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Coherent quasielastic Bragg scattering from single crystals containing fast diffusers
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Recent developments in the nuclear resoridiissbauer scattering of synchrotron radiatidiNRSR al-
lowed one to observe successfully diffusive quasielastically scattered radiation from intermediate nonresonant
amorphous targets, e.g., glycerin, in a time domain. Hence, there is a real chance to observe such a radiation
scattered coherently at Bragg angles from single crystals containing fast diffusing atoms. Quasielasticity of the
latter radiation is solely caused by jumps between various Bravais lattices due to the peculiarity of the Bragg
conditions. On the other hand, an energy resolution could be easily increased by two orders of magnitude in
comparison with the incoherent quasielastic scattering of the cold ne@S at much higher momentum
transfer to the crystal than in the case of QNS. The paper is devoted to a discussion of the physics underlying
scattering of NRSR beams from fast diffusers in single crystals under Bragg conditions.
[S0163-18208)07741-9

[. INTRODUCTION look upon diffusivity in single-crystals scattering at Bragg
angles and do not contain resonant nuclei, i.e., for a scatter-

A recent development in the nuclear resonant scattering dig Via the Rayleigh mechanism. A setup is quite similar to
synchrotron radiation(NRSR allows one to investigate the standard four-circle x-ray diffractometer; however, a new

quasielastic processes in nonresonant targets in the neV regimension (time-energy is added. In principle, powder
lution range typical for a>Fe Mdssbauer spectroscopy samples could be used as well, however at the cost of an

where the wave number of the incident radiation is about 7.§10rMous loss in inten_sity. One has to note that _in the case of
A~11 Previously such experiments were limited to the tung_naturally very-well-collimated NRSR beams a single-crystal

sten Masbauer linéwhere sufficiently strong sources could experiment is in principle much easier than one performed

be obtained. An energy resolution of the latter line is of thePn an a_morphous SYS‘?”F- The 'S|t'uat|on IS .the opposite for
radioactive sources emitting radiation spherically.

order of 1ueV, i.e., comparable to the resolution of the best : ) ) - .

back-scattering cold neutron spectromefeatheit offering a _The paper Is organized as _folllfows. Seth'OQ . ddegls Wr']th a

much broader momentum transfer range. An ener rofil@”ef. description of the essential features of the device shown
9 9y P in Fig. 1 and Sec. lll is devoted to the description of the

of the nonresonant quasielastic scattering of thee 14.4 elast teri funci der B dit
keV line from single crystals was seldom observed due to thduasielastic scattering function under bragg conditions,
while a simple example is evaluated in detail in Sec. IV.

unavailability of sufficiently strong, and simultaneously reso- i ) i . .
nantly thin, source$.Amorphous targets were investigated Sect!on V is devoted to a_dlscussmn of correlated jumps and
by the latter method due to the much less demandinéhe final Sec. VI summarizes results.
geometry> One has to note that high-energy resolution neu-
tron spectrometers are available, but at very small momen-
tum transfers solel§.Hence, slow diffusivity studies were A NRSR interferometer has been introduced quite re-
practically limited to iron as far as microscopic methods sencently and used to study diffusivity in glycerth Basic fea-
sitive to the wave-vector transfer are considered. tures of the above device are shown in Fig. 1. A pulsed beam
NRSR investigations are conveniently carried out in aof x rays comes at regular time intervals from an undulator
time domairf and it has been demonstrated that a resonanwith the first harmonic tuned to the Msbauer transition.
forward scattering is sensitive to diffusive motions of reso-Such a beam consists of very-short-duration and very intense
nant scattering atoms in complete agreement with the starpulses, and it has a very small overall cross section and di-
dard absorption or emission Msbauer spectroscopyOne  vergence. It is linearly polarized to a high degree as well.
can speculate that the same statement applies to resondifie beam is monochromatized to several meV by a set of
Bragg scattering and resonant incoherent scattering asvell.single-crystal monochromatofsot shown. It remains still
Recently a device shown in Fig. 1 has been built and usetiwhite” and short pulsed from the point of view of the
to demonstrate the presence of diffusive quasielastic scatteMossbauer nucleus after such a monochromatization. A
ing from an amorphous target, i.e., glycetirthe latter sys- monochromatization preserves polarization as well. Subse-
tem being quite well understotfddue to previous research quently, the beam is passed through a single line flat and
performed either by using a standard absorptiorssbauer homogeneous Mesbauer absorber moving with a constant
spectroscopy on doped sampfeer scattering of the tung- velocity along the beartthe velocity is very small compared
sten line from the pure samples at higher temperattfrds.  to the velocity of light in vacuum The part of beam which
iron line was used in a scattering experiment performed onmvas not absorbed goes through a collimator and scatters from
the above system as wéll. a single-crystalline target set under Bragg conditions on a
The above-mentioned device could be used as well tihead of a four-circle goniometer. It is important to set a

II. NRSR INTERFEROMETER
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due to the identity of optical paths. Remaining delayed pho-
tons cannot reach the APD for a geometry chosen. For a time
duration between subsequent pulses being long enough to get
rid of delayed photons and a sufficiently narrow geometry
there is practically no background, and one can almost ne-
. glect all incoherent contributions provided a thermal diffu-
ES:,’T',‘";:”‘QWCS = APD sive scattering TDS) under Bragg reflection is negligible.
An APD signal (count rate versus time elapsed from the
pulse is modulated by a first-order Doppler shift introduced
by the first target. Such a modulation makes it much easier to
see any quasielasticity in the Bragg scattering and a Doppler
modulation is easiest to set to the required frequency, the
latter being constrained by the APD time resolution and time
interval between pulses. In principle, one can make movable
either first or second target or even a crystheé latter along
the wave-vector transfer directib, but it is technically
v easiest to move the first target. A movable target has to per-
form of course the periodic motion shown in Fig. 1, and the
data collection should be interrupted at the “turning points”
uk ‘ ‘ H indicated by the broken lines. One has to note that the cycle
_) Pt period of the target is much longer than the time duration
‘ : ' : between pulses. Data could not be collected as well for a
I Il I short time just after the pulse as one has to aIIqW the APD to
recover from the prompt, and the data collection has to be
stopped just before the next pulse. Usually, an APD count

FIG. 1. A general layout of the NRSR interferometer applied torate is much smaller than the un_dulator p_ulse frequen(_:y, and
study diffusivity in single crystals under Bragg conditions. Insetshence’ 9”e an allow the collection of a ;lngle data point E?It a
show an Ewald construction for the Bragg conditions with the re-W6||'(:i(:"f""(:"d time f,0r each undulator period. T,he processing
ciprocal lattice cross section overlaid and the velocity of the Dop-Cf Such a data point has to be completed prior to the next
pler modulator vs time with the train of the undulator pulgge  Pulse. An integer number of pulses has to be processed for

time scale of the pulse train is expanded in comparison to the modgach “half” of the Dopp_ler modulator perio@the same for
lator scalé. both “halves”), and an integer number of the full Doppler

modulator cycles has to be performed during the data collec-
tion.

Due to the fact that Bragg scattering for available x-ray
ergies is predominantly of tH&l character, the maximum
attering intensity could be obtained for the polarization
lane being perpendicular to the scattering pleee Fig. L

his effect would be particularly strong for Bragg reflections
cattering at right angles to the original beam, i.e., for a
scattering angle @ being close tar/2. A refraction within a

Resonant
target 2

Resonant
target 1

SR pulses

crystal in such a way to allow for a single Bragg reflection to
be present in order to avoid a loss in intensity. It seems, |
impractical to use forward scattering as the latter beam i%c
contaminated by the noninteracting part. A backward geom-
etry allows one to use thick crystals, and hence, it seems t

most suitable. One has to note that in the region of fasg
diffusivity a kinematic approximation to the scattering is

uite satisfactory. A crystal mosaicity might be a problem : . ' .
?or almost perfe)clzt bear>r/13 coming do)ixvn tghe undulgtor an cattering crystal could be neglected in the first approxima-
' ion.

thus it might be desirable to use single-crystal monochroma- An APD count rate(number of counts accumulated for a

tors, being able to increase somewhat the beam divergen%(?ven number of undulator pulsegersus time elapsed from

(such a beam would be still perfectly collimated from the o ; , .
- . . . .~ the pulse is given by the expressigrormalized to unity for
Mossbauer point of view A scattered beam is passed again, _'o" _ger having subtracted background, the latter being

through the collimator and a stationary Sbauer absorber verv small and oractically time independent for a well-
identical with the movable one and kept under the same ther; Y b y P

H 6
modynamical conditions. Identity of both absorbers assuregeSIgneOI systejrt
the deepest possible modulation. Finally, the beam goes [(t)=(Loyt) texp(— yt)Ji((zLoyt)lfz)
through the final collimator and falls onto an avalanche pho-
todiode detectofAPD). Two last collimators together with a X{(1+b)+(1—Db)[Re S(t)]cog 2wqt)

stationary absorber and APD are to be mounted on a mov- .
able arm of the four-circle goniometer, being actually a go- FImLS(D)]sin(2wet) ]}, @
niometer of the four-circle x-ray diffractometer. Delayed co-where L, stands for a dimensionless resonant thickness of
herently forward scattered photons from the movableboth targets togethefeach target has thickneds/2), y
absorber pass the same optical path as the original fihise  stands for a natural linewidth of the Msbauer transitiofit
nonresonant Bragg scattering cross section is practically this assumed that targets have no intrinsic broadenihgde-
same for all photons within the beamnd they interfere with notes a Bessel function of the first kind and order, and

the delayed coherently forward scattered photons from a sta=vqq with go being to a good approximation a wave num-
tionary absorber. There is no phase shift just after the pulsber of the M@sbauer line and a Doppler velocity(positive
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for a motion down the beam and negative vice verga mm') _ (m)p (m) * /
symbol S(t) stands here for a scattering function from the \MS’S = Omm Qgrslasy (@ for s'#s,
crystal under investigation. For a purely elastic scatteringwhile
S(t)=1. For a time window accessible one can expect

0)=1 andS(t) evolving with time to smaller values due )
'i)(tfze diffusive( r)notions. %uch an evolution has a monotonic W™= = Sy Z Q. fors'=s. 2)
character, while caused by diffusive motions. An imaginary s7s
part of the scattering function, [r8(t) =0, for a time win-  Here, indexm enumerates different kinds of atoms constitut-
dow accessible and a temperature range where a thermaliyg a crystal, while the indes enumerates different primi-
driven diffusivity becomes visibléone can neglect quantum tive Bravais lattices involved. A diffusion matrix is diagonal
diffusivity as very light atoms scatter too weakly to be ob-in the mindices as diffusivity does not transform atoms one
servable. Thus, the direction of motion of the movable ab- into another. Diagonal elements describe an inverse resi-
sorber has no effect on the data. For amorphous materialience time for thenth atom at thesth lattice (with a nega-
S(t) evolves to zero with time passing, while for the coher-tive sign, while the off-diagonal elements contain an aver-
ent Bragg scattering from crystals it usually evolves to somege jump frequency of theith atom from thesth to thes’th
constant value smaller than unity, albeit greater than zero. Ifattice multiplied by a geometrical factor dependent upon the
jumps occur solely within Bravais lattice§(t) remains wave-vector transfer to the crystql A geometrical factor
unity at all times. A parameter ©b<1 accounts for all could be expressed as follow:
incoherences other than those due to a diffusivity, the latter
incoherences being mainly caused by a single-phonon TDS m mn — =) =
contribution under Bragg reflection, and hence, time inde- a(SS’)(a):; pesexplid: [RY' =R,
pendent on the time scale accessible. For a TDS being absent

and a perfect devich approaches zero. with
Finally, one can conclude this section saying that an APD
i ing to register any significant intensity for allow
s going to register any significa ensity for allowed D pg:,")Il andp(s':,”)ZO, 3)

Bragg reflections. Otherwise, the total intensity registered by
an APD would be almost negligible for a well-designed ge- . ] ) )
Ometry; i.e.’ an incoherer(tquasie'asti): Scattering of the x where the indexi enumerates different S|t¢sort|ce3 of tﬁe
rays is very weak from single crystals, and one would havdattice s’ as seen from any site of the lattice E(ST)—RS
to set a very large solid angle to register any significant instands for a jump vector from any site of tté lattice to the
tensity. One has to note that inelasticcoherenk scattering  nth site of thes'th lattice (relative to a given site of theth

(primarily Compton scatteringdoes not produce collimated lattice), and p(rr}n) is a relative probability for the above
patterns as well. Hence, the only significant contaminatior]ump. Due to Stshe fact that all sites of the given lattice are
might come from TDS scattering under Bragg reflection” . . : _(m)
(usually, one can find reflections with a small TDS contribu-equ'\(/g)lent' the following reIa'Flonsh|p holdsarg/(q)
tion), and hence, a spectrometric discrimination of the pulses [ @5y (@)1, Usually, far away jumps do not occur, and
coming from the APD might be quite crude. hence, the index has a very limited range for any pair of
lattices. One has to note that fgibeing one of the reciprocal
lattice vectors(Bragg conditions all phase factors in the
IIl. SCATTERING FUNCTION UNDER BRAGG geometrical factor reduce to the nearest neighbor phase fac-
CONDITIONS tors; i.e., there are no more than eight different such phase

For a purely elastic coherent scattering in the Bragg dijactors for the lowest possible symmetry in a three-

rection a cross section from the chemical unit cell could bélimensional space.

calculated using a standard crystallographic approach in the For the setup described above one can assume _that the
case of a sample which does not contain resonant nuclei. scatterer remains at least locally at thermal equilibriim

Here, one has to take into account an extra dimensiorfaCt @ Sample has to reach an equilibrium prior to data ac-
i.e., a time-energy axis. It is a well-known fact that diffu- cumulation. Therefore, the following relationship holds:
(m) _

sional broadening disappears at Bragg directions on the

- e - : O =p. Q" for s’ #s 4
Ewald sphere for jumps within a Bravais lattiteHence, Pmsitsg = Pms 22/ '
one can expect to see solely jumps between various Bravajs

; S ; Where p,,s Stands for a probability to find atorm in the
lattices for a coherent Bragg scattering investigated here. . : .
" . e ' vertex of the lattices. Due to the fact that lattices considered
Thus, it is necessary to consider a diffusion matfiand

a chemical unit cell as an entity having each vertex belonggre primitive, the above probabilities satisfy the expressions

ing to a separate primitive Bravais lattice. A diffusion matrix
elements could be expressed as follows under such circum- 0<ppe=<1 and 0= pp=L1. (5
stances: m

, A frequencyﬂg) obeys the following relationship at equi-
W™ = 5 QLT T () librium:

sg’ sg’

and O =[prdPms @' 0 VY2 for s’ <s, (6)
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while the corresponding frequen@éﬂns) could be obtained

AMr = E 2 Fms(aoq_g)l:;]rsr(aoq_s)fmsmy(a)

from expressiori4). Here, frequenciea:grg) andwg,"s) denote mSs s’
jump frequencies of thenth atom from any site of theth .

: - : X[ PmPmrs 12 exdig- (Te—Ts) IVarms' Ume -
lattice already occupied by the above atom to any site of the mst'm’s s” s Am's' Y ms\
s’th lattice, and vice versa. These frequencies satisfy expres- 9)

; ; m_y (m (m)
sion (4) as well, -€-Pms@sg =Pms Og/s - A f_requencywss, #ere,ﬁo stands for the wave vector of the incident radiation,
could be further evaluated in terms of the jump frequency of =~ —

the mth atom from an already occupied site of tita lattice A= G(nkl) stands for the wave-vector transfer to the crystal
to any empty site of the'th Iattice,wg':,), ie., with G(hkl)_being a reciprocal lattice vector having I\Ailler
indiceshkl, & stands for a unit vector perpendicular dg
) - e}nd belonging to 'the polarization plane of the incident radia-
Weg = ( 1—2 pm’s’)wssr . (7) tion (note that neither stationary target nor APD detector are
m’ sensitive to the polarization of radiation—see Fig. 1 for de-
tails), andF,{goqe) denotes a scattering amplitude of the

One has to note that occupanci are governed by the
panckis g y Jnth atom at thesth lattice, whilef snis(Q) stands for the

associated energy levels and the temperature within a Boltz-" ; : )
mann statistics. Jump frequenciaé.m) are governed by en- pair correlated recoilless fraction. Finally, stands for the
: s (mn) position of thesth lattice vertex within the unit cell, while

ergy barriers between sitgéncluding probabilitiespsg ™) v, ., andU,,s denote appropriate eigenvector elements.
and a temperature as well within the same statistics. They do Usually, one can assume that the scattering amplitude
depend as well on the jump frequency at “infinite” tempera- does not depend upon the lattice, and that a vibrational dy-
ture, the latter frequency being solely dependent upon thgamics is uncorrelated. Hence, fnsms ()
mass of the atom, i.e., the index The last statements apply =[f_(q)f.«(q)]"2 wheref (@) stands for a recoilless
to a thermally driven diffusivity and a thermal equilibrium fraction of themth atom at thesth lattice. An assumption
within a sample. . _ concerning the correlation in the vibrational dynamics is par-
A diffusion matrix has dimensions(SXM) X (SXM)],  ticularly well satisfied in the fast diffusivity region of tem-
whereS stands for the number of different latticesumber  perature. A factorA,,. is invariant upon transformation
of different vortices within a chemical unit cgllwhile M c— _Ffora linearly polarized incident radiation.

stands for a number of different atoms constituting a crystal, One has to note that for low temperature the diffusion

le,s=12,....Sandm=12,... M. The simplest system, matrix converges to a zero matrix, and express@mepro-
where a diffusivity could be observed under Bragg condi-duces a standard crystallographic formula describing Bragg
tions, hasS=2 andM=1. scattering; i.e.3,, A,,  represents a scattering cross section

A diffusion matrix is generally non-Hermitian, albeit ei- : . : S A
envalues are reélesser or equal to zeroThe above matrix fr(_)m a chemical unlt_ cell provided one choo_%s_u =1lin
9 o X . this temperature region. Such a representation is always pos-
is a correct description provided jumps expressed by the. X . S
. X Sible for a zero matrix as all representations satisfying the
above matrix remain uncorrelated to each other. One can™~ =~ <.~ <. . R
calculate eigenvalues and eigenvectors of the above matrfonditionVU=UV=1 are admissible for that case.
(left and righ} according to the expressions
o L IV. ANALYTICAL EXAMPLE
VWU =), VU=UV=1, detW=\)=0, ®) In order to get a better insight into the underlying physics
it is worth considering some very simple example suscep-
~ _ ] ] tible to a straightforward analytical treatment. Let us con-
tors are rows U stands for the matrix of right eigenvectors sjger a monoatomic cubic crystal having a completely filled

(eigenvectors are columpsand\ stands for a diagonal ma- simple cubic lattice at temperatufe=0. Let atoms occupy

trix _containing subsequent eigenvaluesas diagonal ele- 4t higher temperatures ) sites within a unit cell. Let the

ments. A symbol 1ldenotes a unit matrixoperatoy. energy acquired by the atom transferred to the above site be
The above eigenvalues and eigenvectors could be used in,>0. Additionally, it is assumed that recoilless fractions

a straightforward manner to calculate the resulting scatteringnd scattering amplitudes remain the same on both sites. The

function S(t). Namely, a scattering function under Bragg energy barrier for a jump from the antistructurai}@) site

;::frl]:clzfcliggswfi(t)rlml()r\\giztg ;anﬁg:]essﬂsylor(sﬁor an allowed Bragg to the struc';ural (OQO) site amoun_tsBo>0. A strugturc_a and
corresponding barriers and energies are shown in Fig. 2. One
can assume as well that transfer between sites is solely due to
s(t)ZE Conexpl[N+(N)*]t}, nearest neighbor jumps, and it could be clearly seen that all
AN such jumps are equivalent. The probability to find an atom
on the structural site is expressed as

whereV stands for the matrix of left eigenvectdeigenvec-

where
p={l+exd—(Uo/TI} 7 (10)
Cavr=Auw / > A and hence, it evolves from unity @t=0 to 3 at “infinite”

M temperaturel. The probability to find an atom on the anti-
and structural site equals here-Ip. Thus, a crystal approaches
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FIG. 3. FactorC,, C,, andC; plotted vs reduced temperature
7. The factors represent relative contributions from various expo-

v nents to the scattering function. For details see expre$s®nThe
L 530 reduced temperatureis defined asr=(T/Uy).

FIG. 2. Unit cell, energy levels, and barriers for the structure ) (1-p)p (p—1)/p
evaluated. W=—w -1 1

at cubic (1), i.e., a body-centered structure with increasing
temperature. The latter structure remains half-filleote that  for the allowed reflections, where
for Uy=0 such a structure occurs at any temperature as the
symmetry remains unbrokgn

For a completely broken symmetry all reflections are al- w=8w°
lowed, while for the unbroken symmetry those whh-k
+1=2n+1 are forbidden, while those witih+k+1=2n are
allowed. Here n stands for any integer. An effective scatterHere,w® stands for a jump frequency from an occupied ver-
ing amplitude multiplied by a phase factor due to the positex to an empty vertex at “infinite” temperature. Thus, a
tion could be expressed for a structural sitepd4, while for ~ complete model depends upon three parametrsB, and
the antistructural site as (1— p)*? with the (+) sign refer-  «° and a temperatur&. One can add a lattice constaat
ring to allowed reflections, whil¢—) sign referring to for- >0 in order to calculate the diffusion coefficient, the latter
bidden reflections. Forbidden reflections do vanish comiaking the formD = £ wa®.
pletely at “infinite” temperature(or for Uy=0), of course. The above diffusion matrices describing all Bragg reflec-
Namely, the intensity of the allowed reflectibpfollows the  tions expected have both the following eigenvalues=0
expression o=1+2[p(1—p)]*? while the intensity of the and\,=—(w/p). A scattering function takes on the same
forbidden reflectiorl ; obeys the relationship;=1—-2[p(1  form for all reflections, i.e.,
—p)]¥2 The latter intensities are scaled intensities, and they
have to be_ multiplied_ by an atomic scattering cross section S(t) = C,exp(— D4t) + C,exp( — Dt)
and a recoilless fraction to get measurable quantities.

Hence, a diffusion matrix takes on the following form
under the assumption that jumps are uncorrelated to each +Czexp(—Dat),
other:

exp{—[(Uy+B)/T]}
{1+exd —(Uy/T)]}2

. (11

where

o/ &P~ [(Ug+B)/TT}

1 1
1+exgd —(Ug/T)] )’

D1=0, D2=8w

) (1-p)p (1-p)ip
W=-u Dy=2D,,

for the forbidden reflections and and
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FIG. 4. Reduced decremerds, d,, andd; plotted vs reduced FIG. 5. Intensitiesly, I,, probability p, and value ofC,
temperaturer. Reduced decrements follow the expressiop  +2Cj; plotted vs reduced temperature |, and |, stand for the
=Dj/{w°exp[f(B/‘D]} with j=1,2,3 andD; being decrements of scaled allowed and forbidden reflections intensities, respectively,
the scattering function of expressi¢i2). while the probabilityp follows expressior(10).

Ci={p?+[p(1-p)]"2+(1-p)3}/Sy, It is interesting to calculate a contribution to the heat ca-
pacity due to the above diffusive process. The latter heat

) 12 capacity per atom takes on the following form under constant
CZZ{(Zp_1)+(1_p) [(1_p)/p] pressure:

—plp(1-p)]¥3/Sy, Cp=Kg(Ug/T)?
X (exd — (Ug/T)1H{1+exd — (Ug/T)1}?), (13

Cs=(p(1—p)1Y42[p(1-p)]"*~ 1})/S,,
where kg stands for the Boltzmann constant. A reduced
where diffusion coefficient d, having the form d=D/
{w’a%exy —(B/T)]}, and a reduced heat capacty/kg are

=2{p—[p(1—p)]¥Y2 +[(1—-p)/p]¥2 12 plotted versusr in Fig. 6.
So=2(p-[p(A-p)I"+1(A-p)/p] (12 A scattering functior5(t), calculated for the values

One has to note that the diffusion matrices are non-Hermitian

except at “infinite” temperature. Due to that, @; factor Uo=8000K, B=7900K,
takes on negative valué$However, an observable scatter-
ing function equals unity at=0 and decays monotonically »®=10%s"1, and T=1000K,

(weakly) with increasing time for all physically accep-

table values of the model parameters and at any physicallip Shown versus elapsed tirhé Fig. 7. One has to note that
accessible temperature. The facteygj =1,2,3) are plotted for the above values of paramgters and tempﬁerature,iand ad-
versus reduced temperature-(T/Ug) in Fig. 3. Reduced ditionally for a=3 A one obtainsD=3.36x10"° cnfs™*
decrements of the scattering functiond;=D;/ for a diffusion coefficient. _ _

{w®ex —(B/T)]} are shown versus in Fig. 4. Note that for Finally, Fig. 8 shows the expected sigmél) versus time
Uo=0 a reduced temperature is “infinite” regardless of thet calculated for the above scattering function and

real temperature value.

A good measure of the scattering function monotonicity y=0.00709ns*, Lo=2, and|v|=4.793 mm/s.
versus time is the valu€,+ 2C5; which has to remain non-
negative at all temperatures in order to assure $gtnever The parameteb has been set to zero; i.e., it has been
grows for non-negative times. assumed that the TDS contribution is negligible.

Values oflg, 11, p, andC,+2C5 are plotted versus re- The above values correspond to thEe 14.4 keV line,

duced temperature in Fig. 5. One can see that the monotevhereq,=7.30254 A, It seems that for the latter line the
nicity conditions are satisfied. best resonant targets are polycrystalline Rh foils having
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0.01 0.1 1

FIG. 6. Reduced diffusion coefficiedtand reduced heat capac-
ity C,/kg plotted vs reduced temperature The reduced diffusion
coefficient equalsi=D/{w»a%ex —(B/T)]} with D being a diffu-
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FIG. 8. Signall(t) plotted vs timet. This is a detector signal
normalized to unity at the instant of prompt.

sion coefficient, while a heat capacify, is defined by expression modulation depth with time elapsed is an indication of the

(13).

about 6 um thickness with several at. % oOfFe randomly
alloyed in. Such targets could be kept in the vicinity of room

temperature.

For a completely elastic scattering one would get here
100% modulation depth at all times. A gradually diminishing
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FIG. 7. Scattering functioS(t) plotted vs timet. The scattering

function is defined by expressidi?2).
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0 20 40 60 80 100 120 140 160 180 200

quasielastic processes in a scattering mechanism. A curve
joining the maxima of thé(t) function depends on the scat-
tering function as well, but a decrease in the modulation
depth is a major effect. One has to take into account the fact
that an overall time resolution of the system including the
gumber of channels used to store the data has an influence on
the modulation depth. Hence, the time resolution has to be as
good as possible.

It is interesting to note that for the model outlined above
one can get almost 50% of the quasielastic component in the
scattered radiation, however for a strong symmetry breaking.
In the case of complete symmetry one obtains a purely elas-
tic signal in accordance with the principle that no broadening
occurs under Bragg conditions for jumps within a Bravais
lattice either primitive or nonprimitive.

A gradual vanishing of the quasielastic component with
increasing temperature could be interpreted as well as some
kind of motional narrowing.

One has to note as well that the main contribution to the
quasielastic component comes from the “interference
terms,” the latter being present solely due to the coherent
character of the scattering under Bragg conditions.

A scattering function would work in a similar way in an
incoherent channdh scattering function would be generally
differeny as the original coherency is due rather to the in-
strument than the sample investigated. However, an incoher-
ent intensity in a narrow geometry would be almost null.

A diffusion matrix for the above example converges to a
zero matrix for a sufficiently low temperature; however,
there is no need to switch to a diagonal representation as
long as one is interested solely in the scattering func@n
as all eigenvalues converge to zero as well. The last state-
ment is of the general character for a thermally driven diffu-
sivity, and thus it would apply to any diffusion matrix.
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V. CORRELATED JUMPS guencies at very high temperatures. For a very low tempera-
ture all scaled frequencies converge to zero, resulting in a
Yero diffusion matrix in configuration space.

The scattering functio(t) follows expressior{9), albeit

th factorsA,, taking the form

Correlated jumps cannot be described in a standard diffu-
sion matrix approacfi for Bragg scattering. One has to in-
troduce an abstract orthogonal configuration space havm\%I
each dimension associated with a different configuration
within a chemical unit cell. A diffusivity mechanism leads to
transitions between various configurations, and hence, tran- AM,_E (PP
sition frequencies describe frequencies of the * eve?ﬂts
leading from one to another configuration instead of simple

2 E FOx QO—)[Fm s,(qoq_s)]*

“elementary” atomic jumps. X (@ PP 1Y
The diffusion matrix elements in configuration space take
on the form xexr{iq‘-(r_s—m}kum. (17

W||r:Q||ra’||r(a) for 1" #1
The meaning of the symbols is obvious, while comparing the
above expression with expressi@®). Usually, one can as-
sume that scattering amplltudl;ié,n (goqe) depend neither
Wy=—2 Q forl'=l, (14 upon the configuration nor the lattice. The vibrational dy-
1"l namics is likely to remain uncorrelated and configuration
where the index enumerates distinct configurations, while independent as well. It is important to use a complete set of
the symbol();. stands for a frequency of transition from the all lattices in order to obtain correct results. Actually, some

and

Ith to thel’th configuration. of them might remain empty for particular configurations.
The geometrical factow).(q) becomes quite compli- A configuration space chosen has to have enough dimen-
cated for correlated jumps except for the simplest casesions to assure that all configurations remain uncorrelated
Namely, it takes on the following form: one to another. Hence, it might be necessary to enlarge a unit
cell in some more complex cases.
_ H L1 (mn The above formalism reproduces exactly the scattering
o (@) =N 1% g pg“)spsns)’E (I"1pge") function S(t) evaluated in a Sec. IV for B2-structure com-

pound having the following propertieg¢l) both lattices are
almost completely filled at all temperaturég) (0 0 O sites

xexp(igq-[R—R.]),
ria-[R, ) are filled solely bym=1 atoms and ¥33) sites bym=2

with atoms at a low temperature, af8) the system remains at
equilibrium and a diffusivity causes “instantaneous” inver-
N= (' ) |’ (rjn ~0. (15) sion of random nearest neighbor atomic pairs, leading at a
% g p Sp"‘s 2 (Flpss™l high temperature to a random, albeit still stoichiometric, al-

loy. The unit cell sketched in Fig. 2 applies to the above
compound. It is additionally assumed that recoilless fractions
are lattice independent.

Here,p{\. stands for a probability to find theth atom at the
sth lattice within the Ith configuration, the symbol

(|’|pg:,“)|l').stands for a weight replacing Weighi";”’ » and One has to reinterpret model parameters, of course. The
the remaining symbols have the same meaning as in expregnergyU, stands here for an energy of the inverted ffair
sion (3). One can again conclude that,(q) =[ay/(q)]*. the U,=0 random alloy exists at all temperaturemd B

For a system being at equilibriuisuch conditions are denotes a barrier for the relaxation of the inverted pair to a
always satisfied for the setup under consideratimme ob-  normal pair, whilew® is a limiting frequency of inversion at
tains again very high temperatures.

, The probabilityp stands for the probability to find a nor-
Py =pi Ly for 1" #1 mal unit cell, whileC,, is a contribution to the heat capacity
and per unit cell. The diffusion coefficient due to the above pro-
cess is the same for both atoms and it follows the same

Q”,:[plpl,w”,wl,l]l/2 for I'<l, expression as outlined in Sec. IV. However, even a small

concentration of vacancies might cause direct jumps within

particular lattices breaking the above symmetry. The latter

jumps remain invisible to the scattering function. Scaled in-

piw=pyw for I’#1 and Y, pj=1, (16)  tensitiesl, andl; are the same as above; however, the scal-
[ ing factor takes the form

with

wherep, stands for the probability to find a unit cell in the 112 112 2
Ith configuration, andv,;; denotes a scaled transition fre- {f1"Re(Fy) > f7"Re(F2)}

quency due to flucurren) conservation under equilibrium. +{f¥2Im(Fy) = £32Im(F,)}?,

One has to note that the probabilities follow Boltzmann sta-

tistics, while the scaled frequencies are governed again byhere the indexm=1,2 enumerates atoms, the sigh) re-
the energy levels, energy barriers, and some limiting frefers to the allowed reflections, and the sign) to the for-
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bidden reflections, whilé,, andF ,, stand for the appropriate wide, excluding the lightest elements exhibiting very small
recoilless fraction and scattering amplitude, respectively. cross sections for the Rayleigh scattering dominating here.
One has to note that forbidden reflections disappear al©ne could say that all elements accessible to the x-ray dif-
ways in a high-temperature limit for the above compound. Iffraction could be studied here as well. One has to avoid
both kinds of atoms are the same, one restores symmetry egsonant atoms in the sample investigated.
any temperature, and the scattering function becomes purely Due to the small cross section of the beam, quite small
elastic with vanishing forbidden reflections. samples could be investigaténlates having %5x0.1 mn?
Hence, aB2-structure compound provides another ex-dimensions are quite satisfactpryFor such samples it is
ample of symmetry breaking within a nonprimitive Bravais easy to maintain a homogeneous and constant temperature
lattice as in a high-temperature limit it represents a cubic over the sample volume.
lattice with a 50% chance to find an atom of timéh kind at It might occur that this method would become as standard
any vertex. as x-ray diffraction, however with an extra dimensigime-
It is interesting to note that the scattering function for theenergy added.
last case does not depend upon the difference in ability to One has to note as well that the method described above
scatter by different atoms at different sit@xcept for a dif- is the most precise and the fastest way to obtain a single-
ference in the intensity of allowed and forbidden reflectjpns phonon TDS contribution under Bragg reflections. A com-
but it depends upon the symmetry breaking due to nonvarpeting method of the Rayleigh scattering of 84bauer ra-
ishing U, energy. The last phenomenon is caused by somdiation from radioactive sources requires extremely long
kind of “phase locking” in the coherent process occurring measurement time periods due to the very small photon flux
here. reaching a detectfat a comparable energy resolution.
A small amount of vacancies would not change the con- A configuration space approach might appear to be very
clusions reached above; albeit, it is likely to speed up diffu-useful in the case of correlated jumps as it has naturally built

sivity significantly. in a coherent behavior of the Bragg scattering.
A crystal satisfying conditions described in a Sec. IV is
VI. CONCLUSIONS somewhat artificial, and it was used to illustrate principles in

. _ the simplest way. On the other hanBgZ-structure com-
It has been shown that the NRSR interferometer desc”begounds being close to the one described in Sec. V and oth-

in Ref. 11 could be used to study relatively slow diffusive erwise suitable for an experimental setup outlined are quite
motions of atoms in single crystals in a way being sensitiveegmmon.
to both energy and momentum transfer.
The above device performs like a selector, allowing one
to see solely jumps between various Bravais lattices. Non- ACKNOWLEDGMENT
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