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For a superconducting mesoscopic square loop, the superconducting state is described and the phase bound-
aries are analyzed on the basis of a self-consistent solution of the Ginzburg-Landau equations. There exists a
qualitative difference in the nucleation of the superconducting state in a square and a circular mesoscopic loop.
Due to the interplay of different kinds of symmetry, of the square loop and of the magnetic field, the order-
parameter distribution is inhomogeneous in the loop. After clarification of the thermodynamical stability of the
superconducting states, we turn to the analysis of the equilibrium states which can be realized in experiment.
The problem of theH-T superconducting phase boundary is discussed in detail. The calculated phase bound-
aries are in good agreement with the experimental data obtained for the Al mesoscopic superconducting square
loops.@S0163-1829~98!06741-1#
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I. INTRODUCTION

Three well-known experiments on persistent currents
metallic1,2 and semiconducting3 mesoscopic rings hav
stimulated intensive theoretical research of quantization
confinement effects in nanosize metallic and semiconduc
structures. Recently, these effects have also been studie
mesoscopic superconducting structures. The experimen4,5

carried out on superconducting mesoscopic aluminum lo
with sizes smaller than the temperature-dependent coher
lengthj(T) and the penetration depthl(T) reveal the influ-
ence of the sample topology on the superconducting crit
parameters, such as critical temperatureTc as a function of
magnetic fieldH. Also the resistive transition anomalie
have been observed in multiprobe aluminum nanostruct
with a linewidth less than 100 nm.6,7 Quite recently, the sus
ceptibility of a single mesoscopic aluminum ring was expe
mentally studied with an integrated superconduct
quantum interference device at temperatures near the su
conducting critical temperature.8 These experiments have fo
cussed on the problem of theTc(H) phase boundary in the
mesoscopic superconductor structures of different topolo
which is the central point of the present paper.

In a mesoscopicsquareloop, the Little-Parks-type oscil
lating H-T phase boundary has been detected; it is relate
the effect of the fluxoid quantization in the loop.4 To inter-
pret these oscillations, the authors of Ref. 4 applied
Tinkham formula9 which describes the superconducting tra
sition in a perpendicular magnetic field for acircular loop
with emphasis on the consequences of flux quantization.
ter analysis by Tinkham, there has been a long-standing
terest in the superconducting properties of samples poss
ing cylindrical symmetry. For example, the oscillating
dependence of the critical magnetic vortex-nucleation fi
was investigated for acylinder and acylindrical pore in a
superconducting matrix~see, e.g., Ref. 10!, in particular,
when their radius is of the order of the coherence len
j(T).11 The analysis by de Gennes of the onset of superc
PRB 580163-1829/98/58~17!/11703~13!/$15.00
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ductivity in a thin ring carrying a lateral arm12 was of impor-
tance for the explanation of the effect of topology on t
Tc(H) dependence. Recently, nucleation and evolution of
order parameter and the critical temperature were analy
near a circular hole.13

Although the observedTc(H) oscillations can be inter-
preted in the above-described way by choosing some ef
tive radii of cylinders, nevertheless the experimental inve
gation of mesoscopic superconducting structures of real
shape~e.g., square loops! requires a more adequate theore
ical description. To the best of our knowledge, there ha
been no theoretical reports on the superconducting prope
of square-shaped loops,relevant to the available exper
ments.

In our theoretical analysis we rely upon the Ginzbur
Landau~GL! equations for the order parameterc and the
vector potentialA of a magnetic fieldH5rotA,14–16

1

2mS 2 i\¹2
2e

c
AD 2

c1ac1bucu2c50, ~1!

DA5
4p ie\

mc
~c* ¹c2c¹c* !1

16pe2

mc2
Aucu2. ~2!

Herea andb are the GL parameters. We use the followin
boundary condition:

n•S 2 i\¹c2
2e

c
Ac D U

boundary

50, ~3!

wheren is the unit vector normal to the boundary. It is im
portant to mention here, that the geometry of a real sup
conducting structure enters the problem via the bound
condition ~3!.

The paper is organized as follows. The discussion of
boundary problem for a loop is forwarded in Sec. II by t
analysis of the phase boundary of a superconductor fillin
corner in terms of a variational model based on the lineari
11 703 ©1998 The American Physical Society
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11 704 PRB 58FOMIN, MISKO, DEVREESE, AND MOSHCHALKOV
GL theory. This simple approach allows one to elaborate
insight into the edge effects in superconducting square lo
having such corners.

The main topic of the paper is a self-consistent solution
the GL equations for a mesoscopic square superconduc
loop. The basic equations with the appropriate boundary c
ditions are derived in Sec. III. Section IV is devoted to t
discussion of the obtained solutions. The distributio
of the magnetic fieldH(x,y), of the squared amplitude
ca

2(x,y), and of the phasef(x,y) of the order paramete
c5caexp(if) are presented for the cases when an enclo
fluxoid contains a different numberL of magnetic flux
quantaF0 . It is shown how the found distributions depen
on the temperature and on the applied magnetic field
how they change for various fixed orbital momentaL. The
influence of the length of leads on distributions of the ma
netic field and the order parameter is revealed. The dif
ences inca at midpoints of the adjacent sides of the loop a
discussed in relation to the experimental measurement
theTc(H). After clarification of the thermodynamical stabi
ity of the superconducting states, we turn to the equilibri
states which can be realized in experiment. In Sec. V,
problem of the definition of theTc(H) phase boundary for a
square loop is analyzed. It is demonstrated that the theo
cal results fit quite well with available experimental data.4,5

II. THE NUCLEATION OF THE SUPERCONDUCTING
STATE IN THE WEDGE

Before analyzing the superconducting state in a squ
loop, we consider first the problem of a ‘‘superconducti
corner,’’ i.e., the nucleation of superconductivity in a wedg
like sample with magnetic field applied parallel to th
wedge’s edge. A superconductor, which fills a corner w
the central anglea (0,a,2p) and is restricted by the two
planesw50, w5a, is considered in the presence of a unifor
magnetic fieldH5Hez . With the origin of coordinates cho
sen at the edge of the corner, it is convenient to use
vector potential of the magnetic field in the symmetric
gauge:

A5Axex1Ayey , Ay5 1
2 Hx, Ax52 1

2 Hy, ~4!

or in cylindrical coordinates,

A5Aw~r!ew , Aw~r!5 1
2 Hr. ~5!

The linearized GL equation~1! ~see Refs. 14–16!

1

2mS 2 i\¹2
2e

c
AD 2

C1aC50 ~6!

in cylindrical coordinates takes on the form

2
\2

2mH 1

r

]

]rS r
]C

]r D1F1

r

]

]w
1

2e

ic\
A~r!G2

CJ 52aC.

~7!

Inserting here Eq. ~5! and the coherence lengthj
5\/(A2muau), we obtain

2H 1

r

]

]rS r
]C

]r D1F1

r

]

]w
1

eH

ic\
rG2

CJ 5
1

j2 C. ~8!
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In terms of the dimensionless variabler85rAeH/c\ and
the coherence lengthj85jAeH/c\, this equation can be
written as

2H 1

r8

]

]r8
S r8

]C

]r8
D 1

1

r82F ]

]w
2 ir82G2

CJ 5
1

j82
C.

~9!

It is important to mention the relation with the second critic
field Hc2

1

j82
5

2Hc2

H
, ~10!

which can be used to define the critical magnetic field in
corner as

Hcrit5maxH5
2Hc2

min~1/j82!
. ~11!

This field is therefore determined by the minimal value
the inverse squared dimensionless coherence lengthj82.

Unit vectors normal to the planesw50 andw5a form-
ing a wedge areew and 2ew , respectively. Hence, the
boundary conditions~3! for the order parameter are

S 2 i
1

r

]C

]w
2

eH

c\
rC D U

w50,a

50. ~12!

After introducing the dimensionless radial variabler8, Eq.
~12! turns to

S i
]C

]w
1r82C D U

w50,a

50. ~13!

Henceforth, the prime in the denotationr8 will be omitted
for simplicity.

The solution of Eq.~9! with boundary conditions~13! will
be sought in the form

C~r,w!5expF ir2sin~2pnw/a!

2pn/a G f n~r,w!,

n50,1,2, . . . . ~14!

In order to satisfy the boundary conditions~13!, we choose
vanishing derivatives of the new functionf n(r,w) with re-
spect to the angle at the boundaries:

] f n

]w U
w50,a

50. ~15!

Indeed,

]C~r,w!

]w
5 ir2cos~2pnw/a!C~r,w!

1expF ir2sin~2pnw/a!

2pn/a G] f n~r,w!

]w
, ~16!

wherefrom Eqs.~13! follow straightforwardly.
The equation for the new functionf n(r,w) reads
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Ôf n~r,w!5
1

j82
f n~r,w!, ~17!

Ôf n~r,w![ i H sin~2pnw/a!F S 2pn

a
2

4

~2pn/a! D f n~r,w!

24r
] f n~r,w!

]r G12 sin2~pnw/a!
] f n~r,w!

]w J
14r2F S sin~2pnw/a!

2pn/a D 2

1sin4~pnw/a!G
3 f n~r,w!2

1

r

] f n~r,w!

]r
2

]2f n~r,w!

]r2

2
1

r2

]2f n~r,w!

]w2 .

In order to solve this differential equation, we apply a var
tional method, which is a generalization of the variation
approach, proposed by Kittel and used by de Gennes f
semi-infinite semiconductor plane,16 to a wedge with an ar-
bitrary value of the anglea. Namely, for a given trial func-
tion f n(r,w), both parts of Eq.~17! are multiplied by
f n* (r,w). Upon integration over the area of the corner, t
following expression for 1/j82 results:

1

j82
5

E
corner

f n* ~r,w!Ôf n~r,w!rdrdw

E
corner

u f n~r,w!u2rdrdw

. ~18!

Two types of the trial functions are further used~for cer-
tainty, n51 is taken henceforth!

f ~r,w!5expF ik cosS pw

a D GexpF2rrS 12
a

p
cos2

pw

a D G ,
~19!

f m~r,w!5r~m21!/2expF ik cosS pw

a D GexpF2rrS sin2
pw

a D G .
~20!

We would like to emphasize that for a semi-infinite semico
ductor plane~i.e., for a5p) both trial functions~19! and
~20! turn to the function, proposed by Kittel~see Ref. 16!.
After substituting these functions into the right-hand side
Eq. ~18!, the resulting expression for 1/j82 is minimized with
respect to the variational parametersk,r .

The resulting distributions of the order parameter in
corner are shown in Fig. 1 for three different values of t
angle a50.05p, 0.5p, 1.5p. For a,p and a.p, the
minimum of 1/j82 is provided by the trial functions of the
type ~19! and ~20!, correspondingly. The obtained solution
clearly indicate that for 0,a,p there appears amaximum
of the order parameter at the edge of the corner. This gen
feature of the model implies that the nucleation of the sup
conducting phase in the corner is facilitated in the vicinity
the edge, i.e., superconductivity in the corners sustains
-
l
a

-

f

e
e

ral
r-
f
b-

stantially higher applied fields. Extrapolating these results
a square loop, we can already anticipate a stronger super
ductivity of the corners.

III. THE BOUNDARY PROBLEM
FOR A MESOSCOPIC SQUARE LOOP

In this section, we consider a mesoscopic structure o
type-II superconductor with the shape of a square loop w
leads~see Fig. 2!. The leads are made from the same mate
as the loop and are supposed to have the same width a
loop itself. This corresponds to the shape of the real struc
which has been studied in the experiments reported in Re
We take the following sizes of the loop: the widthd
5150 nm, the outer sideQe51000 nm ~the side of the

FIG. 1. Distributions of the order parameteru f (r,w)u2 in the
corner with the central anglea50.05p ~a!, 0.5p ~b!, 1.5p ~c!.
Calculations were performed using Eq.~19! for the cases~a!, ~b!
and Eq.~20! with m51 for the case~c!, respectively.
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opening, therefore, isQi5700 nm), and the length of th
leads isQl5500 nm~the case when the length of the lea
changes will be specially discussed!.

In order to adapt our model to the experimental con
tions, we used in the calculations the values of the Ginzbu
Landau parameters taken from the relevant experime
works ~Refs. 4 and 5!. These values differ essentially from
the corresponding values for bulk Al, e.g., the Ginzbu
Landau parameterk has the value of 0.03~Ref. 17! in pure
bulk aluminum, but its value in the mesoscopic loop und
consideration is close to unity. As it follows from Refs. 4 a
5, j05100 nm, l0591 nm, that givesk50.91. Hence,
the characteristics of the structure under consideration
introduced in the equations through the relevant values of
Ginzburg-Landau parameters.

The magnetic fieldH0 is applied in thez direction, i.e.,
perpendicular to the sample which lies in thexy plane. In our
calculations, we will consider all the relevant physical qua
tities, namely, the magnetic field in the structureH, the
phasef, and the squared amplitudeca

2 of the order param-
eter, as functions ofx andy whereas thez dependence will be
neglected. This simplification does not influence subst
tially the results as far as the specific features of the magn
field and the order-parameter distributions inside the loop
due to the complex shape of the cross section of the su
conducting structure in thexy plane. It is clear that our as
sumption is adequate for very thin plates or for samples
tended in thez direction, as long as the magnetic field
uniform in this direction.

FIG. 2. Scheme of a mesoscopic superconducting square
with leads.
-
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For the geometry of the problem under consideration
the case of a uniform magnetic field, the suitable form of
symmetrical gauge for the vector potentialA is

A5 1
2 @H3r #, ~21!

where H5Hez is the magnetic field strength, andr5xex
1yey . In the case of a nonuniform magnetic field, this gau
can be accepted as a fair approximation in the framework
the self-consistent calculations.

Further, let us perform transformation14,15 of Eqs.~1!, ~2!
to dimensionless variables. The temperature dependenc
the coherence lengthj(T), the magnetic field penetratio
depthl(T), as well as the coefficienta are the following:

j5j0S 12
T

Tc
D 21/2

, l5l0S 12
T

Tc
D 21/2

,

a5a0S 12
T

Tc
D ~22!

with the coefficients

j05
\

A2mua0u
, l05A mc2b

16pe2ua0u
, Hc5A4pa0

2

b
.

~23!

The GL parameter is defined ask5l/j. The transformed
functions and variables become

c85
c

Aua0u/b
, H85

Hz

Hc
, x85

x

l0
, y85

y

l0
.

~24!

Further on, the primes will be omitted.
The order parameterc is a complex-valued function o

coordinates and can be presented in a general form as

c~x,y!5ca~x,y!eif~x,y!. ~25!

Substituting Eqs.~21!–~25! for the GL equations~1!, ~2!, we
obtain the following set of equations to determin
ca(x,y), f(x,y), andH(x,y):

op
]2ca~x,y!

]2x
1

]2ca~x,y!

]2y
2H S ]f~x,y!

]x D 2

1S ]f~x,y!

]y D 2

1
k

A2
H~x,y!Fy

]f~x,y!

]x
2x

]f~x,y!

]y G1k2F2S 12
T

Tc
D1

1

8
H2~x,y!~x21y2!1ca

2~x,y!G J ca50, ~26!

]2f~x,y!

]x2
1

]2f~x,y!

]y2
12F]f~x,y!

]x

]ca~x,y!

]x
1

]f~x,y!

]y

]ca~x,y!

]y G1
k

A2
H~x,y!Fy

]ca~x,y!

]x
2x

]ca~x,y!

]y G50, ~27!

]2H~x,y!

]x2
1

]2H~x,y!

]y2
2

2A2

k
ca~x,y!F]ca~x,y!

]y

]f~x,y!

]x
2

]ca~x,y!

]x

]f~x,y!

]y G
2ca~x,y!H~x,y!Fx

]ca~x,y!

]x
2y

]ca~x,y!

]y G2ca
2~x,y!H~x,y!50. ~28!
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It should be noted that the rigorous boundary condit
for the magnetic field outside the loop is defined at infini

H~x,y!ux,y→`5H0 .

Assuming that the applied magnetic fieldH0 does not change
when approaching the sample up to its surface from outs
the set of the boundary conditions at the external bound
results:

]ca~x,y!

]x U
ext, x5const

50,
]ca~x,y!

]y U
ext, y5const

50,

S ]f~x,y!

]x
1

k

2A2
H0yD U

ext, x5const

50,

S ]f~x,y!

]y
2

k

2A2
H0xD U

ext, y5const

50,

H~x,y!uext5H0 . ~29!

Similarly, for the internal boundary it follows that

]ca~x,y!

]x U
int, x5const

50,
]ca~x,y!

]y U
int, y5const

50,

S ]f~x,y!

]x
1

k

2A2
HiyD U

int, x5const

50,

S ]f~x,y!

]y
2

k

2A2
HixD U

int, y5const

50,

H~x,y!u int5Hi . ~30!

The magnetic field inside the openingHi depends on the
applied magnetic fieldH0 and can be determined from th
integral relation~see Ref. 16 and the Appendix!

c

4p R
i
rot H•d l2

c

4pl2
~F f2F i !50, ~31!

with the condition of the fluxoid quantization

F f5LF0 , L50, 1, 2, . . . . ~32!

HereF05ch/2e is the flux quantum andF i5r iA•d l is the
magnetic flux through the opening of the loop. The integ
tion runs over the internal boundary of the loop.

The self-consistent procedure of finding the solutions
plies, first, that the obtained distributionsH(x,y),ca(x,y),
andf(x,y) should satisfy all the equations of the bounda
problem simultaneously and, second, that the value of
magnetic field inside the openingHi of the loop should obey
the integral relation~31!. The calculation of the integral en
n
:

e,
ry

-

-

e

tering Eq.~31! requires the knowledge of the magnetic fie
H(x,y) distribution which can be found only self
consistently withca(x,y) and f(x,y). In their turn, the
boundary conditions forH(x,y) andf(x,y) themselves de-
pend onHi . Therefore, adjusting the magnetic field in th
opening of the loopHi to the applied magnetic fieldH0 in
order to fulfill condition ~31!, we obtain the problem with
new boundary conditions. Thus, when solving the set
equations~26!–~32! one faces a nonlinear multiparamet
problem which includes a set of nonlinear partial different
equations and an integral equation~31!.

Equations~26!–~28! with boundary conditions~29!, ~30!
together with relation~31! are solved numerically by using
the finite-difference method for partial differentia
equations.18 For the numerical solution, we have used a re
angular grid which contains 241 points in the direction
leads and 121 points in the perpendicular direction. Ev
single equation is solved by the multiple subsequent pas
through all the points of the grid until the distribution of th
sought quantity does not change anymore. Then the obta
distribution of the given quantity@H(x,y), f(x,y), or
ca(x,y)] is used for all the other equations with the corr
sponding boundary conditions. This iteration procedure
continued as many times as it is necessary in order to ob
a self-consistent solution. Our estimations show that it
enough to perform about 6000 iterations to provide the re
tive accuracy 1024 of the solution of the set of equation
~26!–~30! for a given trial value ofHi . In practice, we used
the number of iterations 10 000. After this solution is o
tained, condition~31! is examined. If it is not fulfilled, the
next round of calculations is necessary. This procedure
repeated until condition~31! is satisfied with the guarantee
accuracy of 1%. Typically, 10–20 rounds of calculations a
required depending on the choice of the initial trial value
Hi .

IV. SOLUTIONS OF GINZBURG-LANDAU EQUATIONS
FOR A SQUARE LOOP WITH LEADS

In this section, we discuss typical features of the obtain
solutions of the GL equations, i.e., of the distributions of t
magnetic fieldH(x,y), the phasef(x,y), and the squared
amplitudeca

2(x,y) of the order parameter, for the meso
copic square loop with leads.

A. Examples of the distributions

The examples of typical distributions of the magnetic fie
H(x,y), the phase of the order parameterf(x,y), and its
squared amplitudeca

2(x,y) are presented in Fig. 3. As con
venient units forT and H the following values are chosen
the critical temperature at zero magnetic fieldTc(H50)
[Tc ~the Ginzburg-Landau critical temperature,Tc51.2 K
for Al ! and the critical magnetic field for bulk Al at zer
temperatureHc(T→0)5100 G~cf. Ref. 17!. Increasing the
temperature fromT/Tc(0)50.8 @Fig. 3~a!# to T/Tc(0)
50.94 @Fig. 3~b!# at a fixed value of the applied magnet
field H050.1Hc(0) leads to a substantial~approximately, by
a factor of 5! suppression ofca

2(x,y) everywhere in the
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FIG. 3. Calculated distributions of the magnetic fieldH(x,y), the phase of the order parameterf(x,y), and its squared amplitude
ca

2(x,y) in a mesoscopic square loop with leads. As a unit forH(x,y), the critical magnetic field for bulk Al at zero temperature is use
Hc(T→0)5100 G; ca

2(x,y) is measured in unitsua0u/b, wherea0 andb are the GL parameters.
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structure with a simultaneous concentration of the ord
parameter around the opening and in the corners of the l
The phase of the order parameterf(x,y) for L50 has an
oscillatory behavior. The modulation of the magnetic fie
H(x,y) is stronger in the case of an intensive distribution
the order parameter at the lower temperature and is weak
the case of the higher temperature when the order-param
distribution has a much lower magnitude. The aforem
tioned increase of temperature leads to a small cha
of the magnetic field inside the opening from the val
Hi50.066Hc(0) to Hi50.075Hc(0).

For higher applied magnetic fields@Figs. 3~c! and 3~d!# it
is favorable for the superconducting loop, to capture so
number of the flux quanta according to the condition of
magnetic flux quantization~32!. Increase of the magneti
flux number fromL50 @Fig. 3~b!# to L51,2 ~Figs. 3~c! and
3~d!# at a fixed temperature leads to a considerable supp
sion of the order parameter and to the localization of
superconducting phase ‘‘islands’’ near the midpoints of
internal sides of the loop. The distribution off(x,y) keeps
an oscillating character but forLÞ0 the trace along any
closed path around the loop results in thephase shift2pL.

B. The influence of leads on the distributions
of the order parameter and the field in the loop

For the structures under consideration, when the width
the loop and leads relates to the external side of the loo
1.5:10, it is revealed that the presence of leads does no
fect strongly the magnetic field and the order-parameter
r-
p.

f
in
ter
-

ge

e
e

s-
e
e

f
as
af-
s-

tributions in the loop itself. Leads weakly distort the patter
of the distributions, which obey theC4 symmetry peculiar
for an isolated square loop, reducing their symmetry toC2 .
As shown in Fig. 4, for the particular caseT/Tc(0)
50.6, H050.4Hc(0), L50 there are maxima in the
ca

2(x,y) distribution at the links of leads to the loop. Suc
maxima are absent at the corresponding points of
ca

2(x,y) distribution in the adjacent sides. These results
in agreement with the analysis in the framework of the n
work model which gives a stronger order parameter at
nodes.19 Simultaneously, the maxima in theH(x,y) distribu-
tion near the midpoints of the external sides of the loop
destroyed by leads. Shortening the leads fromQl50.5Qe to
Ql50.25Qe does not result in any visible change of the ma
netic field and the order-parameter distributions in the bo
of the loop. For the case of leads with a length much sma
than the side of the loop,QL50.08Qe , the features of
H(x,y) andca

2(x,y) distributions typical for corners appea
in the vicinity of the links. In an isolated loop, the distribu
tions of the magnetic field and the order parameter acq
the C4 symmetry.

C. The evolution of theca
2
„x,y… distribution in the loop

In order to follow up the evolution of the ‘‘islands’’ of the
superconducting phase in the loop for a certain fixed orb
numberL, we will change the applied magnetic fieldH0
from the value which corresponds to the appearance of n
zeroca

2(x,y) @according to the accuracy of the calculation
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the valueca
2(x,y).1026 is treated as nonzero# in the struc-

ture up to the value at which the superconductivity dis
pears. The corresponding changes of the magnetic fiel
the loop, H(x,y), and the squared amplitude of the ord
parameter,ca

2(x,y), are represented in Fig. 5~a!. The peaks
of the superconducting phase atT/Tc(0)50.94 for L51
originate in the corners of the loop at low applied magne
field. Following condition~31!, the magnetic field inside the
opening is higher than the applied one:Hi.H0 . The in-
crease ofH0 leads to a nonmonotonous distribution of ma
netic field H(x,y) in the leads and to the increase ofHi .
These changes are accompanied~i! by the appearance of th
superconducting phase in the leads and by the growth of
amplitude ofca

2(x,y) in the corners;~ii ! by broadening and
splitting of the peaks ofca

2(x,y) in the corners followed by
their motion towards the midpoints of the external sides
the loop. The further increase of the applied magnetic fi
leads to dramatic changes ofH(x,y) and ca

2(x,y). In con-
trast to the growth ofHi consistently with the growth of the
applied magnetic field at lowerH0 , the magnetic field in the
opening starts to decrease and at a certain value ofH0 be-
comes equal to it:Hi5H0 . The respective picture o
ca

2(x,y) is characterized by the formation of the superco
ducting ‘‘islands’’ near the midpoints of the external sides
the loop and the ‘‘leakage’’ ofca

2(x,y) towards the mid-
points of internal sides. If the increase ofH0 is continued,Hi
diminishes and becomes lower thanH0 . The superconduct
ing ‘‘islands’’ concentrate near the midpoints of the intern
sides of the loop and then disappear.

FIG. 4. Influence of the width of leadsQl on the distributions of
the magnetic field and the order parameter in the loop. The units
the magnetic fieldH(x,y) and for the squared amplitude of th
order parameterca

2(x,y) are the same as those in Fig. 3.
-
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It is worth noting that for a certain range of values of t
applied magnetic field@H0<0.1Hc(0) for L51] the distri-
bution of the order parameter in each corner of a mesosc
superconduncting loop clearly reveals nucleation of the
perconducting phase in the vicinity of the corners. Suc
behavior of the superconducting order parameter has b
anticipated by a corresponding distribution obtained with
the simple model of anisolatedcorner analyzed in Sec. II, a
is obvious from Fig. 5~b!. When further increasing the ap
plied magnetic field, the distribution of the order parame
is determined to a decisive measure by the geometry of
mesoscopic superconducting structureas a whole.

The above analysis of the evolution of the ‘‘supercondu
ing islands’’ has shown that, along with smooth spat
changes of the order parameter, sharp inhomogeneities
also possible when the ‘‘islands’’ turn themselves into pea
of ca

2(x,y). The relative status of these two kinds of inh
mogeneities will now be clarified. According to the relatio
between the characteristic length of inhomogeneity of
order parameter, i.e., the typical distance over which thec
changes, on the one hand, andj0 or j(T), on the other hand
inhomogeneities can be classified into two kinds. We c
those whose characteristic lengths are of the order of
smaller thanj0 @j(T)# and larger thanj0 @j(T)# ‘‘short-
range’’ and ‘‘long-range’’ inhomogeneities, respectivel
The temperature-dependent coherence lengthj(T) is a mo-
notonously increasing function@see Eqs.~22!#. Therefore, at
an arbitrary nonzeroT, j(T).j0 . For instance, atT/Tc
50.6, j(T)5158 nm. At higher temperatures, we ha
j(T)5223 nm at T/Tc50.8, and at T/Tc50.94 j(T)
5408 nm. Hence, even at relatively high temperatures,
homogeneities ofc along the side of the loop~1000 nm! and
those along the leads~500 nm! are of the ‘‘long-range’’ kind.
In most cases, the distributions presented in Figs. 3–5~a! are
examples of such inhomogeneities. The ‘‘long-rang
changes ofc across the side of the loop are possible
relatively low temperatures.

Though formally, the ‘‘short-range’’ changes could b
treated by adding an extra gradient term into GL equati
~see Ref. 12!, these inhomogeneities are not excluded fro
the present analysis. In our opinion, the reason to retain th
in the present consideration is the following. In the previo
subsection, we traced the evolution of the ‘‘islands’’ of th
superconducting phase. It was seen how the ‘‘islands’’ mo
inside the loop as well as how they appear, grow, and dis
pear. The ‘‘long-range’’ changes continuously turn into t
‘‘short-range’’ changes and vice versa. Therefore,
‘‘short-range’’ inhomogeneities, or peaks of the superco
ducting phase, which appear as a result of this evolut
have at least qualitative orextrapolativemeaning. For ex-
ample, the peaks ofc have been plotted in Fig. 3~d! to illus-
trate a continuous character of the evolution of thec distri-
bution with increasing applied magnetic field@cf. Fig. 3~c!#
up to disappearance of the superconducting phase. The q
tative picture of the evolution of the order-parameter dis
bution, resulting from Fig. 5~a!, will be used below for the
illustration of different criteria to define the phase bounda

D. The thermodynamical stability of the solutions

In a previous paper,20 approximate equations based on t
assumption of slowly varying amplitude of the order para

or
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FIG. 5. ~a! Evolution of the ‘‘islands’’ of the superconducting phase in the loop for a fixed orbital numberL51: ~i! H050.06Hc(0),
Hi.H0 , appearance, broadening and splitting of the peaks ofca

2(x,y) in the corners;~ii ! H050.16Hc(0), Hi.H0 , motion of the
‘‘islands’’ of the superconducting phase towards the midpoints of the external sides of the loop;~iii ! H050.21Hc(0), Hi5H0 , confluence
of the ‘‘islands’’ of the superconducting phase near the midpoints of the external sides and starting of their ‘‘leakage’’ towards the m
of the external sides;~iv! H050.22Hc(0), athermodynamically stable state,Hi,H0 , continuation of the ‘‘leakage’’ of the superconductin
phase from the midpoints of the external sides to those of the internal sides;~v! H050.36Hc(0), astable state,Hi,H0 , concentration of the
‘‘islands’’ near the midpoints of the internal sides of the loop, disappearance of the superconducting phase in the loop.~b! Comparison
between the distributions of the order parameter in the wedge~as obtained in Sec. II; the left-hand panel! and in a corner of the supercon
ducting loop forL51 ~shown magnified in the right-hand panel! at H050.06Hc(0).
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eter as compared to the phase changes, were used inste
the full set of equations~26!–~28! for H(x,y), f(x,y), and
ca(x,y) of the present paper. The comparison of the so
tions obtained in both cases shows that there is a fair qu
tative and quantitative agreement between corresponding
lutions for f(x,y) and ca(x,y) in both approaches for th
H-T points in the vicinity of the phase boundary.

However, the simplified approach of Ref. 20 is less d
tailed than the present paper and it has not allowed u
d of

-
li-
o-

-
to

analyze the essential features of the evolution of the or
parameter in the loop. As an example, it could not reveal
‘‘leakage’’ of the superconducting phase between the m
points of the external and internal sides of the loop. Also,
the purpose of the determination of characteristics of the
perconducting states such as free energy or magnetizatio
away from the phase boundary, the exact equations~26!–
~28! are necessary because they take into account the m
netic field modulations inside the structure.
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The free energy per unit of the volume of the superc
ductor in the magnetic field is14

FsH5Fn01aucu21
b

2
ucu41

H2

8p
1

1

2mU2 i\¹c2
2e

c
AcU2

,

~33!

where Fn0 is the free energy of the normal~nonsupercon-
ducting! phase. For type-II superconductors (a,0), only the
second term in the right-hand side of Eq.~33! reduces the
free energy of the sample in the superconducting state.
the other terms, which are related to the order parameter,
lead only to increase inFsH ~cf. Ref. 21!. Consequently, the
term which contains the value of the magnetic field is
importance for minimization ofFsH . Due to the fact that the
magnetic field inside the openingHi differs from the applied
magnetic fieldH0 , one should take into account the cont
bution to the free energy related to this difference. So, i
obvious that those states are expected to provide the min
value of the free energy which are accompanied by a red
tion of the magnetic field in the opening of the loop. This
confirmed by the numerical calculations of the free ener
In particular, for the parameters corresponding to Fig. 5~a!
@L51, T/Tc(0)50.94# we have found that only those stat
are thermodynamically stable, i.e., correspond to the m
mum of the free energy, which are obtained at the app
magnetic field ranging betweenH0'0.19Hc(0) and
0.38Hc(0). Forthis range,Hi is less than, or nearly equal to
H0 . For lower applied magnetic fields, the states with no
zero ca

2(x,y) at L51 occur to be thermodynamically un
stable: the minimum of the free energy is atL50. For higher
magnetic fields, the states withL.1 are preferable.

We have plotted schematically the regions of the therm
dynamically stable states for different values ofL for the
superconducting loop under consideration~Fig. 6!. Every
curve represents the boundary between the supercondu
and the normal states for a certain numberL. The envelope
of all the curves forms, obviously, theH-T phase boundary
which includes parts related to different numbersL accord-
ing to the requirement of the thermodynamical stability. As
it seen from Fig. 6, in the areas where the superconduc
states with different numbersL are possible, such a sta
occurs to be thermodynamically stable, which correspond
the minimal numberL.

It should be noted that we have not specified here
criterion to determine the phase boundary. It will be sho
in the next section that the phase boundary strongly depe
on the definition of such a criterion.

V. EQUILIBRIUM SUPERCONDUCTING STATES:
THE H -T SUPERCONDUCTING PHASE BOUNDARY

A. Inhomogeneous distribution of the order parameter

The above analysis shows that for all considered cases
distribution of the order parameterca

2(x,y) in the loop is
inhomogeneous. Moreover, the areas whereca

2(x,y)50 can
coexist with the ones withca

2(x,y)Þ0. This inhomogeneity
appears as a consequence of the interplay between thC4
symmetry of the loop~reduced to theC2 symmetry by leads!
and the cylindrical symmetry of the magnetic field. T
order-parameter distributions reveal the local features, wh
-
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are remarkable in the neighborhood of the midpoints of
internal sides and in the corners of the loop, in corresp
dence with the analytical results discussed in Sec. II.

Note that in the case of a circular loop the magnetic fi
and the loop have the same symmetry, and as a resul
order-parameter distribution can display inhomogeneity o
in the radial direction. This result refers, of course, to th
case of anideal circular loop having a constant width. Re
cent analysis22 performed for a cylinder with average radiu
R and nonuniformwidth D(u), where u is the azimuthal
angle, has demonstrated the angular dependence of the o
parameter distribution in the sample.

In contrast to the case of a circular loop, an obvious c
sequence of the inhomogeneous distribution ofca

2(x,y) in
the square loop is the fact that in different parts of the lo
the order parameter disappears at various values of the
plied magnetic field for a given temperature, or at vario
temperatures for a given applied magnetic field.

Therefore, for different parts of the loop, one has differe
values of the critical magnetic fieldsHc,n and temperatures
Tc,n . Which of them should be chosen as those characte
ing the loop as a whole? At first sight, it seems to be natu
to use themaximal values ofHc,n , Tc,n for this purpose,
i.e., to treat thetotal suppression of the superconductivity
all parts of the loop as a criterion for the phase bound
point. However, such an analysis shows~see also Ref. 20!
that the phase boundary calculated using the criterion of
total suppression of the superconducting phase in the l
would be in disagreement with the experimental resul4

This is due to the fact that the phase boundary in Ref. 4
been reconstructed by measuring the temperature shift o
midpoint of the normal-to-superconducting resistive tran
tion as a function of the applied magnetic field. This cor
sponds to the existence of a certain ‘‘filling’’ of the loop b
the superconducting phase which provides the resistivity
the sample equal to a half of its value in the normal sta
Obviously, if one determines experimentally the pha
boundary based on the criterion of thetotal suppression of
the superconductivity, one should measure the tempera
shift of the beginning of the normal-to-superconducting
sistive transition~which is close to the resistivity of the nor
mal phase!. Therefore, another criterion should be chosen
phase boundary points in order to explain theH-T phase
boundary obtained in Ref. 4.

FIG. 6. Regions of the thermodynamically stable states w
differentL for the superconducting loop: the examples of the sta
states are plotted forL50 (L), L51 (1), L52 (h), L
53 (3).
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For the purpose of the quantitative description of differe
phase boundary criteria, we introduce the ‘‘filling param
eter’’ defined as a ratio of the area of the loop in which t
squared amplitude of the order parameter is nonzero~in our
calculations: larger than 1026) to the total area of the loop

h5
S„ca

2~x,y!.0…

Sloop
. ~34!

For example,h50 corresponds to the total suppression
the superconductivity in the loop.

If one attempts to model the experimental conditions
Ref. 4 using the valueh50.5, the calculated phase bounda
has the period of oscillations which is approximately twi
smaller than experimentally observed one. This has b
demonstrated in Ref. 20 for the loop without leads. T
analysis of the distributions ofca

2(x,y) shows that forh
50.5 there exists a single-connected area with nonz
ca

2(x,y) between the leads of the loop which will be referr
to as a ‘‘superconducting path.’’ If there exists a well-
developed ‘‘superconducting path,’’ electronic motion alo
this part of the loop occurs without any resistance, althou
the loop contains the normal phase in some parts. So,
weak currents,h50.5 corresponds rather to a point of th
normal-to-superconducting resistive transition in the vicin
of zero resistivity, than to the midpoint.

Therefore, in order to model the experimental conditio
of Ref. 4, one should use some value ofh from the range
0–0.5. The detailed analysis ofca

2(x,y) distributions for cer-
tain numbersL at different values of the applied magnet
field @Fig. 5~a!# shows that at low magnetic fields, the are
in the corners of the loop contain the superconducting ph
These areas do not contribute to the ‘‘superconduc
path.’’ At the same time, the value ofh substantially de-
pends on whether the areas in the corners are filled with
superconducting or with the normal phase. In order to
scribe the same ‘‘superconducting path’’ for different valu
of H0 excluding the contributions toh from the areas in the
neighborhood of the corners, one should choose diffe
values ofh.

As seen from Fig. 7, a good agreement between the

FIG. 7. TheH-T phase boundary: experimentally detected
Ref. 4 by measuring the temperature shift of the midpoint of
normal-to-superconducting resistive transition (L) and calculated
using the criterion of the ‘‘appearance of the superconducting pa
between the leads of the loop~solid line!.
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oretical results for the superconducting phase boundar
the Al mesoscopic square loop and the experimental dat
Ref. 4 is achieved when there are still small spacings fil
with the normal phase between the islands of the superc
ducting phase. This situation can be regarded as the ‘‘app
ance of the superconducting path.’’ Due to the spacings,
resistivity of the loop measured between the leads occ
nearly twice smaller than that for the normal phase. In suc
way, the criterion of the ‘‘appearance of the superconduct
path’’ between the leads of the loop corresponds, for
calculation of the phase boundary, to the experimental c
ditions of measuring the temperature shift of the midpoint
the normal-to-superconducting resistive transition. The c
culations show that this criterion is satisfied for the valu
h'0.0420.1.

For the purpose of calculations of the boundaries betw
the areas of the superconducting states with different n
bersL in Fig. 6 ~subsection IV D!, the criterion of the ‘‘ap-
pearance of the superconducting path’’ has been also us

B. Uniform amplitude of the order parameter
within the GL equations

As shown in Sec. IV, the ‘‘short-range’’ inhomogeneitie
of the order parameter appear predominantly in the vicin
of the phase boundary. In order to investigate whether or
the phase boundary substantially depends on inhomog
ities of this kind, the problem is analyzed here in the limit
a uniform amplitude of the order parameter.

We will treat this problem in the strict sense of the Lo
don limit in the next subsection. Here, we consider an
proach which still keeps features of the above treatmen
the framework of GL equations, namely, a self-consist
determination ofca

2 .
To comply with the requirement that the amplitude of t

order parameter be a constant, we put

]ca~x,y!

]x
5

]ca~x,y!

]y
50 ~35!

in the GL equations~27!–~28!, as well as in the boundary
conditions~29!–~30! and in the integral relation~31!. Then
the following set of equations is obtained to determi
f(x,y) andH(x,y):

]2f~x,y!

]x2
1

]2f~x,y!

]y2
50, ~36!

]2H~x,y!

]x2
1

]2H~x,y!

]y2
2ca

2H~x,y!50. ~37!

The squared amplitude of the order parameterca
2 enters

Eq. ~37! as a parameter. To determine this parameter,
solve Eq.~26! together with Eq.~35! with respect toca

2 and
then average the obtained value over the loop:

e

’’
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ca
2̄5

1

Sloop
E

loop
H S 12

T

Tc
D2

1

8
H2~x,y!~x21y2!

2
1

k2F S ]f~x,y!

]x D 2

1S ]f~x,y!

]y D 2G
2

1

kA2
H~x,y!Fy

]f~x,y!

]x
2x

]f~x,y!

]y G J dxdy.

~38!

Equations~36!–~38! are solved as follows. First, we solv
Eq. ~36! imposing the appropriate boundary conditions
the numerical methods described in Sec. III. Second, a s
consistent solution of Eqs.~37!, ~38! is derived, also with the
corresponding boundary conditions. Namely, we obtainca

2̄

from Eq. ~38! and then use this value as the parameterca
2

entering Eq.~37!. These calculations are repeated until t
integral relation~31! is fulfilled.

In such a way, the present approach combines, on the
hand, the requirement that the order-parameter amplitud
a constant and, on the other hand, a self-consistent proce
of calculation ofca

2 , borrowed from the GL equations~26!–
~28!.

As a result of this procedure, another set of phase bou
aries is obtained, which are plotted in Fig. 8 forL
50, 1, 2, 3. These phase boundaries have the quasiosc
ing Little-Parks-type behavior and differ from each other
the average slope of the envelope and by the period of o
lations, depending on a specific criterion, chosen to de
mine a phase boundary. We establish different threshold
ues of the (ca

2) th as criteria of the phase boundary. Curve
corresponds to (ca

2) th51024, curve 2 corresponds to
(ca

2) th51023. To define the criterion, which correlates
the criterion of the ‘‘appearance of the superconduct
path’’ previously used in the case of the inhomogeneousca

2

distribution ~subsection V A!, the integration in the right-

FIG. 8. TheH-T phase boundaries calculated using the appro
mation of a homogeneous amplitude of the order parameter w
the GL equations forL50, 1, 2, 3 by different criteria: suppres
sion of the superconducting phase in the loop, the threshold v
(ca

2) th51024 ~curve 1!, (ca
2) th51023 ~curve 2!; total suppression

of the superconducting phase in the ‘‘superconducting pat
(ca

2) th51026 ~curve 3!.
lf-
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hand side of Eq.~38! can be performed over the ‘‘supercon
ducting path.’’ This area is simulated by the geometrical fi
ure which overlaps the square loop under considerat
except the external boundary, which is formed by the part
the circle inserted in the loop; a radius of the circle
@(Qe/2)21(d/2)2#1/2. The phase boundary calculated by t
criterion of the total suppression ofca

2 @according to the
accuracy of the calculations, (ca

2) th51026] over the ‘‘super-
conducting path’’ is represented by curve 3 in Fig. 8.

Comparison shows that these phase boundaries are si
to the previously calculated one in subsection V A, when
inhomogeneity of the order parameter was taken into
count. The average slope of the envelope and the perio
oscillations of the phase boundaries represented in Fig. 8
close to these characteristics of the curve plotted in Fig
Moreover, from the comparison of the phase boundary
picted in Fig. 7 with curves 1 and 2 in Fig. 8, which a
obtained for the threshold values 1024 and 1023, respec-
tively, we can expect that there exists some intermed
threshold value (ca

2) th between 1024 and 1023 which would
provide also a quantitative agreement between phase bo
aries calculated in the framework of the different approac
under discussion. At the same time, it is worth noting th
there is a distinction in the shape of cusps forming the ph
boundaries 1, 2 in Fig. 8 and the calculated phase boun
in Fig. 7. Every cusp, referred to a certain value ofL, of the
phase boundary represented in Fig. 7 has a shape clo
symmetric with respect to the horizontal line guided throu
the central point of this cusp, and it is asymmetric for curv
1, 2 in Fig. 8. The noted difference is eliminated by perfor
ing the integration in Eq.~38! over the ‘‘superconducting
path.’’ The corresponding curve 3 in Fig. 8 is formed b
nearly symmetric cusps for every particular numberL.

C. The London limit

In this subsection, we treat the phase boundary of
mesoscopic square loop under consideration in the Lon
limit which is valid, in any case, whenT→Tc . In this limit,
the parameterca

2 entering Eq.~37! is a constant which has
the meaning of the inverse London penetration depthlL .16

With the notations used in the present work,ca
2 is related to

the temperature-dependent penetration depth16

l~T!5l~0!S Tc~0!2T

Tc~0! D 21/2

~39!

as

ca
25

mc2

16pe2l2~T!
. ~40!

In terms of the dimensionless variables~23!–~24!, one ob-
tains a simple dependence ofca

2 on temperature:

ca
2512

T

Tc~0!
. ~41!

Hence,f(x,y) and H(x,y) are determined by the set o
equations~36!, ~37! with ca

2 given by Eq.~41!.
It is clear that, due to the fact that in the London limitca

2

is a certain constant at a given temperature, one can us
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threshold value ofca
2 to define a criterion for the phas

boundary, as distinct from subsections V A and V B. W
have elaborated a method of the phase boundary calcula
which is based on the analysis of the distributions of
persistent current in the square loop. The underlying ide
this method is the following. In the superconducting sta
the current obeys the second London equation,17 which cor-
responds to the Helmholtz equation. On the phase bound
the second London equation formally turns to the Lapla
equation. Therefore, the value of the Laplacian of the per
tent current has to be analyzed in order to define the ph
boundary between the superconducting and normal state

It is worth recalling that, in the calculations of the pha
boundary performed in the present work, we simulate
experimental data4 on the midpoint of the normal-to
superconducting resistive transition. This was a reason to
some value of the ‘‘filling parameter’’~subsection V A! or
some threshold values ofca

2 to determine the phase boun
ary ~subsection V B!. The same goal is pursued in the prese
consideration by choosing a threshold value of the Laplac
of the persistent current. For convenience, we use the
placian of the persistent current averaged over the area o
structure. As a threshold value, we choose 1% of its ma
mum obtained at a fixed temperature for those values of
applied magnetic field, which are compatible with a giv
numberL. ~A detailed description of the calculations of pe
sistent current in a square loop as well as different criteria
the phase boundary will be done elsewhere.! The resulting
phase boundary is represented in Fig. 9.

From the analysis performed in this section, a gene
conclusion follows: the phase boundaries are not stron
sensitive to the specific features of the order-parameter
tributionsca

2 which have been defined as the ‘‘short-rang
inhomogeneities. Different approaches used in this sec
lead to similar phase boundaries for the mesoscopic su
conducting square loop, which agree with the available
perimental data. At present, we are not aware of any di
experimental study of thelocal distributions of the magnetic
field and the order parameter in a square mesoscopic loo
a distribution of the order parameter occurs to be inhomo
neous in a mesoscopic structure, in particular, in the squ
loop under discussion, then the theoretical approach wh

FIG. 9. TheH-T phase boundary calculated in the London lim
for L5 0, 1, 2, 3 by the analysis of the Laplacian of the persist
currents in the loop~see discussion in the text!.
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has been developed in subsection V A of the present pa
can be applied for the description of such a structure. On
contrary, in the case where the order parameter is ne
homogeneous in a particular structure, another appro
which has been represented in subsections V B and V C
relevant. The present investigation has been carried out
both of these two different regimes.

VI. CONCLUSIONS

The problem of theH-T phase boundary in superconduc
ing loops is discussed in detail.

The study of the phase boundary of a superconductor
ing a wedge with the central anglea is performed in terms of
a variational model based on the linearized GL theory a
for a uniform magnetic field. The obtained solutions imp
that the nucleation of the superconducting phase in the
ner is enhanced in the vicinity of the edge when 0,a,p.

A self-consistent solution of the GL equations for a m
soscopic square superconducting loop with the appropr
boundary conditions is obtained numerically. The distrib
tions of the magnetic fieldH(x,y), the squared amplitude
ca

2(x,y), and the phasef(x,y) of the order parameter ar
found for the cases when an enclosed fluxoid contains a
ferent numberL of magnetic flux quantaF0 .

We analyze the solutions from the point of view of the
thermodynamical stability. This analysis reveals what
numberL is at a given value of the applied magnetic fiel
On the basis of this knowledge, theH-T superconducting
phase boundaries are calculated for the mesoscopic sq
loop with leads. With the definition of theH-T phase bound-
ary for a square loop in terms of the ‘‘appearance of
superconducting path,’’ the obtained theoretical results ag
fairly well with the experimental data.4,5 An independent
analysis performed in the framework of the London lim
demonstrates that the phase boundaries are not strongly
sitive to the ‘‘short-range’’ inhomogeneities of the order p
rameter.
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APPENDIX

Substitution of the order parameter in the form of Eq.~25!
into the second GL equation~2! gives

DA52
8p ie\

mc
ca

2¹f1
16pe2

mc2
Aca

2 . ~A1!

This allows one to represent the value of rotH as

rot H5rot rot A[grad divA2DA. ~A2!

t
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th
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e
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The gauge divA50 implies that

rot H52DA, ~A3!

wherefrom, taking into account Eq.~A1!, it follows that

rot H5
8p ie\

mc
ca

2¹f2
16pe2

mc2
Aca

2 . ~A4!

Integration of this identity along theinternal boundary of the
loop gives the integral relation

R
i
rot H•d l5

8p ie\

mc R
i
ca

2¹f•d l2
16pe2

mc2 R
i
ca

2A•d l.

~A5!

Under the assumption that the squared amplitude of
order parameterca

2 changes along the internal boundary
the loop more slowly as compared with the gradient of
i

-

-
n

e

e

phase¹f and the vector potentialA, the general integra
relation ~A5! can be approximately simplified to

R
i
rot H•d l5

8p ie\

mc
ca

2 R
i
¹f•d l2

16pe2

mc2
ca

2 R
i
A•d l.

~A6!

Now the contour integrals on the right-hand side are

R
i
¹f•d l52pL, ~A7!

whereL50,1,2 . . . is the winding number, and

R
i
A•d l5F, ~A8!

where F is the magnetic flux through the opening of th
loop. With these definitions, Eq.~A6! takes on the final form
of the integral relation~31!.
-
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19H. J. Fink, A. López, and R. Maynard, Phys. Rev. B26, 5237
~1982!.

20V. M. Fomin, V. R. Misko, J. T. Devreese, and V. V. Mosh-
chalkov, Solid State Commun.101, 303 ~1997!.

21Superconductivity, edited by R. D. Parks~Dekker, New York,
1969!.

22J. Berger and J. Rubinstein, Phys. Rev. Lett.75, 320 ~1995!;
Physica C288, 105 ~1997!.


