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Orientational phase transitions in molecular N2 solids: A path-integral Monte Carlo study
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A molecular crystal composed of rigid N2 molecules interacting via Lennard-Jones and electrostatic inter-
actions is studied by path-integral Monte Carlo simulations in the constant pressure ensemble. The simulation
scheme employed takes fully into account quantum effects on both translational and rotational degrees of
freedom of the molecules. The effect of quantum fluctuations on molar volumes, energies, and transition
temperatures is studied for different values of the external pressure. At zero pressure the transition temperature
from a high-temperature orientationally disordered cubic phase to a low-temperature phase withPa3 structure
is reduced by about 11% due to quantum delocalization. With increasing Trotter number, the molar volume and
energy at low temperatures approach the experimentally observed values, in contrast to the classical simula-
tions. As the pressure increases, the transition temperature is shifted to larger values and the difference between
the classical and quantum values is decreasing.@S0163-1829~98!07238-5#
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I. INTRODUCTION

Molecular solids, composed of small or nearly spheri
molecules such as H2, N2, C60, and C70 have received much
attention recently.1–13 In such systems, molecules have tran
lational as well as rotational degrees of freedom. While
molecular centers are fluctuating around stable lattice s
the molecular axes can orient in various ways with respec
each other and to the underlying lattice, giving rise to a
riety of phases distinguished by the orientational order
rameter. As this order parameter can change upon var
temperature and pressure, molecular solids often exhibit n
trivial phase diagrams in theT-p plane. It turns out that
many of these phase transitions occur at low temperat
and thus quantum effects can be expected to play an im
tant role in the behavior of the system. Since the ene
differences between the competing phases are often
low, under particular circumstances the quantum zero-p
energy might play even a decisive role in determining
phase stability and therefore the phase diagram of the
tem, as illustrated by the large isotope effect on the transi
pressure observed at thea-g transition of the nitrogen
crystal.1 A quantitative understanding of the role of quantu
effects is therefore desirable. While from experimental st
ies alone it is hard to assess the relevance of quantum ef
at low temperatures quantitatively, computer simulatio
provide here a convenient tool, allowing the same system
be simulated classically as well as quantum mechanica
Furthermore, provided a good quality potential for the s
tem of interest is available, simulations can have also a
dictive power, and yield predictions for the behavior of t
system under special conditions, e.g., high pressure, w
have not yet been reached experimentally. In general,
role of the quantum effects on the transitions at high pr
sures is a nontrivial and open question.

In particular, solid N2 exhibits a very rich phase diagram
in the T-p plane, which has been extensively studied by
PRB 580163-1829/98/58~18!/11937~7!/$15.00
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perimental, theoretical or simulational techniques. At lo
temperatures and pressures the system is in thea phase,4

where the molecular centers of the N2 molecules form a fcc
lattice and each molecule of the basis cell is aligned alo
one of the four cubic body diagonals in such a way that th
are perpendicular to each other. With increasing temperat
the system undergoes a phase transition to an orientation
disordered phase. The orientational order-disorder ph
transition has been studied by simulational techniq
recently.13–18

In all these simulational studies, however, the quantu
mechanical nature of the N2 rotors has been neglected. Whi
path-integral Monte Carlo~PIMC! has been successfully ap
plied to study of various crystalline systems, such as argo19

polyethylene,20 and silicon,21 the distinguishing feature o
molecular solids from the point of view of quantum simul
tions is the presence of the rotational degrees of freed
These require within a PIMC scheme a special treatm
somewhat different from that applicable to translational d
grees of freedom, and it was only recently that a conven
scheme for three-dimensional rotors has been worked
and described in Ref. 22. In this paper we have emplo
this scheme in a constant pressure PIMC simulation,
applied it to a N2 molecular crystal. We present results f
the low-temperature properties, such as molar volume, in
nal energy and order parameter, and pay particular atten
to the study of the phase transition to the orientationa
disordered phase at different pressures. We find that in tha
phase the molar volume and internal energy at low temp
tures are in excellent agreement with experimental values
order to quantify the amount of quantum effects near
transition temperatures, we also performed some class
simulations. The transition temperature to the hig
temperature orientationally disordered phase was found t
reduced by about 11% resulting in a better agreement w
the a-b transition temperature obtained by experimen
techniques. The ground-state order parameter is reduce
11 937 ©1998 The American Physical Society
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as much as 20% compared to the classical value. Other q
tities, like the volume and order parameter jump at the tr
sition are also calculated and a surprisingly good agreem
with experimental data at thea-b transition is found.

The remainder of this article is organized as follows:
Sec. II we describe the model used for nitrogen crysta
well as the path-integral Monte Carlo method for the ro
tors. In Sec. III we present the simulation results obtained
different pressures and discuss in detail various aspect
the phase transitions observed. We compare our results
experiments for thea phase and for thea-b transition as
well as with classical simulations. Finally, in Sec. IV th
conclusions are drawn and some further possible direct
are suggested.

II. METHOD AND INTERACTION POTENTIALS

A. Interaction potentials

In our studies we model the N2 molecules as rigid rotors
We specify here the N2-N2 interaction potential of the N2
dimer based on anab initio study.23 This potential has been
modified for high pressures.27,24,14–17 None of these im-
proved potentials however is capable to successfully desc
the presence of all standard N2 phases found
experimentally.1 Furthermore, the experimentally observ
structural fcc-hcp phase transition accompanying thea-b
transition has not yet been found by direct simulational te
niques using these potentials,15,17 because of large free
energy barriers between the fcc and the hcp lattice struct

Here we are mainly interested in the quantifications
quantum effects on the low temperature–low-pressurea
phase, and motivated by the success of our previous clas
study,18 we use the unmodified potential derived in Ref. 2
containing the electrostatic interaction potential and the c
venient atom-atom Lennard-Jones 6-12 potential.25,26

The electrostatic interaction sites are positive charge
magnitude q15q250.373 e located at distance
6 1.044 Å away from the molecular center of mass on
molecular symmetry axis and negative charg
q35q4520.373 e at distances 6 0.874 Å,
respectively.27,24,15The electrostatic interactionVEL(k,l ) be-
tween the moleculesk and l with charges atr km

and

r l n
(m,n51, . . . ,4) isgiven by

VEL~k,l !5 (
m,n51

4
1

4p«0

qmqn

ur km
2r l n

u
. ~1!

B. The path-integral formalism

Having specified the interaction potentials, we can wr
for our system a full quantum HamiltonianĤ which apart
from potential energyV̂pot consists of kinetic energy due t
translations of the centers of mass,T̂trans, and due to molecu-
lar rotationsT̂rot ,

Ĥ5T̂trans1T̂rot1V̂pot. ~2!

In order to perform path-integral Monte Car
simulations28–38,40,41,19,22we apply the Trotter product for
n-
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mula to the canonical partition functionZ(N,V,T) for a sys-
tem of N particles in the volumeV at inverse temperature
b5(kBT)21

Z~N,V,T!5Tr~exp@2bĤ# ! ~3!

and obtain

Z~N,V,T!5 lim
P→`

Tr~exp@2bT̂trans/P#exp@2bT̂rot /P#

3exp@2bV̂pot/P# !P. ~4!

Here, integerP is the Trotter number. Inserting appropria
complete sets of states, we obtain in coordinate space
expression

Z~N,V,T!5 lim
P→`

)
s51

P E d$r ~s!%E d$n~s!%

3exp@2b~Ttrans1Trot1Vpot!/P#, ~5!

wherer (s) is the vector of a rotator’s center of mass at ima
nary time slices andn(s) the director parallel to the molecu
lar axis, un(s)u51. Due to the cyclic property of the trac
periodic boundary conditions have to be applied to the Tr
ter index, i.e., fors5P, s1151. The full expressions rep
resenting the components of the Hamiltonian in Eq.~5! read

Ttrans5Ttrans~$r
~s!,r ~s11!% !

5 (
k51

N
mP2

2\2b2
~r k

~s!2r k
~s11!!22

3NP2

2b
ln

mP

2p\2b
,

~6!

Trot5Trot~$n
~s!,n~s11!% !

5 (
k51

N

(
L50

` FBL~L11!1
P

b
ln

2L11

4p
PL~nk

~s!
•nk

~s11!!G ,
~7!

Vpot5Vpot~$r
~s!,n~s!% !5VLJ~$r

~s!,n~s!% !1VEL~$r
~s!,n~s!% !,

~8!

wherePL denotes the Legendre polynomial. For N2 rotators,
the massm and the rotational constantB are equal tom
528.02 u andB52.88 K, respectively.

The nuclear spin of the N atom is 1, thus for the N2
molecule two variants have to be considered:ortho-N2 and
para-N2 , for the former the nuclear spins are parallel, for t
latter antiparallel. The total wave function of the bosonic2
molecule, consisting of the total nuclear spin times the ro
tional state, has to be symmetric under intramolecular
change of the atoms, which means that only the comb
tions of antisymmetric spin functions times odd rotation
levels or of symmetric spin functions times even rotation
levels have to be considered. As a consequence, forortho-N2
only the evenL values in Eq.~7! appear, forpara-N2 only
the oddL values. This principal distinction of the differen
variants of the N2 molecule however are only important a
low temperatures. In Ref. 22 the propagator for an orien
tional degree of freedom,Ks,s11(N51)5exp@2bTrot(N
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51)/P#, has been studied for the three different cases,
summation over allL values~even and odd!, summation over
evenL and summation over oddL values. For temperature
andP values, for whichbB/P,0.1, Ks,s11(N51) does not
show any visible differences for these cases for anglesgs

5arccos@n(s)
•n(s11)#,p/2. Since the N2 molecule is a rela-

tively heavy molecule, at temperatures above 5 K the mol-
ecule is quite well localized~compared to H2 molecules! and
so the angle differences between neighboring ‘‘Trotte
slices s and s11 are small. This means that forT.5 K
only small g values are important in the Metropolis ste
independent on theortho/para variant of the N2 molecule.
This finding is in agreement with the results of Ref. 4
where it was found that the differences betweenortho- and
para-N2 molecules adsorbed on graphite are negligible
temperatures above 5 K. The general consideration of
39 shows that in general the influence of the quantum sta
tics vanishes for temperatures exceeding five times the r
tional constants.39 According to Ref. 1 the energy differenc
between the ortho and para levels of solida nitrogen can be
estimated to be in the order of one microdegree. As
simulations are performed above 10 K, these results m
vated us to neglect theortho/para distinction and to perform
the simulations with a propagator consisting of the summ
tion over evenL values in Eq.~7!. The interaction potentia
Vpot for particles at the same imaginary time slices consists
of a Lennard-Jones and an electrostatic interaction as sp
fied in the previous subsection.

We performed our simulation in theNpT ensemble at
constant external pressurep. In this ensemble the partition
function Zp(N,p,T) reads

Zp~N,p,T!5E
0

`

dVe2bpV Z~N,V,T!. ~9!

In the simulation a symmetrical deformation tensorh is in-
troduced allowing volume changes as well as changes of
box shape, for details of the technique employed see Ref
Periodic boundary conditions have been applied in all spa
directions.

FIG. 1. Equilibrium volume versus temperature at zero press
Simulation results for various Trotter dimensionsP as indicated in
the figure, the results forP51 correspond to a classical simulatio
lines are for visual help. The data connected by dashed lines ar
experimental volumes near the transition~Ref. 11! from thePa3 to
the b structure. Errors for simulation results are equal~PIMC! or
smaller~classical MC! than symbol sizes.
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Averages^A& of observablesA for a fixed value of the
Trotter indexP can be obtained with the standard measu
given by the Boltzmann factors in Eqs.~4! and ~8!. Beside
the kinetic and potential energies and the equilibrium volu
we determine the orientational order parameterQ as a func-
tion of temperature.Q is the average of the order paramete
QX being defined for each sublatticeX51, . . . ,4 of thePa3
phase according to

QX5
3

2

1

P (
s51

P

(
m,n51

3 K S (
k«X

Fnk
m~s!nk

n~s!2
dmn

3 G D 2L . ~10!

Here nk
m(s) is the mth component of the directornk

(s) of the
kth molecule at time slices.

In the simulation a Monte Carlo step consists ofN at-
tempted random displacements of the centers of masse
well as of the centers of the angles, and ofNP attempted
random displacements of coordinates and angles at
imaginary time slices, see Eqs.~5! and ~6!, as well as of a
volume deformation attempt, where the maximum displa
ments are fixed by the 50% acceptance rule. In most of
simulations we chose the number of N2 molecules asN
5500 ~i.e., five unit cells in each direction!, the Trotter di-
mension was chosen such that the quantum limit was reac
within numerical scatter. It turned out that a value ofP58
was sufficient for computations at temperatures close to
phase-transition temperature. A typical run with 104 Monte
Carlo steps took about 75 CPU hours on a CRAY-T
~single processor!, 12 CPU hours on a CRAY-YMP and 5
CPU hours on a CRAY-T90; in total the present study
quired CPU time equivalent to 600 CPU hours on a CRA
T90.

e.

the

FIG. 2. Trotter scaling plots of the molecular energy~a! and
molar volume~b! at zero pressure and temperatureT520 K. Points
are PIMC results, the lines are the extrapolation lines to the Tro
limit ( P→`). Errors are smaller than symbol sizes.
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III. RESULTS AND DISCUSSION

At first we present the results and discuss the case of
external pressure. In Fig. 1 the temperature dependenc
the molar volume is shown for our simulational as well as
experimental data.11 Direct comparison between simulatio
and experiment is only possible for the low-temperaturea
phase up to the phase transition. In the high-temperature
ordered phase a direct comparison of the experimental m
volume to both classical and quantum results is, howe
not possible here, since the simulation technique used is
able to reproduce the experimentally observed crystal st
ture above the transition temperature~Sec. II A!. Both clas-
sical and quantum simulation results are shown in this
gion, although the difference between the classical
quantum value of the molar volume is considerably sma
compared to the low-temperature ordered phase and
stress that their relation to the experimental molar volume
particular the fact that the classical values appear to be cl
to the experiment than the quantum ones, has to be rega
as accidental. In this work we aimed at a pioneering study
the quantification of the quantum effects in thea phase and
on the orientational phase transition from thea phase to the
orientationally disordered fcc phase. So the high-tempera
values of the simulation~disordered fcc! cannot be compared
to the experimental data~hcp!.

In Fig. 1 we note that the classical simulations~corre-
sponding toP51) lead to a nonzero slope of the volume
very low temperatures which is in sharp contrast to the
perimental behavior.11 With increasing values ofP the molar

FIG. 3. Classical and quantum energies as functions of temp
ture at zero pressure. Points are simulation results (P58 for the
PIMC simulations!, lines are for visual help. Error bars of classic
results are smaller than symbol sizes.
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volume obtained from the present simulation is in a progr
sively better agreement with the experimental values. A ty
cal Trotter-scaling plot of the molar volume and the ener
per molecule shows the approach of the observables to
asymptoticP22 dependency, see Fig. 2. Standard Trott
scaling extrapolation techniques to the quantum limit fina
result in low-temperature molar volume values which are
excellent agreement with the experiment, see Fig. 1. T
energy as function of temperature is shown in Fig. 3. W
note that atT'30 K the potential energy in the quantu
simulation is enhanced by about 40 K compared to the c
sical case due to quantum fluctuations. The kinetic ene
consisting of rotational and translational energy is larger th
the classical value, see Table I, and approaches the clas
equipartition value (5/2)kBT at high temperatures. From th
PIMC simulation results for the energies we conclude t
the ground-state energy per molecule is about2830 K,
which is in good agreement with experimental values for
sublimation energy (2833 K),1 in contrast to the results o
a classical simulation, see Fig. 3.

Upon heating a phase transition takes place from thea
phase to an orientationally disordered fcc phase at the t
sition temperatureT1 , where we find a jump in the mola
volume ~Fig. 1!, the molecular energy~Fig. 3!, and in the
order parameterQ ~Fig. 4!. Upon cooling the phase transitio
from the orientationally disordered fcc phase to thea phase
is at a temperatureT2 , which is at most 2 K belowT1 , such
that the hysteresis range at the transition is smaller than
Since the transition temperatures presented in this study
thus determined with an accuracy of less than 1 K, we

a- FIG. 4. Order parameter as function of temperature for vari
pressures. Points are simulation results@classical MC and PIMC
(P58) results#, lines are for visual help, error bars are smaller th
symbol sizes.
of the
TABLE I. Comparison of quantum rotational and quantum translational energy with the predictions
classical equipartion theorem (p50.0 GPa, P58, kB51).

T ~K! Erot
qm (61) ~K! Erot

cl 5
2
2 kBT ~K! Etrans

qm (61) ~K! Etrans
cl 5

3
2 kBT ~K!

20 37.2 20 57.8 30.0
37 46.9 37 74.0 55.5
38 47.1 38 72.3 57.0
39 44.7 39 71.3 58.5
40 42.4 40 73.6 60.0
41 44.3 41 73.1 61.5
45 48.4 45 80.5 67.5
70 72.2 70 110.1 105.0
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PRB 58 11 941ORIENTATIONAL PHASE TRANSITIONS IN . . .
not try to reduce this small temperature range further
determining free-energy intersection points. We note ho
ever, that in other studies15 large ‘‘hysteresis’’ regions have
been found when the transition from thea phase to the ori-
entationally disordered fcc phase upon heating has b
compared to the transition from the orientationally dis
dered hcp phase to the orientationally ordered hcp ph
upon cooling. We are not yet interested in quantifying t
a-b transition temperature because of the above-mentio
general problems to simulate structural phase transitions
direct methods.

Many details concerning the orientational phase transi
studied here involve changes in thermodynamic proper
which are in good agreement with those found in the exp
mentala-b transition. We thus find it appropriate to com
pare the numerical values of these quantities. The trans
temperature of our previous classical Monte Carlo study18 is
T1542.5 (60.3) K and the volume changeDV50.55
(60.03) cm3/mol, see Fig. 1. With increasing Trotter num
ber the transition temperature is shifted to smaller valu
and in the quantum limit we obtainT1

qm538 (60.5) K,
which represents a reduction of about 11% with respec
the classical value. The experimental value11 is T1

exp

'35 K. As we only study the orientational transition to th
disordered fcc lattice, a better agreement with the experim
tal value at thea-b transition can hardly be expected. Th
same holds for the obtained volume change at the transi
DVqm50.6 (60.05) cm3/mol which remains higher than
the experimental volume changeDVexp'0.3 cm3/mol. At the
transition the total energy increases by aboutDE545
(65) K. On the contrary to the potential and the trans
tional energy, the rotational energy decreases at the tra
tion, see Table I. This behavior is due to the fact that
rotational constraints in the low-temperature phase with

FIG. 5. Fourth-order cumulant of the order parameter as fu
tion of temperature for various pressures. Points are PIMC sim
tion results (P58), lines are for visual help.
y
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entational order are removed in the disordered phase, w
results in a lowering of the rotational energy.

The PIMC value of the order parameter at low tempe
tures is reduced by about 20% compared to the class
value of 1, see Fig. 4, due to ground-state fluctuations of
rotors around their potential minima. At the phase transit
the jump in the order parameter is in good agreement w
experiment; both experiment43 and simulation show a jump
of the order ofDQ50.6. Quantum delocalization leads to
smaller order parameter and thus to a smallerDQ; the lower
transition temperature, on the other hand, reduces the
fluctuations, resulting in a larger value ofDQ. These com-
bined effects results in essentially the same value forDQ in
the quantum and the classical computation, see Fig. 4.

The classification of the transition as first order can
justified by observing the jumps in volume and energy at
transition temperature or by the fourth-order cumulant44,45

U(T) of the order parameter:

U~T!512
1

3

^Q4&

^Q2&2
. ~11!

U(T) approaches the value of 2/3 in the ordered lo
temperature phase and in the case of a second-order tr
tion monotonically decreases with increasing temperature
the case of a first-order transitionU(T) has a pronounced
minimum with negative values for temperatures sligh
above the transition temperature.46 In Fig. 5 the cumulant is

-
a- FIG. 6. Phase transitions from thea phase to the orientationally
disordered fcc phase~simulation!, classical ~open spheres!, and
quantum results~diamonds, lines are for visual help!. The experi-
mental transition from the high temperatureb phase to the low-
temperature phases with orientational order is shown for comp
son by a line, a-b: from Ref. 47, g-b: from Ref. 48.
Experimentally there is a transition between the low-pressurea and
high-pressureg phase, which is not shown here for the sake
clarity.
r
TABLE II. Difference in the molar volume~PIMC!, the total energy~PIMC!, and the order paramete
~PIMC and MC! between the two phases at the orientational phase transition.

p ~GPa! DVqm (60.05) (cm3/mol) DEqm (65) ~K#! DQqm(60.03) DQcl(60.02)

0.0 0.6 45 0.53 0.59
0.3 0.5 48 0.50 0.59
0.6 0.3 46 0.49 0.60
1.0 0.2 41 0.53 0.62
1.5 0.2 43 0.49 0.58
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TABLE III. Left- and right-hand side of Eq.~12! for different pressures.

p ~GPa! DE(65) ~K! pDV (66) ~K! l5DE1pDV (68) ~K! TDV(dp/dT) (66) ~K!

0.0 45 0 45 51
0.3 48 18 66 74
0.6 46 22 68 66
1.0 41 24 65 59
1.5 43 36 79 71
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shown and we find this characteristic of a first-order tran
tion.

We have studied the phase transition also for higher
ternal pressures and the resulting phase diagram in
pressure-temperature plane is shown in Fig. 6. As alre
mentioned at the beginning of this section, a comparison
simulation results with experimental data is only possible
the low-temperaturea phase. With increasing pressure t
transition temperature is shifted to higher values and the
ference between the classical and the quantum trans
temperatures decreases. The reason for this behavior is
at higher pressures the particle distances become smalle
the effective potential acting on one particle is more str
tured which results in a sharper localization of the rotato
As a consequence, the transition temperature is increa
and the effect of quantum fluctuations is correspondin
reduced. We note again here that at higher pressures
question of appropriate potential is still open and our m
concern at this point was the investigation of quantum effe
for a given potential rather than reproducing the actual
perimental phase boundary.

In Figs. 4 and 5 we showQ andU(T) for different pres-
sures as functions of the temperature. As in the case of
pressure,U(T) shows a pronounced minimum at the tran
tion, DQ apparently does not depend strongly on the pr
sure. In Table II we show the volume jumpDV at the tran-
sition as a function of the pressure. We note thatDV is
decreasing with increasing pressure and seems to appro
limiting value of about 0.2 cm3 /mol for large pressures.

The Clausius-Clapeyron equation describes the thermo
namics of such a first-order phase transition:

l5TDV
dp

dT
. ~12!

Here l is the change in enthalpy at the transition, or t
latent heat:l5DE1pDV. In Table III we compare both
sides of Eq.~12! computed with PIMC results forDV and
DE and taking numerically the derivative of the~PIMC!
transition pressure with respect to the temperature. We
good agreement within numerical accuracy, indicating t
the pressure dependency ofl is mainly due to thepDV term,
which may explain why the energy jumpDE at the transition
is quite independent on the pressure~see Table II!.

IV. SUMMARY AND CONCLUSION

In this paper a detailed study of phase transitions in m
lecular N2 solids by path-integral Monte Carlo simulatio
methods was presented. Assuming a model representing
intermolecular interactions by Lennard-Jones and Coulo
i-
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potentials and allowing for quantum effects on both trans
tional and rotational degrees of freedom to be taken i
account we found that the quantum results for the mo
volume and the internal energy in the low-temperaturea
phase are in good agreement with experimental values.

The transition temperature from the orientationally o
dered fcc solid to the high-temperature disordered fcc soli
reduced by about 11% at zero pressure due to quantum
localization effects which weaken the orientational ord
compared to the classical case. The quantum transition t
perature is now much closer to the experimental value for
a-b transition. Within this approach a better agreement c
hardly be expected, since the orientational order-disor
transition in the experiment is accompanied by a structu
phase transition from the fcc to the hcp lattice. The grou
state order parameter is actually reduced by as much as
compared to the classical value.

With increasing pressure the transition temperature
shifted to larger values. At these higher temperatures
quantum effects are weakened and thus the difference
tween the classical and the quantum transition temperatu
decreasing with increasing pressure.

Our results show that the quantum effects on the ph
transitions are important at low temperatures and canno
neglected in theoretical studies. This may also shed a
light on procedures where interaction potentials are desig
by fitting classical results to experimental findings.

In future work we intend to use similar methods to qua
tify the quantum effect on other phase transitions in N2 sol-
ids as well as in solids constituting of mixtures of N2 mol-
ecules and Ar atoms. In this context, thea-g transition in N2
and the associated pronounced isotope effect represen
interesting challenge to be studied by quantum simulat
techniques. We believe that methods analogous to those
in this paper would be applicable also to study other mole
lar solid state systems, of which the solid phase of hydro
are of particular interest.49
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31M.H. Müser, W. Helbing, P. Nielaba, and K. Binder, Phys. Re
E 49, 3956~1994!.

32M. Kreer and P. Nielaba, inMonte Carlo and Molecular Dynam-
ics of Condensed Matter Systems, edited by K. Binder and G.
Ciccotti ~SIF, Bologna, 1996!, p. 501.

33D. Marx and P. Nielaba, J. Chem. Phys.102, 4538~1995!.
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