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Nonexistence ofd,2_,2 superconductivity in the Hubbard model
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It is rigorously shown that the two-dimensional Hubbard model with narrow béndsiding next-nearest-
neighbor hopping, etc.does not exhibid,2_,2-wave pairing long-range order at any nonzero temperature.
This kind of pairing long-range order will also be excluded at zero temperature if an excited energy gap opens
in the charge excitation spectrum of the system. These results hold true for both repulsive and attractive
Coulomb interactions and for any electron fillings, and are consistent with quantum Monto Carlo calculations.
[S0163-182698)00626-3

Considerable experimental evidence shows that the domi-
nant symmetry of the pairing order parameter in high- Ag =2 (cosk,—cosky)chc
temperature superconductors maydge_,» wave (see, e.g., k
Ref. 1 for a review. Though some disputeésegarding this 1
challenging issue still remain, a great number of people have :EE f(ochcl, s, Ag=AHT, 1)
arrived at such a consensus; that exploring the possibility of ro
d-wave superconductivity in strongly correlated electrons
would be quite useful towards ultimately successfully ex- .
plaining high-temperature superconductivity, thus resulting’he"® we have used the Fourier transform of an electron
in numerous studies on this subject. As a matter of factOP€ratorcy,
owing to its apparent simplicity, the two-dimension@D)
Hubbard model has naturally become an actively debated
focus in recent years, as it is widely thought to provide a 1 )
simple model to interpret some essential features relevant to Cko:\/_m >, explik-Rj)cj,,
the physical properties of Cy(lanes in the cuprate oxides. )
In spite of intense efforts being made both numerically and
analytically>* however, a basic question whether or not the
dy2_2-wave pairing long-range ord¢kRO) in the 2D Hub- 1 .
bard model exists, is still inconclusive. Actually, at energy Cjtr:\/_mg exp(—ik-R;)Cys, 2
scales and lattice sizes accessible to numerical simulations,
no definite sign ofd,2_,2 superconductivity has been de-
tected in this model, while some analytical works using dif-
ferent approximations appear to suggest positive anstvers,

thereby leaving some controversies and ambiguities to bﬁeighbor sitesM is the number of lattice site®; (r) is the
resolved. To. clarify them, rigorous results are particularlyposition vector ofjth (rth) site, ando denotes ]spin. In the
ne?gfﬂsaggfgzrstl;ﬂg;e.d on Bogoliubov's inequality, we Showfollowmg_ we, f70r simplicity, taked= +a,, =a,. According
rigorously that ,the 2D Hubbard model with narrbw bandsto BOQOI'UbOV’. .when one studies a.degenerate state of the
(including next-nearest-neighbor hopping, Btioes not ex- statistical .equmbrl.um, one should first remove the degen-
hibit d,2_,2-wave pairing LRO at any non’zero temperature eracy by introducing a symmetry-breaking field, and then
Xy . ; . ‘turn to investigate the so-called quasiaverages involved. On
This kind of pairing LRO will also be excluded if a gap account of this reason, we define the._2-wave pairing
opens in the charge excitation spectrum of the system. Thesoerder parameter per sit’e as Y
results hold true for both repulsive and attractive Coulomb

interactions and for any electron fillings. Combining with

and f(§)=+1 (—1) for 6=*a, (*a), and zero other-
wise, wherea,, a, are unit vectors connecting nearest-

other known exact results, one would conclude that the 2D N
Hubbard model might not have the right stuff for describing g= lim lim <_d> 3
superconductivity in the cuprate oxides in this sense, pro- 0t M M

vided that the superconducting mechanisms in these materi-

als are supposed to be due to condensation of egtiveave

Cooper, or generalizeg} or dy2_2-wave electron pairs. The where(---) stands for the thermal average in a grand ca-

present observations are consistent with quantum Montaonical ensemble, and is the amplitude of a )

Carlo results. symmetry-breaking field. Note that the two limit processes
Let us start with some preliminary definitions. The are noninterchangeable. The nonvanishinggphamely, g

dy2_2-wave pairing operatalilike the Cooper pairing opera- #0, means the existence @f2_2-wave pairing LRO, while

tor) can be defined 4s g=0 gives the converse result.
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We now consider a general Hubbard model with narromwith an arbitrary constant vectar on the lattice. It can be
bands on a periodic lattice in the presence of &)U verified that they satisfy
symmetry-breaking field. The Hamiltonian reads

[:"7;”;7;]:2’;7?5”’1 [’;7?";7?/]21’;7;:5”'- (7)

The Fourier transforms of operators, like spin operators in
Refs. 9 and 11, are defined by

H=2 > T(R-Ryc,cjp+ 2 Uinimy,

i,j o

=2 w0 = v(Ag +Ag), ) o ~ B
! 77t e =ik Ny k), 7k

where the sum ohandj can run over alM lattice sitesg], “

(ci,) is the creatior(annihilation) operator for an electron at ~

sitei with spin o, the on-site Coulomb interactidn; and the =2 explik-1) 77, ®

chemical potentia; are allowed to be position dependent '

for generality, anadh; .= cfgcig, the number operator of elec- which comply with

trons. T(R;—R;), which has a propert¥ (Rj—R;)=T*(R;

—R)), is the local overlap integral that designates the energy [71(k), 77 (k") ]=27%k+k"),
bands of the model. In fact, we require thitR; —R;) sur-
vives only for short-ranged overlapping in the present case. [77(K), 7%k ) ]=F 77 (k+k'). (9)

The last term in Eq(4) introduces the effect of the (W)

symmetry-breaking field, where is an infinitesimal quan- Equations(9) come from Eqgs(7) and(8).

tity, andAy are given by Eq(l). o y With these definitions we choosk=7%"*(—k—Q) and
As we attempt to explore the possibility df2_,2 pairing C=77%(k) in Eq.(5) for our purposes. After some algebra for

LRO in I}qSi (4), in the following we shall use Bogoliubov's 4 double commutator, one gets the inequality
inequality”

13 <[[7]Z(k)rH]l7]Z(_k)]>

([CTADP=Z(AATXICHLCT) ) L
ik R/t

_ _ =52 [T(R)llcogk-R)—1]| X e* Fifey, o)

for any quantum-mechanical operatéraindC, and with the I K'o

inverse temperatur@=1/T (kz=1), where[,] and{,} are

the usual commutator and anticommutator, respectively. This

inequality was used to exclude the possibility of magnetic

LRO in the Heisenbefgand Hubbart’'* models as well as <> |T(R)|R?KZ+2|v|-[(AJ)]. (10

superfluidity in Fermi liquid¥ in one and two dimensions at 49

nonzero temperature. Quite recently, this inequality was als

used to exclude the possibility efwave Cooper pairing and

generalizedy pairing LRO in the 1D and 2D Hubbard mod- + _

els with narrow bands at nonzero temperatdré.should be 23 Ek"’<ck2’”ck"’>_ N’+ the Eotsl number of electrons,

mentioned that the SQ) Lie algebra obeyed by the relevant L~ C0SX<x72 and (A4)=(Aq)". Substituting inequality

operatorge.g., spin operators, Cooper pairing operators and10 into Eg.(5) we have

7 pairing operators, etcplays a key role in applying this 5

inequality to the above-mentioned cases. However, one Mak oo k), 7 (Q+K)})= 2|7, m(Q @)

observe that thd,2_,2-wave pairing operators defined in Eq. M 7 7 - B(EK2+2[v||[(ASIM)))

(1) do not obey the S(2) symmetry, which makes Bogoli- (1

ubov’s inequality not directly applicable to the present case,

as stated in Ref. 13. Fortunately, this difficulty can be overwhere

come by noting the simple fact th&{é) in Eq. (1) takes _

values either+ 1 and—1 or zero so that we can decompose Fom(Q,@)=(n"(Q))/M,

thed,2_2 pairing order parameter per sigeinto four terms,

each of which obeys the SP) algebra. It is this property and

that makes it possible for applying inequali{$) to our 2

case** We would like to mention here that although one can &= (NIM)Z[T(R)[Ri74.

find the standard derivations in Refs. 9-11 and 13, for readgjnce theT(R;)’s are the matrix elements of the overlap

er's convenience and for this paper being self-contained, Wgyegral between Wannier functions that decrease rapidly
shall below intend to present our calculations in some detailyitn distance for strongly correlated electrons, the summa-

+Ivl[(Ag +Ag)]

th the derivation of this inequality we have used the property
of translation invariance and such a few simple facts

D

We define the following operators tion 2| T(R;)|R? is well defined. For the single-band Hub-
~4 o1 ~_ bard model as well as one with a next-nearest-neighbor hop-
e =CriCriars Mr =CrtalCrps ping integral, the values oF;|T(R;)|R? on a hypercubic

~, 1 lattice can be found in Ref. 13. Summing both sides of the
Nr=2(N+ Ny g —1), (6)  above inequality ovek and noting that
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- might be applied to thé-J model as well. It should be em-
(1/M); AAAY=2 (7" 2 }) phazied that the method works only for low dimensi¢h®
' and 2D, not for three dimensions(iii) The conclusions
drawn in this paper are quite consistent with the results from

:Z ([1= (=N o) ? =M, numerical simulationge.g., quantum Monte Carlo calcula-
) tions) in the 2D Hubbard model. We refer to Refs. 3-5 for
we obtain excellent reviews. The practical situation is that although
1 most numerical works show some tendencies favoring
7, w(Q.a)2< BM / D 1 _ dy2_y2 superconductivity,_ no definite sign of LRO has peen
: 2 \ K Ek2+2|p||[(AFIM)] detected, as pointed out in Refs. 16 and 17. We would like to

mention here that the present conclusions are not incompat-
L ible with the quantum Monte Carlo observations that the

Now we take the thermodynamic limit, i.eN—c and |on4 tailed enhancements in th2 > pairing correlation
M — o with the ratioN/M fixed. Then the sum ok in EQ. ooy half-filling” or the exhibition )C/)fd . o-like pairi

( _ 4. X2y pairing
(12) can be replaced .by the mtegral over the first Brillouin g, ~tuations at low temperaturdsare detected in the 2D
zone. Suppose tha, is the distance of the nearest Bragg phard model. Recent analytic and quantum Monte Carlo
plane from the origin irk space. Then we obtain for small  agits also show that the 2D Hubbard model with a next-
the following inequalities: nearest-neighbor hopping integral does not exhibit any defi-
nite sign ofs-wave andd-wave superconductivit}? 22 con-

2\1/4) . |1/4
|7,(Qua)| < (66971, (1D), (13 sistent with the present exact resuit.) The nonexistence of
s-wave Cooper pairing and generalizedpairing LRO at
|7, (Q, )| < /% 1 ., (2D), (14)  finite temperatures in the 1D and 2D Hubbard models with
" 7 |In|v| |2 narrow bands has been proved in Refs. 13 and 23. Combin-

) + . ing these exact results one would conclude that the 2D Hub-
where we have used IijL..|[(Aq/M)[<2 in Eq.(13). In-  parq model might not have the right stuff for explaining
equalities(13) and (14) tell us that|F..(Q,a)|=0 for any  high-temperature superconductivity in the layered cuprate
nonzero temperature as the¢1l) symmetry-breaking field is  oxjdes if the superconducting mechanisms in these materials
tumned off (#—0"). (Recall that the thermodynamic limit 4re supposed to be due to condensation of one of the above-
has been taken before we remove th€l)Usymmetry-  mentioned electron pairs, as a successful theory should de-
breaking ~ field.  This means that 7,.(Q.a):  scribe unifyingly the properties not only at zero temperature
=lim, _o+limy_..((1M)Zexp(Q-r)clicl. , ), =0 for byt also at finite temperatures) To choose a proper model
any possibleQ and a for T>0 in the 1D and 2D Hubbard ' that could exhibitdyz_2-wave pairing LRO in 2D, one may
models defined in Eqi4). On the other hand, we note that consider those that contain electron interactions not commut-
the d,2_y2-wave pairing order parameter per site can be reing with the operator=,exp(k-r)n,, like the one investi-
written asg=(1/2)Z 4f(6) Fo.(0,6) because the existence gated in Ref. 16, because in this way Bogoliubov’s inequal-
of Fo.(0,6) has been proved, where we have @et0and ity becomes ineffective. Another possibility is that the
a= 6. Here use has been made of the well-known theoreme¢oupling between layers in the cuprate oxides might ought to
lim a=lim b=lim(a*=b) if lim a and limb exist. Since be considered, which could also make Bogoliubov’s inequal-
Fo-(0,6)=0 for T>0 andf (), by virtue of its definition, ity ineffective.
takes either=1 or zero, we finally havegg=0 for T>0. To summarize, we show rigorously that, by means of
Consequently, we have proved that the 2D Hubbard modeBogoliubov’s inequality, the 2D Hubbard model with narrow
with narrow bands, defined by Ed4), does not show bands(including next-nearest-neighbor hopping, etdoes
dy2_y2-wave pairing LRO at any nonzero temperature. not exhibitd,2_,> wave pairing LRO at any nonzero tem-

When /2 is replaced by Hy,, in inequality (5), where  perature. This kind of pairing LRO will also be excluded if
Egap (>0) is an excitation energy gap between the lowestan excited energy gap opens in the charge excitation spec-
excited state and the ground state of the system (T cgtill trum of the system. These results are valid for both repulsive
holds true at zero temperature. We refer to Refs. 13 and 1and attractive Coulomb interactions and for any electron fill-
for detail discussions. Therefore, all the above analyses caings. Combining with known exact results obtained previ-
apply to the case at zero temperature exg@treplaced by ously, one would conclude that the 2D Hubbard model might
1/E4,p- Then we could conclude that if an energy gap opensiot have enough right stuff for describing superconductivity

in the charge excitation spectrum of the systdinthere will  in the cuprate oxides if the superconducting mechanisms in
also be nod,2_,2-wave pairing LRO in two dimensions at these materials are supposed to be due to condensation of
zero temperature. one of the aforementioned electron pairs. The present obser-

A few remarks are in ordefi) The derivations presented vations are consistent with quantum Monto Carlo results.
above are valid for both repulsive and attractive on-site Cou-
lomb interactions and for any electron filling fractiofii) One of authorgG.S) is grateful to the Department of
The method used in this paper can be readily extended tapplied Physics, Science University of Tokyo, for the warm
exclude the possibility of extendeswave[with pairing op-  hospitality, and to the Nishina foundation for support. This
eratorA;SzEk(cod<x+cosky)cchikl] superconductivity in  work was supported by the CRESTore Research for Evo-
the 1D and 2D Hubbard models at finite temperatures. In th&utional Science and Technologef the Japan Science and
Hilbert subspace without doubly-occupied sites, this methodechnology CorporatiofJST).
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