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Low-temperature properties of classical geometrically frustrated antiferromagnets
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We study the ground-state and low-energy properties of classical vector spin models with nearest-neighbor
antiferromagnetic interactions on a class of geometrically frustrated lattices, which includes the kagome and
pyrochlore lattices. We explore the behavior of these magnets that results from their large ground-state degen-
eracies, emphasizing universal features and systematic differences between individual models. We investigate
the circumstances under which thermal fluctuations select a particular subset of the ground states, and find that
this happens only for the models with the smallest ground-state degeneracies. For the pyrochlore magnets, we
give an explicit construction of all ground states, and show that they are not separated by internal energy
barriers. We study the precessional spin dynamics of the Heisenberg pyrochlore antiferromagnet. There is no
freezing transition or selection of preferred states. Instead, the relaxation time at low tempEiataferder
hlkgT. We argue that this behavior can also be expected in some other systems, including the Heisenberg
model for the compound Srg3a,0,4. [S0163-182608)05441-1

[. INTRODUCTION alternative and more complete description of the structure is
to regard a layer of SCGO as a slab cut from the pyrochlore
Experimental and theoretical studies in recent years havittice, consisting of three consecutipeL]] lattice planes.
found that geometrically frustrated antiferromagnets display A further area for investigation, in addition to the statis-
properties quite unlike those of other magnetic systtms.tical mechanics of geometrically frustrated antiferromagnets,
These materials have magnetic ions located on lattices d$ their low-temperature dynamics, which has so far received
site-sharing frustrated units—usually triangles or tetrahedra@nly limited attentior?>* Dynamical correlations are likely
One of the best-studied systems in this class is the layerel@ be profoundly influenced by the large ground state degen-
compound SrGGa,0;¢ (SCGO.271% Attention has focused eracy of these systems, and constitute one of their most in-
on the fact that the majority of its magnetic*Crions reside  teresting aspects.
on the sites kagome lattices, although the full structure is In an attempt to extend understanding of these problems,
more complex. Following the interest in kagome magnetdve have studied the low-temperature properties of the clas-
generated by studies of SCGO, a great deal of attention hagical Heisenberg model with nearest-neighbor interactions on
been devoted to the oxide and fluoride pyrochlore magnetd class of geometrically frustrated lattices. This description
in which the magnetic ions form a lattice of corner-sharingneglects _ various  additional ~ features—such  as
tetrahedra as depicted in Fig. 1. Neutron scattéfinf and ~ anisotropy>>~>° disorder}® dipolaf* or further-neighbor
muon spin relaxatioli-2°experiments on SCGO and the py- interactionsi*** and quantum effect3***%which can
rochlores have detected only short-range magnetic correl@/ay an important role in real materials, particularly near and
tions and a slowing-down of fluctuations at low belowTr. However, it may provide a good treatment for the
temperature$ More generally, it is apparently a characteris- temperature windowT<Tg<|@¢y|, and its simplicity
tic property of geometrically frustrated magnets that they dgshould make it well suited for capturing the generic features
not order at the temperature expected from the magnitude ¢ff these systems, as well as providing a basis for future in-
the Curie-Weiss constah® /. Instead they remain in the Vvestigations incorporating additional interactions or quantum
paramagnetic phase to a much lower temperature with, typifluctuations.
cally, spin freezing afp<|@¢|. 21723
A detailed understanding of the origin of such generic
features has been slow to emerge. Moreover, there has been
little work to explain systematic differences between indi-
vidual examples of these magnetic systems. For instance, X
whereas in the Heisenberg kagome antiferromagnet thermal
fluctuations give rise to entropic ground-state selectdn,
known as order by disordé?;*°this phenomenon appears to
be absent for some related systeth® The reason for the
difference is unclear, as are the general conditions under
which such selection should be expected for geometrically
frustrated magnets. In this context, it is interesting to ask /
whether SCGO inherits its properties from those of the
kagome Heisenberg antiferromagnet or whether its behavior
is closer to that of the pyrochlore antiferromagnet, since an FIG. 1. The pyrochlore lattice.
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Our work, parts of which have been described in Refs. 5Iming from the symmetry of the Hamiltonian. It is this extra
and 52, concentrates on the pyrochlore antiferromagnet, butegeneracy which lies behind many of the physical proper-
we address several questions in a more general context. Wies peculiar to geometrically frustrated systems. To deter-
start by analyzing the origin and extent of the ground-statenine the numbeD of degrees of freedom in the ground
degeneracy of geometrically frustrated magri8ec. ). We  state, we use a Maxwellian counting argum&mt and
discuss the nature of the ground-state manifold of pyrochlorevaluateD,,=F — K, the difference between the total num-
antiferromagnets with-component spingSec. Ill). We give  berF of degrees of freedom in the system, and the nuritber
an explicit construction of all ground states of these magnetf constraints that must be imposed to restrict the system to
and show that they are not separated by energy barriers. Aits ground states. In general, as discussed belyy#D,
though typical ground states are disordered, we show thdiut for pyrochlore antiferromagnets we argue in Sec. Il B
certain correlations remain, which give rise to distinctive fea-thatDy /D—1 asN—oo.
tures in magnetic neutron scattering. We study, both analyti- To evaluateX, note that, from Eg(2.1), a configuration is
cally (Sec. IV and numerically(Sec. V}, the existence of a ground state provideld, =0 for each unit separately. This
order by disorder for a general class of geometrically frusimposesNn constraints. To findF, we start from the fact that
trated antiferromagnets and find that it occurs only for magthe number of degrees of freedom is simply 1 per spin.
nets with small ground-state degeneracies. In particular, it iExpressed in terms of the numbidrof units, F depends on
absent from the Heisenberg pyrochlore magnet, which thereheir geometric arrangement. For corner-sharing units) of
fore has neither internal energy nor large free energy barrierspins, F=Ng(n—1)/2. Alternative arrangements generally
separating different ground states. Because of this, the sygesult in smaller values df/N and in ground states that are
tem is not trapped near a particular state at low temperaturefot extensively degenerate. For example, if bonds are shared
Our study of the precessional dynamics at low temperaturelsetween units—as in the triangular and face-centered cubic
and for long times(Sec. V) reveals that the decay of the |attices forq=3 andq=4, respectively—F is lower than if
autocorrelation function is exponential in tinhevith a time  only sites are shared—as in the kagome and the pyrochlore
scale inversely proportional to the temperature mat#pen-  |attices—since each spin belongs onlykte2 units in the
dent of the exchange energy:(S(0)-S(t))=exp latter case but to moreb&6 and 8, respectivelyin the
(—ckgTt/h), wherec is O(1). In agreement with Reimers’ former. In the general case, we obtaii=Ngq(n—1)/b.
earlier Monte Carlo simulatiorS, we find that the spin- Hence,Dy, /N=[q(n—1)/b—n]. Dy grows withq and, for
freezing transition observed experimentally does not happeg>b, with n. In order to obtainD,,>0, we requireq>b,
in the simple Heisenberg model we consider. We discusghich is the case only for corner-sharing arrangements. The
recent experiments on pyrochlore maghetand SCGO physically realizable example for whidd,, is maximal is
(Refs. 7,10 in the light of these results. that for whichg andn are both maximal: Heisenberg spins

Since spin correlations are short ranged in both space ar‘(qi]zg) on the pyrochlore latticeq=4) represent the only
time, the Heisenberg pyrochlore antiferromagnet can be lasimple system for whictD,, is positive and extensive. It is
beled a classical spin liquid or, following Villaitf,a coop-  partly for this reason that the pyrochlore Heisenberg antifer-

erative paramagnet. romagnet is particularly interesting.
This counting argument can go wrong in two ways. First,
Il. THE HEISENBERG SPIN HAMILTONIAN the K constraints may not be independent, as happens for
ON GEOMETRICALLY FRUSTRATED LATTICES Heisenberg spins on the kagome lattice, wH2{g=0 but an

extensive ground-state degeneracy nonetheless arises. Sec-
ondly, for some lattices there may be no spin configurations
that satisfy the conditionk ,=0 for all .
Many of the results presented in this paper do not depend
on the details of the lattice under consideration but rather on
J J the sizeq of the corner-sharing units. We find it useful to
H=JY S-S=52 |L.?>-5Na. (2.)  consider, in addition to the pyrochlore lattice, the two-
Q% 2% 2 dimensional square lattice with crossify&Fig. 2), which is
Here,J is the exchange constant ahg is total spin in unit ~ not known to occur in nature but is easy to visualize. As with
«. The sum or(i,j> runs over all neighboring pairs and the the pyrochlore lattice, from which it can be obtained by a
sum ona runs over theN units making up the system. projection in &001) direction, it hagy=4 and, with Heisen-
Note that our motivation for considering-component berg spinsDy=N.
spins is to shed light on the systematics of geometrically Also, more complicated corner-sharing arrangements of
frustrated antiferromagnets. Because of this, we takenthe frustrated units are possible. Of particular experimental im-
component spin space to be the same at each site. Of cour§®rtance, as mentioned above, is the combination of triangles
the casen=2 can also arise physically in a Heisenberg sys.and tetrahedra found in SCGO, which is depicted in Fig. 3.
tem with easy-plane anisotropy: in this event, which has

Considern-component classical spin§, with |S|=1,
arranged in corner-sharing units of sites. Each spin is
coupled antiferromagnetically with it§—1 neighbors in
each unit, so that the Hamiltonian is

been studied in Ref. 54, the easy planes are orientated dif- Ill. THE GROUND STATES
ferently at different sites, in accordance with the local sym- OF CLASSICAL ANTIFERROMAGNETS
metry axes. ON THE PYROCHLORE LATTICE

An instructive way of thinking about the strength of the
geometric frustration is to consider the extra ground-state It has been realized for a long time that antiferromagnets
degeneracy which it gives rise to, in addition to that stem-on the pyrochlore lattice have a vast ground-state
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FIG. 4. Four spins of equal length with vector sluw 0. Spins
1 and 4 lie in the plane of the paper, spins 2 and 3 need not.

L=0. In such a configuration, any two spins enclose the
same angle as the other two. For Heisenberg spins, these
configurations can be parametrized by two coordinées.,

FIG. 2. The square lattice with crossings. Both solid and brokema and ¢ in Fig. 4). The crucial feature is that, for any fixed
lines denote exchange interactions. Spins reside on the intersectioggcepta=0, one can choosé independently. In the special
of the solid lines. case,a=0, if spins 1 and 4 are antiparallel, there are two
degenerac§”52 but no explicit construction of the ground degrees of freedom associated with the remaining two spins,

states has as yet been available. The nature of various supile if spins 1 and 4 are parallel, there is no remaining
manifolds of the ground-state manifold is, however, known freédom. These exceptional states, in which all spins of a
These submanifolds are defined by imposing extra Contetrahedron are C0”|near, can play a central role in determin-
straints on the spin arrangement, in addition to the requireing the thermodynamics of the system because they are fa-
ment that it be a ground sate. A simple example is the set dfored by thermal fluctuations, as discussed in Sec. IV A.
four-sublattice states, in which the four spins of each unit For theXY antiferromagnet, there is only one continuous
cell are arranged to be oriented the same way everywherdegree of freedonma since if spins are coplanag=0,7.

Any four-spin arrangement that is a ground state for theGround states are therefore the configurations with two pairs
single tetrahedrotisee Sec. Ill A yields a ground state for of antiparallel spins.

the entire system by periodic repetition. Of these states, those
with two spins parallel and two antiparallel to a given axis
are the simplest conceivable ones. Vilf§ilas described a
larger ground-state submanifold for the Heisenberg model, in 1. The construction of the ground states
which the spins of each tetrahedron form two antiparallel

pairs. It turns out that foX'Y model all ground states are of . :
this kind. as described in Sec. Il E. structing any ground state of the Heisenberg pyrochlore an-
’ tiferromagnet, from which the number of ground-state de-

In the following, we present complete constructions of the . .
ground states for classical antiferromagnets with grees of freedonD can be determined directly. We also

component spins on the pyrochlore lattice. We also Shov(\;on5|dera3|mllar procedure for the square lattice with cross-

that the ground-state manifold is connected. We then examngs since it is essentially the same but easier to explain and
O%:sualize. The idea in both cases is that the ground state can

ine the consequences of spin correlations in typical groun bui by choosing th g . f spi
states for elastic neutron scattering. We conclude this sectioff Pullt up by choosing the orientations of spins on succes-
Sfve layers(planes or linesof the lattice, in a way that re-

with a discussion of the nature of the ground-state degrees G1", . L . .
quires no adjustments of spins in planes or lines already vis-

freedom in such magnets. ) . . o ;
ited. We consider systems with open boundary conditions: in
A. The single tetrahedron the context of this section, periodic boundary conditions ap-
, ear to introduce significant additional mathematical diffi-
The ground states of a single tetrahedron are those Statgﬁlties.
in which the sumL of the four spin vectors has the value \ye define a layer, for the square lattice with crossings, to
be a[10] plane(Fig. 5), and for the pyrochlore lattice to be a
[100Q] plane. In both cases, a layer contains the spins lying on
equivalent edges of squares or tetrahedra—referred to as
units from hereon—which are next-nearest, but not nearest,
neighbors, to other units with spins in the layer. The spins of
each unit are shared between two adjacent layers. Con-
versely, each spin belongs to a unit extending above and one
extending below the layer.
First, choose the orientations of the spins on the lowest
layer of the lattice. This amounts to choosing a valuesfor
FIG. 3. Projection of the sites of the magneti¢Cions in one ea,Ch_ unit with spins on thg bottom Iayer..There are ,no re-
layer of SCGO. The ions occupy sites of the kagome lattices in th&trictions on how to do th'?- Next, COHS'def the adjacent
top (solid lines and bottom(dashed linesplanes. In the middle layer: when choosing the orientation of spins on that layer,
plane, the ions are located on a triangular lattioedicated by ~ One has to satisfy the ground-state condition. For each unit,
circles. All lines denote exchange interactions; there are also interthis leaves one degree of freedaexcept in the special
actions between a spin in the middle plane and those in the twéasea=0. For this special case, one has to distinguish two
triangles which enclose it. situations. If the bottom spins of a unit are antiparallel, there

B. The Heisenberg antiferromagnet

We give in this subsection a stepwise procedure for con-
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O spins to be moved the ground-state manifold, can be chosen independently from
« spins held fixed intervals of the real axis. Moreover, the orientation of any
step A tep B two chosen spins can be changed arbitrarily and continu-

p step . . .

A e L L NSRS ously without leaving the ground-state manifold, as long as

NI = DA G I 1 the other two spins are unconstrained.

. AN (I) If two spins in a unit are antialigned, so will be the
R X T D4 DA other two, whose common axis can then be rotated arbitrarily
RN RN and continuously while keeping the orientation of the first
I I R I SN NS pair fixed and remaining in the ground-state manifold.

JRR3S I I N O BN (Il 1t is possible to change the orientation of one spin in
i S Y W D et 5 5 X a unit arbitrarily and continuously while that of a second is
D O O s D R R I held fixed, without leaving the ground-state manifold, as
Dt N i I DS N oS N i i I e long as the other two spins are unconstrained. This is a spe-

cial case ofil).

FIG. 5. When altering the orientation of the spins represented by (IV) From (Il) and (Il1) it follows that one can continu-
empty circles, only spins inside the wedge defined by the fixechusly change the orientation of a pair of spins belonging to a
spins(filled circles have to be adjusted. For the pyrochlore lattice, nit in the bottom layer, or a pair of antiparallel spins in a
a cone replaces the wedge. higher layer, and remain within the ground-state manifold of

the whole system, while keeping fixed the spins that lie out-
are two degrees of freedom when choosing the ground statgde a wedgeor coné for the square lattice with crossings
orientation of the upper pair of spins: when counting ground<or the pyrochlore lattice as depicted in Fig. 5.
state coordinates, the loss of a coordinate that follows from As a consequence, we can again work through the lattice
the additional constrair=0 is exactly balanced by the gain |ayer by layer. The procedure is as follows.
of an additional degree of freedom for the upper pair of (A) Align the spins in the bottom layer, unit by unit, to
spins. In the alternative situation, in which the first pair of coincide with the reference state. This fixes the two spins of
spins is parallel, no freedom remains, and we obtain a lowereach unit in the bottom layer to be antiparallel. As we adjust
dimensional submanifold of the ground state. the orientation of spins in the lower layer of each unit, those

At this stage, we have fixed the orientation of spins in thein the upper layer of the same unit can, (by be reorientated
lowest two layers of the lattice. Repeating the procedure ino keep the unit always in a ground state. At the same time,
the subsequent layers, the value &in each unit is deter- by (IV), spins in higher layers can also be reorientated to
mined by earlier choices, while one degree of freeddm keep the system as a whole in a ground state. At this stage,
remains for each unit of the system. spins in the bottom layer are in their reference state.

Since any given ground state can be built(op copied (B) Spins in the second layer now form antiparallel pairs,
layer by layer in this way, the construction can be used tGince they belong to units which have antiparallel pairs in the
generate all possible ground states. By this construction w@west layer. The spins in the second layer can therefore, by
have demonstrated that the extensive part of the dimensiom), be adjusted to coincide with those in the reference state.
of the ground-state manifold is equal to the number of unitsyhile this is done, by(IV), spins in higher layers can be

7 NG <
i< < Y,
N N N

layé/r

in the system. concurrently reorientated to keep the system within a ground
state, as in stepA).
2. The connectedness of the ground-state manifold From the way we chose the reference state, it now follows

We show that the ground-state manifold is connected b)}haF all neighboring spins in the second layer are p‘?‘"W‘Se
ntiparallel. Therefore, we can repeat s{&p for the third

demonstrating that any ground state can be continuously &

formed into any other ground state without cost in energy.and all higher layers. Once we have done so, all spins in the

To do so, we choose a reference ground state and give ac};{stem coincide with those in the reference state. Since one
explicit construction by which the reference state can pdan go between two arbitrary ground states via the reference

reached from any ground state, without leaving the ground?tate’ this completes our proof that the ground-state manifold
S connected.

state manifold. This is done by considering successive IayerJ
of the system, and bringing the spins in each layer into the
orientation that they have in the reference state, using moves
within the ground-state manifold which leave spins un-
changed in the layers already visited. The reference state is The arguments presented in the previous section for
chosen to be one in which all spins on lattice sites equivalentieisenberg antiferromagnets generalize directly e
under translation have the same orientation, and in whiclsomponent spins witin>3. For the ground-state construc-
each spin is antiparallel to the other spin belonging to thdion, the main difference is that spins 2 and 3 in Fig. 4 can
same layer and unit. now be rotated im— 2 directions, so that the extensive part
We make use of the following facts, which follow of D is N(n—2), as expected from Maxwellian counting.
straightforwardly from consideration of the ground-state The construction of ground states for ter model is
configurations illustrated in Fig. 4: much simpler than for the Heisenberg model: as in the case
(I For a single unit of four spins, the manifold of ground of a Heisenberg antiferromagnet on the kagome lattice, for a
states is connected: and ¢ (Fig. 4), which provide a com- generic ground state the number of constraints is equal to the
plete parametrization of the internal degrees of freedom ofotal number of degrees of freedom. The construction of the

C. Pyrochlore antiferromagnets with generaln=2
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ground states therefore involves fewer choices. It proceeds as
follows. The orientations of spins in the bottom layer can be
chosen arbitrarily. The ground-state configurations of spins
in the next layer are then almost completely determined,
since each tetrahedron has two pairs of antiparallel spins.
The only freedom remaining is the discrete choice of which
spin to place on which of the two sites of the unit in the next
layer, unless the two spins of a unit in the lower layer happen
to be antiparallel. In this case the orientation of the pair
(which has to be antiparallein the top layer be chosen
freely.

The proof of the connectedness of the ground-state mani-
fold, presented above, follows essentially from the connect-
edness of the ground-state manifold of a single unit and from
the fact that for any orientation of a pair of spins in a unit,
the other pair can be chosen so that the total spin of the unit FIG. 6. Static neutron scattering cross section in[ thiel] plane
vanishes. This, along with the other steps, carries over to thigr a Heisenberg pyrochlore antiferromagnet, obtained numerically
casen=2. by quenching the system into a ground state. Horizontal and vertical
coordinates aré and h, respectively. Light shaded areas represent
high intensity and black represents zero intensity.

D. Ground-state correlations

of the Heisenberg pyrochlore antiferromagnet . .
the size of a tetrahedron, we obtadM ;o L. Increasinge,

It is clear in our construction of ground states that spins, follows a random walk: M «\z\L. Since M~ L
correlations are not propagated efficiently. In this section, we, o Zobtain a correlation Iengttgicﬁ and thereforeéq,
show that, nonetheless, a few long-range correlations igc|ql|_ ’ |

high-symmetry directions are built into the ground states of Similarly, there are long-range correlations in 1)

the pyrochlore Heisenberg antiferromagnet. We discuss th&irections. The{111} planes are alternately kagome and tri-

;lc?r?atures of these correlations in magnetic neutron d'ﬁracéngular planes. Adjacent kagome planes contain the bases of

adjacent tetrahedra, which, in the intervening triangular

planes, share a common apex. In any ground state, the total

magnetic moments of aflL00) kagome planes are equal, and
From the ground-state conditidn,= 0 it follows that the  also opposite to the total magnetic moment of (a0 tri-

sum of all the spin vectors in two adjace(00) planes is angular planes.

zero(this sum is also the sum &f, over tetrahedra making

up the two planes Therefore, adjacent planes are antiferro- 2. Consequences for neutron scattering experiments

magnetically correlated. Since these correlations are long | recent neutron scattering experiments on a single crys-

ranged, we expecharppeaks in the neutron scattering cross;, sample of CsNiCrgby Harris and co-worker$:5817the

section in the(200 directions. _ __angular dependence of the neutron scattering cross section is
These peaks differ from Bragg peaks in two ways. Firstgygied. The correlation length is longest in (€0 direc-

their amphltude scales differently W|th_ sample size. Con&degion, shortest in thé110) direction, and intermediate in the

a sample in the form of a cube of side and let the total 149y girection. Since the presence of two species of mag-

magnetization of 8100 plane be_M. In a _typlcal g_round netic ions in CsNiCrf makes a detailed comparison with

state,M~L and the peSak scattering amplitude varies\as  yheory difficult, Harris and co-workers also report Monte

"L~L7, in contrast td_” for a Bragg peak. Second, they are 54’ stydie®17 of the angular neutron scattering cross sec-

sharp in only one direction in reciprocal space. Consideg;,, iy the[hhl] plane, shown in Fig. 6, which is taken from

scattering at a point displaced fro200) by the vector L.t 5g ’ ’

(q),9.). We argue that, at fixed, , the scattering ampli- The scattering is broad in most directions except flG9)]

tude as a function ofy has a peak centered @)=0, of  45,41111] directions, where narrow necks appear at low tem-

width 6q>|q,|. Contours of constant scattering intensity herature. The scattering near these necks has the appearance

therefore have a distinctive bow-tie shape. To understand igs 5 pow tie, as described above. In addition to these bow

detail the reason for this, it is necessary to examine the COljes \hich are narrow in the direction parallel to the wave

relation in the magnetization of a region of a100) plane  \ector transfer, there are subsidiary bow ties, narrow in a

with linear size£, and that of its equivalent, displaced by a perpendicular direction. Their origin can also be explained
distancez in the [100] direction. LetoM, be the difference  sing arguments of the kind described above.

between these magnetizations, and meagumeunits of the
plane spacing. The magnetization difference for adjacent
planessM; arises entirely from spins belonging to tetrahe-
dra that are only partially included in the region. The number We next discuss the existence of degrees of freedom in
of such spins is proportional to the size of the boundary othe ground state which involve only spins in a finite region in
the region—and hence t6. Since there are only weak cor- the bulk of the system. These we call local zero modes. They
relations between individual spins on distances larger thaare of interest because unhindered rotation of finite numbers

1. Correlations between planes

E. Local zero modes
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of spins is likely to be particularly effective at destroying
correlations, both in space and in time.

In the kagome magnet, the nature of the zero modes was
established in Refs. 24 and 25. The requirement thaOD
leads the three spins in each triangle to be coplanar and at
relative angles of 120°. If all the spins on the lattice are
coplanar, there are three spin orientatioAsR,C) each of FIG. 7. Soft fluctuations around a collinear state.

which occurs in each triangle once. A zero mode, called a ) o )
weathervane defe,arises as follows. In a region enclosed ~ The experimental situation for pyrochlore magnets is

by a line of spins of one typésay,C), a line of spins(alter-  rather complicated. A few compounds develop long-range
nating between typé andB) can be rotated about the spin order at low _tergper_aturé”g,whereas others undergo a spin-
direction ofC at no cost in energy. Starting from a particular 91ass transitiorf® It is unclear what the importance is of

state,any ground state can be constructed using these zer$arious features of real systems. Nevertheless, we restrict our
mode<459 attention in the following to the theoretically idealized prob-

There is a closely related way of describing the zerdem of a classical antiferromagnet, without anisotropy, disor-
modes for theXY magnet on the pyrochlore lattice. They are der, further-neighbor or dipolar interactions. .
again associated with closed loops, this time of antiferromag- 1his material is arranged as follows. First, we consider
netically oriented spins. Our construction of a ground state idh€ analytically accessible problem of four Heisenberi ¥r
Sec. IIl amounts to finding a set of lines through the latticeSPINS 0n a single tetrahedron. Next, we investigate the gen-
sites with adjacent sites on a line occupied by antiparallefral case of a lattice built from groups qfspins, each with -
nearest-neighbor spins, and each site belonging to exact[%components, and ask whether thermal fluctuations restrict
one line. Each line can be labeled with an angle giving thdn€ Spins to an ordere@.g., collinear or coplanarconfigu-
orientation of its spins, and a zero mode involves changing@tion- Then, in Sec. V, we present the results of numerical
one such angle. Villait used a description of this kind to simulations, which test the conclusions reached from our
generate a subset of the ground states of the Heisenberg palytical arguments.
rochlore antiferromagnet. By contrast, for ti& model, this .
approach generatedl the ground states. A. The single tetrahedron

~ For the Heisenberg antiferromagnet on the pyrochlo_re lat- \we first study a problem simple enough to allow explicit
tice, the nature of the zero modes is much more complicategygjuation of some of the quantities of interest: antiferro-
reflecting the larger freedom in the ground-state ma”'f°|dmagnetically coupled spins occupying the corners of an iso-
We have not been able to find a simple description of gated tetrahedron.

generic zero mode. We nevertheless believe that in a suffi- There are eight degrees of freedom associated with four
ciently large region of a generic ground state, there are '005|11eisenberg spins, and for the system to be in a ground state,
zero modes. Our argument rests on counting degrees of fregyree constraints must be satisfied, sihce0. The ground-
dom: the number of degrees of freedom a region contributegiate manifold therefore has five dimensions: of these, three
to the ground state is proportional to its volume, while fixing grise from global rotations, while the remaining two can be
surrounding spins imposes a number of constraints propoksarametrized as discussed in Sec. Il A. The energy cost for
tional to its surface. For a large enough volume, the numbefj,ctyations from this ground-state manifold in the remaining
of degrees of freedom exceeds the number of such coRpree directions in configuration space is, for a generic
straints. The existence of such local modes in all groundyqund state, quadratic in displacement. By contrast, for the
sta.tes is, ho_vve\{er, nqtguaranteed. For instance, foraste}te%ecim ground states in which spins are collinear, energy
which all spins in a givert001) plane are parallel, and anti- yaries quadratically with displacement from the ground-state
parallel to the spins in neighboring planes, the sum rulegyanifold only in two directions, and quartically in the third,
discussed in Sec. Il D preclude the existence of local zerggjcated schematically in Fig. 7. The collinear states are the
modes. obvious candidates for selection by thermal fluctuations.

To study such selection, we have calculated the probabil-
ity distribution W(#) for the anglef between a pair of
Heisenberg spins, integrating over all orientations of the four
spins with a Boltzmann distribution and the Hamiltonian of

In this section, we examine the circumstances undeEg. (2.1). Two factors contribute tW(6)d#: the measure
which thermal fluctuations induce order in geometricallysin(f)dd and a statistical weight. The low-temperature limit
frustrated antiferromagnets. This phenomenon—known asf the latter is[2 cos@/2)] 2, the divergence ag— m re-
order by disorder—has been discussed in great detail for thiéecting the lower free energy attached to fluctuations around
Heisenberg antiferromagnet on the kagome lattice, wherthe collinear state. Combining both factorsy(6)
thermal fluctuations induce coplanar ordering of the=sin(#/2)d(6/2): configurations which are nearly collinear
spins?*?>*9There is evidence from past simulations that or-have higher weight than others in this distribution, but the
der by disorder is not a universal occurrence in geometricallgntire ground-state manifold is accessible even in the low-
frustrated systems—both Heisenberg spins on the pyrochlotemperature limit, and there is no fluctuation-induced
lattice®*° and four-component spins on the kagome latfice ground-state selection.
apparently remain disordered at low temperature—but the To illustrate the alternative, consider the same problem
systematics have not previously been studied. for XY spins. In this case, the measure contributes simply

IV. GROUND-STATE SELECTION AT LOW
TEMPERATURES: ANALYTICAL RESULTS
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In principle, order might arise in either of two ways. First, it
can happen that certain, special ground states have soft fluc-
tuations, so that at some poix§ on the ground-state mani-
fold (or, more generally, on some subspacsome of the
€(Xp) vanish. Therz(x) will diverge asx approacheg,. If

any such divergences are nonintegrable, one should keep
higher order terms from Eq4.1) when calculatingZ(x).

FIG. _8. Evolution _of the collinearity parameter with Monte The result of doing so will be, in the limif—0, a distribu-
Carlo_time for a single tetrahedron ar=25x10"°J for  {ion concentrated exclusively on the subset of ground states
2X 10" Monte Carlo steps per spin. for which Z(x) is divergent: these are the configurations se-

o ) o ) lected by thermal fluctuations. It is this mechanism for
dé to the distributionW(6)d6, while the statistical weight i, ctuation-induced order that we study. There is, however,
at temperaturd <J is proportional to[sin(6)| * for sif(6)  also a second possibility, which we do not pursue here: it
>T/J, and to (/T)*for sin’(6)<T/J. As a result, the weight might happen that the probability densig(x) is spread
in the limit T—0 is overwhelmingly concentrated near col- smoothly over the ground-state manifold, but that there nev-
linear spin arrangementg)0 and ), reflecting selection  grtheless exist correlation functions which, when averaged
of these states by thermal fluctuations. Order by disorder igith this weight, are long ranged.
just such a concentration of statistical weight on a submani- T decide whether ground states with soft modes are se-
fold of ground states. Note that it can occur in a finite systemected, it is necessary to know the numidérof ¢’s that
(in this case, a system of four spjngnd is quite different  yanjsh, and the dimensio® of the subspace on which this
from the order that appears in a symmetry-breaking phasﬁappens. Close to this subspace, we sepacatau,v) into
transition, which is restricted to the thermodynamic limit. 53 S dimensional component, lying within the subspace,

It is straightforward to demonstrate these effects in Montgynq 5 O — S)-dimensional componen, locally orthogonal
Carlo simulations. In Fig. 8, we plot the collinearity param- 4, it, with magnitudev. We expect at smab the behavior
eterP(1) [defined in Sec. V A, Eq(5.1)], as a function of €(x)=v? for M of the ¢,'s. Hence Z(x) diverges as ™ for

Monte Carlo time, for a simulation of four Heisenberg spinsgm a1 v, and the subspace is seleGeds T—0 if the inte-

arranged in a single tetrahedron at the temperaiue.5 ral

X 10 °J. For the current purposes, it is sufficient to note that

the collinearity parameter takes on values betwedn3 (for

a state with all spins at relative angles of 70.5° or 109.5°) f Z(u,v)dvocf PS5 M-1qy, 4.3

and +1 (when all spins are collinearWe see from Fig. 8

that the system explores all ground states, attaining values ¢ givergent at smal.

the collinearity within 2<10~* of the extremal ones, and is e therefore need to consider candidate ordering pat-

not trapped near a collinear state. The average of the CO{'erns, and determine the sign Bf—S—M in each case. It

linearity parameter 0.1980.02 is distinct from 0, its value seems in general that the preferred ground states are ones in

in the high-temperature limit, and close to the exact low-yhich spins are collinear or coplanar, because these have the

temperature value 1/5 obtained from the expressioff#)  |argest number of soft modes. Collinear spin order is pos-

given above. sible on lattices built from units containing an even number
of sites, q: in practice, those constructed from tetrahedra.

B. The general problem: groups ofg spins with n components ~ Such order results in one soft mode per unit, as illustrated in

We now examine whether thermal fluctuations select par!:lg' 7. The number of soft modes is therefde=N, and

ticular ground states for the general class of system intro§5|nces=n—l) we expect order only iD<N. Estimating

; : . . : D asF—K=N[q(n—1)—2n]/2, we predict order ih<(q
duced in Sec. Il, in which a lattice is built frofd corner- . .
sharing units ofy spins, each having components. We have +2)/(q—2), and disorder ih>(q+2)/(q—2). Thus, for

argued elsewhetéthat low-temperature behavior is charac- pyrdO(f:hIore anhferrq{magnegs, tw:)-_(lz_(r)]mponent iplns ﬁrder,
terized by a probability distribution over the ground-statean our-component spins do not. The approach reaches no

manifold, defined in the limiT— 0. Letx be coordinates on conclusion in the marginal case of three-campanent spins,

the ground-state manifold; at each pomtone can introduce E;::'tr;;tlaﬂggse(ﬁfg' 333’;::185’ ggdngf g%s;ntgg E’;l?tic::v(‘eil-ma de
local coordinateg spanning the remaining directions in con- g sp :

figuration space. Generically, the energy of the system reIaI—Lom corner-shalllr_lng trlanglej, tSl{{Ch_e.‘S 'tthedkagorlne Iattuzje,
tive to its ground-state value will have a Taylor expansion. < ¢ 2ré N0 colinear ground states, ins-ead, C%ﬁ anar order
with the leading term may occur. S_uch order resultslih=N/2 soft modes, using
again the estimaté —K=N[q(n—1)—2n]/2 for D, we pre-
dict order in this case ih<<4 and disorder ih>4. Simula-
H~H,= >, a(x)y?, (4.1  tions of kagome antiferromagnets demonstrate that there is
' indeed coplanar order far=324 and that the marginal case
n=4 is disordered!

Summarizing, the only cases in which there is order by
disorder aregq=4, n=2 (the XY pyrochlore modelandq
Z(x)ocf d{yl}e—ﬁHZOCH [keT/ e (x)]Y2 (4.2) =3, n=3 (the_ Heisenberg I_<agome mogeln both in-

[ stances, there is a low entropic cost to enter the ordered state

of
-0.33

resulting in a ground-state probability density
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FIG. 9. The occurrence of order by disorder fecomponent v/
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(Dw=0) and a high entropic gain from soft fluctuations be- =04, 20 20 6.0 8.0
cause in the ordered state the constrainis-0 are not in- r
dependent. These conclusions are depicted in Fig. 9.

V. GROUND-STATE SELECTION AT LOW

FIG. 10. Correlation functions for the Heisenberg atd anti-
TEMPERATURES: NUMERICAL RESULTS

ferromagnets at a temperature ot 5x 10 4J. The two-spin cor-
relation functionQ(r) (dot-dashed lineand the collinearity corre-
lation functionP(r) (solid line) for a system of 2048 Heisenberg
In the following two subsections, we present the results ofPins andP(r) for a system of 864XY spins(dashed ling
the Monte Carlo simulations aKY and Heisenberg pyro- 1
chlore antiferromagnets. One aim is to test our prediction of _n 2
collinear ordering forXY spins. We also consider the P(N=1=7| (S0)-SNF) = 7). .
Heisenberg model in detail, to show that order by disorderis . = . o
indeed absent in this case. Our studies of the Heisenbetynich is constructed to have the values:0 at infinite tem-
antiferromagnet are a continuation of Reimers’ pioneering’€rature an®=1 in a collinear stateP(r) is shown in Fig.
simulations$® and Zinkin's subsequent work.Our conclu-

10, withr in units of nearest-neighbor distances. The corre-
sions are in agreement with these authors, in particular witftions for Heisenberg spins again have a range of only two
the earlier, albeit tentative, ideas of Zinkin, but our results"€arest-neighbor distances: there is no fluctuation-induced
are more extensive. Reimers work concentrated on the ten@rder. Equally, the predicted collinear order &Y spins is
perature rang&=0.05): many of the observations described confirmed: there is long-range orderf{r) at this tempera-
in the following are very hard to discern or absent in thisturé. Note that, despite the very low temperature, the order
regime.

parametelP(r —»)=0.86 is appreciably less than its maxi-
Our simulations were carried out on systems of sizegnum possible value of 1. We expect on general grounds that
ranging from one unit cell =2 tetrahedraN.=4 sping to  SUch nematic order should be established via a first-order
178 unit cells (N=9826N.=19652). As pointed out in Sec. pha_se trans_|t|on, _but have not attempted to check this in de-
IV, small systems display large fluctuations, and thereford@il in our simulations.
require very long simulation runs. FdM =4, the longest

The temperature dependence of collinearity for neighbor-
simulation was X 10° Monte Carlo steps per spin at=>5

ing spins is shown in Fig. 11. Neighboring Heisenberg spins
X 10 %J. For the largest system, however, only X .B50°

have a limiting low-temperature value(1)=0.2 which is
Monte Carlo steps per spin were necessary even at the lowed?!
temperature.

nzero because the correlation length, though small, is itself
finite. By contrast,XY spins become perfectly collinear in
the low-temperature limit. The low-temperature variation of
[1—-P(2)], the deviation of collinearity from its maximal
value is characteristic of fluctuation-induced oréeBpecifi-

In this subsection, we consider two-spin correlations andally, we expect + P« JT1J at low temperatures, because
also a correlation function which quantifies directly the col-quartic modes give rise to the dominant fluctuations at low
linearity of the spin system. In the next subsection, we distemperatures. These modes, with coordinagescharacter-
cuss the heat capacity, which is an indirect probe of the statized schematically in Fig. 7, havexTY* by equipartition.

of the system, but in some ways more conclusive, since it iSince G,-S,)2~(1— 7%/2)2~1— 72, we obtain +P(1)
sensitive to the presence of soft fluctuations irrespective ot T*2. We show in Fig. 12 thaP(1) does indeed behave in
the type of ordering with which they are associated.

the expected way.

A. Correlation functions

First, we demonstrate that the Heisenberg model does not We have checked the dependence of our results on length
have Nel order, even at low temperature. The correlationof simulation run and system size. To test whether the sys-
function Q(r)=(S(0)-(r)) is shown in Fig. 10: correla- tem is properly equilibrated during our Monte Carlo runs, we
tions are very small beyond the second-neighbor distancénvestigate the dependence of data on initial conditions, com-

Second, to measure the collinearity of spins, we evaluate thgaring results from random and collinear initial states. For
correlation functionfor n-component spins

Heisenberg spins, our simulations are long enough that nei-
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FIG. 11. The temperature dependencePgf =1) for XY and FIG. 13. System size dependence of the collinearity parameter

Heisenberg spins. Most error bars are smaller than the symbol§(r=1) for XY and Heisenberg spins @t=5x10"°J andT=5

Simulations started from random initial spin configurations, except® 1004

those for the data points marked with open circles, which started

from collinear spin configurations. canonical coordinatp, which appears in the Hamiltonian as
(p/po)?", contributeskg/(2r) to the heat capacity. Hence,

ther of the correlation functions studied retains memory ofeach quadratic mode contributeg’2, and each quartic mode

the initial state. FoKY spins, we are able to equilibrair) kg/4, whereas zero modes do not contribute at all. Determin-

(see Fig. 1}, but notQ(r): collinear order presumably hin- ing the heat capacity therefore allows a determination of the

ders relaxation of two-spin correlations. To test for finite-sizenumber of quadratic and quartic modes present.

effects, we carry out simulations on systems ranging in size If, as predicted, thermal fluctuations select a collinear

from Ng=4 to Ng=19 652 spins. Only for small systems of state for theXY model, then there is one quartic and one

XY spins are marked finite size effects observed, as shown iquadratic mode per tetrahedron. This results in a heat capac-

Fig. 13. ity per spinC of 3/8g. In the absence of order, all modes
are quadratic, an€C=kg/2. For the Heisenberg antiferro-

B. Specific heat magnet, there are four degrees of freedom per tetrahedron,

one of which is a zero mode. If there is no order, we expect

_An unbiased way to search for soft fluctuations and, byc—3/4x, : if a collinear state is selected by thermal fluctua-
|mpI|cat|o4n, fluctuation-induced order is to measure heatjyng C=5/8kg. In finite-sized systems, the heat capacity
capacity?* At low temperature, one expects to be able ©Oper spin is reduced. For our choice of periodic boundary

describe fluctuations of the system from a ground state ikonditions, this manifests itself in the correctia®(N)
terms of canonical coordinates which are almost independent [(N=1)/N]C().

of each other. From the classical equipartition theorem, a "aq shown in Fig. 14, we find in the limi—, thatC

‘0 =0.376+=0.002 forXY spins, and tha€C=0.747+0.002 for

% o e . Heisenberg spins. This is consistent with the presence of
e . /108 spins, initially collinear order forXY spins, with one quartic mode per tetrahedron, as
0] ¢ X108 spins, initially random . R . .
© (02916 spins, initially random expected. For Heisenberg spins, we obtain an upper limit of
2 0.04 quartic modes per tetrahedron.
0.9 % 1

VI. THE DYNAMICS
OF THE PYROCHLORE ANTIFERROMAGNET

P(r=1)

We now turn to time-dependent correlation functions, and

I & ask how the system explores the vicinity of its ground-state
08 - ) manifold at low temperature. We study the spin autocorrela-
tion function with precessional dynamics, both analytically
and by numerical integration of the equations of motion.

% Two of the facts established in the previous sections have
important implications for spin dynamics. First, we have
0-70 00 0'02 064 shown that the ground-state manifold is connected, which
' ' (TI)" ' means that the magnet does not get trapped in a particular

state at low temperatures by internal energy barriers. Second,
FIG. 12. P(r=1) versus T/J)¥2 for XY spins. we have shown that there is no entropic selection of special
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FIG. 14. The specific heat for different system sizes forXhe )
and the Heisenberg antiferromagnet on the pyrochlore lattice. The FIG: 15. The density of states(w) for a system of 2048

®

lines are a guide to the eye. Heisenberg spins at low temperature.
ground states at low temperatures, which suggests that the dL, =—J> S.pXLg, 6.2
dynamics is unlikely to be hindered by free energy barriers. dt B

We indeed find that spin correlgnons _relax relatively r".’lp'dlyin which the notatiorS,; has been introduced for the spin
even at low temperatures, having a time-scale that diverges

only asT~ 1, and not, for example, according to an Arrheniuscomrr]non. to thg tetrahede af?dﬁ-. . )
law. The right side of Eq(6.2) implicitly defines a 3 X 3N

matrix M acting on a vector constructed from the compo-
nents of the_ ,’s. This matrix, being real and antisymmetric,

A. Derivation of an effective spin dynamics has eigenvalues which are purely imaginary and occur in
airs +iw related by complex conjugation. For a ground-
tate spin configuration, the magnitudes of these eigenvalues

are the frequencies oM\B2 normal modes, while the real and

imaginary parts of the associated eigenvectors are canoni-
cally conjugate coordinates for the modes. The remaihing

Consider, in the first instance, the dynamics linearize
around a ground state. In this approximation, a system of
tetrahedrahence with 2l spins and a Ml-dimensional phase
space will have 2N normal modes. Some of these modes

V.V'” be. conventional, finite frequency Spin-waves, buta fra.c'directions in phase space are spanned by coordinates having
tion will have zero frequency, because there is no restoring _ 5 ¢ a1l o and therefore lie within the ground-state

force for displacements in phase space that take the SyStemanifold. The matrixM is well-defined and has purely

from one ground state to another. Beyond the harmonic aHFnaginary eigenvalues for any spin configuration: for a low-

proximation, nonlinear terms in the full equations of mo.t'(.)ntemperature spin configuration, the eigenvalue magnitudes
will have various consequences: the conventional, finite-

. . L . “~are presumably good approximations to the normal mode
frequency modes will acquire a finite lifetime and coupllng]c quencies in a nearby ground state. We display in Fig. 15
between these modes and the ground-state coordinates wjj e density of stateg(w) on a linear scale, obtained by
drive the system around its ground-state manifold. We ﬁnv(viiiagonalizingM for low-temperature pyrochI,C)re spin con-

that the_re are threg distinct time scale.s at low ternperatur‘?i‘gura‘tions generated in a Monte Carlo simulation. It is note-
The period of the highest frequency spin wa@g:/J) sets worthy thatp(w) appears to be finite ab=0:p(w) neither

i lifatine 12 ;
fche short_est scale, thel_r lifetime~74/[JksT] . provides an ._includes a divergent contribution, proportional 86w), nor
intermediate scale, while the longest scale is the decay t|m8 : .
oes it vanish aa—0.

qf the autocorrelatlon_ fun_c_t|om~h/kBT. This separation of The fact thatp(w) does not contain a delta function at
time scales greatly simplifies the problem. P . g . ; i
=0 gives information on how canonically conjugate pairs

Our starting point is the equation of motion of coordinates appear in the linearized dynamics. Quite gen-
erally, the Hamiltonian in the harmonic approximation can

ds be reduced to the form
E:SxHi(t)=—JSX(La+Lﬁ), 6.9 N
H=2, (aipf+Bidp), 6.3

where we have sét=1. H;(t) is the exchange field acting at

site i, which can be expressed in termslof andL s, the  wherep, andq, are a canonically conjugate pair of coordi-
total spins of the two tetrahedra to whi& belongs. Sum- nates. We know from the ground-state construction de-
ming over the sites of a tetrahedron, the time dependence atribed earlier that 1/4 of these coordinates belong to the
L,is ground-state manifold, and therefore that 1/4 of therum-
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bers{«,,B,} are zero. Oscillations of the coordinatesq; (Hi(t)-Hi(t"))y=2I8(t—t"). (6.7
have zero frequency &, - 8,=0, and so the fraction of zero-

frequency spin-wave modes might, in principle, range from

1/4, if for each of these modes bath=0 andB,=0,to 1/2, To do so involves several assumptions. The most important
if for each of these modes only one @f and B, is zero. The  of these is that the spin-wave lifetimg which sets the width
fact that p(w) does not contain a delta function at=0 in time of the delta function in Eq6.7), is small compared
implies that all(except for a fraction vanishing in the ther- to the decay time of the spin autocorrelation function. We
modynamic limiy of the 3N/2 modes derived frotM have  show below that this is asymptotically exact®s—0. Fur-
nonzero frequency, and therefore that only the remaining 1/¢her, in takingl’ to be a constant, rather than a functional of
of modes have zero frequency. Hence, for evegjtherboth  the instantaneous spin configuration, we implicitly neglect
a; and B, are zero orneitheris zero: coordinates in the yariations with spin configuration in the local density of
ground-state manifold all appear in canonically conjugatesiatess,|u,(i)|28(w;). Such fluctuations certainly exist, but

pairs. seem from our numerical studies only to have a small effect

. T_he nonzero de_n_sity of states apparent at s_maII freqzuencgn the form of the spin autocorrelation function. Solving the
in Fig. 15 is in striking contrast to the behavipfw) = w

that occurs in both Na-ordered antiferromagnetimcluding Léarigevm iquatmr) that reSléltS. from treauhg_(t)i#? Eqa
ordered states of the pyrochlore antiferromafhetnd con- (6.1) as w |te_ noise, we obtaifi§(0)- S(t))=e an

ventional spin glasses. The arguments used by Halperin ar{bence(relnstatmgﬁ)

Saslov® and by Ginzburff to predict propagating long-

wavelength modes in spin glasses depend on the ground state

having a stiffness. This stiffness appears to be missing in (S(0)-S(t))=exp(—ckgTt/h), 6.9
ground states of the pyrochlore antiferromagnet, because of

the many zero modes.

The exchange fielH,;(t) appearing in the equation of
motion, Eq.(6.1), can be written as a superposition of con-
tributions arising from the finite-frequency modes, in terms
of vectorsu,(i) determined byM and amplitude#\, deter-
mined by the initial conditions:

wherec is a dimensionless constant of order unity. There-
fore, the autocorrelation time=I""1=#/(cksT). We em-
phasize again that, at<J/kg, itis T alone, and nod, which
sets the scale for long-time dynamics.
To complete this discussion, it is necessary to estimate the
spinwave lifetimers. There are two physical processes that
e contribute torg. One, common to all antiferromagnets, is the
Hi(t):z| Au(iyel+c.c. 64 anharmonic interaction between different finite-frequency
] o ) ) modes, which here results in a lifetime varying Bs! for
In the harmonic approximation, the amplitudésare time  gmq) T, |t is, however, overwhelmed by a second process,
mdepend_ent, but in the fl.’” dynamics Fhe|r m_agmtude ar_‘dspecific to systems with many ground-state degrees of free-
phase will change on a time-scale which defines the Spmdom, in which finite-frequency modes are mixed by the mo-

wave lifetime 7. We postpone_detalled dlscussmn 9f thetion of the system between different ground states. More
temperature dependence af until the end of this section, formally, on time scales-7#/J, the matrixM is time depen-

but note that, at low temperature, is large compared to the dent. The linearized equations of motion, with time-

. . . -1
typical spinwave penod_ L . . dependenM, define an autonomous dynamical problem in

If the equation of motion is integrated over tlme-mtervalsWhich the instantaneous normal mode amplitude®) are
Ionge[ }ham—s, contributions from modes with frequepcies time dependent. The time dependence of the matrix elements
@> 7, -~ average to zero, while those from modes Wiih ot \1 mixes amplitude, initially concentrated in a single
=75 fluctuate randomly, according to the time dependencenodel over all modes lying within a window of frequencies
of A(t). HenceH;(t) has mean value zero, and has fluctua-aroundw, . From time-dependent perturbation theory, a frac-
tions which are characterized most importantly by their low-tjgnal changé in matrix elements spreads amplitude over a

frequency spectral density, frequency window whose widthw, forms a fractiorf of the
- entire spinwave spectrum, so théw~fJ/A. And from our
f dt’(H;(t)-Hi(t"))=2T. (6.5  results for the spin autocorrelation function, the fractional

change in matrix elements during a time-intervgl is f
=kgT7s/f. The spin-wave lifetime is the time at which the
frequency window resulting from thig has width Sw
. _ ~1/7, and so we obtaimg~7#/[IkgT]Y% As required for
FZEI J (A(0)AT (t))e'|uy(i)]*dt. (6.6)  the consistency of our arguments, at low temperatures this is
indeed a much shorter time scale than that for the decay of
Since, for larger, only the low-frequency modes contribute the spin autocorrelation function.

In terms of the amplitudes, (t),

to I', and since, from equipartition(|H;(t)|2)~ J%(|L ,|?) As the temperature is raised towafts J, this separation
~JkgT, we have I'«JkgTp(0"). Note that, asp(w) of time scales breaks down. The precession on the previously
«J~1, T is independent od. shortest time scale then becomes visible, and the autocorre-

We now proceed to calculate long-time spin correlationdation decays initially as A(t)=t? rather than * A(t)
from Eq. (6.1), by treatingH;(t) as Gaussian white noise ot. This is indeed observed in our numerical simulations
with the correlator described in the next sectidfig. 16).
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B. Molecular dynamics simulations

In this subsection, we present results obtained from nu
merical simulations of the dynamics of the Heisenberg pyro-
chlore antiferromagnet. In these simulations we evaluate th
autocorrelation function

A)=(S(0)-S(1)). (6.9
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FIG. 17. The decay ofA(t) on a logarithmic scale for five
different runs at the same temperatli/d=6x 102 in a system of

2048 spins.

for a system of 2048 spins. The collapse of the data onto a
single curve, at all except the highest temperatures] (
%0.1), is striking evidence in support of our analytic results.
To demonstrate the accuracy with which the decas (@) at

low temperature is exponential, and to indicate the magni-
tude of finite-size effects in our results, we show in Fig. 17

We find thatA(t) decays exponentially in time. The simula- data forA(t) on a logarithmic scale, for runs starting from
tions confirm the predictions of the preceding section different initial configurations generated at the same tem-

namely, that the time scale for the dynamicearies asT 2.
Finally, we do not discover any sign of spin freezing even at
temperatures as low &=5x10 4J.

perature.

To examine quantitatively the temperature dependence of

the decay timer we fit data at each temperature to an expo-

We generate uncorrelated, thermalized initial configuranential exp{-t/7). The resulting values for are displayed in
tions by Monte Carlo simulation, from which the equation of Fig. 18. In order to extract the temperature dependenee of
motion, Eq.(6.1), is integrated using a fourth-order Runge- We fit it to the power lawr= AT~ ¢ Excluding tempera-
Kutta algorithm. Related calculations for the kagometuresT/J=0.15, we obtainf/=0.998+0.012 and.A=0.53
Heisenberg antiferromagnet have been described previoush0.04. This result agrees with and confirms our prediction

by Keren*

Some details of our procedure are as follows. We choose
the integration time step so that energy is conserved to a
least one part in 0 The temperature range of the simula-
tions covers three orders of magnitude, the lowest tempera
ture beingT=5%x10 4J. The system sizes studied range
from 32 spins to 2048 spins. There are marked finite size
effects in the smaller systems, which we believe result from
all spins precessing together about the total magnetizatior
M Of the system. SincéM|>~N, the precession rate _
varies aN~ 2, and decreases rather slowly with increasing *
system size. For the results presented, we hasten conve
gence to the thermodynamic limit by adding the te]MtzOt
to the Hamiltonian, which constrains the total magnetization
to be independent of system size and near zero. As a resul
values of the decay time coincide for systems with 500 and
2048 spins.

The functional form of &). From the analytic calculation
presented in Sec. VI A, we expeéf(t) to depend on time
and temperature only through the combined varidtileWe
show in Fig. 16A(t) as a function of this scaling variable, at

various temperatures and over one and a half decay timesdifferent system sizes.

10
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that{=1.

3

1

10°

{C—0 108 spins |
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FIG. 18. The decay time as a function of temperature for three
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C. Inelastic neutron scattering trated classical antiferromagnets, with particular emphasis on

Inelastic neutron scattering provides the most detailedn® Pyrochlore Heisenberg antiferromagnet, which has a
probe of dynamical correlations. We expect from the resultgnacroscopically degenerate ground-state manifold. Given
described above that diffuse inelastic scattering in the temthe connectedness of this ground-state manifold and the ab-
perature rang@<T<|®¢y| should have a Lorentzian line sence of appreciable free energy barriers, there seems to be
shape in energy, with a width varying asl'=ckgT, where ~ no mechanism for localizing the system in a particular region
c is of order unity. Although we have not explicitly exam- of the ground-state manifold, and it is therefore unlikely that
ined the dependence of dynamic correlations on wave vectdhe spin glass transition observed in most experiments is a
k it seems likely that main contribution to the inelastic line- feature of the disorder-free classical isotropic Heisenberg py-
width in the low-temperature limit should be roughly wave rochlore antiferromagnet. Rather, we find correlation func-
vector independent. One reason for thinking this is that theions to be short ranged in both space and time, and conclude
decay of the autocorrelation function probably arises becausat the spins continue to fluctuate strongly down to the low-
of rotation of relatively small clusters of spins—the local est temperatures.
ground-state degrees of freedom identified in Sec. lll E. In We have analyzed the low-energy dynamics of these geo-
consequence, we expect dynamical correlations to be shometrically frustrated antiferromagnets. Our discussion does
ranged in space and broad in wave vector. In addition, conrot depend on details of the pyrochlore lattice structure. In
servation laws which might result in significantly different fact, we expect it also to apply to the Heisenberg model
behavior, for examplel’<k? for small k from conservation defined on the SCGO lattice of Fig. 3, since that model has
of spin density, do not appear to be in operation: since th®,,/N>0 and does not—following the arguments presented
magnetizations of individual tetrahedra are identically zeran Ref. 51 and Sec. IV—display order by disorder. These
in classical ground states, instantaneous magnetization fluproperties are in striking contrast to those of the kagome
tuations can decay without spreading to large distanceddeisenberg antiferromagnet, and SCGO is much more simi-
Thermally induced fluctuations in the magnetizations of tetdar to a pyrochlore magnet than to the kagome system.
rahedra may result in an additional, diffusive component to We expect our results to be robust against the introduction
spin correlations, with an amplitude that vanishes in the low-of a small concentration of vacanci€scertainly provided
temperature limit. the average defect spacing is larger than extent of the most

Inelastic neutron scattering from the pyrochlore antiferro-local ground-state degree of freedom in the pure system. Be-
magnet CsNiCrf, which has |®qy|=70 K and Tg havior characteristic of the pure system may persist to much
=2.2 K8 is reported in Ref. 16, in which the energy de- higher defect concentrations, siné®,/N>0 as long as
pendence of scattering is fitted by a Lorentzian. The linemore than three quarters of all sites are occupied.
width decreases as temperature is decreased below 70 K, but
the data seem insufficiently precise to test whethes linear
in T. Similar experiments on SCGO, in whid®cy/| is ACKNOWLEDGMENTS
around 500 K andl=3.5 K, yield a Lorentzian inelastic ] . ) )
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