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Coherent quasielastic Bragg scattering from single crystals containing fast diffusers

K. Ruebenbauer* and U. D. Wdowik
Institute of Physics and Computer Science, Pedagogical University, PL-30-084 Cracow, ul. Podchora¸żych 2, Poland

~Received 21 January 1998!

Recent developments in the nuclear resonant~Mössbauer! scattering of synchrotron radiation~NRSR! al-
lowed one to observe successfully diffusive quasielastically scattered radiation from intermediate nonresonant
amorphous targets, e.g., glycerin, in a time domain. Hence, there is a real chance to observe such a radiation
scattered coherently at Bragg angles from single crystals containing fast diffusing atoms. Quasielasticity of the
latter radiation is solely caused by jumps between various Bravais lattices due to the peculiarity of the Bragg
conditions. On the other hand, an energy resolution could be easily increased by two orders of magnitude in
comparison with the incoherent quasielastic scattering of the cold neutrons~QNS! at much higher momentum
transfer to the crystal than in the case of QNS. The paper is devoted to a discussion of the physics underlying
scattering of NRSR beams from fast diffusers in single crystals under Bragg conditions.
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I. INTRODUCTION

A recent development in the nuclear resonant scatterin
synchrotron radiation~NRSR! allows one to investigate
quasielastic processes in nonresonant targets in the neV
lution range typical for a57Fe Mössbauer spectroscopy
where the wave number of the incident radiation is about
Å21.1 Previously such experiments were limited to the tun
sten Mössbauer line,2 where sufficiently strong sources cou
be obtained. An energy resolution of the latter line is of t
order of 1meV, i.e., comparable to the resolution of the be
back-scattering cold neutron spectrometers,3 albeit offering a
much broader momentum transfer range. An energy pro
of the nonresonant quasielastic scattering of the57Fe 14.4
keV line from single crystals was seldom observed due to
unavailability of sufficiently strong, and simultaneously res
nantly thin, sources.4 Amorphous targets were investigate
by the latter method due to the much less demand
geometry.5 One has to note that high-energy resolution n
tron spectrometers are available, but at very small mom
tum transfers solely.6 Hence, slow diffusivity studies were
practically limited to iron as far as microscopic methods s
sitive to the wave-vector transfer are considered.7

NRSR investigations are conveniently carried out in
time domain,8 and it has been demonstrated that a reson
forward scattering is sensitive to diffusive motions of res
nant scattering atoms in complete agreement with the s
dard absorption or emission Mo¨ssbauer spectroscopy.9 One
can speculate that the same statement applies to reso
Bragg scattering and resonant incoherent scattering as w10

Recently a device shown in Fig. 1 has been built and u
to demonstrate the presence of diffusive quasielastic sca
ing from an amorphous target, i.e., glycerin,11 the latter sys-
tem being quite well understood12 due to previous researc
performed either by using a standard absorption Mo¨ssbauer
spectroscopy on doped samples13 or scattering of the tung
sten line from the pure samples at higher temperatures.14 An
iron line was used in a scattering experiment performed
the above system as well.5

The above-mentioned device could be used as wel
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look upon diffusivity in single-crystals scattering at Brag
angles and do not contain resonant nuclei, i.e., for a sca
ing via the Rayleigh mechanism. A setup is quite similar
the standard four-circle x-ray diffractometer; however, a n
dimension ~time-energy! is added. In principle, powde
samples could be used as well, however at the cost o
enormous loss in intensity. One has to note that in the cas
naturally very-well-collimated NRSR beams a single-crys
experiment is in principle much easier than one perform
on an amorphous system. The situation is the opposite
radioactive sources emitting radiation spherically.

The paper is organized as follows: Section II deals with
brief description of the essential features of the device sho
in Fig. 1 and Sec. III is devoted to the description of t
quasielastic scattering function under Bragg conditio
while a simple example is evaluated in detail in Sec. I
Section V is devoted to a discussion of correlated jumps
the final Sec. VI summarizes results.

II. NRSR INTERFEROMETER

A NRSR interferometer has been introduced quite
cently and used to study diffusivity in glycerin.11 Basic fea-
tures of the above device are shown in Fig. 1. A pulsed be
of x rays comes at regular time intervals from an undula
with the first harmonic tuned to the Mo¨ssbauer transition
Such a beam consists of very-short-duration and very inte
pulses, and it has a very small overall cross section and
vergence. It is linearly polarized to a high degree as w
The beam is monochromatized to several meV by a se
single-crystal monochromators~not shown!. It remains still
‘‘white’’ and short pulsed from the point of view of the
Mössbauer nucleus after such a monochromatization
monochromatization preserves polarization as well. Sub
quently, the beam is passed through a single line flat
homogeneous Mo¨ssbauer absorber moving with a consta
velocity along the beam~the velocity is very small compare
to the velocity of light in vacuum!. The part of beam which
was not absorbed goes through a collimator and scatters
a single-crystalline target set under Bragg conditions o
head of a four-circle goniometer. It is important to set
11 896 ©1998 The American Physical Society
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PRB 58 11 897COHERENT QUASIELASTIC BRAGG SCATTERING FROM . . .
crystal in such a way to allow for a single Bragg reflection
be present in order to avoid a loss in intensity. It see
impractical to use forward scattering as the latter beam
contaminated by the noninteracting part. A backward geo
etry allows one to use thick crystals, and hence, it seems
most suitable. One has to note that in the region of f
diffusivity a kinematic approximation to the scattering
quite satisfactory. A crystal mosaicity might be a proble
for almost perfect beams coming down the undulator, a
thus it might be desirable to use single-crystal monochro
tors, being able to increase somewhat the beam diverg
~such a beam would be still perfectly collimated from t
Mössbauer point of view!. A scattered beam is passed aga
through the collimator and a stationary Mo¨ssbauer absorbe
identical with the movable one and kept under the same t
modynamical conditions. Identity of both absorbers assu
the deepest possible modulation. Finally, the beam g
through the final collimator and falls onto an avalanche p
todiode detector~APD!. Two last collimators together with a
stationary absorber and APD are to be mounted on a m
able arm of the four-circle goniometer, being actually a g
niometer of the four-circle x-ray diffractometer. Delayed c
herently forward scattered photons from the mova
absorber pass the same optical path as the original pulse~the
nonresonant Bragg scattering cross section is practically
same for all photons within the beam! and they interfere with
the delayed coherently forward scattered photons from a
tionary absorber. There is no phase shift just after the p

FIG. 1. A general layout of the NRSR interferometer applied
study diffusivity in single crystals under Bragg conditions. Ins
show an Ewald construction for the Bragg conditions with the
ciprocal lattice cross section overlaid and the velocity of the D
pler modulator vs time with the train of the undulator pulses~the
time scale of the pulse train is expanded in comparison to the m
lator scale!.
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due to the identity of optical paths. Remaining delayed p
tons cannot reach the APD for a geometry chosen. For a t
duration between subsequent pulses being long enough t
rid of delayed photons and a sufficiently narrow geome
there is practically no background, and one can almost
glect all incoherent contributions provided a thermal diff
sive scattering~TDS! under Bragg reflection is negligible
An APD signal ~count rate versus time elapsed from t
pulse! is modulated by a first-order Doppler shift introduce
by the first target. Such a modulation makes it much easie
see any quasielasticity in the Bragg scattering and a Dop
modulation is easiest to set to the required frequency,
latter being constrained by the APD time resolution and ti
interval between pulses. In principle, one can make mova
either first or second target or even a crystal~the latter along
the wave-vector transfer direction15!, but it is technically
easiest to move the first target. A movable target has to
form of course the periodic motion shown in Fig. 1, and t
data collection should be interrupted at the ‘‘turning point
indicated by the broken lines. One has to note that the cy
period of the target is much longer than the time durat
between pulses. Data could not be collected as well fo
short time just after the pulse as one has to allow the APD
recover from the prompt, and the data collection has to
stopped just before the next pulse. Usually, an APD co
rate is much smaller than the undulator pulse frequency,
hence, one can allow the collection of a single data point
well-defined time for each undulator period. The process
of such a data point has to be completed prior to the n
pulse. An integer number of pulses has to be processed
each ‘‘half’’ of the Doppler modulator period~the same for
both ‘‘halves’’!, and an integer number of the full Dopple
modulator cycles has to be performed during the data col
tion.

Due to the fact that Bragg scattering for available x-r
energies is predominantly of theE1 character, the maximum
scattering intensity could be obtained for the polarizat
plane being perpendicular to the scattering plane~see Fig. 1!.
This effect would be particularly strong for Bragg reflectio
scattering at right angles to the original beam, i.e., fo
scattering angle 2Q being close top/2. A refraction within a
scattering crystal could be neglected in the first approxim
tion.

An APD count rate~number of counts accumulated for
given number of undulator pulses! versus timet elapsed from
the pulse is given by the expression~normalized to unity for
t50 after having subtracted background, the latter be
very small and practically time independent for a we
designed system!:16

I ~ t !5~L0gt !21exp~2gt !J1
2
„~2L0gt !1/2

…

3$~11b!1~12b!@Re@S~ t !#cos~2v0t !

1Im@S~ t !#sin~2v0t !#%, ~1!

where L0 stands for a dimensionless resonant thickness
both targets together~each target has thicknessL0/2), g
stands for a natural linewidth of the Mo¨ssbauer transition~it
is assumed that targets have no intrinsic broadening!, J1 de-
notes a Bessel function of the first kind and order, andv0
5vq0 with q0 being to a good approximation a wave num
ber of the Mössbauer line andv a Doppler velocity~positive
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for a motion down the beam and negative vice versa!. A
symbol S(t) stands here for a scattering function from t
crystal under investigation. For a purely elastic scatteri
S(t)[1. For a time window accessible one can exp
S(0)51 andS(t) evolving with time to smaller values du
to the diffusive motions. Such an evolution has a monoto
character, while caused by diffusive motions. An imagina
part of the scattering function, Im@S(t)#[0, for a time win-
dow accessible and a temperature range where a therm
driven diffusivity becomes visible~one can neglect quantum
diffusivity as very light atoms scatter too weakly to be o
servable!. Thus, the direction of motion of the movable a
sorber has no effect on the data. For amorphous mate
S(t) evolves to zero with time passing, while for the cohe
ent Bragg scattering from crystals it usually evolves to so
constant value smaller than unity, albeit greater than zero
jumps occur solely within Bravais lattices,S(t) remains
unity at all times. A parameter 0<b<1 accounts for all
incoherences other than those due to a diffusivity, the la
incoherences being mainly caused by a single-phonon T
contribution under Bragg reflection, and hence, time in
pendent on the time scale accessible. For a TDS being ab
and a perfect deviceb approaches zero.

Finally, one can conclude this section saying that an A
is going to register any significant intensity for allowe
Bragg reflections. Otherwise, the total intensity registered
an APD would be almost negligible for a well-designed g
ometry; i.e., an incoherent~quasielastic! scattering of the x
rays is very weak from single crystals, and one would ha
to set a very large solid angle to register any significant
tensity. One has to note that inelastic~incoherent! scattering
~primarily Compton scattering! does not produce collimate
patterns as well. Hence, the only significant contaminat
might come from TDS scattering under Bragg reflecti
~usually, one can find reflections with a small TDS contrib
tion!, and hence, a spectrometric discrimination of the pul
coming from the APD might be quite crude.

III. SCATTERING FUNCTION UNDER BRAGG
CONDITIONS

For a purely elastic coherent scattering in the Bragg
rection a cross section from the chemical unit cell could
calculated using a standard crystallographic approach in
case of a sample which does not contain resonant nucle

Here, one has to take into account an extra dimens
i.e., a time-energy axis. It is a well-known fact that diff
sional broadening disappears at Bragg directions on
Ewald sphere for jumps within a Bravais lattice.17 Hence,
one can expect to see solely jumps between various Bra
lattices for a coherent Bragg scattering investigated here

Thus, it is necessary to consider a diffusion matrix,18 and
a chemical unit cell as an entity having each vertex belo
ing to a separate primitive Bravais lattice. A diffusion matr
elements could be expressed as follows under such circ
stances:

Wss8
~mm8!

5dmm8Vss8
~m!ass8

~m!
~ q̄!

and
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Ws8s
~mm8!

5dmm8Vs8s
~m!

@ass8
~m!

~ q̄!#! for s8Þs,

while

Wss
~mm8!52dmm8 (

s8Þs

Vss8
~m! for s85s. ~2!

Here, indexm enumerates different kinds of atoms constitu
ing a crystal, while the indexs enumerates different primi
tive Bravais lattices involved. A diffusion matrix is diagon
in the m indices as diffusivity does not transform atoms o
into another. Diagonal elements describe an inverse r
dence time for themth atom at thesth lattice ~with a nega-
tive sign!, while the off-diagonal elements contain an ave
age jump frequency of themth atom from thesth to thes8th
lattice multiplied by a geometrical factor dependent upon
wave-vector transfer to the crystalq̄. A geometrical factor
could be expressed as follows:19

ass8
~m!

~ q̄!5(
n

rss8
~mn!exp~ i q̄•@R̄s8

~n!
2R̄s# !,

with

(
n

rss8
~mn!

51 andrss8
~mn!>0, ~3!

where the indexn enumerates different sites~vortices! of the

lattice s8 as seen from any site of the lattices, R̄s8
(n)

2R̄s

stands for a jump vector from any site of thesth lattice to the
nth site of thes8th lattice ~relative to a given site of thesth
lattice!, and rss8

(mn) is a relative probability for the above
jump. Due to the fact that all sites of the given lattice a
equivalent, the following relationship holds:as8s

(m)(q̄)

5@ass8
(m)(q̄)#!. Usually, far away jumps do not occur, an

hence, the indexn has a very limited range for any pair o
lattices. One has to note that forq̄ being one of the reciproca
lattice vectors~Bragg conditions! all phase factors in the
geometrical factor reduce to the nearest neighbor phase
tors; i.e., there are no more than eight different such ph
factors for the lowest possible symmetry in a thre
dimensional space.

For the setup described above one can assume tha
scatterer remains at least locally at thermal equilibrium~in
fact, a sample has to reach an equilibrium prior to data
cumulation!. Therefore, the following relationship holds:

pmsVss8
~m!

5pms8Vs8s
~m! for s8Þs, ~4!

where pms stands for a probability to find atomm in the
vertex of the lattices. Due to the fact that lattices considere
are primitive, the above probabilities satisfy the expressi

0<pms<1 and 0<(
m

pms<1. ~5!

A frequencyVss8
(m) obeys the following relationship at equ

librium:

Vss8
~m!

5@pmspms8vss8
~m!vs8s

~m!
#1/2 for s8,s, ~6!
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while the corresponding frequencyVs8s
(m) could be obtained

from expression~4!. Here, frequenciesvss8
(m) andvs8s

(m) denote
jump frequencies of themth atom from any site of thesth
lattice already occupied by the above atom to any site of
s8th lattice, and vice versa. These frequencies satisfy exp
sion ~4! as well, i.e.,pmsvss8

(m)
5pms8vs8s

(m) . A frequencyvss8
(m)

could be further evaluated in terms of the jump frequency
themth atom from an already occupied site of thesth lattice
to any empty site of thes8th lattice,wss8

(m) , i.e.,

vss8
~m!

5S 12(
m8

pm8s8Dwss8
~m! . ~7!

One has to note that occupanciespms are governed by the
associated energy levels and the temperature within a B
mann statistics. Jump frequencieswss8

(m) are governed by en

ergy barriers between sites~including probabilitiesrss8
(mn))

and a temperature as well within the same statistics. The
depend as well on the jump frequency at ‘‘infinite’’ temper
ture, the latter frequency being solely dependent upon
mass of the atom, i.e., the indexm. The last statements appl
to a thermally driven diffusivity and a thermal equilibrium
within a sample.

A diffusion matrix has dimensions@(S3M )3(S3M )#,
whereS stands for the number of different lattices~number
of different vortices within a chemical unit cell!, while M
stands for a number of different atoms constituting a crys
i.e., s51,2,. . . ,S andm51,2,. . . ,M . The simplest system
where a diffusivity could be observed under Bragg con
tions, hasS52 andM51.

A diffusion matrix is generally non-Hermitian, albeit e
genvalues are real~lesser or equal to zero!. The above matrix
is a correct description provided jumps expressed by
above matrix remain uncorrelated to each other. One
calculate eigenvalues and eigenvectors of the above m
~left and right! according to the expressions

V̂ŴÛ5l̂, V̂Û5ÛV̂51̂, det~Ŵ2l̂!50, ~8!

whereV̂ stands for the matrix of left eigenvectors~eigenvec-

tors are rows!, Û stands for the matrix of right eigenvecto
~eigenvectors are columns!, andl̂ stands for a diagonal ma
trix containing subsequent eigenvaluesl as diagonal ele-
ments. A symbol 1ˆ denotes a unit matrix~operator!.

The above eigenvalues and eigenvectors could be use
a straightforward manner to calculate the resulting scatte
function S(t). Namely, a scattering function under Brag
conditions follows the expressions~for an allowed Bragg
reflection with nonzero intensity!

S~ t !5(
ll8

Cll8exp$@l1~l8!!#t%,

where

Cll85All8 Y (
ll8

All8

and
e
s-

f

z-

do

e

l,

-

e
n

rix

in
g

All85(
ms

(
m8s8

Fms~ q̄0q̄«̄ !Fm8s8
!

~ q̄0q̄«̄ ! f msm8s8~ q̄!

3@pmspm8s8#
1/2exp@ i q̄•~ r̄ s2 r̄ s8!#Vl8m8s8Umsl .

~9!

Here,q̄0 stands for the wave vector of the incident radiatio

q̄5Ḡ(hkl) stands for the wave-vector transfer to the crys

with Ḡ(hkl) being a reciprocal lattice vector having Mille
indiceshkl, «̄ stands for a unit vector perpendicular toq̄0
and belonging to the polarization plane of the incident rad
tion ~note that neither stationary target nor APD detector
sensitive to the polarization of radiation—see Fig. 1 for d
tails!, andFms(q̄0q̄«̄) denotes a scattering amplitude of th
mth atom at thesth lattice, while f msm8s8(q̄) stands for the
pair correlated recoilless fraction. Finally,r̄ s stands for the
position of thesth lattice vertex within the unit cell, while
Vl8m8s8 andUmsl denote appropriate eigenvector elemen

Usually, one can assume that the scattering amplit
does not depend upon the lattice, and that a vibrational
namics is uncorrelated. Hence, f msm8s8(q̄)
5@ f ms(q̄) f m8s8(q̄)#1/2, where f ms(q̄) stands for a recoilless
fraction of themth atom at thesth lattice. An assumption
concerning the correlation in the vibrational dynamics is p
ticularly well satisfied in the fast diffusivity region of tem
perature. A factorAll8 is invariant upon transformation
«̄⇒2 «̄ for a linearly polarized incident radiation.

One has to note that for low temperature the diffusi
matrix converges to a zero matrix, and expression~9! repro-
duces a standard crystallographic formula describing Br
scattering; i.e.,(ll8All8 represents a scattering cross sect

from a chemical unit cell provided one choosesV̂5Û51̂ in
this temperature region. Such a representation is always
sible for a zero matrix as all representations satisfying

condition V̂Û5ÛV̂51̂ are admissible for that case.

IV. ANALYTICAL EXAMPLE

In order to get a better insight into the underlying phys
it is worth considering some very simple example susc
tible to a straightforward analytical treatment. Let us co
sider a monoatomic cubic crystal having a completely fill
simple cubic lattice at temperatureT50. Let atoms occupy

at higher temperatures (1
2

1
2

1
2 ) sites within a unit cell. Let the

energy acquired by the atom transferred to the above sit
U0.0. Additionally, it is assumed that recoilless fractio
and scattering amplitudes remain the same on both sites.

energy barrier for a jump from the antistructural (1
2

1
2

1
2 ) site

to the structural (000) site amounts toB.0. A structure and
corresponding barriers and energies are shown in Fig. 2.
can assume as well that transfer between sites is solely du
nearest neighbor jumps, and it could be clearly seen tha
such jumps are equivalent. The probability to find an at
on the structural site is expressed as

p5$11exp@2~U0 /T!#%21, ~10!

and hence, it evolves from unity atT50 to 1
2 at ‘‘infinite’’

temperatureT. The probability to find an atom on the ant
structural site equals here 12p. Thus, a crystal approache
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11 900 PRB 58K. RUEBENBAUER AND U. D. WDOWIK
at cubic ~I!, i.e., a body-centered structure with increasi
temperature. The latter structure remains half-filled~note that
for U050 such a structure occurs at any temperature as
symmetry remains unbroken!.

For a completely broken symmetry all reflections are
lowed, while for the unbroken symmetry those withh1k
1 l 52n11 are forbidden, while those withh1k1 l 52n are
allowed. Here n stands for any integer. An effective scat
ing amplitude multiplied by a phase factor due to the po
tion could be expressed for a structural site asp1/2, while for
the antistructural site as6(12p)1/2 with the ~1! sign refer-
ring to allowed reflections, while~2! sign referring to for-
bidden reflections. Forbidden reflections do vanish co
pletely at ‘‘infinite’’ temperature~or for U050), of course.
Namely, the intensity of the allowed reflectionI 0 follows the
expressionI 05112@p(12p)#1/2, while the intensity of the
forbidden reflectionI 1 obeys the relationshipI 15122@p(1
2p)#1/2. The latter intensities are scaled intensities, and t
have to be multiplied by an atomic scattering cross sec
and a recoilless fraction to get measurable quantities.

Hence, a diffusion matrix takes on the following for
under the assumption that jumps are uncorrelated to e
other:

Ŵ52vS ~12p!/p ~12p!/p

1 1 D
for the forbidden reflections and

FIG. 2. Unit cell, energy levels, and barriers for the structu
evaluated.
he

-

r-
i-

-

y
n

ch

Ŵ52vS ~12p!/p ~p21!/p

21 1 D
for the allowed reflections, where

v58v0S exp$2@~U01B!/T#%

$11exp@2~U0 /T!#%2D . ~11!

Here,v0 stands for a jump frequency from an occupied v
tex to an empty vertex at ‘‘infinite’’ temperature. Thus,
complete model depends upon three parametersU0, B, and
v0 and a temperatureT. One can add a lattice constanta
.0 in order to calculate the diffusion coefficient, the latt
taking the formD5 3

8 va2.
The above diffusion matrices describing all Bragg refle

tions expected have both the following eigenvalues:l150
and l252(v/p). A scattering function takes on the sam
form for all reflections, i.e.,

S~ t !5C1exp~2D1t !1C2exp~2D2t !

1C3exp~2D3t !,

where

D150, D258v0S exp$2@~U01B!/T#%

11exp@2~U0 /T!# D , D352D2 ,

and

FIG. 3. FactorsC1 , C2 , andC3 plotted vs reduced temperatur
t. The factors represent relative contributions from various ex
nents to the scattering function. For details see expression~12!. The
reduced temperaturet is defined ast5(T/U0).



tia

r-
y
-
a

he

ity
-

-
o

a-
eat
ant

ed

t
ad-

en

e
ing

f ely,

PRB 58 11 901COHERENT QUASIELASTIC BRAGG SCATTERING FROM . . .
C15$p21@p~12p!#1/21~12p!2%/S0 ,

C25$~2p21!1~12p!2@~12p!/p#1/2

2p@p~12p!#1/2%/S0 ,

C35„@p~12p!#1/2$2@p~12p!#1/221%…/S0 ,

where

S052$p2@p~12p!#1/2%1@~12p!/p#1/2. ~12!

One has to note that the diffusion matrices are non-Hermi
except at ‘‘infinite’’ temperature. Due to that, aC3 factor
takes on negative values.20 However, an observable scatte
ing function equals unity att50 and decays monotonicall
~weakly! with increasing time for all physically accep
table values of the model parameters and at any physic
accessible temperature. The factorsCj ( j 51,2,3) are plotted
versus reduced temperaturet5(T/U0) in Fig. 3. Reduced
decrements of the scattering functiondj5D j /
$v0exp@2(B/T)#% are shown versust in Fig. 4. Note that for
U050 a reduced temperature is ‘‘infinite’’ regardless of t
real temperature value.

A good measure of the scattering function monotonic
versus time is the valueC212C3 which has to remain non
negative at all temperatures in order to assure thatS(t) never
grows for non-negative times.

Values of I 0, I 1 , p, andC212C3 are plotted versus re
duced temperature in Fig. 5. One can see that the mon
nicity conditions are satisfied.

FIG. 4. Reduced decrementsd1 , d2 , andd3 plotted vs reduced
temperaturet. Reduced decrements follow the expressiondj

5D j /$v0exp@2(B/T)#% with j 51,2,3 andD j being decrements o
the scattering function of expression~12!.
n

lly

to-

It is interesting to calculate a contribution to the heat c
pacity due to the above diffusive process. The latter h
capacity per atom takes on the following form under const
pressure:

Cp5kB~U0 /T!2

3„exp@2~U0 /T!#/$11exp@2~U0 /T!#%2
…, ~13!

where kB stands for the Boltzmann constant. A reduc
diffusion coefficient d, having the form d5D/
$v0a2exp@2(B/T)#%, and a reduced heat capacityCp /kB are
plotted versust in Fig. 6.

A scattering functionS(t), calculated for the values

U058000 K, B57900 K,

v051013s21, and T51000 K,

is shown versus elapsed timet in Fig. 7. One has to note tha
for the above values of parameters and temperature, and
ditionally for a53 Å one obtainsD53.3631029 cm2 s21

for a diffusion coefficient.
Finally, Fig. 8 shows the expected signalI (t) versus time

t calculated for the above scattering function and

g50.00709 ns21, L052, anduvu54.793 mm/s.

The parameterb has been set to zero; i.e., it has be
assumed that the TDS contribution is negligible.

The above values correspond to the57Fe 14.4 keV line,
whereq057.302 54 Å21. It seems that for the latter line th
best resonant targets are polycrystalline Rh foils hav

FIG. 5. IntensitiesI 0 , I 1 , probability p, and value ofC2

12C3 plotted vs reduced temperaturet. I 0 and I 1 stand for the
scaled allowed and forbidden reflections intensities, respectiv
while the probabilityp follows expression~10!.
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11 902 PRB 58K. RUEBENBAUER AND U. D. WDOWIK
about 6mm thickness with several at. % of57Fe randomly
alloyed in. Such targets could be kept in the vicinity of roo
temperature.

For a completely elastic scattering one would get her
100% modulation depth at all times. A gradually diminishi

FIG. 6. Reduced diffusion coefficientd and reduced heat capac
ity Cp /kB plotted vs reduced temperaturet. The reduced diffusion
coefficient equalsd5D/$v0a2exp@2(B/T)#% with D being a diffu-
sion coefficient, while a heat capacityCp is defined by expression
~13!.

FIG. 7. Scattering functionS(t) plotted vs timet. The scattering
function is defined by expression~12!.
a

modulation depth with time elapsed is an indication of t
quasielastic processes in a scattering mechanism. A c
joining the maxima of theI (t) function depends on the sca
tering function as well, but a decrease in the modulat
depth is a major effect. One has to take into account the
that an overall time resolution of the system including t
number of channels used to store the data has an influenc
the modulation depth. Hence, the time resolution has to b
good as possible.

It is interesting to note that for the model outlined abo
one can get almost 50% of the quasielastic component in
scattered radiation, however for a strong symmetry break
In the case of complete symmetry one obtains a purely e
tic signal in accordance with the principle that no broaden
occurs under Bragg conditions for jumps within a Brava
lattice either primitive or nonprimitive.

A gradual vanishing of the quasielastic component w
increasing temperature could be interpreted as well as s
kind of motional narrowing.

One has to note as well that the main contribution to
quasielastic component comes from the ‘‘interferen
terms,’’ the latter being present solely due to the coher
character of the scattering under Bragg conditions.

A scattering function would work in a similar way in a
incoherent channel~a scattering function would be general
different! as the original coherency is due rather to the
strument than the sample investigated. However, an inco
ent intensity in a narrow geometry would be almost null.

A diffusion matrix for the above example converges to
zero matrix for a sufficiently low temperature; howeve
there is no need to switch to a diagonal representation
long as one is interested solely in the scattering functionS(t)
as all eigenvalues converge to zero as well. The last st
ment is of the general character for a thermally driven dif
sivity, and thus it would apply to any diffusion matrix.

FIG. 8. SignalI (t) plotted vs timet. This is a detector signa
normalized to unity at the instant of prompt.
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V. CORRELATED JUMPS

Correlated jumps cannot be described in a standard d
sion matrix approach18 for Bragg scattering. One has to in
troduce an abstract orthogonal configuration space ha
each dimension associated with a different configurat
within a chemical unit cell. A diffusivity mechanism leads
transitions between various configurations, and hence, t
sition frequencies describe frequencies of the ‘‘events21

leading from one to another configuration instead of sim
‘‘elementary’’ atomic jumps.

The diffusion matrix elements in configuration space ta
on the form

Wll 85V l l 8a l l 8~ q̄! for l 8Þ l

and

Wll 52 (
l 8Þ l

V l l 8 for l 85 l , ~14!

where the indexl enumerates distinct configurations, whi
the symbolV l l 8 stands for a frequency of transition from th
l th to thel 8th configuration.

The geometrical factora l l 8(q̄) becomes quite compli
cated for correlated jumps except for the simplest ca
Namely, it takes on the following form:

a l l 8~ q̄!5N21(
m

(
ss8

pms
~ l ! pms8

~ l 8!(
n

~ l 8urss8
~mn!u l !

3exp~ i q̄•@R̄s8
~n!

2R̄s# !,

with

N5(
m

(
ss8

pms
~ l ! pms8

~ l 8!(
n

~ l 8urss8
~mn!u l !.0. ~15!

Here,pms
( l ) stands for a probability to find themth atom at the

sth lattice within the l th configuration, the symbo
( l 8urss8

(mn)u l ) stands for a weight replacing weightrss8
(mn) , and

the remaining symbols have the same meaning as in exp
sion ~3!. One can again conclude thata l 8 l(q̄)5@a l l 8(q̄)#!.

For a system being at equilibrium~such conditions are
always satisfied for the setup under consideration! one ob-
tains again

plV l l 85pl 8V l 8 l for l 8Þ l

and

V l l 85@plpl 8v l l 8v l 8 l #
1/2 for l 8, l ,

with

plv l l 85pl 8v l 8 l for l 8Þ l and(
l

pl51, ~16!

wherepl stands for the probability to find a unit cell in th
l th configuration, andv l l 8 denotes a scaled transition fre
quency due to flux~current! conservation under equilibrium
One has to note that the probabilities follow Boltzmann s
tistics, while the scaled frequencies are governed again
the energy levels, energy barriers, and some limiting
u-

g
n

n-

e

e

s.

s-

-
by
-

quencies at very high temperatures. For a very low temp
ture all scaled frequencies converge to zero, resulting i
zero diffusion matrix in configuration space.

The scattering functionS(t) follows expression~9!, albeit
with factorsAll8 taking the form

All85(
l l 8

~plpl 8!
1/2F(ms

(
m8s8

Fms
~ l ! ~ q̄0q̄«̄ !@Fm8s8

~ l 8!
~ q̄0q̄«̄ !#!

3 f msm8s8
~ l l 8!

~ q̄!@pms
~ l ! pm8s8

~ l 8!
#1/2

3exp@ i q̄•~ r̄ s2 r̄ s8!#GVl8 l 8Ull . ~17!

The meaning of the symbols is obvious, while comparing
above expression with expression~9!. Usually, one can as
sume that scattering amplitudesFms

( l ) (q̄0q̄«̄) depend neither
upon the configuration nor the lattice. The vibrational d
namics is likely to remain uncorrelated and configurati
independent as well. It is important to use a complete se
all lattices in order to obtain correct results. Actually, som
of them might remain empty for particular configurations.

A configuration space chosen has to have enough dim
sions to assure that all configurations remain uncorrela
one to another. Hence, it might be necessary to enlarge a
cell in some more complex cases.

The above formalism reproduces exactly the scatter
function S(t) evaluated in a Sec. IV for aB2-structure com-
pound having the following properties:~1! both lattices are
almost completely filled at all temperatures,~2! ~0 0 0! sites

are filled solely bym51 atoms and (12
1
2

1
2 ) sites bym52

atoms at a low temperature, and~3! the system remains a
equilibrium and a diffusivity causes ‘‘instantaneous’’ inve
sion of random nearest neighbor atomic pairs, leading a
high temperature to a random, albeit still stoichiometric,
loy. The unit cell sketched in Fig. 2 applies to the abo
compound. It is additionally assumed that recoilless fractio
are lattice independent.

One has to reinterpret model parameters, of course.
energyU0 stands here for an energy of the inverted pair~for
the U050 random alloy exists at all temperatures! and B
denotes a barrier for the relaxation of the inverted pair t
normal pair, whilev0 is a limiting frequency of inversion a
very high temperatures.

The probabilityp stands for the probability to find a nor
mal unit cell, whileCp is a contribution to the heat capacit
per unit cell. The diffusion coefficient due to the above pr
cess is the same for both atoms and it follows the sa
expression as outlined in Sec. IV. However, even a sm
concentration of vacancies might cause direct jumps wit
particular lattices breaking the above symmetry. The la
jumps remain invisible to the scattering function. Scaled
tensitiesI 0 and I 1 are the same as above; however, the sc
ing factor takes the form

$ f 1
1/2Re~F1!6 f 2

1/2Re~F2!%2

1$ f 1
1/2 Im~F1!6 f 2

1/2 Im~F2!%2,

where the indexm51,2 enumerates atoms, the sign~1! re-
fers to the allowed reflections, and the sign~2! to the for-
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bidden reflections, whilef m andFm stand for the appropriate
recoilless fraction and scattering amplitude, respectively.

One has to note that forbidden reflections disappear
ways in a high-temperature limit for the above compound
both kinds of atoms are the same, one restores symmet
any temperature, and the scattering function becomes pu
elastic with vanishing forbidden reflections.

Hence, aB2-structure compound provides another e
ample of symmetry breaking within a nonprimitive Brava
lattice as in a high-temperature limit it represents a cubic~I!
lattice with a 50% chance to find an atom of themth kind at
any vertex.

It is interesting to note that the scattering function for t
last case does not depend upon the difference in abilit
scatter by different atoms at different sites~except for a dif-
ference in the intensity of allowed and forbidden reflection!,
but it depends upon the symmetry breaking due to nonv
ishing U0 energy. The last phenomenon is caused by so
kind of ‘‘phase locking’’ in the coherent process occurrin
here.

A small amount of vacancies would not change the c
clusions reached above; albeit, it is likely to speed up dif
sivity significantly.

VI. CONCLUSIONS

It has been shown that the NRSR interferometer descr
in Ref. 11 could be used to study relatively slow diffusi
motions of atoms in single crystals in a way being sensit
to both energy and momentum transfer.

The above device performs like a selector, allowing o
to see solely jumps between various Bravais lattices. N
primitive lattices require some symmetry breaking, lead
to distinct primitive lattices in order to see jumps with
them.

The range of elements susceptible to this method is q
l

n

l-
f
at
ly

-

to

n-
e

-
-

d

e

e
n-
g

te

wide, excluding the lightest elements exhibiting very sm
cross sections for the Rayleigh scattering dominating h
One could say that all elements accessible to the x-ray
fraction could be studied here as well. One has to av
resonant atoms in the sample investigated.

Due to the small cross section of the beam, quite sm
samples could be investigated~plates having 53530.1 mm3

dimensions are quite satisfactory!. For such samples it is
easy to maintain a homogeneous and constant temper
over the sample volume.

It might occur that this method would become as stand
as x-ray diffraction, however with an extra dimension~time-
energy! added.

One has to note as well that the method described ab
is the most precise and the fastest way to obtain a sin
phonon TDS contribution under Bragg reflections. A co
peting method of the Rayleigh scattering of Mo¨ssbauer ra-
diation from radioactive sources requires extremely lo
measurement time periods due to the very small photon
reaching a detector22 at a comparable energy resolution.

A configuration space approach might appear to be v
useful in the case of correlated jumps as it has naturally b
in a coherent behavior of the Bragg scattering.

A crystal satisfying conditions described in a Sec. IV
somewhat artificial, and it was used to illustrate principles
the simplest way. On the other hand,B2-structure com-
pounds being close to the one described in Sec. V and
erwise suitable for an experimental setup outlined are q
common.
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