj~x!%&. ~6.7!

This can also be written as

^Si~x!&5
gmB

4\ E d3x8E
0

b\

dt8H 2Bi~x8!(
k

3^Tt$Sk~x8!Sk~x!%&1(
k

Bk~x8!

3^Tt$Si~x8!Sk~x!%&J . ~6.8!

It is straightforward to extend this result to higher order c
relation functions. Starting with the identity12
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]

]t
Tt$Si~x!Sj~x8!Sk~x9!%

5d~t2t8!Tt$@Si~x!,Sj~x8!#Sk~x9!%

1d~t2t9!Tt$Sj~x8!@Si~x!,Sk~x9!#%

1TtH ]Si~x!

]t
Sj~x8!Sk~x9!J , ~6.9!

we can similarly obtain

(
l

$« i j l ^Tt$Sl~x8!Sk~x9!%&1« ikl^Tt$Sj~x8!Sl~x9!%&%

5
gmB

2\ E d3xE
0

b\

dt(
l

(
m

« i lmBl~x!

3^Tt$Sm~x!Sj~x8!Sk~x9!%&. ~6.10!

This can be readily generalized to

(
k51

N

(
l

« i j kl^Tt$Sj 1
~x1!¯Sj k21

~xk21!Sl~xk!

3Sj k11
~xk11!¯Sj N

~xN!%&

5
gmB

2\ E d3xE
0

b\

dt(
l

(
m

« i lmBl~x!

3^Tt$Sm~x!Sj 1
~x1!¯Sj N

~xN!%&. ~6.11!

To the best of the authors’ knowledge, the results~6.7!, ~6.8!,
~6.10!, and~6.11! are new. It should be also noted that the
relations have been derived without any approximations.

VII. DISCUSSIONS AND CONCLUDING REMARKS

We have derived sum rules, a FTGWTR, and a set
exact relations for the spin-density correlation functio
Among these results, the exact relations obtained in the
section provide a direct physical interpretation. Evidently
relation ~6.8! illustrates the response of the spin density
the system of interacting electrons to an arbitrary exter
magnetic field that is coupled with the electron spin via
interaction HamiltonianHs given by Eq.~2.5!. The correla-
tion functions express the response of the electron spin to
perturbation caused by the external magnetic field. Th
correlation functions depend on the magnetic field.

The relation~6.8! can be regarded as a finite-temperatu
version of Nambu-Goldstone’s theorem. In order to realiz
spontaneous breaking of the spin-rotational symmetry, i
necessary to include a spin-dependent electron-electron i
action. Then, as a consequence of cooperative phenome
may be possible to have a spin-ordered state that break
spin-rotational symmetry of the original Hamiltonian at su
ficiently low temperature.18

Here we show that the results~6.8!, ~6.10!, and~6.11! are
unchanged at the presence of a spin-dependent elec
electron interaction in the Hamiltonian,
e

f
.
st

e
f
al
e

he
se

e
a
is
er-
, it

the

on-

H int~t!5 1
2 E d3x8E d3x9US~ ux82x9u!S~x8,t!•S~x9,t!.

~7.1!

Due to such a spin dependence, thet derivative of the spin-
density operator now has the new term

@Si~x!,H int~t!#5 1
2 E d3x8E d3x9US~ ux82x9u!

3(
k

@Si~x,t!,Sk~x8,t!Sk~x9,t!#.

~7.2!

It is straightforward to calculate the commutator on t
right-hand side of Eq.~7.2! and to find that the commutato
vanishes after the integration over the entirex space,

E d3x(
k

@Si~x,t!,Sk~x8,t!Sk~x9,t!#

5 i2(
k

(
l

« i lk H E d3xd~x2x8!2E d3xd~x2x9!J
3Sl~x8,t!Sk~x9,t!

50. ~7.3!

Hence we find

E d3x@Si~x!,H int~t!#50. ~7.4!

Consequently, because of thex integration in Eqs.~6.5! and
~6.6!, the final result ~6.7! is not affected by the spin
dependent interaction~7.1! added to the Hamiltonian.

To see the relation between Eq.~6.7! and the Nambu-
Goldstone theorem, it is sufficient to observe that

Mi~x![ lim
B→0

^Si~x!& ~7.5!

can be regarded as the order parameter for the spontan
broken spin-rotational symmetry.18 If the system is symmet-
ric under spin rotation,Mi(x) must vanish. Therefore, i
Mi(x) does not vanish in the zero magnetic field lim
Mi(x) is nothing else but the order parameter of the spon
neous symmetry breaking. The nonvanishingMi(x) also
means that the right-hand side of Eq.~6.8! does not vanish,

lim
B→0

gmB

4\ E d3x8E
0

b\

dt8H 2Bi~x8!(
k

^Tt$Sk~x8!Sk~x!%&

1(
k

Bk~x8!^Tt$Si~x8!Sk~x!%&J Þ0. ~7.6!

This is the finite-temperature version of the Namb
Goldstone theorem.11,18,19In order to relate the singularity o
the spin-correlation functions, ^Tt$Si(x8)Sk(x)%& or
^Tt$Sk(x8)Sk(x)%&, to Nambu-Goldstone bosons, one c
perform analytic continuation with respect to the frequen
to obtain the real-time response functions.20 In such a case,
the poles of the response functions may be expected to s
the excitation spectrums of magnons.18 Further detailed dis-
cussions will be given in a forthcoming paper.
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