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Nonexistence ofdx22y2 superconductivity in the Hubbard model

Gang Su* and Masuo Suzuki†

Department of Applied Physics, Faculty of Science, Science University of Tokyo, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162, J
~Received 20 January 1998!

It is rigorously shown that the two-dimensional Hubbard model with narrow bands~including next-nearest-
neighbor hopping, etc.! does not exhibitdx22y2-wave pairing long-range order at any nonzero temperature.
This kind of pairing long-range order will also be excluded at zero temperature if an excited energy gap opens
in the charge excitation spectrum of the system. These results hold true for both repulsive and attractive
Coulomb interactions and for any electron fillings, and are consistent with quantum Monto Carlo calculations.
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Considerable experimental evidence shows that the do
nant symmetry of the pairing order parameter in hig
temperature superconductors may bedx22y2 wave ~see, e.g.,
Ref. 1 for a review!. Though some disputes2 regarding this
challenging issue still remain, a great number of people h
arrived at such a consensus; that exploring the possibilit
d-wave superconductivity in strongly correlated electro
would be quite useful towards ultimately successfully e
plaining high-temperature superconductivity, thus result
in numerous studies on this subject. As a matter of fa
owing to its apparent simplicity, the two-dimensional~2D!
Hubbard model has naturally become an actively deba
focus in recent years, as it is widely thought to provide
simple model to interpret some essential features relevan
the physical properties of CuO2 planes in the cuprate oxides
In spite of intense efforts being made both numerically a
analytically,3,4 however, a basic question whether or not t
dx22y2-wave pairing long-range order~LRO! in the 2D Hub-
bard model exists, is still inconclusive. Actually, at ener
scales and lattice sizes accessible to numerical simulati
no definite sign ofdx22y2 superconductivity has been de
tected in this model, while some analytical works using d
ferent approximations appear to suggest positive answer3–5

thereby leaving some controversies and ambiguities to
resolved. To clarify them, rigorous results are particula
needed at this stage.

In this paper, based on Bogoliubov’s inequality, we sh
rigorously that the 2D Hubbard model with narrow ban
~including next-nearest-neighbor hopping, etc.! does not ex-
hibit dx22y2-wave pairing LRO at any nonzero temperatu
This kind of pairing LRO will also be excluded if a ga
opens in the charge excitation spectrum of the system. Th
results hold true for both repulsive and attractive Coulo
interactions and for any electron fillings. Combining wi
other known exact results, one would conclude that the
Hubbard model might not have the right stuff for describi
superconductivity in the cuprate oxides in this sense, p
vided that the superconducting mechanisms in these ma
als are supposed to be due to condensation of eithers-wave
Cooper, or generalizedh or dx22y2-wave electron pairs. The
present observations are consistent with quantum Mo
Carlo results.

Let us start with some preliminary definitions. Th
dx22y2-wave pairing operator~like the Cooper pairing opera
tor! can be defined as6
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15(

k
~coskx2cosky!ck↑

† c2k↓
†

5
1

2(r ,d
f ~d!cr↑

† cr1d↓
† , Dd

25~Dd
1!†, ~1!

where we have used the Fourier transform of an elect
operatorcks ,

cks5
1

AM
(

j
exp~ ik•Rj !cj s ,

cj s5
1

AM
(

k
exp~2 ik•Rj !cks , ~2!

and f (d)511 (21) for d56ax (6ay), and zero other-
wise, whereax , ay are unit vectors connecting neares
neighbor sites,M is the number of lattice sites,Rj (r ) is the
position vector ofj th (r th! site, ands denotes spin. In the
following we, for simplicity, taked56ax , 6ay . According
to Bogoliubov,7 when one studies a degenerate state of
statistical equilibrium, one should first remove the dege
eracy by introducing a symmetry-breaking field, and th
turn to investigate the so-called quasiaverages involved.
account of this reason, we define thedx22y2-wave pairing
order parameter per site as

g5 lim
n→01

lim
M→`

K Dd
1

M L , ~3!

where ^•••& stands for the thermal average in a grand
nonical ensemble, andn is the amplitude of a U~1!
symmetry-breaking field. Note that the two limit process
are noninterchangeable. The nonvanishing ofg, namely,g
Þ0, means the existence ofdx22y2-wave pairing LRO, while
g50 gives the converse result.
117 © 1998 The American Physical Society
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We now consider a general Hubbard model with narr
bands on a periodic lattice in the presence of a U~1!
symmetry-breaking field. The Hamiltonian reads

H5(
i , j

(
s

T~Ri2Rj !cis
† cj s1(

i
Uini↑ni↓

2(
i

m i~ni↑1ni↓!2n~Dd
11Dd

2!, ~4!

where the sum oni and j can run over allM lattice sites,cis
†

(cis) is the creation~annihilation! operator for an electron a
site i with spins, the on-site Coulomb interactionUi and the
chemical potentialm i are allowed to be position depende
for generality, andnis5cis

† cis , the number operator of elec
trons.T(Ri2Rj ), which has a propertyT(Ri2Rj )5T* (Rj
2Ri), is the local overlap integral that designates the ene
bands of the model. In fact, we require thatT(Ri2Rj ) sur-
vives only for short-ranged overlapping in the present ca
The last term in Eq.~4! introduces the effect of the U~1!
symmetry-breaking field, wheren is an infinitesimal quan-
tity, andDd

6 are given by Eq.~1!.
As we attempt to explore the possibility ofdx22y2 pairing

LRO in Eq. ~4!, in the following we shall use Bogoliubov’s
inequality8,9

u^@C†,A†#&u2<
b

2
^$A,A†%&^@@C,H#,C†#& ~5!

for any quantum-mechanical operatorsA andC, and with the
inverse temperatureb51/T (kB51), where@ ,# and $,% are
the usual commutator and anticommutator, respectively. T
inequality was used to exclude the possibility of magne
LRO in the Heisenberg9 and Hubbard10,11 models as well as
superfluidity in Fermi liquids12 in one and two dimensions a
nonzero temperature. Quite recently, this inequality was a
used to exclude the possibility ofs-wave Cooper pairing and
generalizedh pairing LRO in the 1D and 2D Hubbard mod
els with narrow bands at nonzero temperature.13 It should be
mentioned that the SU~2! Lie algebra obeyed by the releva
operators~e.g., spin operators, Cooper pairing operators
h pairing operators, etc.! plays a key role in applying this
inequality to the above-mentioned cases. However, one
observe that thedx22y2-wave pairing operators defined in E
~1! do not obey the SU~2! symmetry, which makes Bogoli
ubov’s inequality not directly applicable to the present ca
as stated in Ref. 13. Fortunately, this difficulty can be ov
come by noting the simple fact thatf (d) in Eq. ~1! takes
values either11 and21 or zero so that we can decompo
thedx22y2 pairing order parameter per siteg into four terms,
each of which obeys the SU~2! algebra. It is this property
that makes it possible for applying inequality~5! to our
case.14 We would like to mention here that although one c
find the standard derivations in Refs. 9–11 and 13, for re
er’s convenience and for this paper being self-contained,
shall below intend to present our calculations in some de

We define the following operators

h̃ r
15cr↑

† cr1a↓
† , h̃ r

25cr1a↓cr↑ ,

h̃ r
z5 1

2 ~nr↑1nr1a↓21!, ~6!
y

e.

is
c

o

d

ay

,
-

d-
e

il.

with an arbitrary constant vectora on the lattice. It can be
verified that they satisfy

@h̃ r
1 ,h̃ r8

2
#52h̃ r

zd rr 8, @h̃ r
6 ,h̃ r8

z
#57h̃ r

6d rr 8. ~7!

The Fourier transforms ofh̃ operators, like spin operators i
Refs. 9 and 11, are defined by

h̃ r
6,z5

1

M(
k

exp~2 ik•r !h̃6,z~k!, h̃6,z~k!

5(
r

exp~ ik•r !h̃ r
6,z , ~8!

which comply with

@h̃1~k!,h̃2~k8!#52h̃z~k1k8!,

@h̃6~k!,h̃z~k8!#57h̃6~k1k8!. ~9!

Equations~9! come from Eqs.~7! and ~8!.
With these definitions we chooseA5h̃1(2k2Q) and

C5h̃z(k) in Eq. ~5! for our purposes. After some algebra fo
the double commutator, one gets the inequality

^@@h̃z~k!,H#,h̃z~2k!#&

<
1

2(i
uT~Ri !uucos~k•Ri !21uU(

k8s

eik8•Ri^ck8s
† ck8s&U

1unuu^Dd
11Dd

2&u

<
N

4(
i

uT~Ri !uRi
2k212unu•u^Dd

1&u. ~10!

In the derivation of this inequality we have used the prope
of translation invariance and such a few simple fa
as (k8s^ck8s

† ck8s&5N, the total number of electrons
12cosx,x2/2 and ^Dd

1&5^Dd
2&†. Substituting inequality

~10! into Eq. ~5! we have

1

M
^$h̃1~2Q2k!,h̃2~Q1k!%&>

2uFn,M~Q,a!u2

b~jk212unuu^Dd
1/M &u!

,

~11!

where

Fn,M~Q,a!5^h̃1~Q!&/M ,

and

j5~N/M !( i uT~Ri !uRi
2/4.

Since theT(Ri)’s are the matrix elements of the overla
integral between Wannier functions that decrease rap
with distance for strongly correlated electrons, the summ
tion ( i uT(Ri)uRi

2 is well defined. For the single-band Hub
bard model as well as one with a next-nearest-neighbor h
ping integral, the values of( i uT(Ri)uRi

2 on a hypercubic
lattice can be found in Ref. 13. Summing both sides of
above inequality overk and noting that
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~1/M !(
k

^$A,A†%&5(
r

^$h̃ r
1 ,h̃ r

2%&

5(
r

^@12~nr↑2nr1a↓!
2#&<M ,

we obtain

uFn,M~Q,a!u2<
bM

2 S (
k

1

jk212unuu^Dd
1/M &u

D 21

.

~12!

Now we take the thermodynamic limit, i.e.,N→` and
M→` with the ratioN/M fixed. Then the sum onk in Eq.
~12! can be replaced by the integral over the first Brillou
zone. Suppose thatk0 is the distance of the nearest Brag
plane from the origin ink space. Then we obtain for smalln
the following inequalities:

uFn,`~Q,a!u<~jb2!1/4unu1/4, ~1D!, ~13!

uFn,`~Q,a!u<Ajb

p

1

u lnunuu1/2
, ~2D!, ~14!

where we have used limM→`u^Dd
1/M &u<2 in Eq. ~13!. In-

equalities~13! and ~14! tell us thatuF0,̀ (Q,a)u50 for any
nonzero temperature as the U~1! symmetry-breaking field is
turned off (n→01). ~Recall that the thermodynamic lim
has been taken before we remove the U~1! symmetry-
breaking field.! This means that F0,̀ (Q,a):
5 limn→01limM→`^(1/M )( rexp(iQ•r )cr↑

† cr1a↓
† &n,M50 for

any possibleQ and a for T.0 in the 1D and 2D Hubbard
models defined in Eq.~4!. On the other hand, we note th
the dx22y2-wave pairing order parameter per site can be
written asg5(1/2)(df (d)F0,̀ (0,d) because the existenc
of F0,̀ (0,d) has been proved, where we have setQ50 and
a5d. Here use has been made of the well-known theor
lim a6 lim b5 lim(a6b) if lim a and lim b exist. Since
F0,̀ (0,d)50 for T.0 and f (d), by virtue of its definition,
takes either61 or zero, we finally haveg50 for T.0.
Consequently, we have proved that the 2D Hubbard mo
with narrow bands, defined by Eq.~4!, does not show
dx22y2-wave pairing LRO at any nonzero temperature.

Whenb/2 is replaced by 1/Egap in inequality ~5!, where
Egap (.0) is an excitation energy gap between the low
excited state and the ground state of the system, Eq.~5! still
holds true at zero temperature. We refer to Refs. 13 and
for detail discussions. Therefore, all the above analyses
apply to the case at zero temperature exceptb/2 replaced by
1/Egap . Then we could conclude that if an energy gap ope
in the charge excitation spectrum of the system~4!, there will
also be nodx22y2-wave pairing LRO in two dimensions a
zero temperature.

A few remarks are in order.~i! The derivations presente
above are valid for both repulsive and attractive on-site C
lomb interactions and for any electron filling fraction.~ii !
The method used in this paper can be readily extende
exclude the possibility of extendeds-wave@with pairing op-
eratorDe2s

1 5(k(coskx1cosky)ck↑
† c2k↓

† # superconductivity in
the 1D and 2D Hubbard models at finite temperatures. In
Hilbert subspace without doubly-occupied sites, this meth
-

:

el

t

5
an

s

-

to

e
d

might be applied to thet-J model as well. It should be em
phazied that the method works only for low dimensions~1D
and 2D!, not for three dimensions.~iii ! The conclusions
drawn in this paper are quite consistent with the results fr
numerical simulations~e.g., quantum Monte Carlo calcula
tions! in the 2D Hubbard model. We refer to Refs. 3–5 f
excellent reviews. The practical situation is that althou
most numerical works show some tendencies favor
dx22y2 superconductivity, no definite sign of LRO has be
detected, as pointed out in Refs. 16 and 17. We would like
mention here that the present conclusions are not incom
ible with the quantum Monte Carlo observations that t
long-tailed enhancements in thedx22y2 pairing correlation
near half-filling17 or the exhibition ofdx22y2-like pairing
fluctuations at low temperatures18 are detected in the 2D
Hubbard model. Recent analytic and quantum Monte Ca
results also show that the 2D Hubbard model with a ne
nearest-neighbor hopping integral does not exhibit any d
nite sign ofs-wave andd-wave superconductivity,19–22con-
sistent with the present exact result.~iv! The nonexistence o
s-wave Cooper pairing and generalizedh pairing LRO at
finite temperatures in the 1D and 2D Hubbard models w
narrow bands has been proved in Refs. 13 and 23. Com
ing these exact results one would conclude that the 2D H
bard model might not have the right stuff for explainin
high-temperature superconductivity in the layered cupr
oxides if the superconducting mechanisms in these mate
are supposed to be due to condensation of one of the ab
mentioned electron pairs, as a successful theory should
scribe unifyingly the properties not only at zero temperat
but also at finite temperatures.~v! To choose a proper mode
that could exhibitdx22y2-wave pairing LRO in 2D, one may
consider those that contain electron interactions not comm
ing with the operator( rexp(ik•r )nr , like the one investi-
gated in Ref. 16, because in this way Bogoliubov’s inequ
ity becomes ineffective. Another possibility is that th
coupling between layers in the cuprate oxides might ough
be considered, which could also make Bogoliubov’s inequ
ity ineffective.

To summarize, we show rigorously that, by means
Bogoliubov’s inequality, the 2D Hubbard model with narro
bands~including next-nearest-neighbor hopping, etc.! does
not exhibit dx22y2 wave pairing LRO at any nonzero tem
perature. This kind of pairing LRO will also be excluded
an excited energy gap opens in the charge excitation s
trum of the system. These results are valid for both repuls
and attractive Coulomb interactions and for any electron
ings. Combining with known exact results obtained pre
ously, one would conclude that the 2D Hubbard model mi
not have enough right stuff for describing superconductiv
in the cuprate oxides if the superconducting mechanism
these materials are supposed to be due to condensatio
one of the aforementioned electron pairs. The present ob
vations are consistent with quantum Monto Carlo results
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