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Existence of free and self-trapped positronium states in alkali halide crystals:
Theoretical analysis and comparison with experiment
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A variational calculation is performed of the eigenstates of a positronium atom coupled with a field of
longitudinal acoustic phonons in ionic crystals at finite temperatures. On the basis of this calculation a theo-
retical analysis is made of the possibility of self-localization~self-trapping! of positronium. The self-trapped
states of positronium in NaF, NaCl, KCl, and KI crystals are found to be metastable with the energy higher by
;0.01–0.1 eV with respect to the stable delocalized~free! states. The self-trapped states of positronium in
MgF2 anda-SiO2 crystals are unstable at absolute zero temperature and become metastable with an increase
in temperature forT.;300 K. The difference in the energies of such ‘‘high-temperature’’ self-trapped states
and the free states of positronium in MgF2 anda-SiO2 is found to be at least one order of magnitude larger
than that in the other alkali halides, explaining theoretically experimental evidence for the nonexistence of
self-trapped positronium in these crystals. The basic characteristics~energy, effective mass, mean number of
surrounding phonons, and localization radius! of the self-trapped and free states as well as the deformation
potential constants are calculated for positronium in the crystals above. The results obtained are in good
agreement with known experimental data.@S0163-1829~98!05641-0#
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I. INTRODUCTION

Positronium~Ps! formation in alkali halide crystals ha
presently been well established by means of a positron a
hilation technique.1–3 In crystals with low enough concentra
tion of defects the Ps atom has been experimentally foun
form in two types of states: the delocalized~Bloch-like, free!
type and the localized type.3,4 The formation of Bloch-type
positronium is confirmed by observing very narrow pea
~the central peak and satellite peaks appearing at the mom
tum corresponding to the reciprocal lattice vectors of
sample crystal! in the momentum distribution of the photon
resulting from the 2g-decay of Ps upon irradiating the cry
tals by low-energy positrons at sufficiently low temperatu
~typically less than a few tens K!.5–10 Such a shape of the
momentum distribution is possible only in the case in wh
the wave function of the annihilating positronium is a Blo
function.2 The positronium atom in this case is delocaliz
throughout the volume of the entire crystal.

As the temperature increases it is observed4,11–14that the
central Ps peak becomes drastically wider and the sate
peaks disappear, indicating the localization of positroniu
The wave function of such localized positronium is a Gau
ian, and the experimentally measured characteristic siz
the localization region~the localization radius! is of the order
of the lattice constant of the crystal. Since the localization
observed at quite low temperatures (T,150 K), it is not
possible to explain it in terms of the trapping of positroniu
by thermally created defects in the sample~see, however,
Ref. 9!. As a confirmation of this, note the absence of
localization effect in MgF2 anda-SiO2 , where positronium
was observed delocalized up to temperatures;700 K.15–17

The localization observed with increase of temperature
explained by the self-trapping of positronium, specifically
the temperature activated transition of delocalized posi
PRB 580163-1829/98/58~18!/12011~9!/$15.00
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nium to a metastable localized state arising as a result o
interaction with the short-range potential of a lattice vibr
tion ~acoustic phonons!.3,11–14 An analogous mechanism i
well known for holes and excitons in crystal dielectrics.18,19

For instance, it is known18,19 that the ground stable state o
an electron in alkali halide crystals is delocalized, where
the ground states of the excitons and holes are localized.
is connected with the broad band of the electron~the band
mass is;m0 , the free electron mass! and with the compara-
tively narrow bands@the band masses are;(5210)m0] of
the excitons and holes in these crystals. For excitons, m
over, additional metastable states exist which are delo
ized. The Ps atom can, to some extent, be regarded a
‘‘isotope’’ of the exciton and, in this sense, for positroniu
in alkali halides an analogous situation takes place with
only difference being that, since the Ps band is less nar
than that of the exciton@the Ps band mass is;(2.524)m0

~Ref. 14!#, the ground stable state of Ps in alkali halides
delocalized and the metastable one is localized. In ot
words, since Ps is lighter, it is more difficult to be localize
than an exciton in the same material.18

At present a significant amount of experimental mate
has been accumulated on the self-trapping of positronium
alkali halide crystals, while there have been hardly any t
oretical papers analyzing this phenomenon. A numerical
culation of the energies and annihilation characteristics
the localized and delocalized Ps states in some alkali hal
was performed in a recent paper.20 However, as before, ther
is no theoretical analysis explaining the possibility itself
the temperature-activated transition of positronium from
stable delocalized state to a metastable localized state.
absence of the localization effect for Ps in MgF2 anda-SiO2
still remains unexplained theoretically to this day too.

The purpose of the present paper is to investigate theo
cally the possibility for initially delocalized Ps at low tem
12 011 ©1998 The American Physical Society
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12 012 PRB 58I. V. BONDAREV
peratures to be self-trapped with increase of temperat
The zero-temperature variational procedure first introdu
by Toyozawa21,22 for an electron interacting with the shor
range potential of acoustic vibrations and then extended
Emin23 to finite temperatures for the electron interacting w
the short-range potential of nonpolar optical vibrations~Hol-
stein’s molecular crystal model24!, is now applied to a com-
pound system at finite temperatures such as a positron
atom coupled with a field of longitudinal acoustic phonons
ionic crystals anda-quartz. The interaction of Ps with pola
optical phonons is assumed to be negligibly small due to
electroneutrality of the Ps.18,25 Contrary to Toyozawa and
Emin, who directed their efforts toward determining the co
ditions for the existence of the self-trapped and free elec
states, the present work is concerned with the theore
analysis and the explanation of the results of miscellane
experimental studies accumulated over nearly the last
decades.

In Sec. II a theory is developed of the self-trapping of t
positronium atom in alkali halide crystals. Equations are
rived for the energy of Ps as a function of its coupling co
stant with longitudinal acoustic phonons at finite tempe
tures. The self-trapping of Ps is shown to have a signific
difference compared with the self-trapping of th
electron.21–23,26The difference is caused by the fact that Ps
a compound system consisting of an electron and a posit
Specifically, one more small dimensionless parameter
pears in the theory of the Ps self-trapping apart fromg
5\uqD /(\2qD

2 /2m* );0.01 (u is the sound velocity,qD

the Debye cutoff phonon wave vector,m* the band mass o
the electron!, the nonadiabaticity parameter~the ratio of the
maximum phonon energy to the band width!, first introduced
by Toyozawa in the theory of the self-trapping of th
electron.21 This additional parameter isa25(aB qD/4)2;g
;0.01, whereaB is the Bohr radius of Ps. It comes from th
relative motion of the particles forming the Ps atom a
leads to the dependence of the energy of the self-trap
state on the type of crystal that is absent for the case of
electron.

In Sec. III the basic characteristics~effective mass, mean
number of surrounding phonons, and localization radius! of
the delocalized and self-trapped states of Ps are analytic
derived as functions of temperature. The expressions
tained, as well as those obtained in Sec. II for the energy,
then used in Sec. IV for the numerical calculations of t
energy of Ps and its characteristics in crystals of NaF, Na
KCl, KI, MgF2 , anda-SiO2 . In this section the deformation
potential constants are also found for some of the crys
above by comparing the theoretical differences in the en
gies of the free and self-trapped states with those estim
experimentally. This section also discusses and conclu
the results obtained in the previous two sections.

II. THE ENERGY OF THE POSITRONIUM
AS A FUNCTION OF ITS COUPLING CONSTANT

WITH LONGITUDINAL ACOUSTIC PHONONS
IN AN IONIC CRYSTAL

In this section the~zero-temperature! intermediate cou-
pling formalism developed by Toyozawa21,22 for an electron
coupled with a field of longitudinal acoustic phonons a
e.
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then extended by Emin23 to finite temperatures for an elec
tron coupled with a field of nonpolar optical phonons, will b
applied to a compound system consisting of an electron
a positron, the positronium atom interacting with longitud
nal acoustic phonons in an ionic crystal. The Ps interact
with polar optical phonons will be neglected due to the el
troneutrality of Ps.18,25 Making use of the tight-binding
approximation for Ps in the crystal lattice with the ove
lap energies neglected other than that for nearest neigh
(2W), one can write the the total secondly quantiz
Hamiltonian of the system as

H5HPs1Hph1H int52W(
n,m

;

an1m
1 an1(

q
\uqbq

1bq

12(
n,q

Fa~q!cos~ q•r
2 !~bq2b2q

1 !an
1ane

iq•n, ~1!

where the first term denotes the operator of the Ps band
ergy in the tight-binding approximation, the second term
the phonon Hamiltonian, and the third one is the energy
erator of the Ps interaction with the longitudinal branch
acoustic vibrations in the crystal~longitudinal acoustic
phonons!. The operatorsan

1 and an are those which create
and annihilate, respectively, the Ps atom at thenth site of the
lattice, bq

1 and bq are those for a phonon with the wav
vector q. The tilde over the double sum of the first ter
means that the summation is only to be carried out when
andm are the nearest neighbors to each other. The cryst
assumed to have a simple cubic lattice with the overlap
tegral W between the nearest neighbors equal toW
5\2/(2M* a2) whereM* and a are the band mass of Ps
and the distance between the nearest atoms in the sim
cubic lattice, respectively. Such an assumption looks q
natural for the Ps atom in an ionic crystal in view of th
experimental fact that Ps in alkali halides hardly dist
guishes the anion and cation and only ‘‘sees’’ the sim
cubic lattice.8,10 The factorFa(q) in the third term is equal
for longitudinal acoustic phonons to

Fa~q!52 iEdA \q

2NMu
52Fa* ~q!, ~2!

whereN, M , andu are the total number of unit cells in th
crystal, the mass of a unit cell, and the sound velocity,
spectively. The parameterEd denotes the deformation poten
tial constant. It is assumed to be the same for the elec
and for the positron in the Ps atom since the deformat
potential corresponds to the variation of the band structur
the particle with changing interionic distances, and the lo
est positron band in alkali halides is not considerably diff
ent from the conduction band of the electron.27 This approxi-
mation leads to an accounting of the compound nature of
Ps by a simple doubled cosine function in the third term
Eq. ~1! with r being the relative position vector of the ele
tron and positron.

The task of this section is to determine the energy
positronium as a function of its coupling constant with lo
gitudinal acoustic phonons at finite temperatures. To do
one uses the variational approach in the spirit of the ze
temperature intermediate coupling formalism
Toyozawa.21,22 The trial wave function of the total system
written as
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uCk,Nq
&5

1

AN
(

n
eik•nSk~n!an

1uNq&u1S1/2&. ~3!

Here uNq&5u0&PsuNq&ph with uNq&ph representing theNqth
excited state~with the phonon occupation numberNq) of the
qth vibrational mode in an undisturbed lattice andu0&Ps is the
vacuum state associated with the center-of-mass motio
the Ps atom;u1S1/2& is the wave function of the interna
ground state of Ps. The operatorSk(n) is defined as

Sk~n!5expH(
q

bk* ~q,n!bq2H.c.J ,

bk~q,n!5 f k~q!e2 iq•n, Sk
1~n!5Sk

21~n!, ~4!

and has the following properties:

Sk
21~n!bqSk~n!5bq2bk~q,n!,

Sk
21~n!bq

1Sk~n!5bq
12bk* ~q,n!. ~5!

In other words,Sk(n) is the operator which@because of Eq.
~5!# makes the lattice deform around thenth lattice site. The
deformation is associated with the presence of Ps with
wave vectork at this point. The distribution of the Ps cente
of-mass position around the pointn is for the sake of sim-
plicity supposed to be equal todn,0 which is appropriate in
the case of the short-range~acoustic or nonpolar optical!
modes of lattice vibrations.21,23 Positronium located at the
nth site of the lattice, distorts the lattice around itself. T
magnitude and theq dependence of the distortion are, a
cording to Eq.~4!, characterized by the functionf k(q). For
example, whilef k(q)50 refers to an undistorted lattice,
situation in whichf k(q) is only substantial foruqu less than
some valueq0,p/a, is characterized by a local distortion o
range;1/q0 . The function f k(q) is a trial function to be
determined from the minimum condition of the total ener
functional J@ f k(q)# obtained by averaging the Hamiltonia
Eq. ~1! over the wave function Eq.~3!. Such an averaging
yields

J@ f k~q!#5^Ck,Nq
uHuCk,Nq

&52W(
m

;

eik•m2zk~m!

1(
q

\uq~Nq1u f k~q!u2!

2(
q

Va~q!@ f k~q!2 f k* ~q!#,

~6!

where

zk~m!5(
q

u f k~q!u2w~q,m!5zk* ~2m! ~7!

with w(q,m)52Nq112Nqe
iq•m2(Nq11)e2 iq•m and

Va~q!52Fa~q!^1S1/2ucosS q•r

2 D u1S1/2&5
2Fa~q!

@11~qaB/4!2#2

~8!

is the form factor of the positronium as a compound partic
originating from the relative motion of the electron and po
itron in the positronium atom;aB is the Bohr radius of Ps. I
is assumed in Eq.~8! that as Ps scatters on phonons, it all t
of

e

,
-

time remains in the groundu1S1/2&-internal state since the
typical energies of acoustic phonons (;0.01 eV) are much
smaller than the difference in the energies of the ground s
and the first excited state of Ps (;5 eV). The three terms in
Eq. ~6! @written in the same order as those in Eq.~1!# come
from averaging the corresponding terms of the total Ham
tonian Eq.~1!.

Minimizing Eq. ~6! with respect tof k(q), one has

f k~q!52
Va~q!

W(
m

;

eik•m2zk~m!w~q,m!1\uq
. ~9!

Inserting this into Eqs.~6! and ~7!, one obtains the tota
energy of the system in the form

E~k!5(
q

\uqNq2W(
m

;

@11zk~m!#eik•m2zk~m!

2(
q

uVa~q!u2

W(
m

;

eik•m2zk~m!w~q,m!1\uq
~10!

with

zk~m!5(
q

uVa~q!u2w~q,m!

FW(
m

;

eik•m2zk~m!w~q,m!1\uqG2 . ~11!

Equation~11! is a set ofn simultaneous transcendental equ
tions for n unknownzk(m), wheren is the number of the
nearest neighbors in a crystal. The phonon occupation n
bersNq in Eqs. ~10! and ~11! are for the sake of simplicity
assumed to be equal to

Nq5FexpS \uq

kBT D21G21

, ~12!

the mean number of acoustic phonons with wave vectorq at
temperatureT in an undisturbed lattice~the Bose-Einstein
phonon distribution function!. Such an assumption has bee
employed in prior polaron theories24,23,28and is, as a practi-
cal matter, expected to be justifiable in a wide variaty
circumstances. The equilibrium state of an excess particl
the deformable lattice must actually correspond to a m
mum of the free energy of the total system. However,
procedure of minimizing the energy functionalJ@ f k(q)# of
the system with respect tof k(q) and then replacing the pho
non occupation numbersNq by the equilibrium values Eq
~12! they possess in the undistorted lattice, is proved in R
23 to be equivalent~to the lowest order in the volume of th
sample! to minimizing the free energy of the system wi
respect tof k(q).

As is evident from Eq.~7!, the functionzk(m) represents
the magnitude of the lattice distortion around the Ps. On
other hand, the mean number of phonons surrounding P
the crystal is given by

^n&5K Ck,NqU(q
bq

1bqUCk,NqL 2(
q

Nq5(
q

u f k~q!u2,

~13!

which, at not too high temperatures, is of the same orde
magnitude aszk(m). Thus,zk(m) can be considered as th
quantity representing the strength of the Ps-phonon coupl
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a large number of the surrounding phonons~responsible for
the strong coupling of positronium with the phonons! corre-
sponds to large values ofzk(m), and conversely. For fixedk
in a simple cubic crystal all thezk(m) are identical, i.e.,
zk(m)5zk , and Eq. ~11! reduces to one transcenden
equation. If, moreover, one restricts oneself by the smak
;0 near the bottom of the Ps band, thenzk;0'z05z, the
constant which upon going from summing overq to an inte-
gration in Eq.~11! and introducing the dimensionless va
ables, takes the form

z512gg e2zE
0

1

dj
@2N~j!11#j3

~11a2j2!4$@2N~j!11#j1gez%2

~14!

with

g5
Ed

2

12WMu2 and g5
\uqD

\2qD
2 /2M*

~15!

being, respectively, the dimensionless coupling constan
the positronium atom with acoustic phonons, and the
nonadiabaticity parameter~the ratio of the maximum phono
energy to the band width of Ps! first introduced in Ref. 21 for
the case of an electron;qD is the Debye cutoff phonon wav
vector. The functionN(j) is the mean number of phonon
Eq. ~12! written in dimensionless variables

N~j!5FexpS \uqD

kBT
j D21G21

. ~16!

The parametera in Eq. ~14! represents the contribution from
the internal motion of the electron and positron forming t
Ps atom:

a5
qDaB

4
. ~17!

Note that the parametersg and a2 in typical ionic crystals
are of the same order of magnitude:g;a2;0.01.

After some analogous transformations, the Ps total ene
corresponding to Eq.~14! takes the form

2
E~0!2Evib

6W
5~11z!e2z112gg ezE

0

1

dj

3
j2

~11a2j2!4$@2N~j!11#j1gez%
,

~18!

whereEvib5(q \uqNq is the vibrational energy of the crys
tal. The system of Eqs.~14! and~18! completely determines
the energy of Ps near the band bottom as a function o
coupling constantg with acoustic phonons at finite temper
tures: the solution of Eq.~14! yields z as a function of the
parameterg, whereupon the substitution ofz obtained in Eq.
~18! gives the energy of Ps as a function of the same par
eter. The weak and strong phonon coupling approximati
for the Ps energy are obtained from Eq.~18! for the small
and largez, respectively
l

of
s

gy

ts

-
s

z!1, 2
E~0!2Evib

6W
'116gg @122F~T!#, ~19!

z@1, 2
E~0!2Evib

6W
'4gS 12

12

5
a2D , ~20!

where

F~T!52S T

TD
D 2E

0

TD /T

dx
x

ex11
~21!

is the function that comes from the phonon distribution fun
tion Eq. ~16! and determines the temperature dependenc
the Ps energy, andTD is the Debye temperature of the cry
tal. In Eqs.~19! and ~20! it is taken into account that the
parametersg anda2 are of the order of 0.01 in typical ionic
crystals, and consequently can be considered as small pa
eters in which one can expand functions that depend
them. Therefore, Eqs.~19! and~20! have been written out to
terms linear ing anda2.

The difference in the energies of the Ps strongly coup
with the phonons and that weakly coupled with the phono
is given, according to Eqs.~19! and ~20!, by

DE~0!

6W
'124gS 12

3

2
@122F~T!#g2

12

5
a2D . ~22!

Note that, as is seen from Eq.~19!, the energy of the Ps
weakly coupled with the phonons increases with the te
perature due to the presence of the functionF(T) Eq. ~21!.
The energy of Ps strongly coupled with the phonons d
not, according to Eq.~20!, depend on the temperature.
addition, the presence ofa25(qD aB/4)2;0.01, one more
small parameter for positronium compared with
electron,21,23 leads ~through qD) to the dependence of th
energy of Ps strongly coupled with phonons on the type
crystal that is absent for the electron. The difference in
energies@Eq. ~22!# of Ps strongly coupled with phonons an
that weakly coupled with the phonons, depends on the t
of crystal too. This dependence, although it also takes p
for the electron ~through qD-dependence ofg), mainly
comes froma2 rather than fromg for Ps sinceF(T);0 at
small temperatures (T!TD) and 12a2/5.3g/2, andF(T)
→1/2 at high temperatures (T@TD) and the contribution of
g vanishes.

III. THE BASIC CHARACTERISTICS OF THE FREE
AND SELF-TRAPPED POSITRONIUM STATES

A. The effective mass

1. Weak phonon coupling regime

In calculating the effective mass of Ps for this regime t
case of the absolute zero of temperature will only be con
ered since the influence of the Ps-phonon scattering at n
zero temperatures was already analyzed in Ref. 29. It
shown to lead to a very slow decrease of the effective m
of Ps with increase of temperature. The effective positroni
mass renormalized by the virtual phonon field atT50 K,
can be obtained from an analysis of the positronium s
energyS(p,v) with the use of the renormalization techniqu
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developed in Ref. 30. The positronium self-energy to
second order in the interaction with the virtual phonons
written as28

S~p,v!5(
q

uVa~q!u2

v2E~k1q!2\uq1 id
, ~23!

whereE(k1q)5\2(k1q)2/(2M* ) and p5\k are the en-
ergy and momentum of ‘‘bare’’ positronium, respective
The mass renormalization constantsa1 anda2 are obtained
by expanding the real part of the self-energy Eq.~23! to
terms linear inv andp2/2M* :30

ReS~p,v!5(
q

uVa~q!u2

v2E~k1q!2\uq
'D01a1v1a2

p2

2M*
~24!

with D0 being the polaron energy shift. The Ps effecti
massM** renormalized by the virtual phonon field, is the
given by

M** 5S 1

p

dv

dpD 21

5M*
12a1

11a2
. ~25!

The calculation ofa1 anda2 from Eq. ~24! yields

a1528S 6

p D 4/3

ggE
0

1

dj
j

~11a2j2!4~j1g!2

'28S 6

p D 4/3

gg @ ln~111/g!21#,

a252
8

3S 6

p D 4/3

ggE
0

1

dj
j~j23g!

~11a2j2!4~j1g!3

'2
8

3S 6

p D 4/3

gg @ ln~111/g!23#. ~26!

According to Eqs.~26!, the positronium mass renormaliza
tion constants in the weak phonon coupling regime are of
order of the nonadiabaticity parameterg;0.01. In this case
it follows from Eq. ~25! that the renormalized massM** of
the positronium only insignificantly exceeds its band m
M* .

2. Strong phonon coupling regime

The Ps effective mass in this regime can be estima
directly from Eq.~10!.21 Taking into account thatzk@1 now,
one obtains it to be weakly dependent onk from Eq. ~11!.
Then Eq.~10! can approximately be rewritten in the form

E~k!2E~0!'2Wze2z(
m

;

~eik•m21!' \2k2

2M**
, ~27!

from which it follows that

M** 'z21ezM* ~28!

and does not depend on temperature. As is seen from
~28!, the effective mass of Ps strongly coupled with t
phonons greatly exceeds its band mass. This means tha
Ps must practically be immobile~‘‘self-trapped’’! in this
case.
e
s

e

s

d

q.

the

B. The mean number of surrounding phonons

The mean number of the phonons surrounding the
atom in the state Eq.~3! is given by Eq.~13!. Inserting Eq.
~9! in Eq. ~13! and going from the summation overq to the
integration, one obtains fork;0

^n&512l gg e2zE
0

1

dj
j

~11a2j2!4$@2N~j!11#j1gez%2 ,

~29!

wherel56/(qD
2 a2);1 in typical ionic crystals, andz and

N(j) are given by Eqs.~14! and~16!, respectively. Equation
~29! is approximated for small and largez as

z!1, ^n&'12 l ggE
0

1

dj
j

$@2N~j!11#j1g%2 ,

~30!

z@1, ^n&'
6lg

g
. ~31!

Equations~30! and ~31! give the weak and strong phono
coupling approximations for the mean number of t
phonons surrounding the Ps atom in a crystal. In the case
weak and strong coupling the nonadiabaticity parameteg
stands in the numerator and in the denominator, respectiv
Therefore,̂ n& is small for the weak coupling and large fo
the strong coupling of positronium with phonons. The me
number of the phonons surrounding Ps decreases with
increase of temperature in the weak phonon coupling regi
and does not depend on the temperature in the strong ph
coupling regime.

C. The localization radius

To estimate the characteristic size of the center-of-m
motion of Ps~the localization radius! it is expedient to intro-
duce the correlation function of the form

F~m!5K Ck,NqU(n
an1m

1 anUCk,NqL . ~32!

Herem is a vector originating at thenth lattice site, pointing
in the direction of one of the other sites@not necessarily one
of the closest, in contrast to Eq.~1!#. The functionF(m)
characterizes the mean number of the simultaneously co
lated lattice sites where this correlation is due to the prese
of Ps. For smallk;0 in a simple cubic crystal the functio
F(m), in view of Eq. ~3!, reduces to

F~m!'e2z~m! ~33!

with z(m) given by Eq.~11! for k50. This function, after
the angular integration, transforms to

z~m!512l gg e2zE
0

1

dj

3
@2N~j!11#j

~11a2j2!4$@2N~j!11#j1g ez%2

3S 12
sin~qD m j!

qD m j D , ~34!
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where m5umu5an, n50,1,2, . . . , andz is given by Eq.
~14!. Next introducing the continuous coordinateR52m,
one can determine an effective localization radius of the
atom in a crystal in terms of the characteristic decay of
continuous analogF(R) of the correlator Eq.~33! with in-
creasingR.

The power Eq.~34! ~expressed in terms ofR) of the ex-
ponent in the correlatorF(R) reduces for the weak (z!1)
and strong (z@1) Ps-phonon coupling to

z!1, z~R!'12l ggE
0

1

dj
@2N~j!11#j

$@2N~j!11#j1g%2

3S 12
sin~qD R j/2!

qD R j/2 D , ~35!

z@1, z~R!'
12l g

g E
0

1

dj @2N~j!11#j

3S 12
sin~qD R j/2!

qD R j/2 D . ~36!

The functionsz(R) in Eqs.~35! and ~36! are easily seen to
have a similar behavior at small distancesR: both of them
tend to zero forR→0 at all temperatures. As a consequen
the correlatorF(R);1 at smallR;0. At large R, in con-
trast, the behavior ofz(R) in Eq. ~35! is quite different from
that in Eq.~36!. Specifically,z(R) in Eq. ~35! decreases with
increase of the temperature asR→`. Its maximal value is
reached atT50 K and is equal tô n&T50 (!1) given by
Eq. ~30!. On the contrary,z(R) in Eq. ~36! increases with
temperature forR→`. Its minimal value is reached atT
50 K and is equal tô n& (@1) given by Eq.~31!. The
temperature dependence ofz(R) in Eq. ~36! at largeR is
estimated as

T@TD , z~R→`!'^n&S 114
T

TD
D ,

T!TD , z~R→`!'^n&F11
2p2

3 S T

TD
D 2G , ~37!

from which it follows thatz(R) increases with temperatur
at largeR. Thus, for weak phonon coupling the correlat
F(R) @or F(m) Eq. ~33!# hardly decays with increasingR at
all temperatures, while for the strong phonon coupling it d
cays very fast and the higher the temperature, the fast
decays. Correspondingly, in the weak coupling regime,
virtue of the nondecay of the correlation function, the loc
ization radius of the positronium atom in a crystalR0 is
infinitely large: R0;`, i.e., positronium is delocalized. In
the strong coupling regime the localization radius of Ps
finite and the higher the temperature, the smaller the lo
ization radius. It can be estimated from the condition

F~R0!5
1

^n&e
~38!

with F(R) given by Eq.~33! wherez(R) is represented by
Eq. ~36!, and^n& given by Eq.~31!. The maximal value of
s
e

,

-
it

y
-

s
l-

R0 ~reached atT50 K) is estimated from the simple tran
scendental equation obtained from Eq.~38! in view of Eq.
~36!:

sinS qD R0

4 D5A12
11 ln^n&

^n&

qDR0

4
. ~39!

Since^n& for the strong coupling is large, one has from E
~39! that qD R0/4;p/4, from which noting that qD
;p/(2a) in ionic crystals, one obtainsR0;2a, i.e., the
localization radius of a strongly coupled positronium atom
of the order of the lattice constant of the crystal, and
positronium is localized~‘‘self-trapped’’!.

IV. NUMERICAL RESULTS, DISCUSSION
AND COMPARISON WITH EXPERIMENT

Figure 1 presents the zero-temperature graphs of the
pendence of the energy of a positronium atom on the aco
tic coupling constantg for three alkali halides: NaF, NaCl
and KCl. The curves were obtained by the numerical tabu
tion of Eq. ~18! with Eq. ~14! taken into account. The calcu
lations made use of numerical values of the constants of
ionic crystals, taken from Refs. 31,32, and numerical val
of the Ps band masses calculated in Ref. 33. The two in
secting straight lines for each alkali halide correspond to
cases: gently sloping, to the weak coupling approximat
described by Eq.~19! and steep, to the strong coupling a
proximation described by Eq.~20!. The presence ofa2

;0.01 in Eqs.~18! and ~14!, the additional small paramete
for positronium compared with an electron, leads to differe
slopes of the strong-coupling lines for different alkali h
lides, which is not the case for the electron.21 The depen-
dence of the Ps energy ong for nonzero temperatures i
shown in Fig. 2 for the crystal of KCl as a typical examp
The weak coupling line is seen to change its slope in suc
way that the energy@in accordance with Eq.~19!# increases
with temperature, while the slope of the strong coupli
curve@in accordance with Eq.~27!# does not at all depend o
temperature. As a consequence, the differenceDE(0) in the
energies of Ps strongly coupled with the phonons and
weakly coupled with the phonons decreases somewhat
increase of temperature@in accordance with Eq.~22!#. For
g,;0.25 the simultaneous existence of two positroniu
states is possible at nonzero temperature, one of which~the
weakly coupled state! is stable and the other of which~the
strongly coupled state! is metastable. According to the for
mulas for the effective mass Eqs.~25!–~28!, the mean num-
ber of phonons Eqs.~30! and~31!, and the localization radius
Eq. ~39!, the weakly coupled stable state should be deloc
ized and the metastable strongly coupled state should, on
contrary, be localized~self-trapped! in a region on the order
of the lattice constant of the crystal.

As was noted in the Introduction, the situation just d
scribed has its experimental analog. Therefore, substitu
the experimentally measured differences in the energie
the free and self-trapped Ps statesE instead ofDE(0) in Eq.
~22!, one can determine the deformation potential consta
Ed for those crystals in which Ps self-trapping is observed
the positronium band massesM* are known beforehand. In
doing so the temperature dependence ofDE(0) in Eq. ~22!
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can be neglected since the self-trapping, according
experiment,14 mainly occurs at the temperaturesT,
;TD/4. The functionF(T) in Eq. ~22! can be approximated
at such temperatures (T!TD) as F(T)'(p2/6)(T/TD)2

;0, andDE(0) can, therefore, be approximately consider
as temperature independent. In this way the values ofEd
were estimated for NaF and KCl crystals since the value
E are available for these crystals from Refs. 12 and 13,
spectively, and the Ps band masses have been numer
calculated in Ref. 33.@Note that the constantsEd so obtained
are, as a matter of fact, equal to those for an excess elec
~or positron! in the same alkali halide crystals—see the e
planation after Eq.~2! in Sec. II.# Then, with Ed obtained,
the coupling constantg @Eq. ~15!# of Ps with longitudinal
acoustic phonons, the effective massM** @Eq. ~25!# of de-
localized positronium, the mean numbers^n&T50 @Eqs.~30!
and ~31!# of virtual phonons surrounding both types of po

FIG. 1. The dependence of the Ps total energy on the dim
sionless coupling constantg with longitudinal acoustic phonons fo
crystals of NaF, NaCl, and KCl at absolute zero temperature.

FIG. 2. The dependence of the total energy of the positron
on the coupling constantg with acoustic phonons for the crystal o
KCl at nonzero temperatures.
to

d

of
-
lly

on
-

itronium at absolute zero temperature, and the localiza
radiusR0

T50 @Eq. ~39!# of self-trapped positronium at abso
lute zero temperature, were calculated. For KI the exp
mental values ofE and the effective massM** are
available,3,14 but there are no published data for the ba
massM* of positronium. Therefore, for KI the band mas
was first estimated according to Eqs.~25! and~26! from the
known value of the effective mass, and then the deforma
potential constantEd was calculated by substituting the va
ues ofE andM* in Eq. ~22!. Then, the values ofM* andEd
so obtained were used to calculate the basic characteristi
Ps in KI. For NaCl, on the other hand, there are no exp
mental data on the differenceE in the energies of the free an
self-trapped Ps states, but the band mass of Ps has
calculated.33 Therefore, the value ofEd56.2 eV, estimated
using Eq. ~22! from the conditionDE(0)'0.08 eV, was
used for the calculations of the Ps characteristics in this c
tal. The results of all the enumerated calculations, and a
the experimental data used in the calculations, are liste
Table I.

For the crystal of MgF2 the computed dependence of th
Ps energy on the acoustic coupling constantg at the nonzero
temperatures is shown in Fig. 3 as a typical example. Sim
dependence has also been obtained for the crystal ofa-SiO2 .
The curves have been obtained by the numerical tabula
of Eq. ~18! with Eq. ~14! taken into account. The calculation
made use of the numerical values of the crystalline const
taken from Ref. 32. The band masses of Ps were estim
according to Eqs.~25! and ~26! with the use of the values
experimentally known ofM** and Ed .17 The self-trapped
Ps state in MgF2 ~and in a-SiO2) is seen to be unstable a
absolute zero temperature, while it becomes metastable a
nonzero temperatures higher than 300 K. These tempera
have been computed to be 306 K for MgF2 and 334 K for
a-SiO2 . The corresponding differencesDE(0) in the ener-
gies of self-trapped and delocalized Ps are, according to
~22!, equal to 2.32 and 1.37 eV for MgF2 and a-SiO2 , re-
spectively. This is more than one order of magnitude lar
than the same quantities in those alkali halides in which
self-trapping is observed experimentally~see Table I!. The
temperatures of the Ps self-trapping in MgF2 and a-SiO2
~the temperature at which the half of all the Ps atoms de
from the self-trapped state! can be estimated from the tem
perature dependence of the fractionf ST of the self-trapped
Ps, given approximately by12–14

f ST~T!'
1

11AT3/2exp@DE~0!/kBT#
, ~40!

where A5(3u3/4pTD
3 )(pM** /2kB)3/2;1026 K23/2, and

DE(0) is given by Eq.~22!. The definition Eq.~40! is, in
fact, the simplest allowing one to estimate the self-trapp
temperature of the Ps. It takes into account neither the fac
the existence of the adiabatic potential barrier between
two Ps states nor the possibility of the quantum-mechan
tunneling of Ps through this barrier. Analysis accounting
these effects can be found elsewhere.34,35 The self-trapping
temperatureTST is further given by the solution of the tran
scendental equationf ST(TST)51/2. The self-trapping tem-
peratures are estimated from this equation to beTST
59621 K for MgF2 andTST54041 K fora-SiO2 , explain-

n-
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TABLE I. The characteristics of the free and self-trapped Ps states in some alkali halide crystals.

NaF NaCl KCl KI MgF2 a-SiO2

E, eV 0.107 ~Ref. 12! 0.043 ~Ref. 14! 0.031 ~Ref. 14!
DE(0), eV 0.08 2.32 1.37
Ed , eV 8.51 6.2 6.04 5.28 3.80~Ref. 17! 1.80 ~Ref. 17!
g 0.30 0.28 0.27 0.26 0.04 0.04
Mexp** /2m0 1.5060.2

~Ref. 14!
1.3760.2
~Ref. 14!

1.5660.15
~Ref. 14!

1.9860.1
~Ref. 14!

1.1060.01
~Ref. 17!

1.5460.08
~Ref. 17!

M* /2m0 1.014~Ref. 33! 1.119~Ref. 33! 1.233~Ref. 33! 1.39 1.04 1.48
M** /2m0 1.42 1.56 1.78
z!1: ^n&T50 0.35 0.35 0.41 0.38 0.06 0.04
z@1: ^n& 112 99 74 78
R0

exp, Å 3.2 ~Ref. 12! 3.5 ~Ref. 13! 4.3 ~Ref. 14!
R0

T50 , Å 1.57 2.04 2.97 3.54
c
r
th
y

n
io
be

th
in
n

u
re
al
-

e

tem-
ith

liza-
es

ho-
ysi-
ith
rre-
the

re-
gly
the
m-
ce,
is-
re.

ally
he
-
ain
he

sur-

lin

ra-
ing theoretically the experimental evidence for nonexisten
of the self-trapped Ps states in these crystals. For those c
tals in which the Ps self-trapping has been registered
self-trapping temperatures are estimated in the same wa
from Eq. ~40!. The only difference now is thatDE(0) is
independent of temperature. In this case the experime
fact that the temperature region of the self-trapping transit
scales well with the Debye temperature of the crystal
comes clear:14 the reason is theqD ~or TD) dependence of
DE(0)—see the explanation following Eq.~22! in Sec. II.

As can be seen from Table I, the calculated values of
characteristics of positronium in alkali halide crystals are
good agreement with the available experimental data. O
exception may be the localization radiusR0

T50 of self-
trapped positronium: the calculated values are somewhat
derestimated compared with the experimental data. The
son for this, apparently, is the simplified form of the tri
wave function Eq.~3!: it does not take into account the dis
tribution of positronium atoms in the vicinity of the lattic
sites.21 The temperature dependence ofR0 computed from
Eqs.~33!, ~36!, and~38! for KI crystal, is shown in Fig. 4 as

FIG. 3. The dependence of the Ps total energy on the coup
constantg with acoustic phonons for the crystal of MgF2 at nonzero
temperatures. The vertical dashed line shows the value ofg for
positronium in MgF2 .
e
ys-
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e

e

n-
a-

an example. The localization radius decreases as the
perature is raised, indicating that Ps gets more localized w
the temperature. Such a temperature behavior of the loca
tion radius~although the calculated radii are in themselv
underestimated compared with the experimental ones! ap-
pears to be plausible since it mainly originates from the p
non subsystem of a crystal. The dependence can be ph
cally interpreted and understood as the reduction, w
increase of temperature, of the number of lattice sites co
lated by self-trapped Ps: because of the lattice vibrations
outer lattice sites located far from the ‘‘Ps core’’ and the
fore less correlated by Ps, cannot follow the inner, stron
correlated, sites located near the Ps anymore, yielding
reduction of the Ps localization radius with increase of te
perature. Such a reduction would, in the momentum spa
imply the broadening of the spectrum of the momentum d
tribution of the self-trapped Ps with increasing temperatu
It was such a broadening that was, in fact, experiment
observed for self-trapped positronium in a KI crystal in t
temperature range 76–110 K.14 At higher temperatures, ac
cording to Ref. 14, the Ps momentum spectrum in KI ag
narrows, which could be attributed to the beginning of t
diffusion process of self-trapped Ps~motional narrowing!.
The temperature dependence of the mean number of the

g

FIG. 4. The temperature dependence of the Ps localization
dius in KI crystal.
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rounding phonons Eqs.~30! and ~31! can also be easily un
derstood in terms of the polaron theory.28 The decrease o
^n& with increasing temperature in the weak phonon c
pling regime@Eq. ~30!# implies a reduction of the size of th
virtual phonon cloud around Ps with an increase of its m
bility. In the strong phonon coupling regime@Eq. ~31!#, on
the other hand, self-trapped Ps is immobile and the virt
phonon cloud around it is so large from the very beginn
that the real phonons appearing at nonzero temperature,
tically do not influence it.
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