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Superconducting mesoscopic square loop
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For a superconducting mesoscopic square loop, the superconducting state is described and the phase bound-
aries are analyzed on the basis of a self-consistent solution of the Ginzburg-Landau equations. There exists a
qualitative difference in the nucleation of the superconducting state in a square and a circular mesoscopic loop.
Due to the interplay of different kinds of symmetry, of the square loop and of the magnetic field, the order-
parameter distribution is inhomogeneous in the loop. After clarification of the thermodynamical stability of the
superconducting states, we turn to the analysis of the equilibrium states which can be realized in experiment.
The problem of theH-T superconducting phase boundary is discussed in detail. The calculated phase bound-
aries are in good agreement with the experimental data obtained for the Al mesoscopic superconducting square
loops.[S0163-182608)06741-1

I. INTRODUCTION ductivity in a thin ring carrying a lateral affhwas of impor-
tance for the explanation of the effect of topology on the
Three well-known experiments on persistent currents inl .(H) dependence. Recently, nucleation and evolution of the
metallic? and semiconductirig mesoscopic rings have order parameter and the critical temperature were analyzed
stimulated intensive theoretical research of quantization angiear a circular holé?
confinement effects in nanosize metallic and semiconducting Although the observed (H) oscillations can be inter-
structures. Recently, these effects have also been studied pfieted in the above-described way by choosing some effec-
mesoscopic superconducting structures. The experifitentstive radii of cylinders, nevertheless the experimental investi-
carried out on superconducting mesoscopic aluminum loopgation of mesoscopic superconducting structures of realistic
with sizes smaller than the temperature-dependent coherengbape(e.g., square loopsequires a more adequate theoret-
length £(T) and the penetration depi(T) reveal the influ- ical description. To the best of our knowledge, there have
ence of the sample topology on the superconducting criticdpeen no theoretical reports on the superconducting properties
parameters, such as critical temperatligeas a function of ~Of square-shaped loopsglevant to the available experi-
magnetic fieldH. Also the resistive transition anomalies Ments.
have been observed in multiprobe aluminum nanostructures In our theoretical analysis we rely upon the Ginzburg-
with a linewidth less than 100 nfiY. Quite recently, the sus- Landau(GL) equations for the order parametgrand the
ceptibility of a single mesoscopic aluminum ring was experi-vector potentialA of a magnetic fieldH =rotA,**~*°
mentally studied with an integrated superconducting

guantum interference device at temperatures near the super- i( —inv— EA 2¢+azp+b|¢|2¢=0 1)
conducting critical temperatufeThese experiments have fo- 2m c ’

cussed on the problem of thie,(H) phase boundary in the

mesoscopic superconductor structures of different topology, A7ieh 16me? )

which is the central point of the present paper. AA= ——— (V= yVy*)+ WAM . @

In a mesoscopisquareloop, the Little-Parks-type oscil-
lating H-T phase boundary has been detected, it is related telerea and b are the GL parameters. We use the following
the effect of the fluxoid quantization in the lodfo inter- boundary condition:
pret these oscillations, the authors of Ref. 4 applied the
Tinkham formuld which describes the superconducting tran-
sition in a perpendicular magnetic field forcarcular loop
with emphasis on the consequences of flux quantization. Af-
ter analysis by Tinkham, there has been a long-standing invheren is the unit vector normal to the boundary. It is im-
terest in the superconducting properties of samples possegsertant to mention here, that the geometry of a real super-
ing cylindrical symmetry For example, the oscillating conducting structure enters the problem via the boundary
dependence of the critical magnetic vortex-nucleation fielccondition (3).
was investigated for aylinder and acylindrical porein a The paper is organized as follows. The discussion of the
superconducting matrixsee, e.g., Ref. 20 in particular, boundary problem for a loop is forwarded in Sec. Il by the
when their radius is of the order of the coherence lengthanalysis of the phase boundary of a superconductor filling a
£(T).1 The analysis by de Gennes of the onset of superconeorner in terms of a variational model based on the linearized

2e
n-(—iﬁVl//—?Al/I =0, 3

boundary
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.GL. theqry. This simple apprpach allows one to elaborate am terms of the dimensionless variabté =p+eH/cx and
insight into the edge effects in superconducting square loopge coherence length’=&\eH/ck, this equation can be

having such corners. written as

The main topic of the paper is a self-consistent solution of
the GL equations for a mesoscopic square superconducting 1 a A\ 1o ., 2 1
loop. The basic equations with the appropriate boundary con- —{— p— —,2{&— —ip’ } Vi=—".
ditions are derived in Sec. Ill. Section IV is devoted to the P &p P ¢ 3

discussion of the obtained solutions. The distributions

of the magnetic fieldH(x,y), of the squared amplitude Itisimportantto mention the relation with the second critical
wg(x,y), and of the phaseb(x,y) of the order parameter field H,

= .expl¢) are presented for the cases when an enclosed

fluxoid contains a different numbek of magnetic flux 1 2Hg
guantad. It is shown how the found distributions depend &2 “TH
on the temperature and on the applied magnetic field and

how they change for various fixed orbital momefitaThe  which can be used to define the critical magnetic field in a
influence of the length of leads on distributions of the mag-corner as

netic field and the order parameter is revealed. The differ-

ences inyg, at midpoints of the adjacent sides of the loop are 2H»

discussed in relation to the experimental measurements of Hcrit:maXH:W- 1D

the T.(H). After clarification of the thermodynamical stabil-

ity of the superconducting states, we turn to the equilibriumThis field is therefore determined by the minimal value of
states which can be realized in experiment. In Sec. V, thehe inverse squared dimensionless coherence lefigth
problem of the definition of th@.(H) phase boundary for a Unit vectors normal to the planes=0 and¢=«a form-
square loop is analyzed. It is demonstrated that the theoreting a wedge aree, and —e,, respectively. Hence, the
cal results fit quite well with available experimental dta. boundary cond|t|on$3) for the order parameter are

(10

IIl. THE NUCLEATION OF THE SUPERCONDUCTING B } Jv eH
STATE IN THE WEDGE

=0. (12
¢=0,a
Before analyzing the superconducting state in a squargfter introducing the dimensionless radial variahle, Eq.
loop, we consider first the problem of a “superconducting(12) turns to
corner,” i.e., the nucleation of superconductivity in a wedge-

p&(p ch P

like sample with magnetic field applied parallel to the A
wedge’s edge. A superconductor, which fills a corner with '%ﬁLP v =0. 13
the central angler (0<a<2) and is restricted by the two ¢=0a

planesp=0, p=a; is considered in the presence of a uniform Henceforth, the prime in the denotatigri will be omitted
magnetic fieldH=He,. With the origin of coordinates cho- for simplicity.

sen at the edge of the corner, it is convenient to use the The solution of Eq(9) with boundary condition§l13) will
vector potential of the magnetic field in the symmetricalbe sought in the form

gauge:
ip?sin(2mnel )
A=Ag+Al, A=3Hx, A=—3Hy, (4 W(p.g)=exp——————fnlp. @),
or in cylindrical coordinates,
. n=0,1,2.... (14
A=A e,, A =35Hp. 5 ) »
o(P) #(P)=2Hp ® In order to satisfy the boundary conditiof3), we choose
The linearized GL equatiofil) (see Refs. 14—-16 vanishing derivatives of the new functidi(p,¢) with re-
. spect to the angle at the boundaries:
2 15 )
—|ﬁV——A T+av=0 (6) of
2m -2 =0 (15
in cylindrical coordinates takes on the form ¥ lo=0a
Indeed,
ﬁz(l a( aq})+l&+2eA()2\If] v
- R Y Ares - T P =—aV¥. (3’\1’
2mip dp\" dp| [p de ich ;Z (p)zipzcos(ango/a)‘lf(p,go)
Inserting here Eq.(5) and the coherence length i 02si
p-sin(2mnel/ a) |9t \(p,¢)
=#/(y2m[al), we obtain F{ Do n&cp , (16
19 ¥\ [1 9 eH ]? 1 -
S el et e ) e VRN wherefrom Eqs(13) follow straightforwardly.
p dp\" dp p deo ich 3 The equation for the new functiofy(p,¢) reads
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R 1 [ flz,y) 2
Ofn(p,¢)=?fn(p,<p), (17)
Of il sin2mnela) | 22— 2|4
n(p,@)=i|sin2mne/a) "o @mnla) (P, )
fn(p,e) . Ifn(p,e)
—4pT +2 Slnz(ﬂ'n(p/a)T ;
sin2mnela)\?
2 vl
+4p (—an/a +sin'(mnel a)
1 0fn(p.@)  *fn(p.e)
Xfua(p,@)— — 2 | f(z.y)
p ap ap a =057
1 #*fn(p.¢) 1
v A B N N\
R O
In order to solve this differential equation, we apply a varia- “;s::ii)')'\'\l‘l\\“\\“\\\\\\\\
tional method, which is a generalization of the variational or ";;‘:;Zgl,',',m“"“m
approach, proposed by Kittel and used by de Gennes for a = )/

semi-infinite semiconductor plaft®to a wedge with an ar- 0
bitrary value of the anglee. Namely, for a given trial func-
tion f,(p,¢), both parts of Eq.(17) are multiplied by
f*(p,®). Upon integration over the area of the corner, the
following expression for ¥'? results:

1 L *(p,)Ofn(p, @) pdpde

orner

f [fa(p.@)|?pdpde
corner

e

Two types of the trial functions are further usédr cer-
tainty, n=1 is taken henceforjh

ool oo 35|

(19
f.p.@) =p("_1)’zex+k COﬁ( ?)

corner with the central angle=0.057 (a), 0.57 (b), 1.5 (c).
(20 Calculations were performed using E3d.9) for the casega), (b)

and Eq.(20) with u=1 for the casdc), respectively.
We would like to emphasize that for a semi-infinite semicon-
ductor plane(i.e., for «= ) both trial functions(19) and stantially higher applied fields. Extrapolating these results to
(20) turn to the function, proposed by Kittékee Ref. 1§  a square loop, we can already anticipate a stronger supercon-
After substituting these functions into the right-hand side ofductivity of the corners.
Eq.(18), the resulting expression for&# is minimized with

LT FIG. 1. Distributions of the order parametdi(p,¢)|? in the
expg —rp stT .

reSpﬁCt to ﬂl‘? Vag.at"?ga'. para”?e;k‘s' g _— Iil. THE BOUNDARY PROBLEM

The resulting distributions of the order parameter in the FOR A MESOSCOPIC SQUARE LOOP

corner are shown in Fig. 1 for three different values of the

angle «=0.05r, 0.57, 1.57. For a<w and a>, the In this section, we consider a mesoscopic structure of a

minimum of 1£'? is provided by the trial functions of the type-ll superconductor with the shape of a square loop with
type (19) and(20), correspondingly. The obtained solutions leads(see Fig. 2 The leads are made from the same material
clearly indicate that for & a< = there appears maximum as the loop and are supposed to have the same width as the
of the order parameter at the edge of the corner. This generfdop itself. This corresponds to the shape of the real structure
feature of the model implies that the nucleation of the superwhich has been studied in the experiments reported in Ref. 4.
conducting phase in the corner is facilitated in the vicinity of We take the following sizes of the loop: the widith

the edge, i.e., superconductivity in the corners sustains sub=150 nm, the outer sid€.=1000 nm (the side of the
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Qe=1000 nm For the geometry of the problem under consideration in
the case of a uniform magnetic field, the suitable form of the
QL=500 nm ' ] symmetrical gauge for the vector potenthalis

@Q;=700 nm

; 7] A=31[HXr], (21
where H=He, is the magnetic field strength, amd=xe,
+ye, . In the case of a nonuniform magnetic field, this gauge
can be accepted as a fair approximation in the framework of

FIG. 2. Scheme of a mesoscopic superconducting square loojte self-consistent calculations.
with leads. Further, let us perform transformatigrt® of Egs. (1), (2)

to dimensionless variables. The temperature dependences of
opening, therefore, iQ;=700 nm), and the length of the the coherence lengt§(T), the magnetic field penetration
leads isQ, =500 nm(the case when the length of the leads 9epthA(T), as well as the coefficierst are the following:

changes will be specially discussed 1 T\ 12
In order to adapt our model to the experimental condi- &= 50(1_ — . N=N\ol 1— _) ,
tions, we used in the calculations the values of the Ginzburg- Te Te
Landau parameters taken from the relevant experimental
works (Refs. 4 and b These values differ essentially from a=ag| 1- l) 22)
the corresponding values for bulk Al, e.g., the Ginzburg- Te
Landau parametet has the value of 0.08Ref. 19 in pure with the coefficients
bulk aluminum, but its value in the mesoscopic loop under
consideration is close to unity. As it follows from Refs. 4 and 7 \/W \/ﬁaﬁ
5, £,=100 nm, Ag=91 nm, that givesk=0.91. Hence, = Ao=\/——>—7, H.=\/——
the characteristics of the structure under consideration are ‘o v2m|ay| ° 16me?|ay| ‘ b
introduced in the equations through the relevant values of the (23
Ginzburg-Landau parameters. The GL parameter is defined as=\/¢. The transformed
The magnetic fieldH, is applied in thez direction, i.e., functions and variables become
perpendicular to the sample which lies in theplane. In our
calculations, we will consider all the relevant physical quan- " W . H, X Y
tities, namely, the magnetic field in the structute the = T =g X =17, Y =10
phase¢, and the squared amplitud,!ef, of the order param- |ol/b He Mo Mo (24)

eter, as functions of andy whereas the dependence will be

neglected. This simplification does not influence substanFurther on, the primes will be omitted.

tially the results as far as the specific features of the magnetic The order parametey is a complex-valued function of
field and the order-parameter distributions inside the loop argoordinates and can be presented in a general form as
due to the complex shape of the cross section of the super- :
conducting structure in they plane. It is clear that our as- PGY) = Pal(Xy) €0V, (25)
sumption is adequate for very thin plates or for samples exSubstituting Eqs(21)—(25) for the GL equationsl), (2), we
tended in thez direction, as long as the magnetic field is obtain the following set of equations to determine
uniform in this direction. Pa(Xy), o(x,y), andH(X,y):

Piha(XY)  Pa(X,y) I(ﬁcﬁ(x,y) 2 (&qb(x,y))z
+ - +
9°x 3%y X ay
+%H(x,y)[y&¢;§'y)—xa(b((;;’y) +;<2{—(1—_|_1C +%H2(x,y)(x2+y2)+ PA(X,y) ]zpa:O, (26)
FPHxY)  Ph(Y) _[P(XY) dpa(X.y)  B(XY) dpa(xY)] K Ipa(X.y)  a(xY)]
P + pY +2[ X o + oy 3y +EH(x,y){y o —X oy =0, (27

IPa(X,y) dP(XY)  dha(Xy) dd(X.y)
ay IX IX ay

F*H(X,y) +azH(x,y) 2\2
ax? ay? « Ve

(x,y)[

IPa(X,y) — IPa(X,y)
XTox y ay

— (X, Y)H(X,Y)

}—wﬂx,y)H(x,y):o. (28)
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It should be noted that the rigorous boundary conditiontering Eq.(31) requires the knowledge of the magnetic field
for the magnetic field outside the loop is defined at infinity: H(x,y) distribution which can be found only self-

H(X!y)lx,yH%: HO'

Assuming that the applied magnetic fi¢lg) does not change opening of the looH; to the applied magnetic fieldl, in
when approaching the sample up to its surface from outsiderder to fulfill condition (31), we obtain the problem with
the set of the boundary conditions at the external boundargew boundary conditions. Thus, when solving the set of

results:
IPa(X,y) o Ipa(X,y) o
(7X ext, x=const ’ ay ext, y:const ,
d(X,
( ¢((? : NI N
2 \/— ext, x=const
Ip(xy) K
( T - m H X =0,
ext, y=const
H(X,Y)|ex=Ho- (29

Similarly, for the internal boundary it follows that

5‘/’a(xay)
X

int, x=const

+——=H,y

IX 22 "

<8¢(X,Y) Y
ay 2\2

(a¢<x,y) K

HX,Y) lin=H

The magnetic field inside the openiiy depends on the
applied magnetic fieldH, and can be determined from the

(?‘//a(XaY)
ay

:0,

int, y=const

=0,

int, x=const

=0,

int, y=const

(30

integral relation(see Ref. 16 and the Appendlix

C Cc
EﬁrOtH-C”—m(q)f—q)i):O, (31)

with the condition of the fluxoid quantization

(I)f:Lq)o,

Here®,=ch/2e is the flux quantum ané®;=¢§;A-d| is the

L=0, 1, 2,... . (32

consistently with¢,(x,y) and ¢(x,y). In their turn, the
boundary conditions foH(x,y) and ¢(x,y) themselves de-
pend onH;. Therefore, adjusting the magnetic field in the

equations(26)—(32) one faces a nonlinear multiparameter
problem which includes a set of nonlinear partial differential
equations and an integral equati(g1i).

Equations(26)—(28) with boundary condition£29), (30)
together with relation(31) are solved numerically by using
the finite-difference method for partial differential
equations® For the numerical solution, we have used a rect-
angular grid which contains 241 points in the direction of
leads and 121 points in the perpendicular direction. Every
single equation is solved by the multiple subsequent passing
through all the points of the grid until the distribution of the
sought quantity does not change anymore. Then the obtained
distribution of the given quantityfH(x,y), ¢(x,y), or
¥a(X,y)] is used for all the other equations with the corre-
sponding boundary conditions. This iteration procedure is
continued as many times as it is necessary in order to obtain
a self-consistent solution. Our estimations show that it is
enough to perform about 6000 iterations to provide the rela-
tive accuracy 10* of the solution of the set of equations
(26)—(30) for a given trial value oH; . In practice, we used
the number of iterations 10 000. After this solution is ob-
tained, condition(31) is examined. If it is not fulfilled, the
next round of calculations is necessary. This procedure is
repeated until conditiof31) is satisfied with the guaranteed
accuracy of 1%. Typically, 10—20 rounds of calculations are
required depending on the choice of the initial trial value of

IV. SOLUTIONS OF GINZBURG-LANDAU EQUATIONS
FOR A SQUARE LOOP WITH LEADS

In this section, we discuss typical features of the obtained
solutions of the GL equations, i.e., of the distributions of the
magnetic fieldH(x,y), the phasep(x,y), and the squared
amplitude z,//i(x,y) of the order parameter, for the mesos-
copic square loop with leads.

A. Examples of the distributions

The examples of typical distributions of the magnetic field
H(x,y), the phase of the order parameigfx,y), and its
squared amplituddfg(x,y) are presented in Fig. 3. As con-
venient units forT andH the following values are chosen:

magnetic flux through the opening of the loop. The integrathe critical temperature at zero magnetic field(H=0)
tion runs over the internal boundary of the loop.
The self-consistent procedure of finding the solutions imfor Al) and the critical magnetic field for bulk Al at zero
plies, first, that the obtained distributioh&(x,y), ¥a1(X,y),
and ¢(x,y) should satisfy all the equations of the boundarytemperature fromT/T.(0)=0.8 [Fig. 3@] to T/T.(0)
problem simultaneously and, second, that the value of the=0.94 [Fig. 3b)] at a fixed value of the applied magnetic
magnetic field inside the openirtgj of the loop should obey field Hy=0.1H(0) leads to a substantl(aipprOXImately, by
the integral relatior(31). The calculation of the integral en- a factor of § suppression Ofl//a(X y) everywhere in the

=T, (the Ginzburg-Landau critical temperatufie,=1.2 K

temperaturéH (T—0)=100 G(cf. Ref. 19. Increasing the
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a) L=0
T/T(0) =0.8
Hy = 0.1H,(0)

H; = 0.066 H,(0)

b) L=0
T/T+(0) = 0.94
Hy = 0.1H,(0)

H; = 0.075H,(0)

¢) L=1
T/T.(0) = 0.94
Hy = 0.5H,(0)

H; = 0.25H,(0)

d) L=2
T/T.(0) = 0.94
Hy = 0.7H,(0)
H; = 0.63H,(0)

1000

FIG. 3. Calculated distributions of the magnetic fi¢ldx,y), the phase of the order parametgfx,y), and its squared amplitude
$2(x,y) in a mesoscopic square loop with leads. As a unitHgx,y), the critical magnetic field for bulk Al at zero temperature is used:
H.(T—0)=100 G; wi(x,y) is measured in unitk,|/b, wherea, andb are the GL parameters.

structure with a simultaneous concentration of the ordertributions in the loop itself. Leads weakly distort the patterns
parameter around the opening and in the corners of the loopf the distributions, which obey th€, symmetry peculiar
The phase of the order parametgfx,y) for L=0 has an for an isolated square loop, reducing their symmetrZjo
oscillatory behavior. The modulation of the magnetic fieldAs shown in Fig. 4, for the particular cas&/T.(0)
H(x,y) is stronger in the case of an intensive distribution of=0.6, Hy=0.4H.(0), L=0 there are maxima in the
the order parameter at the lower temperature and is weaker i(x,y) distribution at the links of leads to the loop. Such
the case of the higher temperature when the order-parametgiaxima are absent at the corresponding points of the
distribution has a much lower magnitude. The aforemen-%(x,y) distribution in the adjacent sides. These results are
tioned increase of temperature leads to a small changg agreement with the analysis in the framework of the net-
of the magnetic field inside the opening from the valuework model which gives a stronger order parameter at the
H;=0.066H.(0) to H;=0.073.(0). nodes'® Simultaneously, the maxima in th#(x,y) distribu-

For higher applied magnetic fieldBigs. 3c) and 3d)] it tion near the midpoints of the external sides of the loop are
is favorable for the superconducting loop, to capture SoM@estroyed by leads. Shortening the leads fi@ps 0.5Q, to
number_ of the flux quanta according to the condition of _thte =0.25Q, does not result in any visible change of the mag-
magnetic flux quantizatiori32). Increase of the magnetic netic field and the order-parameter distributions in the body
flux number fromL =0 [Fig. 3(b)] to L=1,2 (Figs. 3c) and  of the loop. For the case of leads with a length much smaller
3(d)] at a fixed temperature leads to a considerable suppreghan the side of the loopQ,=0.08Q,, the features of
sion of the o_rder param?ter ang to the Iocqhza’qon of thGH(x,y) and z//f,(x,y) distributions typical for corners appear
superconducting phase “islands” near the midpoints of the, the vicinity of the links. In an isolated loop, the distribu-

internal sides of the loop. The distribution ¢{(x,y) keeps  (ions of the magnetic field and the order parameter acquire
an oscillating character but fdc#0 the trace along any ipe C, symmetry.

closed path around the loop results in fifease shifL.

B. The influence of leads on the distributions C. The evolution of the y%(x,y) distribution in the loop

of the order parameter and the field in the loop In order to follow up the evolution of the “islands” of the

For the structures under consideration, when the width osuperconducting phase in the loop for a certain fixed orbital
the loop and leads relates to the external side of the loop edumberL, we will change the applied magnetic field,
1.5:10, it is revealed that the presence of leads does not afrom the value which corresponds to the appearance of non-
fect strongly the magnetic field and the order-parameter diszero l//i(X,)/) [according to the accuracy of the calculations,
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[ lz,y) P It is worth noting that for a certain range of values of the
applied magnetic fielflHy=<0.1H.(0) for L=1] the distri-

0‘5%920 _y Mﬂll,‘,")"“\ A bution of the order parameter in each corner of a mesoscopic
' 'li;""“ﬁi)ij"{’l't‘«'iﬂ'l'ﬁ'l"“ » superconduncting loop clearly reveals nucleation of the su-
0 "Z > perconducting phase in the vicinity of the corners. Such a
0 ==y behavior of the superconducting order parameter has been
1000 5490 O anticipated by a corresponding distribution obtained within

the simple model of aisolatedcorner analyzed in Sec. Il, as
is obvious from Fig. &). When further increasing the ap-
plied magnetic field, the distribution of the order parameter
is determined to a decisive measure by the geometry of the
mesoscopic superconducting structasea whole

The above analysis of the evolution of the “superconduct-
ing islands” has shown that, along with smooth spatial
changes of the order parameter, sharp inhomogeneities are
also possible when the “islands” turn themselves into peaks
of ng(x,y). The relative status of these two kinds of inho-
mogeneities will now be clarified. According to the relation
between the characteristic length of inhomogeneity of the
order parameter, i.e., the typical distance over whichi#he
changes, on the one hand, afydor £(T), on the other hand,
inhomogeneities can be classified into two kinds. We call
those whose characteristic lengths are of the order of or
smaller thané, [&(T)] and larger tharé, [£(T)] “short-
range” and “long-range” inhomogeneities, respectively.
The temperature-dependent coherence leg¢ih) is a mo-

FIG. 4. Influence of the width of lead3, on the distributions of  notonously increasing functidisee Eqs(22)]. Therefore, at
the magnetic field and the order parameter in the loop. The units foan arbitrary nonzerd, &(T)>§&,. For instance, afl/T,
the magnetic fielzd—|(x,y) and for the squared_amplitude of the =g, £(T)=158 nm. At higher temperatures, we have
order parametegz(x,y) are the same as those in Fig. 3. &T)=223 nm at T/T,=0.8, and atT/T.=0.94 &(T)

=408 nm. Hence, even at relatively high temperatures, in-

the valueyi(x,y)>10 8 is treated as nonzefin the struc- homogeneities of along the side of the loof1000 nm and
ture up to the value at which the superconductivity disapihose along the leadS00 nm are of the “long-range” kind.
pears. The corresponding changes of the magnetic field if! Most cases, the distributions presented in Figs(&-&e
the loop, H(x,y), and the squared amplitude of the order®*@mples of such inhomogeneities. The “long-range
parameterwg(x,y), are represented in Fig(#. The peaks chan_ges ofyy across the side of the loop are possible at
of the superconducting phase atT.(0)=0.94 for L=1 relatively low temperatures.

L ) ¢ T . Though formally, the “short-range” changes could be
originate in the corners of the loop at low applied magnetic,

! . o R ated by adding an extra gradient term into GL equations
field. Following condition(31), the magnetic field inside the (see Ref.y12 thege inhomoggeneities are not excludgd from
opening is higher than the applied onég;>H,. The in-

o the present analysis. In our opinion, the reason to retain them
crease oH leads to a nonmonotonous distribution of mag-i, the present consideration is the following. In the previous

netic field H(x,y) in the leads and to the increase ldf.  gypsection, we traced the evolution of the “islands” of the
These changes are accompaniigdy the appearance of the gyperconducting phase. It was seen how the “islands” move
superconducting phase in the leads and by the growth of thgsige the loop as well as how they appear, grow, and disap-
amplitude ofy4(x,y) in the comers(ii) by broadening and pear. The “long-range” changes continuously turn into the
splitting of the peaks ofy3(x,y) in the corners followed by “short-range” changes and vice versa. Therefore, the
their motion towards the midpoints of the external sides of‘short-range” inhomogeneities, or peaks of the supercon-
the loop. The further increase of the applied magnetic fieldducting phase, which appear as a result of this evolution,
leads to dramatic changes Hf(x,y) and wg(x,y). In con-  have at least qualitative axtrapolativemeaning. For ex-
trast to the growth of; consistently with the growth of the ample, the peaks af have been plotted in Fig(@) to illus-
applied magnetic field at lowédy, the magnetic field in the trate a continuous character of the evolution of ¢heistri-
opening starts to decrease and at a certain valudyobe-  bution with increasing applied magnetic fidlcf. Fig. 3c)]
comes equal to it:H;=H,. The respective picture of up to disappearance of the superconducting phase. The quali-
Y2(x,y) is characterized by the formation of the supercon-tative picture of the evolution of the order-parameter distri-
ducting “islands” near the midpoints of the external sides ofbution, resulting from Fig. &), will be used below for the

the loop and the “leakage” Oﬁpg(xly) towards the mid- illustration of different criteria to define the phase boundary.
points of internal sides. If the increasel®f is continuedH;
diminishes and becomes lower thily. The superconduct-
ing “islands” concentrate near the midpoints of the internal  In a previous pape® approximate equations based on the
sides of the loop and then disappear. assumption of slowly varying amplitude of the order param-

A
il ¢
"n 'j"“"“”

-m%”"""
a;\««((\\\\\!& .

..
AN T

D. The thermodynamical stability of the solutions
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H(x,y) |¢($7y) |2

2 Wedge 08— |yp(a, )2 Mesoscopic loop 05—

FIG. 5. (a) Evolution of the “islands” of the superconducting phase in the loop for a fixed orbital nuinber: (i) Hy=0.06H.(0),
H;>H,, appearance, broadening and splitting of the peaksl/gtﬁk,y) in the corners;(ii) Hy=0.16H.(0), H;>H,, motion of the
“islands” of the superconducting phase towards the midpoints of the external sides of thdiligdg,=0.21H.(0), H;=H,, confluence
of the “islands” of the superconducting phase near the midpoints of the external sides and starting of their “leakage” towards the midpoints
of the external sidegjv) Hy=0.22H.(0), athermodynamically stable statd;<H,, continuation of the “leakage” of the superconducting
phase from the midpoints of the external sides to those of the internal 6ilés;=0.36H.(0), astable stateH;<H,, concentration of the
“islands” near the midpoints of the internal sides of the loop, disappearance of the superconducting phase in it ©omparison
between the distributions of the order parameter in the we¢dg@btained in Sec. II; the left-hand panahd in a corner of the supercon-
ducting loop forL=1 (shown magnified in the right-hand panet H,=0.06H.(0).

eter as compared to the phase changes, were used insteacaofilyze the essential features of the evolution of the order
the full set of equation&26)—(28) for H(X,y), ¢(x,y), and  parameter in the loop. As an example, it could not reveal the
¥a(Xx,y) of the present paper. The comparison of the solu-‘leakage” of the superconducting phase between the mid-
tions obtained in both cases shows that there is a fair qualpoints of the external and internal sides of the loop. Also, for
tative and quantitative agreement between corresponding sthe purpose of the determination of characteristics of the su-
lutions for ¢(x,y) and ¢4(X,y) in both approaches for the perconducting states such as free energy or magnetization far
H-T points in the vicinity of the phase boundary. away from the phase boundary, the exact equati@@s—

However, the simplified approach of Ref. 20 is less de{28) are necessary because they take into account the mag-
tailed than the present paper and it has not allowed us toetic field modulations inside the structure.
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The free energy per unit of the volume of the supercon-
ductor in the magnetic field i&

, b o, HZ 1] 2e  |?
Fsn=Fnotaly|*+ 54"+ g+ 5| —1hVY——Ay

(33

whereF, is the free energy of the normé&honsupercon-
ducting phase. For type-ll superconductoes<0), only the
second term in the right-hand side of E§3) reduces the
free energy of the sample in the superconducting state. All 0.90 0.95 1.00
the other terms, which are related to the order parameter, can T/To0

lead only to increase ifrg (cf. Ref. 2. Consequently, the /Te(0)

term which contains the value of the magnetic field is of FIG. 6. Regions of the thermodynamically stable states with

|mporta!"lcg for_ml_n|m|zat|on OF,5H' Due to the fact that.the differentL for the superconducting loop: the examples of the stable
magnetic field inside the openirtg; differs from the applied  giates are plotted folL=0 (), L=1 (+), L=2 (O), L
magnetic fieldHo, one should take into account the contri- —3 (x).

bution to the free energy related to this difference. So, it is

obvious that those states are expected to provide the minimare remarkable in the neighborhood of the midpoints of the
value of the free energy which are accompanied by a reduddternal sides and in the corners of the loop, in correspon-
tion of the magnetic field in the opening of the loop. This is d€nce with the analytical results discussed in Sec. Il.
confirmed by the numerical calculations of the free energy, NOte that in the case of a circular loop the magnetic field
In particular, for the parameters corresponding to Fig) 5 and the loop have the same symmetry, and as a result the
[L=1, T/T.(0)=0.94) we have found that only those states order-parameter distribution can display inhomogeneity only

are thermodynamically stable, i.e., correspond to the minil" the radial direction. This result refers, of course, to the
. ase of anideal circular loop having a constant width. Re-

mum of the free energy, which are obtained at the appliec? i Vs perf dqf lind ith di
magnetic field ranging betweerH,~0.18H,(0) and cent analysis performed for a cylinder with average radius

0.38H.(0). Forthis rangeH; is less than, or nearly equal to, Rna?d Eont:jm:grr:v;/rld;thd[:r(] 0),nwh|erred0 IS r:genazm:cl{;lhal rder-
Hy. For lower applied magnetic fields, the states with non-ang'é, has demonstrated the angular dependence of the orde

> i . parameter distribution in the sample.
zero 5(x,y) at L=1 occur to be thermodynamically un-

. . . In contrast to the case of a circular loop, an obvious con-
stable: the minimum of the free energy islat 0. For higher sequence of the inhomo eneo:Jsudistribuﬁiombé(xVI)uin
magnetic fields, the states with>1 are preferable. q 9 Y

We have plotted schematically the regions of the thermo:[he square loop is the fact that in different parts of the loop

dynamically stable states for different values loffor the the order parameter disappears at various values of the ap-

superconducting loop under consideratifig. 6). Every plied magnetic field _for a given tempera_turt_e, or at various
.temperatures for a given applied magnetic field.
curve represents the boundary between the superconducting . .
) Therefore, for different parts of the loop, one has different
and the normal states for a certain numherThe envelope

. values of the critical magnetic fields. , and temperatures

of all the curves forms, obviously, thé-T phase boundary . , .

S ; T. - Which of them should be chosen as those characteriz-
which includes parts related to different numberaccord- . & ; . .
: : : - ..ing the loop as a whole? At first sight, it seems to be natural
ing to the requirement of the thermodynamical stability. As it o use themaximalvalues ofH T, for this pUrDOSE
it seen from Fig. 6, in the areas where the superconductin%;e to treat theotal su ressiorcfnc;f thcénsu ercongucrtJivit ’in
states with different numbers are possible, such a state "~ PP P y

occurs to be thermodynamically stable, which corresponds tgll_parts of the loop as a criterion for the phase boundary
the minimal numbet. . point. However, such an analysis shogge also Ref. 20

It should be noted that we have not specified here th hat the phase boundary calculated using the criterion of the
criterion to determine the phase boundary. It will be shown otal suppression of the superconducting phase in the loop

) f ould be in disagreement with the experimental results.
in the next section that the phase boundary strongly deDen(xgnis is due to thegfact that the phase boEndary in Ref. 4 has
on the definition of such a criterion. :

been reconstructed by measuring the temperature shift of the
midpoint of the normal-to-superconducting resistive transi-

V. EQUILIBRIUM SUPERCONDUCTING STATES: tion as a function of the applied magnetic field. This corre-
THE H-T SUPERCONDUCTING PHASE BOUNDARY sponds to the existence of a certain “filling” of the loop by
A. Inhomogeneous distribution of the order parameter the superconducting phase which provides the resistivity of

) , the sample equal to a half of its value in the normal state.

The above analysis shows that for all considered cases tr@bviougy, if one determines experimentally the phase
distribution of the order parametaf3(x,y) in the loop is  phoundary based on the criterion of thatal suppression of
inhomogeneous. Moreover, the areas whgféx,y)=0 can  the superconductivity, one should measure the temperature
coexist with the ones withy2(x,y) #0. This inhomogeneity  shift of the beginning of the normal-to-superconducting re-
appears as a consequence of the interplay betweefthe sistive transition(which is close to the resistivity of the nor-
symmetry of the loofreduced to th€€, symmetry by leads mal phasg Therefore, another criterion should be chosen for
and the cylindrical symmetry of the magnetic field. The phase boundary points in order to explain #HeT phase
order-parameter distributions reveal the local features, whichoundary obtained in Ref. 4.
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120 F : - S oxper. . oretical results for the superconducting phase boundary in
& theor. — the Al mesoscopic square loop and the experimental data of
T Ref. 4 is achieved when there are still small spacings filled

Y with the normal phase between the islands of the supercon-
mﬁ% ¢ ducting phase. This situation can be regarded as the “appear-
- ance of the superconducting path.” Due to the spacings, the
resistivity of the loop measured between the leads occurs
T nearly twice smaller than that for the normal phase. In such a
way, the criterion of the “appearance of the superconducting
path” between the leads of the loop corresponds, for the
' b calculation of the phase boundary, to the experimental con-
0.90 0.95 1.00 ditions of measuring the temperature shift of the midpoint of
the normal-to-superconducting resistive transition. The cal-
T/T(0) culations show that this criterion is satisfied for the values
~0.04-0.1.
FIG. 7. TheH-T phase boundary: experimentally detected in 7 For the purpose of calculations of the boundaries between
Ref. 4 by measuring the temperature shift of the midpoint of thethe areas of the superconducting states with different num-
normal-to-superconducting resistive transitiof Y and calculated persL in Fig. 6 (subsection IV D, the criterion of the “ap-

gz'tr\;\?etehne t%g?gggsogmﬁe ?gg:;irg?ii)m the superconducting path pearance of the superconducting path” has been also used.

For the purpose of the quantitative description of different
phase boundary criteria, we introduce the “filling param-
eter” defined as a ratio of the area of the loop in which the
squared amplitude of the order parameter is nongerour As shown in Sec. IV, the “short-range” inhomogeneities

calculations: larger than 16) to the total area of the loop: Of the order parameter appear predominantly in the vicinity
of the phase boundary. In order to investigate whether or not

S(c//g(x,y)>0) the phase boundary substantially depends on inhomogene-
S (34 ities of this kind, the problem is analyzed here in the limit of
P a uniform amplitude of the order parameter.
For example,»=0 corresponds to the total suppression of e will treat this problem in the strict sense of the Lon-
the superconductivity in the loop. don limit in the next subsection. Here, we consider an ap-
If one attempts to model the experimental conditions ofproach which still keeps features of the above treatment in
Ref. 4 using the valuey=0.5, the calculated phase boundary the framework of GL equations, namely, a self-consistent
has the period of oscillations which is approximately twicedetermination ofyy? .
smaller than experimentally observed one. This has been 14 comply with the requirement that the amplitude of the
demonstrated in Ref. 20 for the loop without leads. Thegrder parameter be a constant, we put
analysis of the distributions of2(x,y) shows that fory
=0.5 there exists a single-connected area with nonzero
z/xi(x,y) between the leads of the loop which will be referred APa(X,y)  dpa(X,y)
to as a‘“superconducting path.”If there exists a well- ox ay -
developed “superconducting path,” electronic motion along
this part of the loop occurs without any resistance, although
the loop contains the normal phase in some parts. So, fdp the GL equationg27)—(28), as well as in the boundary
weak currents;7=0.5 corresponds rather to a point of the conditions(29)—(30) and in the integral relatiof31). Then
normal-to-superconducting resistive transition in the vicinitythe following set of equations is obtained to determine
of zero resistivity, than to the midpoint. #(x,y) andH(x,y):
Therefore, in order to model the experimental conditions
of Ref. 4, one should use some value mffrom the range
0-0.5. The detailed analysis ¢f(x,y) distributions for cer- FP(X,y)  FH(X.y)
. . ; . +
tain numbersL at different values of the applied magnetic X2 ay?
field [Fig. 5(@)] shows that at low magnetic fields, the areas
in the corners of the loop contain the superconducting phase.
These areas do not contribute to the *superconducting 2 >
path.” At the same time, the value of substantially de- IHXY) +(9 H(x.y)
pends on whether the areas in the corners are filled with the x> ay?
superconducting or with the normal phase. In order to de-
scribe the same “superconducting path” for different values
of Hy excluding the contributions tg from the areas in the ~ The squared amplitude of the order parametgrenters
neighborhood of the corners, one should choose differertq. (37) as a parameter. To determine this parameter, we
values of. solve Eq.(26) together with Eq(35) with respect tay? and
As seen from Fig. 7, a good agreement between the thehen average the obtained value over the loop:

B. Uniform amplitude of the order parameter
within the GL equations

0 (35

=0, (36)

— y2H(x,y)=0. (37)
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~L T hand side of Eq(38) can be performed over the “supercon-
2 L—3 ducting path.” This area is simulated by the geometrical fig-
. ure which overlaps the square loop under consideration,
ao | Criteria: ; . except the external boundary, which is formed by the parts of
géﬁg(ig%t)i‘;f;é;’the oop, the circle inserted in the loop; a radius of the circle is
D L (62) = 104 ™ L=2 [(Qe/2)?+ (d/2)?]¥2. The phase boundary calculated by the
= 2. (Y2) = 1073 criterion of the total suppression oﬁg [according to the
20 | integration in 4 accuracy of the calculations«/jg)th= 10 %] over the “super-
?S‘}ipgizggifcé‘;‘; path? L=1 conducting path” is represented by curve 3 in Fig. 8.
3. (42) = 106 ' Comparison shows that these phase boundaries are similar
to the previously calculated one in subsection V A, when the
0 . L=0 inhomogeneity of the order parameter was taken into ac-

0.98 0.99 1.00 count. The average slope of the envelope and the period of
oscillations of the phase boundaries represented in Fig. 8 are
close to these characteristics of the curve plotted in Fig. 7.

FIG. 8. TheH-T phase boundaries calculated using the approxi-VMoreover, from the comparison of the phase boundary de-
mation of a homogeneous amplitude of the order parameter withificted in Fig. 7 with curves 1 and 2 in Fig. 8, which are
the GL equations fot =0, 1, 2, 3 by different criteria: suppres- Obtained for the threshold values T0and 103, respec-
sion of the superconducting phase in the loop, the threshold valuively, we can expect that there exists some intermediate
(2 m=10"* (curve 1, (42)y=10"2 (curve 2; total suppression threshold value §2),, between 10* and 10 * which would
of the superconducting phase in the ‘“superconducting path,”provide also a quantitative agreement between phase bound-
(42 =10"° (curve 3. aries calculated in the framework of the different approaches

under discussion. At the same time, it is worth noting that

— 1 T 1 there is a distinction in the shape of cusps forming the phase

2= f [(1— T_> — §H2(x,y)(x2+y2) boundaries 1, 2 in Fig. 8 and the calculated phase boundary
Stoop. 100p ¢ in Fig. 7. Every cusp, referred to a certain value_ofof the
phase boundary represented in Fig. 7 has a shape close to
_i (‘M(X’y)): ( a¢(x,y)ﬂ symmetric with respect to the horizontal line guided through
K? X Iy the central point of this cusp, and it is asymmetric for curves
1, 2 in Fig. 8. The noted difference is eliminated by perform-

1 Ip(Xy)  dp(x,y) dxd ing the integration in Eq(38) over the “superconducting
B K 2H(x,y) y IX X ay xay. path.” The corresponding curve 3 in Fig. 8 is formed by
- nearly symmetric cusps for every particular numher
38
Equations(36)—(38) are solved as follows. First, we solve C. The London limit

Eqg. (36) imposing the appropriate boundary conditions by | this subsection, we treat the phase boundary of the
the numerical methods described in Sec. lll. Second, a Se'f'nesoscopic square loop under consideration in the London
consistent solution of Eq$37), (38) is derived, also with the  |imit which is valid, in any case, whefi—T,. In this limit,
corresponding boundary conditions. Namely, we obigdn  the parameter;? entering Eq.(37) is a constant which has
from Eq. (38) and then use this value as the paramefer the meaning of the inverse London penetration deyth'®
entering Eq.(37). These calculations are repeated until thewith the notations used in the present wolﬂg, is related to

integral relation(31) is fuffilled. the temperature-dependent penetration d&pth
In such a way, the present approach combines, on the one

hand, the requirement that the order-parameter amplitude be T(0)—T| 2
a constant and, on the other hand, a self-consistent procedure A(T)=X(0) T.(0) (39)
of calculation ofy?2, borrowed from the GL equatio26)—
(28). as

As a result of this procedure, another set of phase bound- me
aries is obtained, which are plotted in Fig. 8 far e (40)
=0, 1, 2, 3. These phase boundaries have the quasioscillat- 16me’\2(T)

ing Little-Parks-type behavior and differ from each other by_[n terms of the dimensionless variablé28)—(24), one ob-

the average slope of the envelope and by the period of osci ains a simole dependence ¢§ on temperature:
lations, depending on a specific criterion, chosen to deter- P P P '

mine a phase boundary. We establish different threshold val- T
ues of the (42),, as criteria of the phase boundary. Curve 1 Yr=1- T0)
corresponds to :,Qg)th= 104 curve 2 corresponds to ¢
(¥31n=10"3. To define the criterion, which correlates to Hence, ¢(x,y) and H(x,y) are determined by the set of
the criterion of the “appearance of the superconductingequations36), (37) with ¢§ given by Eq.(41).

path” previously used in the case of the inhomogeneq{zijs It is clear that, due to the fact that in the London Iim}ﬁ
distribution (subsection V A, the integration in the right- is a certain constant at a given temperature, one can use no

(41)
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T T has been developed in subsection V A of the present paper
can be applied for the description of such a structure. On the
contrary, in the case where the order parameter is nearly
40 | - homogeneous in a particular structure, another approach,
London limit: which has been represented in subsections VB and VC, is
S 42 = const relevant. The present investigation has been carried out for
=1 a both of these two different regimes.

20 -
L1 VI. CONCLUSIONS

The problem of théd-T phase boundary in superconduct-
L=0 ing loops is discussed in detail.
0.98 0.99 1.00 The study of the phase boundary of a superconductor fill-
ing a wedge with the central angleis performed in terms of
T/T. a variational model based on the linearized GL theory and
. .. for a uniform magnetic field. The obtained solutions impl

FIG. 9. TheH-T phase boun_dary calculated_m the London _||m|t that the nucleatio% of the superconducting phase in thepcz;r-
for L= 0, 1, 2, 3 by the analysis of the Laplacian of the persistent . . S
currents in the loofgsee discussion in the tgxt ner IS enhancgd in the VI.Clmty of the edge Wheﬁ <.

A self-consistent solution of the GL equations for a me-
threshold value ofy? to define a criterion for the phase soscopic square superconducting loop with the appropriate
boundary, as distinct from subsections VA and VB. Webpundary Cond|t|ons_ |s.obta|ned numerically. The dl_strlbu-
have elaborated a method of the phase boundary calculatidipns of the magnetic fieldi(x,y), the squared amplitude
which is based on the analysis of the distributions of thea(X.y), and the phases(x,y) of the order parameter are
persistent current in the square loop. The underlying idea ofound for the cases when an enclosed fluxoid contains a dif-
this method is the following. In the superconducting stateferent numbei. of magnetic flux quanta,.
the current obeys the second London equd[_fomhmh cor- We analyze the solutions from the point of view of their
responds to the Helmholtz equation. On the phase boundar{f}ermodynamical stability. This analysis reveals what the
the second London equation formally turns to the LaplacéiumberL is at a given value of the applied magnetic field.
equation. Therefore, the value of the Laplacian of the persisOn the basis of this knowledge, the¢-T superconducting
tent current has to be analyzed in order to define the phag#ghase boundaries are calculated for the mesoscopic square
boundary between the superconducting and normal states.loop with leads. With the definition of thid-T phase bound-

It is worth recalling that, in the calculations of the phaseary for a square loop in terms of the “appearance of the
boundary performed in the present work, we simulate théuperconducting path,” the obtained theoretical results agree
experimental dafa on the midpoint of the normal-to- fairly well with the experimental datd®> An independent
superconducting resistive transition. This was a reason to ugalysis performed in the framework of the London limit
some value of the “filling parameter(subsection VA or ~ demonstrates that the phase boundaries are not strongly sen-
some threshold values @f? to determine the phase bound- Sitive to the “short-range” inhomogeneities of the order pa-
ary (subsection V B The same goal is pursued in the presentrameter.
consideration by choosing a threshold value of the Laplacian
of the persistent current. For convenience, we use the La- ACKNOWLEDGMENTS

placian of the persistent current averaged over the area of the _ . .
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conclusion follows: the phase boundaries are not strongly
sensitive to2 the specific features of the order-parameter dis- APPENDIX
fmbutlons Va .V\.’h'Ch have been defined as the 'shorF-range. Substitution of the order parameter in the form of Ezp)
inhomogeneities. Different approaches used in this section . .

- X . Into the second GL equatiof2) gives
lead to similar phase boundaries for the mesoscopic super-
conducting square loop, which agree with the available ex- _ )
perimental data. At present, we are not aware of any direct AA 8mieh W2V o+ 16me Ay (A1)
experimental study of thical distributions of the magnetic mc "2 ma ar
field and the order parameter in a square mesoscopic loop. If
a distribution of the order parameter occurs to be inhomoge¥his allows one to represent the value ofHads
neous in a mesoscopic structure, in particular, in the square
loop under discussion, then the theoretical approach which rot H=rot rot A=grad divA—AA. (A2)
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The gauge dik=0 implies that
rot H=—AA, (A3)

wherefrom, taking into account E¢AL), it follows that

8mieh - 6me?

Integration of this identity along thiaternal boundary of the
loop gives the integral relation

rot H= Ay?. (A4)

fﬁ tH d|—8meﬁ3§ 2V 4| 167Te25# 27.d|
rotH-dl=—r ilﬁa ¢-dl— 2 ilﬂa' :

m
(A5)
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phaseV ¢ and the vector potentiad, the general integral
relation (A5) can be approximately simplified to

6me” 2 § A-dl

2 ¥a i :
(A6)

Now the contour integrals on the right-hand side are

§ Hd|_8ﬂ'ieﬁ Zév dl 1
irot . _Wwa : d) - m

fﬁw-dl:zwL, (A7)

whereL=0,1,2 ... is the winding number, and

3EiA~dI=(I), (A8)

Under the assumption that the squared amplitude of th@vhere ® is the magnetic flux through the opening of the
order parametey? changes along the internal boundary of loop. With these definitions, EgA6) takes on the final form
the loop more slowly as compared with the gradient of theof the integral relatior(31).
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