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Low-temperature properties of classical geometrically frustrated antiferromagnets

R. Moessner and J. T. Chalker
Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 16 March 1998!

We study the ground-state and low-energy properties of classical vector spin models with nearest-neighbor
antiferromagnetic interactions on a class of geometrically frustrated lattices, which includes the kagome and
pyrochlore lattices. We explore the behavior of these magnets that results from their large ground-state degen-
eracies, emphasizing universal features and systematic differences between individual models. We investigate
the circumstances under which thermal fluctuations select a particular subset of the ground states, and find that
this happens only for the models with the smallest ground-state degeneracies. For the pyrochlore magnets, we
give an explicit construction of all ground states, and show that they are not separated by internal energy
barriers. We study the precessional spin dynamics of the Heisenberg pyrochlore antiferromagnet. There is no
freezing transition or selection of preferred states. Instead, the relaxation time at low temperatureT is of order
\/kBT. We argue that this behavior can also be expected in some other systems, including the Heisenberg
model for the compound SrCr8Ga4O19. @S0163-1829~98!05441-1#
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I. INTRODUCTION

Experimental and theoretical studies in recent years h
found that geometrically frustrated antiferromagnets disp
properties quite unlike those of other magnetic system1

These materials have magnetic ions located on lattice
site-sharing frustrated units—usually triangles or tetrahe
One of the best-studied systems in this class is the lay
compound SrCr8Ga4O19 ~SCGO!.2–10 Attention has focused
on the fact that the majority of its magnetic Cr31 ions reside
on the sites kagome lattices, although the full structure
more complex. Following the interest in kagome magn
generated by studies of SCGO, a great deal of attention
been devoted to the oxide and fluoride pyrochlore magn
in which the magnetic ions form a lattice of corner-shari
tetrahedra as depicted in Fig. 1. Neutron scattering4,6–17and
muon spin relaxation18–20experiments on SCGO and the p
rochlores have detected only short-range magnetic corr
tions and a slowing-down of fluctuations at lo
temperatures.1 More generally, it is apparently a character
tic property of geometrically frustrated magnets that they
not order at the temperature expected from the magnitud
the Curie-Weiss constantuQCWu. Instead they remain in the
paramagnetic phase to a much lower temperature with, t
cally, spin freezing atTF!uQCWu.21–23

A detailed understanding of the origin of such gene
features has been slow to emerge. Moreover, there has
little work to explain systematic differences between in
vidual examples of these magnetic systems. For insta
whereas in the Heisenberg kagome antiferromagnet the
fluctuations give rise to entropic ground-state selection,24,25

known as order by disorder,26–30this phenomenon appears
be absent for some related systems.31,32 The reason for the
difference is unclear, as are the general conditions un
which such selection should be expected for geometric
frustrated magnets. In this context, it is interesting to a
whether SCGO inherits its properties from those of
kagome Heisenberg antiferromagnet or whether its beha
is closer to that of the pyrochlore antiferromagnet, since
PRB 580163-1829/98/58~18!/12049~14!/$15.00
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alternative and more complete description of the structur
to regard a layer of SCGO as a slab cut from the pyrochl
lattice, consisting of three consecutive@111# lattice planes.

A further area for investigation, in addition to the stati
tical mechanics of geometrically frustrated antiferromagne
is their low-temperature dynamics, which has so far recei
only limited attention.33,34 Dynamical correlations are likely
to be profoundly influenced by the large ground state deg
eracy of these systems, and constitute one of their mos
teresting aspects.

In an attempt to extend understanding of these proble
we have studied the low-temperature properties of the c
sical Heisenberg model with nearest-neighbor interactions
a class of geometrically frustrated lattices. This descript
neglects various additional features—such
anisotropy,35–39 disorder,40 dipolar41 or further-neighbor
interactions,42,43 and quantum effects25,44–50—which can
play an important role in real materials, particularly near a
belowTF . However, it may provide a good treatment for th
temperature windowT,TF!uQCWu, and its simplicity
should make it well suited for capturing the generic featu
of these systems, as well as providing a basis for future
vestigations incorporating additional interactions or quant
fluctuations.

FIG. 1. The pyrochlore lattice.
12 049 ©1998 The American Physical Society
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Our work, parts of which have been described in Refs.
and 52, concentrates on the pyrochlore antiferromagnet,
we address several questions in a more general context
start by analyzing the origin and extent of the ground-st
degeneracy of geometrically frustrated magnets~Sec. II!. We
discuss the nature of the ground-state manifold of pyroch
antiferromagnets withn-component spins~Sec. III!. We give
an explicit construction of all ground states of these magn
and show that they are not separated by energy barriers
though typical ground states are disordered, we show
certain correlations remain, which give rise to distinctive fe
tures in magnetic neutron scattering. We study, both ana
cally ~Sec. IV! and numerically~Sec. V!, the existence of
order by disorder for a general class of geometrically fr
trated antiferromagnets and find that it occurs only for m
nets with small ground-state degeneracies. In particular,
absent from the Heisenberg pyrochlore magnet, which th
fore has neither internal energy nor large free energy barr
separating different ground states. Because of this, the
tem is not trapped near a particular state at low temperatu
Our study of the precessional dynamics at low temperatu
and for long times~Sec. VI! reveals that the decay of th
autocorrelation function is exponential in timet with a time
scale inversely proportional to the temperature andindepen-
dent of the exchange energy: ^Si(0)•Si(t)&5exp
(2ckBTt/\), wherec is O(1). In agreement with Reimers
earlier Monte Carlo simulations,33 we find that the spin-
freezing transition observed experimentally does not hap
in the simple Heisenberg model we consider. We disc
recent experiments on pyrochlore magnets16 and SCGO
~Refs. 7,10! in the light of these results.

Since spin correlations are short ranged in both space
time, the Heisenberg pyrochlore antiferromagnet can be
beled a classical spin liquid or, following Villain,53 a coop-
erative paramagnet.

II. THE HEISENBERG SPIN HAMILTONIAN
ON GEOMETRICALLY FRUSTRATED LATTICES

Considern-component classical spinsSi , with uSi u51,
arranged in corner-sharing units ofq sites. Each spin is
coupled antiferromagnetically with itsq21 neighbors in
each unit, so that the Hamiltonian is

H5J(
^ i , j &

Si•Sj[
J

2(a uLau22
J

2
Nq. ~2.1!

Here,J is the exchange constant andLa is total spin in unit
a. The sum on̂ i , j & runs over all neighboring pairs and th
sum ona runs over theN units making up the system.

Note that our motivation for consideringn-component
spins is to shed light on the systematics of geometric
frustrated antiferromagnets. Because of this, we take thn-
component spin space to be the same at each site. Of co
the casen52 can also arise physically in a Heisenberg s
tem with easy-plane anisotropy: in this event, which h
been studied in Ref. 54, the easy planes are orientated
ferently at different sites, in accordance with the local sy
metry axes.

An instructive way of thinking about the strength of th
geometric frustration is to consider the extra ground-s
degeneracy which it gives rise to, in addition to that ste
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ming from the symmetry of the Hamiltonian. It is this ext
degeneracy which lies behind many of the physical prop
ties peculiar to geometrically frustrated systems. To de
mine the numberD of degrees of freedom in the groun
state, we use a Maxwellian counting argument,42,55 and
evaluateDM[F2K, the difference between the total num
berF of degrees of freedom in the system, and the numbeK
of constraints that must be imposed to restrict the system
its ground states. In general, as discussed below,DMÞD,
but for pyrochlore antiferromagnets we argue in Sec. II
that DM /D→1 asN→`.

To evaluateK, note that, from Eq.~2.1!, a configuration is
a ground state providedLa50 for each unit separately. Thi
imposesNn constraints. To findF, we start from the fact tha
the number of degrees of freedom is simplyn21 per spin.
Expressed in terms of the numberN of units, F depends on
their geometric arrangement. For corner-sharing units oq
spins, F5Nq(n21)/2. Alternative arrangements general
result in smaller values ofF/N and in ground states that ar
not extensively degenerate. For example, if bonds are sh
between units—as in the triangular and face-centered c
lattices forq53 andq54, respectively—F is lower than if
only sites are shared—as in the kagome and the pyroch
lattices—since each spin belongs only tob52 units in the
latter case but to more (b56 and 8, respectively! in the
former. In the general case, we obtainF5Nq(n21)/b.
Hence,DM /N5@q(n21)/b2n#. DM grows withq and, for
q.b, with n. In order to obtainDM.0, we requireq.b,
which is the case only for corner-sharing arrangements.
physically realizable example for whichDM is maximal is
that for whichq and n are both maximal: Heisenberg spin
(n53) on the pyrochlore lattice (q54) represent the only
simple system for whichDM is positive and extensive. It is
partly for this reason that the pyrochlore Heisenberg anti
romagnet is particularly interesting.

This counting argument can go wrong in two ways. Fir
the K constraints may not be independent, as happens
Heisenberg spins on the kagome lattice, whereDM50 but an
extensive ground-state degeneracy nonetheless arises.
ondly, for some lattices there may be no spin configuratio
that satisfy the conditionsLa50 for all a.

Many of the results presented in this paper do not dep
on the details of the lattice under consideration but rather
the sizeq of the corner-sharing units. We find it useful t
consider, in addition to the pyrochlore lattice, the tw
dimensional square lattice with crossings56 ~Fig. 2!, which is
not known to occur in nature but is easy to visualize. As w
the pyrochlore lattice, from which it can be obtained by
projection in â 001& direction, it hasq54 and, with Heisen-
berg spins,DM5N.

Also, more complicated corner-sharing arrangements
frustrated units are possible. Of particular experimental
portance, as mentioned above, is the combination of trian
and tetrahedra found in SCGO, which is depicted in Fig.

III. THE GROUND STATES
OF CLASSICAL ANTIFERROMAGNETS

ON THE PYROCHLORE LATTICE

It has been realized for a long time that antiferromagn
on the pyrochlore lattice have a vast ground-st
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degeneracy,57,53 but no explicit construction of the groun
states has as yet been available. The nature of various
manifolds of the ground-state manifold is, however, know
These submanifolds are defined by imposing extra c
straints on the spin arrangement, in addition to the requ
ment that it be a ground sate. A simple example is the se
four-sublattice states, in which the four spins of each u
cell are arranged to be oriented the same way everywh
Any four-spin arrangement that is a ground state for
single tetrahedron~see Sec. III A! yields a ground state fo
the entire system by periodic repetition. Of these states, th
with two spins parallel and two antiparallel to a given ax
are the simplest conceivable ones. Villain53 has described a
larger ground-state submanifold for the Heisenberg mode
which the spins of each tetrahedron form two antipara
pairs. It turns out that forXY model all ground states are o
this kind, as described in Sec. III E.

In the following, we present complete constructions of t
ground states for classical antiferromagnets withn-
component spins on the pyrochlore lattice. We also sh
that the ground-state manifold is connected. We then ex
ine the consequences of spin correlations in typical gro
states for elastic neutron scattering. We conclude this sec
with a discussion of the nature of the ground-state degree
freedom in such magnets.

A. The single tetrahedron

The ground states of a single tetrahedron are those s
in which the sumL of the four spin vectors has the valu

FIG. 2. The square lattice with crossings. Both solid and bro
lines denote exchange interactions. Spins reside on the intersec
of the solid lines.

FIG. 3. Projection of the sites of the magnetic Cr31 ions in one
layer of SCGO. The ions occupy sites of the kagome lattices in
top ~solid lines! and bottom~dashed lines! planes. In the middle
plane, the ions are located on a triangular lattice~indicated by
circles!. All lines denote exchange interactions; there are also in
actions between a spin in the middle plane and those in the
triangles which enclose it.
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L50. In such a configuration, any two spins enclose
same angle as the other two. For Heisenberg spins, t
configurations can be parametrized by two coordinates~e.g.,
a andf in Fig. 4!. The crucial feature is that, for any fixeda
excepta50, one can choosef independently. In the specia
case,a50, if spins 1 and 4 are antiparallel, there are tw
degrees of freedom associated with the remaining two sp
while if spins 1 and 4 are parallel, there is no remaini
freedom. These exceptional states, in which all spins o
tetrahedron are collinear, can play a central role in determ
ing the thermodynamics of the system because they are
vored by thermal fluctuations, as discussed in Sec. IV A.

For theXY antiferromagnet, there is only one continuo
degree of freedoma since if spins are coplanar,f50,p.
Ground states are therefore the configurations with two p
of antiparallel spins.

B. The Heisenberg antiferromagnet

1. The construction of the ground states

We give in this subsection a stepwise procedure for c
structing any ground state of the Heisenberg pyrochlore
tiferromagnet, from which the number of ground-state d
grees of freedomD can be determined directly. We als
consider a similar procedure for the square lattice with cro
ings since it is essentially the same but easier to explain
visualize. The idea in both cases is that the ground state
be built up by choosing the orientations of spins on succ
sive layers~planes or lines! of the lattice, in a way that re-
quires no adjustments of spins in planes or lines already
ited. We consider systems with open boundary conditions
the context of this section, periodic boundary conditions
pear to introduce significant additional mathematical di
culties.

We define a layer, for the square lattice with crossings
be a@10# plane~Fig. 5!, and for the pyrochlore lattice to be
@100# plane. In both cases, a layer contains the spins lying
equivalent edges of squares or tetrahedra—referred to
units from hereon—which are next-nearest, but not near
neighbors, to other units with spins in the layer. The spins
each unit are shared between two adjacent layers. C
versely, each spin belongs to a unit extending above and
extending below the layer.

First, choose the orientations of the spins on the low
layer of the lattice. This amounts to choosing a value fora in
each unit with spins on the bottom layer. There are no
strictions on how to do this. Next, consider the adjac
layer: when choosing the orientation of spins on that lay
one has to satisfy the ground-state condition. For each u
this leaves one degree of freedomf except in the specia
casea50. For this special case, one has to distinguish t
situations. If the bottom spins of a unit are antiparallel, th

n
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e
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o

FIG. 4. Four spins of equal length with vector sumL50. Spins
1 and 4 lie in the plane of the paper, spins 2 and 3 need not.
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12 052 PRB 58R. MOESSNER AND J. T. CHALKER
are two degrees of freedom when choosing the ground s
orientation of the upper pair of spins: when counting grou
state coordinates, the loss of a coordinate that follows fr
the additional constrainta50 is exactly balanced by the gai
of an additional degree of freedom for the upper pair
spins. In the alternative situation, in which the first pair
spins is parallel, no freedom remains, and we obtain a low
dimensional submanifold of the ground state.

At this stage, we have fixed the orientation of spins in
lowest two layers of the lattice. Repeating the procedure
the subsequent layers, the value fora in each unit is deter-
mined by earlier choices, while one degree of freedomf
remains for each unit of the system.

Since any given ground state can be built up~or copied!
layer by layer in this way, the construction can be used
generate all possible ground states. By this construction
have demonstrated that the extensive part of the dimen
of the ground-state manifold is equal to the number of un
in the system.

2. The connectedness of the ground-state manifold

We show that the ground-state manifold is connected
demonstrating that any ground state can be continuously
formed into any other ground state without cost in ener
To do so, we choose a reference ground state and giv
explicit construction by which the reference state can
reached from any ground state, without leaving the grou
state manifold. This is done by considering successive la
of the system, and bringing the spins in each layer into
orientation that they have in the reference state, using mo
within the ground-state manifold which leave spins u
changed in the layers already visited. The reference sta
chosen to be one in which all spins on lattice sites equiva
under translation have the same orientation, and in wh
each spin is antiparallel to the other spin belonging to
same layer and unit.

We make use of the following facts, which follow
straightforwardly from consideration of the ground-sta
configurations illustrated in Fig. 4:

~I! For a single unit of four spins, the manifold of groun
states is connected:a andf ~Fig. 4!, which provide a com-
plete parametrization of the internal degrees of freedom

FIG. 5. When altering the orientation of the spins represented
empty circles, only spins inside the wedge defined by the fi
spins~filled circles! have to be adjusted. For the pyrochlore lattic
a cone replaces the wedge.
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the ground-state manifold, can be chosen independently f
intervals of the real axis. Moreover, the orientation of a
two chosen spins can be changed arbitrarily and cont
ously without leaving the ground-state manifold, as long
the other two spins are unconstrained.

~II ! If two spins in a unit are antialigned, so will be th
other two, whose common axis can then be rotated arbitra
and continuously while keeping the orientation of the fi
pair fixed and remaining in the ground-state manifold.

~III ! It is possible to change the orientation of one spin
a unit arbitrarily and continuously while that of a second
held fixed, without leaving the ground-state manifold,
long as the other two spins are unconstrained. This is a
cial case of~I!.

~IV ! From ~II ! and ~III ! it follows that one can continu-
ously change the orientation of a pair of spins belonging t
unit in the bottom layer, or a pair of antiparallel spins in
higher layer, and remain within the ground-state manifold
the whole system, while keeping fixed the spins that lie o
side a wedge~or cone! for the square lattice with crossing
~or the pyrochlore lattice!, as depicted in Fig. 5.

As a consequence, we can again work through the lat
layer by layer. The procedure is as follows.

~A! Align the spins in the bottom layer, unit by unit, t
coincide with the reference state. This fixes the two spins
each unit in the bottom layer to be antiparallel. As we adj
the orientation of spins in the lower layer of each unit, tho
in the upper layer of the same unit can, by~I!, be reorientated
to keep the unit always in a ground state. At the same ti
by ~IV !, spins in higher layers can also be reorientated
keep the system as a whole in a ground state. At this st
spins in the bottom layer are in their reference state.

~B! Spins in the second layer now form antiparallel pai
since they belong to units which have antiparallel pairs in
lowest layer. The spins in the second layer can therefore
~II !, be adjusted to coincide with those in the reference st
While this is done, by~IV !, spins in higher layers can b
concurrently reorientated to keep the system within a gro
state, as in step~A!.

From the way we chose the reference state, it now follo
that all neighboring spins in the second layer are pairw
antiparallel. Therefore, we can repeat step~B! for the third
and all higher layers. Once we have done so, all spins in
system coincide with those in the reference state. Since
can go between two arbitrary ground states via the refere
state, this completes our proof that the ground-state mani
is connected.

C. Pyrochlore antiferromagnets with generaln>2

The arguments presented in the previous section
Heisenberg antiferromagnets generalize directly ton-
component spins withn.3. For the ground-state construc
tion, the main difference is that spins 2 and 3 in Fig. 4 c
now be rotated inn22 directions, so that the extensive pa
of D is N(n22), as expected from Maxwellian counting.

The construction of ground states for theXY model is
much simpler than for the Heisenberg model: as in the c
of a Heisenberg antiferromagnet on the kagome lattice, fo
generic ground state the number of constraints is equal to
total number of degrees of freedom. The construction of
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ground states therefore involves fewer choices. It proceed
follows. The orientations of spins in the bottom layer can
chosen arbitrarily. The ground-state configurations of sp
in the next layer are then almost completely determin
since each tetrahedron has two pairs of antiparallel sp
The only freedom remaining is the discrete choice of wh
spin to place on which of the two sites of the unit in the ne
layer, unless the two spins of a unit in the lower layer happ
to be antiparallel. In this case the orientation of the p
~which has to be antiparallel! in the top layer be chose
freely.

The proof of the connectedness of the ground-state m
fold, presented above, follows essentially from the conne
edness of the ground-state manifold of a single unit and fr
the fact that for any orientation of a pair of spins in a un
the other pair can be chosen so that the total spin of the
vanishes. This, along with the other steps, carries over to
casen>2.

D. Ground-state correlations
of the Heisenberg pyrochlore antiferromagnet

It is clear in our construction of ground states that s
correlations are not propagated efficiently. In this section,
show that, nonetheless, a few long-range correlations
high-symmetry directions are built into the ground states
the pyrochlore Heisenberg antiferromagnet. We discuss
signatures of these correlations in magnetic neutron diffr
tion.

1. Correlations between planes

From the ground-state conditionLa50 it follows that the
sum of all the spin vectors in two adjacent~100! planes is
zero~this sum is also the sum ofLa over tetrahedra making
up the two planes!. Therefore, adjacent planes are antifer
magnetically correlated. Since these correlations are l
ranged, we expectsharppeaks in the neutron scattering cro
section in thê 200& directions.

These peaks differ from Bragg peaks in two ways. Fi
their amplitude scales differently with sample size. Consi
a sample in the form of a cube of sideL, and let the total
magnetization of a~100! plane beM. In a typical ground
state,M;L and the peak scattering amplitude varies asM
•L;L2, in contrast toL3 for a Bragg peak. Second, they a
sharp in only one direction in reciprocal space. Consi
scattering at a point displaced from~200! by the vector
(qi ,q'). We argue that, at fixedq' , the scattering ampli-
tude as a function ofqi has a peak centered onqi50, of
width dqi}uq'u. Contours of constant scattering intens
therefore have a distinctive bow-tie shape. To understan
detail the reason for this, it is necessary to examine the
relation in the magnetizationM of a region of a~100! plane
with linear sizeL, and that of its equivalent, displaced by
distancez in the @100# direction. LetdMz be the difference
between these magnetizations, and measurez in units of the
plane spacing. The magnetization difference for adjac
planesdM1 arises entirely from spins belonging to tetrah
dra that are only partially included in the region. The numb
of such spins is proportional to the size of the boundary
the region—and hence toL. Since there are only weak co
relations between individual spins on distances larger t
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the size of a tetrahedron, we obtaindM1}AL. Increasingz,
dMz follows a random walk:dMz}AzAL. SinceM;L,
we obtain a correlation lengthj}L, and thereforedqi
}uq'u.

Similarly, there are long-range correlations in the^111&
directions. The$111% planes are alternately kagome and t
angular planes. Adjacent kagome planes contain the bas
adjacent tetrahedra, which, in the intervening triangu
planes, share a common apex. In any ground state, the
magnetic moments of all~100! kagome planes are equal, an
also opposite to the total magnetic moment of all~100! tri-
angular planes.

2. Consequences for neutron scattering experiments

In recent neutron scattering experiments on a single c
tal sample of CsNiCrF6 by Harris and co-workers,15,58,17the
angular dependence of the neutron scattering cross secti
studied. The correlation length is longest in the^100& direc-
tion, shortest in thê110& direction, and intermediate in th
^111& direction. Since the presence of two species of m
netic ions in CsNiCrF6 makes a detailed comparison wit
theory difficult, Harris and co-workers also report Mon
Carlo studies58,17 of the angular neutron scattering cross se
tion in the@hhl# plane, shown in Fig. 6, which is taken from
Ref. 58.

The scattering is broad in most directions except the@100#
and@111# directions, where narrow necks appear at low te
perature. The scattering near these necks has the appea
of a bow tie, as described above. In addition to these b
ties, which are narrow in the direction parallel to the wa
vector transfer, there are subsidiary bow ties, narrow i
perpendicular direction. Their origin can also be explain
using arguments of the kind described above.

E. Local zero modes

We next discuss the existence of degrees of freedom
the ground state which involve only spins in a finite region
the bulk of the system. These we call local zero modes. T
are of interest because unhindered rotation of finite numb

FIG. 6. Static neutron scattering cross section in the@hhl# plane
for a Heisenberg pyrochlore antiferromagnet, obtained numeric
by quenching the system into a ground state. Horizontal and ver
coordinates arel and h, respectively. Light shaded areas repres
high intensity and black represents zero intensity.
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of spins is likely to be particularly effective at destroyin
correlations, both in space and in time.

In the kagome magnet, the nature of the zero modes
established in Refs. 24 and 25. The requirement thatL50
leads the three spins in each triangle to be coplanar an
relative angles of 120°. If all the spins on the lattice a
coplanar, there are three spin orientations (A,B,C) each of
which occurs in each triangle once. A zero mode, calle
weathervane defect,25 arises as follows. In a region enclose
by a line of spins of one type~say,C!, a line of spins~alter-
nating between typeA andB! can be rotated about the sp
direction ofC at no cost in energy. Starting from a particul
state,any ground state can be constructed using these z
modes.24,59

There is a closely related way of describing the ze
modes for theXY magnet on the pyrochlore lattice. They a
again associated with closed loops, this time of antiferrom
netically oriented spins. Our construction of a ground stat
Sec. III amounts to finding a set of lines through the latt
sites with adjacent sites on a line occupied by antipara
nearest-neighbor spins, and each site belonging to exa
one line. Each line can be labeled with an angle giving
orientation of its spins, and a zero mode involves chang
one such angle. Villain53 used a description of this kind t
generate a subset of the ground states of the Heisenber
rochlore antiferromagnet. By contrast, for theXY model, this
approach generatesall the ground states.

For the Heisenberg antiferromagnet on the pyrochlore
tice, the nature of the zero modes is much more complica
reflecting the larger freedom in the ground-state manifo
We have not been able to find a simple description o
generic zero mode. We nevertheless believe that in a s
ciently large region of a generic ground state, there are lo
zero modes. Our argument rests on counting degrees of
dom: the number of degrees of freedom a region contribu
to the ground state is proportional to its volume, while fixi
surrounding spins imposes a number of constraints pro
tional to its surface. For a large enough volume, the num
of degrees of freedom exceeds the number of such c
straints. The existence of such local modes in all grou
states is, however, not guaranteed. For instance, for a sta
which all spins in a given~001! plane are parallel, and ant
parallel to the spins in neighboring planes, the sum ru
discussed in Sec. III D preclude the existence of local z
modes.

IV. GROUND-STATE SELECTION AT LOW
TEMPERATURES: ANALYTICAL RESULTS

In this section, we examine the circumstances un
which thermal fluctuations induce order in geometrica
frustrated antiferromagnets. This phenomenon—known
order by disorder—has been discussed in great detail for
Heisenberg antiferromagnet on the kagome lattice, wh
thermal fluctuations induce coplanar ordering of t
spins.24,25,59There is evidence from past simulations that
der by disorder is not a universal occurrence in geometric
frustrated systems—both Heisenberg spins on the pyroch
lattice33,58 and four-component spins on the kagome lattic31

apparently remain disordered at low temperature—but
systematics have not previously been studied.
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The experimental situation for pyrochlore magnets
rather complicated. A few compounds develop long-ran
order at low temperatures,35 whereas others undergo a spi
glass transition.23 It is unclear what the importance is o
various features of real systems. Nevertheless, we restric
attention in the following to the theoretically idealized pro
lem of a classical antiferromagnet, without anisotropy, dis
der, further-neighbor or dipolar interactions.

This material is arranged as follows. First, we consid
the analytically accessible problem of four Heisenberg orXY
spins on a single tetrahedron. Next, we investigate the g
eral case of a lattice built from groups ofq spins, each with
n components, and ask whether thermal fluctuations res
the spins to an ordered~e.g., collinear or coplanar! configu-
ration. Then, in Sec. V, we present the results of numer
simulations, which test the conclusions reached from
analytical arguments.

A. The single tetrahedron

We first study a problem simple enough to allow expli
evaluation of some of the quantities of interest: antifer
magnetically coupled spins occupying the corners of an
lated tetrahedron.

There are eight degrees of freedom associated with
Heisenberg spins, and for the system to be in a ground s
three constraints must be satisfied, sinceL50. The ground-
state manifold therefore has five dimensions: of these, th
arise from global rotations, while the remaining two can
parametrized as discussed in Sec. III A. The energy cost
fluctuations from this ground-state manifold in the remaini
three directions in configuration space is, for a gene
ground state, quadratic in displacement. By contrast, for
special ground states in which spins are collinear, ene
varies quadratically with displacement from the ground-st
manifold only in two directions, and quartically in the third
indicated schematically in Fig. 7. The collinear states are
obvious candidates for selection by thermal fluctuations.

To study such selection, we have calculated the proba
ity distribution W(u) for the angleu between a pair of
Heisenberg spins, integrating over all orientations of the f
spins with a Boltzmann distribution and the Hamiltonian
Eq. ~2.1!. Two factors contribute toW(u)du: the measure
sin(u)du and a statistical weight. The low-temperature lim
of the latter is@2 cos(u/2)#21, the divergence asu→p re-
flecting the lower free energy attached to fluctuations aro
the collinear state. Combining both factors,W(u)
5sin(u/2)d(u/2): configurations which are nearly collinea
have higher weight than others in this distribution, but t
entire ground-state manifold is accessible even in the lo
temperature limit, and there is no fluctuation-induc
ground-state selection.

To illustrate the alternative, consider the same probl
for XY spins. In this case, the measure contributes sim

FIG. 7. Soft fluctuations around a collinear state.
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du to the distributionW(u)du, while the statistical weight
at temperatureT!J is proportional tousin(u)u21 for sin2(u)
@T/J, and to (J/T)1/2 for sin2(u)!T/J. As a result, the weigh
in the limit T→0 is overwhelmingly concentrated near co
linear spin arrangements (u50 andp), reflecting selection
of these states by thermal fluctuations. Order by disorde
just such a concentration of statistical weight on a subm
fold of ground states. Note that it can occur in a finite syst
~in this case, a system of four spins!, and is quite different
from the order that appears in a symmetry-breaking ph
transition, which is restricted to the thermodynamic limit.

It is straightforward to demonstrate these effects in Mo
Carlo simulations. In Fig. 8, we plot the collinearity param
eter P(1) @defined in Sec. V A, Eq.~5.1!#, as a function of
Monte Carlo time, for a simulation of four Heisenberg spi
arranged in a single tetrahedron at the temperatureT52.5
31025J. For the current purposes, it is sufficient to note th
the collinearity parameter takes on values between21/3 ~for
a state with all spins at relative angles of 70.5° or 109.
and 11 ~when all spins are collinear!. We see from Fig. 8
that the system explores all ground states, attaining value
the collinearity within 231024 of the extremal ones, and i
not trapped near a collinear state. The average of the
linearity parameter 0.19360.02 is distinct from 0, its value
in the high-temperature limit, and close to the exact lo
temperature value 1/5 obtained from the expression forW(u)
given above.

B. The general problem: groups ofq spins with n components

We now examine whether thermal fluctuations select p
ticular ground states for the general class of system in
duced in Sec. II, in which a lattice is built fromN corner-
sharing units ofq spins, each havingn components. We have
argued elsewhere51 that low-temperature behavior is chara
terized by a probability distribution over the ground-sta
manifold, defined in the limitT→0. Let x be coordinates on
the ground-state manifold; at each pointx, one can introduce
local coordinatesy spanning the remaining directions in co
figuration space. Generically, the energy of the system r
tive to its ground-state value will have a Taylor expans
with the leading term

H'H25(
l

e l~x!yl
2 , ~4.1!

resulting in a ground-state probability density

Z~x!}E d$yl%e
2bH2})

l
@kBT/e l~x!#1/2. ~4.2!

FIG. 8. Evolution of the collinearity parameter with Mon
Carlo time for a single tetrahedron atT52.531025J for
23107 Monte Carlo steps per spin.
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In principle, order might arise in either of two ways. First,
can happen that certain, special ground states have soft
tuations, so that at some pointx0 on the ground-state mani
fold ~or, more generally, on some subspace!, some of the
e l(x0) vanish. ThenZ(x) will diverge asx approachesx0 . If
any such divergences are nonintegrable, one should k
higher order terms from Eq.~4.1! when calculatingZ(x).
The result of doing so will be, in the limitT→0, a distribu-
tion concentrated exclusively on the subset of ground st
for which Z(x) is divergent: these are the configurations s
lected by thermal fluctuations. It is this mechanism f
fluctuation-induced order that we study. There is, howev
also a second possibility, which we do not pursue here
might happen that the probability densityZ(x) is spread
smoothly over the ground-state manifold, but that there n
ertheless exist correlation functions which, when avera
with this weight, are long ranged.

To decide whether ground states with soft modes are
lected, it is necessary to know the numberM of e l ’s that
vanish, and the dimensionS of the subspace on which thi
happens. Close to this subspace, we separatex[(u,v) into
an S-dimensional componentu, lying within the subspace
and a (D2S)-dimensional componentv, locally orthogonal
to it, with magnitudev. We expect at smallv the behavior
e l(x)}v2 for M of thee l ’s. Hence,Z(x) diverges asv2M for
small v, and the subspace is selected51 asT→0 if the inte-
gral

E Z~u,v!dv}E vD2S2M21dv ~4.3!

is divergent at smallv.
We therefore need to consider candidate ordering p

terns, and determine the sign ofD2S2M in each case. It
seems in general that the preferred ground states are on
which spins are collinear or coplanar, because these have
largest number of soft modes. Collinear spin order is p
sible on lattices built from units containing an even numb
of sites, q: in practice, those constructed from tetrahed
Such order results in one soft mode per unit, as illustrate
Fig. 7. The number of soft modes is thereforeM5N, and
~sinceS5n21) we expect order only ifD,N. Estimating
D asF2K5N@q(n21)22n#/2, we predict order ifn,(q
12)/(q22), and disorder ifn.(q12)/(q22). Thus, for
pyrochlore antiferromagnets, two-component spins ord
and four-component spins do not. The approach reache
conclusion in the marginal case of three-component sp
but simulations~Refs. 33,58, and as described below! indi-
cate that Heisenberg spins do not order. On lattices m
from corner-sharing triangles, such as the kagome latt
there are no collinear ground states; instead, coplanar o
may occur. Such order results inM5N/2 soft modes;24 using
again the estimateF2K5N@q(n21)22n#/2 for D, we pre-
dict order in this case ifn,4 and disorder ifn.4. Simula-
tions of kagome antiferromagnets demonstrate that ther
indeed coplanar order forn53,24 and that the marginal cas
n54 is disordered.31

Summarizing, the only cases in which there is order
disorder areq54, n52 ~the XY pyrochlore model! and q
53, n53 ~the Heisenberg kagome model!. In both in-
stances, there is a low entropic cost to enter the ordered
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(DM50) and a high entropic gain from soft fluctuations b
cause in the ordered state the constraintsLa50 are not in-
dependent. These conclusions are depicted in Fig. 9.

V. GROUND-STATE SELECTION AT LOW
TEMPERATURES: NUMERICAL RESULTS

In the following two subsections, we present the results
the Monte Carlo simulations ofXY and Heisenberg pyro
chlore antiferromagnets. One aim is to test our prediction
collinear ordering for XY spins. We also consider th
Heisenberg model in detail, to show that order by disorde
indeed absent in this case. Our studies of the Heisen
antiferromagnet are a continuation of Reimers’ pioneer
simulations33 and Zinkin’s subsequent work.58 Our conclu-
sions are in agreement with these authors, in particular w
the earlier, albeit tentative, ideas of Zinkin, but our resu
are more extensive. Reimers work concentrated on the t
perature rangeT>0.05J: many of the observations describe
in the following are very hard to discern or absent in th
regime.

Our simulations were carried out on systems of si
ranging from one unit cell (N52 tetrahedra,Ns54 spins! to
173 unit cells (N59826,Ns519652). As pointed out in Sec
IV, small systems display large fluctuations, and theref
require very long simulation runs. ForNs54, the longest
simulation was 23108 Monte Carlo steps per spin atT55
31025J. For the largest system, however, only 1.53106

Monte Carlo steps per spin were necessary even at the lo
temperature.

A. Correlation functions

In this subsection, we consider two-spin correlations a
also a correlation function which quantifies directly the c
linearity of the spin system. In the next subsection, we d
cuss the heat capacity, which is an indirect probe of the s
of the system, but in some ways more conclusive, since
sensitive to the presence of soft fluctuations irrespective
the type of ordering with which they are associated.

First, we demonstrate that the Heisenberg model does
have Néel order, even at low temperature. The correlat
function Q(r )[^S(0)•S(r )& is shown in Fig. 10: correla-
tions are very small beyond the second-neighbor dista
Second, to measure the collinearity of spins, we evaluate
correlation function~for n-component spins!

FIG. 9. The occurrence of order by disorder forn-component
spins arranged in corner-sharing units, each consisting ofq spins.
Ordered~marginal! models are denoted by circles~crosses!.
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n21S ^@S~0!•S~r !#2&2
1

nD , ~5.1!

which is constructed to have the valuesP50 at infinite tem-
perature andP51 in a collinear state.P(r ) is shown in Fig.
10, with r in units of nearest-neighbor distances. The cor
lations for Heisenberg spins again have a range of only
nearest-neighbor distances: there is no fluctuation-indu
order. Equally, the predicted collinear order forXY spins is
confirmed: there is long-range order inP(r ) at this tempera-
ture. Note that, despite the very low temperature, the or
parameterP(r→`).0.86 is appreciably less than its max
mum possible value of 1. We expect on general grounds
such nematic order should be established via a first-o
phase transition, but have not attempted to check this in
tail in our simulations.

The temperature dependence of collinearity for neighb
ing spins is shown in Fig. 11. Neighboring Heisenberg sp
have a limiting low-temperature valueP(1).0.2 which is
nonzero because the correlation length, though small, is it
finite. By contrast,XY spins become perfectly collinear i
the low-temperature limit. The low-temperature variation
@12P(1)#, the deviation of collinearity from its maxima
value is characteristic of fluctuation-induced order.24 Specifi-
cally, we expect 12P}AT/J at low temperatures, becaus
quartic modes give rise to the dominant fluctuations at l
temperatures. These modes, with coordinatesh, character-
ized schematically in Fig. 7, haveh}T1/4 by equipartition.
Since (S1•S2)2;(12h2/2)2;12h2, we obtain 12P(1)
}T1/2. We show in Fig. 12 thatP(1) does indeed behave i
the expected way.

We have checked the dependence of our results on le
of simulation run and system size. To test whether the s
tem is properly equilibrated during our Monte Carlo runs, w
investigate the dependence of data on initial conditions, co
paring results from random and collinear initial states. F
Heisenberg spins, our simulations are long enough that

FIG. 10. Correlation functions for the Heisenberg andXY anti-
ferromagnets at a temperature ofT5531024J. The two-spin cor-
relation functionQ(r ) ~dot-dashed line! and the collinearity corre-
lation functionP(r ) ~solid line! for a system of 2048 Heisenber
spins andP(r ) for a system of 864XY spins~dashed line!.
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ther of the correlation functions studied retains memory
the initial state. ForXY spins, we are able to equilibrateP(r )
~see Fig. 11!, but notQ(r ): collinear order presumably hin
ders relaxation of two-spin correlations. To test for finite-s
effects, we carry out simulations on systems ranging in s
from Ns54 to Ns519 652 spins. Only for small systems o
XY spins are marked finite size effects observed, as show
Fig. 13.

B. Specific heat

An unbiased way to search for soft fluctuations and,
implication, fluctuation-induced order is to measure h
capacity.24 At low temperature, one expects to be able
describe fluctuations of the system from a ground state
terms of canonical coordinates which are almost indepen
of each other. From the classical equipartition theorem

FIG. 11. The temperature dependence ofP(r 51) for XY and
Heisenberg spins. Most error bars are smaller than the sym
Simulations started from random initial spin configurations, exc
those for the data points marked with open circles, which sta
from collinear spin configurations.

FIG. 12. P(r 51) versus (T/J)1/2 for XY spins.
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canonical coordinatep, which appears in the Hamiltonian a
(p/p0)2r , contributeskB /(2r ) to the heat capacity. Hence
each quadratic mode contributeskB/2, and each quartic mod
kB/4, whereas zero modes do not contribute at all. Determ
ing the heat capacity therefore allows a determination of
number of quadratic and quartic modes present.

If, as predicted, thermal fluctuations select a colline
state for theXY model, then there is one quartic and o
quadratic mode per tetrahedron. This results in a heat ca
ity per spinC of 3/8kB . In the absence of order, all mode
are quadratic, andC5kB/2. For the Heisenberg antiferro
magnet, there are four degrees of freedom per tetrahed
one of which is a zero mode. If there is no order, we exp
C53/4kB ; if a collinear state is selected by thermal fluctu
tions, C55/8kB . In finite-sized systems, the heat capac
per spin is reduced. For our choice of periodic bound
conditions, this manifests itself in the correctionC(N)
5@(N21)/N#C(`).

As shown in Fig. 14, we find in the limitN→`, that C
50.37660.002 forXY spins, and thatC50.74760.002 for
Heisenberg spins. This is consistent with the presence
order forXY spins, with one quartic mode per tetrahedron,
expected. For Heisenberg spins, we obtain an upper limi
0.04 quartic modes per tetrahedron.

VI. THE DYNAMICS
OF THE PYROCHLORE ANTIFERROMAGNET

We now turn to time-dependent correlation functions, a
ask how the system explores the vicinity of its ground-st
manifold at low temperature. We study the spin autocorre
tion function with precessional dynamics, both analytica
and by numerical integration of the equations of motio
Two of the facts established in the previous sections h
important implications for spin dynamics. First, we ha
shown that the ground-state manifold is connected, wh
means that the magnet does not get trapped in a partic
state at low temperatures by internal energy barriers. Sec
we have shown that there is no entropic selection of spe

ls.
t
d

FIG. 13. System size dependence of the collinearity param
P(r 51) for XY and Heisenberg spins atT5531025J andT55
31024J.
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ground states at low temperatures, which suggests tha
dynamics is unlikely to be hindered by free energy barrie
We indeed find that spin correlations relax relatively rapid
even at low temperatures, having a time-scale that dive
only asT21, and not, for example, according to an Arrheni
law.

A. Derivation of an effective spin dynamics

Consider, in the first instance, the dynamics lineariz
around a ground state. In this approximation, a system oN
tetrahedra~hence with 2N spins and a 4N-dimensional phase
space! will have 2N normal modes. Some of these mod
will be conventional, finite frequency spin-waves, but a fra
tion will have zero frequency, because there is no resto
force for displacements in phase space that take the sy
from one ground state to another. Beyond the harmonic
proximation, nonlinear terms in the full equations of moti
will have various consequences: the conventional, fin
frequency modes will acquire a finite lifetime and coupli
between these modes and the ground-state coordinates
drive the system around its ground-state manifold. We fi
that there are three distinct time scales at low temperat
The period of the highest frequency spin wavesO(\/J) sets
the shortest scale, their lifetimets;\/@JkBT#1/2 provides an
intermediate scale, while the longest scale is the decay
of the autocorrelation functiont;\/kBT. This separation of
time scales greatly simplifies the problem.

Our starting point is the equation of motion

dSi

dt
5Si3H i~ t ![2J Si3~La1Lb!, ~6.1!

where we have set\51. H i(t) is the exchange field acting a
site i, which can be expressed in terms ofLa and Lb , the
total spins of the two tetrahedra to whichSi belongs. Sum-
ming over the sites of a tetrahedron, the time dependenc
La is

FIG. 14. The specific heat for different system sizes for theXY
and the Heisenberg antiferromagnet on the pyrochlore lattice.
lines are a guide to the eye.
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dLa

dt
52J (

b
Sab3Lb , ~6.2!

in which the notationSab has been introduced for the sp
common to the tetrahedraa andb.

The right side of Eq.~6.2! implicitly defines a 3N33N
matrix M acting on a vector constructed from the comp
nents of theLa’s. This matrix, being real and antisymmetri
has eigenvalues which are purely imaginary and occur
pairs 6 iv related by complex conjugation. For a groun
state spin configuration, the magnitudes of these eigenva
are the frequencies of 3N/2 normal modes, while the real an
imaginary parts of the associated eigenvectors are can
cally conjugate coordinates for the modes. The remaininN
directions in phase space are spanned by coordinates ha
La50 for all a, and therefore lie within the ground-sta
manifold. The matrixM is well-defined and has purel
imaginary eigenvalues for any spin configuration; for a lo
temperature spin configuration, the eigenvalue magnitu
are presumably good approximations to the normal m
frequencies in a nearby ground state. We display in Fig.
the density of statesr(v) on a linear scale, obtained b
diagonalizingM for low-temperature pyrochlore spin con
figurations generated in a Monte Carlo simulation. It is no
worthy thatr(v) appears to be finite atv50:r(v) neither
includes a divergent contribution, proportional tod(v), nor
does it vanish asv→0.

The fact thatr(v) does not contain a delta function a
v50 gives information on how canonically conjugate pa
of coordinates appear in the linearized dynamics. Quite g
erally, the Hamiltonian in the harmonic approximation c
be reduced to the form

H5(
l 51

2N

~a l pl
21b lql

2!, ~6.3!

wherepl andql are a canonically conjugate pair of coord
nates. We know from the ground-state construction
scribed earlier that 1/4 of these coordinates belong to
ground-state manifold, and therefore that 1/4 of the 4N num-

e FIG. 15. The density of statesr(v) for a system of 2048
Heisenberg spins at low temperature.
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bers$a l ,b l% are zero. Oscillations of the coordinatespl ,ql
have zero frequency ifa l•b l50, and so the fraction of zero
frequency spin-wave modes might, in principle, range fr
1/4, if for each of these modes botha l50 andb l50, to 1/2,
if for each of these modes only one ofa l andb l is zero. The
fact that r(v) does not contain a delta function atv50
implies that all~except for a fraction vanishing in the the
modynamic limit! of the 3N/2 modes derived fromM have
nonzero frequency, and therefore that only the remaining
of modes have zero frequency. Hence, for everyl, eitherboth
a l and b l are zero orneither is zero: coordinates in the
ground-state manifold all appear in canonically conjug
pairs.

The nonzero density of states apparent at small freque
in Fig. 15 is in striking contrast to the behaviorr(v)}v2

that occurs in both Ne´el-ordered antiferromagnets~including
ordered states of the pyrochlore antiferromagnet48! and con-
ventional spin glasses. The arguments used by Halperin
Saslow60 and by Ginzburg61 to predict propagating long
wavelength modes in spin glasses depend on the ground
having a stiffness. This stiffness appears to be missing
ground states of the pyrochlore antiferromagnet, becaus
the many zero modes.

The exchange fieldH i(t) appearing in the equation o
motion, Eq.~6.1!, can be written as a superposition of co
tributions arising from the finite-frequency modes, in term
of vectorsul( i ) determined byM and amplitudesAl deter-
mined by the initial conditions:

H i~ t !5(
l

Alul~ i !eiv l t1c.c. ~6.4!

In the harmonic approximation, the amplitudesAl are time
independent, but in the full dynamics their magnitude a
phase will change on a time-scale which defines the s
wave lifetime ts . We postpone detailed discussion of t
temperature dependence ofts until the end of this section
but note that, at low temperature,ts is large compared to the
typical spinwave periodJ21.

If the equation of motion is integrated over time-interva
longer thants , contributions from modes with frequencie
v l@ts

21 average to zero, while those from modes withv l

&ts
21 fluctuate randomly, according to the time depende

of Al(t). HenceH i(t) has mean value zero, and has fluctu
tions which are characterized most importantly by their lo
frequency spectral density,

E
2`

`

dt8^H i~ t !•H i~ t8!&[2G. ~6.5!

In terms of the amplitudesAl(t),

G5(
l
E ^Al~0!Al* ~ t !&eiv l tuul~ i !u2dt. ~6.6!

Since, for largets , only the low-frequency modes contribu
to G, and since, from equipartition,̂uH i(t)u2&;J2^uLau2&
;JkBT, we have G}JkBTr(01). Note that, asr(v)
}J21, G is independent ofJ.

We now proceed to calculate long-time spin correlatio
from Eq. ~6.1!, by treatingH i(t) as Gaussian white nois
with the correlator
/4

e

cy

nd

ate
in
of

s

d
n-

e
-
-

s

^H i~ t !•H i~ t8!&52Gd~ t2t8!. ~6.7!

To do so involves several assumptions. The most impor
of these is that the spin-wave lifetimets which sets the width
in time of the delta function in Eq.~6.7!, is small compared
to the decay time of the spin autocorrelation function. W
show below that this is asymptotically exact asT/J→0. Fur-
ther, in takingG to be a constant, rather than a functional
the instantaneous spin configuration, we implicitly negle
variations with spin configuration in the local density
states( l uul( i )u2d(v l). Such fluctuations certainly exist, bu
seem from our numerical studies only to have a small eff
on the form of the spin autocorrelation function. Solving t
Langevin equation that results from treatingH i(t) in Eq.
~6.1! as white noise, we obtain̂Si(0)•Si(t)&5e2Gt and
hence~reinstating\)

^Si~0!•Si~ t !&5exp~2ckBTt/\!, ~6.8!

wherec is a dimensionless constant of order unity. The
fore, the autocorrelation timet5G215\/(ckBT). We em-
phasize again that, atT!J/kB , it is T alone, and notJ, which
sets the scale for long-time dynamics.

To complete this discussion, it is necessary to estimate
spinwave lifetimets . There are two physical processes th
contribute tots . One, common to all antiferromagnets, is th
anharmonic interaction between different finite-frequen
modes, which here results in a lifetime varying asT21 for
small T. It is, however, overwhelmed by a second proce
specific to systems with many ground-state degrees of f
dom, in which finite-frequency modes are mixed by the m
tion of the system between different ground states. M
formally, on time scales@\/J, the matrixM is time depen-
dent. The linearized equations of motion, with tim
dependentM , define an autonomous dynamical problem
which the instantaneous normal mode amplitudesAl(t) are
time dependent. The time dependence of the matrix elem
of M mixes amplitude, initially concentrated in a sing
model over all modes lying within a window of frequencie
aroundv l . From time-dependent perturbation theory, a fra
tional changef in matrix elements spreads amplitude ove
frequency window whose width,dv, forms a fractionf of the
entire spinwave spectrum, so thatdv; f J/\. And from our
results for the spin autocorrelation function, the fraction
change in matrix elements during a time-intervalts is f
5kBTts /\. The spin-wave lifetime is the time at which th
frequency window resulting from thisf has width dv
;1/ts , and so we obtaints;\/@JkBT#1/2. As required for
the consistency of our arguments, at low temperatures th
indeed a much shorter time scale than that for the deca
the spin autocorrelation function.

As the temperature is raised towardsT;J, this separation
of time scales breaks down. The precession on the previo
shortest time scale then becomes visible, and the autoco
lation decays initially as 12A(t)}t2 rather than 12A(t)
}t. This is indeed observed in our numerical simulatio
described in the next section~Fig. 16!.
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B. Molecular dynamics simulations

In this subsection, we present results obtained from
merical simulations of the dynamics of the Heisenberg py
chlore antiferromagnet. In these simulations we evaluate
autocorrelation function

A~ t ![^Si~0!•Si~ t !&. ~6.9!

We find thatA(t) decays exponentially in time. The simula
tions confirm the predictions of the preceding sectio
namely, that the time scale for the dynamicst varies asT21.
Finally, we do not discover any sign of spin freezing even
temperatures as low asT5531024J.

We generate uncorrelated, thermalized initial configu
tions by Monte Carlo simulation, from which the equation
motion, Eq.~6.1!, is integrated using a fourth-order Rung
Kutta algorithm. Related calculations for the kagom
Heisenberg antiferromagnet have been described previo
by Keren.34

Some details of our procedure are as follows. We cho
the integration time step so that energy is conserved t
least one part in 108. The temperature range of the simul
tions covers three orders of magnitude, the lowest temp
ture beingT5531024J. The system sizes studied rang
from 32 spins to 2048 spins. There are marked finite s
effects in the smaller systems, which we believe result fr
all spins precessing together about the total magnetiza
M tot of the system. SinceuM totu2;N, the precession rate
varies asN21/2, and decreases rather slowly with increasi
system size. For the results presented, we hasten con
gence to the thermodynamic limit by adding the termJM tot

2

to the Hamiltonian, which constrains the total magnetizat
to be independent of system size and near zero. As a re
values of the decay timet coincide for systems with 500 an
2048 spins.

The functional form of A(t). From the analytic calculation
presented in Sec. VI A, we expectA(t) to depend on time
and temperature only through the combined variableTt. We
show in Fig. 16A(t) as a function of this scaling variable, a
various temperatures and over one and a half decay timt

FIG. 16. The autocorrelation function as a function of the r
caled timeTt.
-
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e
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e
at

a-

e

n

er-

n
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for a system of 2048 spins. The collapse of the data on
single curve, at all except the highest temperatures (T/J
>0.1), is striking evidence in support of our analytic resul
To demonstrate the accuracy with which the decay ofA(t) at
low temperature is exponential, and to indicate the mag
tude of finite-size effects in our results, we show in Fig.
data forA(t) on a logarithmic scale, for runs starting from
different initial configurations generated at the same te
perature.

To examine quantitatively the temperature dependenc
the decay timet we fit data at each temperature to an exp
nential exp(2t/t). The resulting values fort are displayed in
Fig. 18. In order to extract the temperature dependence ot,
we fit it to the power lawt5AT2z.51 Excluding tempera-
tures T/J>0.15, we obtainz50.99860.012 andA50.53
60.04. This result agrees with and confirms our predict
that z51.

-
FIG. 17. The decay ofA(t) on a logarithmic scale for five

different runs at the same temperatureT/J5631023 in a system of
2048 spins.

FIG. 18. The decay time as a function of temperature for th
different system sizes.



ile
ul
em
e

-
ct
e-
ve
th
u
al
I

h
o
nt

th
er
flu
ce
et
t t
w

ro

e-
ne
,

hi

th
us

on
a

ven
ab-

to be
ion
at
is a
py-
c-

lude
w-

eo-
oes
. In
del
has
ted
se
me
imi-

tion

ost
Be-
uch

.
in

P.
lp-
ti-
art

ant

PRB 58 12 061LOW-TEMPERATURE PROPERTIES OF CLASSICAL . . .
C. Inelastic neutron scattering

Inelastic neutron scattering provides the most deta
probe of dynamical correlations. We expect from the res
described above that diffuse inelastic scattering in the t
perature rangeTF,T!uQCWu should have a Lorentzian lin
shape in energy, with a widthG varying asG5ckBT, where
c is of order unity. Although we have not explicitly exam
ined the dependence of dynamic correlations on wave ve
k it seems likely that main contribution to the inelastic lin
width in the low-temperature limit should be roughly wa
vector independent. One reason for thinking this is that
decay of the autocorrelation function probably arises beca
of rotation of relatively small clusters of spins—the loc
ground-state degrees of freedom identified in Sec. III E.
consequence, we expect dynamical correlations to be s
ranged in space and broad in wave vector. In addition, c
servation laws which might result in significantly differe
behavior, for example,G}k2 for small k from conservation
of spin density, do not appear to be in operation: since
magnetizations of individual tetrahedra are identically z
in classical ground states, instantaneous magnetization
tuations can decay without spreading to large distan
Thermally induced fluctuations in the magnetizations of t
rahedra may result in an additional, diffusive componen
spin correlations, with an amplitude that vanishes in the lo
temperature limit.

Inelastic neutron scattering from the pyrochlore antifer
magnet CsNiCrF6 , which has uQCWu.70 K and TF
.2.2 K,58 is reported in Ref. 16, in which the energy d
pendence of scattering is fitted by a Lorentzian. The li
width decreases as temperature is decreased below 70 K
the data seem insufficiently precise to test whetherG is linear
in T. Similar experiments on SCGO, in whichuQCWu is
around 500 K andTF.3.5 K, yield a Lorentzian inelastic
line shape with a temperature dependence of the width w
is encouragingly close to linear, and of orderkBT, over the
temperature range from 30 to 290 K.7,10

VII. CONCLUDING REMARKS

We have presented a detailed theoretical analysis of
low-temperature properties of a class of geometrically fr
ns
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trated classical antiferromagnets, with particular emphasis
the pyrochlore Heisenberg antiferromagnet, which has
macroscopically degenerate ground-state manifold. Gi
the connectedness of this ground-state manifold and the
sence of appreciable free energy barriers, there seems
no mechanism for localizing the system in a particular reg
of the ground-state manifold, and it is therefore unlikely th
the spin glass transition observed in most experiments
feature of the disorder-free classical isotropic Heisenberg
rochlore antiferromagnet. Rather, we find correlation fun
tions to be short ranged in both space and time, and conc
that the spins continue to fluctuate strongly down to the lo
est temperatures.

We have analyzed the low-energy dynamics of these g
metrically frustrated antiferromagnets. Our discussion d
not depend on details of the pyrochlore lattice structure
fact, we expect it also to apply to the Heisenberg mo
defined on the SCGO lattice of Fig. 3, since that model
DM /N.0 and does not—following the arguments presen
in Ref. 51 and Sec. IV—display order by disorder. The
properties are in striking contrast to those of the kago
Heisenberg antiferromagnet, and SCGO is much more s
lar to a pyrochlore magnet than to the kagome system.

We expect our results to be robust against the introduc
of a small concentration of vacancies,53 certainly provided
the average defect spacing is larger than extent of the m
local ground-state degree of freedom in the pure system.
havior characteristic of the pure system may persist to m
higher defect concentrations, sinceDM /N.0 as long as
more than three quarters of all sites are occupied.
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