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Fiske steps in annular Josephson junctions with trapped flux quanta
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The position and amplitude of self-resonan@€iske stepsof an annular Josephson junction with magnetic
flux trapped in one of two electrodes have been calculated using a first-order perturbation method. The external
magnetic field is supposed to be zero such that the only magnetic field to be considered is that provided by the
flux quanta trapped in the junction annular electrodes during the cooling transition. Our analysis is carried out
for the two-dimensional case so that the finite width of the ring tunnel barrier is taken into account. We find
that in such a structure, although a two-dimensional one, a simply infinite series of modes is excited. We
discuss the dependence of the amplitude and the position of the resonances on the ratio of the inner to outer
radius of the junction, and we show that only the first Fiske step has a significant amplitude. The agreement
between the predictions of the theory and the existing experimental data is very good.
[S0163-182608)08341-9

[. INTRODUCTION of the peculiar phenomenology exhibited by this configura-
tion.

Annular Josephson tunnel junctions have received con- In this paper we focus our attention on the problem of an
tinuous attention in the course of the last two decades beannular Josephson tunnel junction in the presence of cen-
cause of the particularly attractive phenomenology contrally trapped fluxons and in zero external field. We consider
nected with them™® Investigations of the soliton junctions for whichL<2n\;, unless otherwise specified,
propagation can be carried out in the absence of disturbingnd treat them fully two dimensionallyAfter the fluxons
boundary reflections exclusively in the annular geometryhave been trapped, during the cooling transition, the result-
Annular junctions also have the unique property that fluxonsng configuration(see Fig. 1 has an especially simple char-
(magnetic fluxoid quanjacan be permanently trapped in the acter. The magnetic field lines are radially directed and uni-
junction barrier during the cooling process due to the topoformly spread all around the junction circumference with a
logically nonconnected geometry of one or both the elecgood approximation. At the same time the magnetic flux can
trodes. This leads, for example, to the nucleation of solitontake on only values which are integer multiples &f
antisoliton pairs when a parallel magnetic field is present in=h/2e. This highly symmetric configuration, as well as the
the plane of the junction barrier and to a number of interestpresence of trapped fluxons in itself, has a remarkable influ-
ing related phenomena. ence over the static and dynamic behavior of the junction.

The termannular has been reserved in the literature to aFor example, the Josephson critical current may be com-
geometry in which the width of the ring is small in compari- pletely suppressed under these conditith$® The self-
son with the ring radius and the circumference of the ring isesonance properties of the junctigdfiske stepsshould also
long in comparison with the Josephson penetration depth  undergo important changes, which is the subject of this pa-
In this case, it is possible to reduce the investigation of theper.
junction electrodynamics to a one-dimensioiaD) prob- It is well known that Fiske steps are excited in the junc-
lem. On the other hand, whenfluxons have been trapped tion cavity as a result of the interaction between the Joseph-
and the circumferende of the junction is, roughly speaking, son current and the electromagnetic fielis® The reso-
smaller than 2X;, the trapped fluxons do not localize. In nances appear in the zero-frequency current-voltag¥)(
this case, if no external magnetic field is present, a simpleharacteristic at certain fixed voltages, which depend on the
configuration with cylindrical symmetry sets in. junction geometry, and their amplitude is modulated by the

Recently, the static and dynamics properties of annulamagnetic field intensity. In a previous pagénn the basis of
junctions in the presence of a uniform magnetic field applieda simplified analysis, two of the present authors pointed out
parallel to the junction plane have been investigated in Refg¢he very symmetric self-resonance properties which an elec-
5-7. The analysis carried out in those works allows for therically small annular junction with trapped fluxons should
presence of trapped fluxons in the junction barrier throughexhibit in a zero external magnetic field.
the hole of the primary electrode. However, the presence of a We reconsider here in full detail the problem of the de-
uniform barrier-parallel magnetic field shades the underlyingermination of the positions and amplitudes of the Fiske reso-
cylindrical symmetry and does not permit full appreciationnances, by using a first-order perturbation method. The sim-
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the two superconducting junction electrodes satisfies the Jo-
sephson equations

V(P:(Z’]T,lLod/q)o)HXuZ (1)

x and

dplgt=2eVih, )

with u, a unit vector normal to the junction plané the total
barrier voltage, both ac and dc, akdthe magnetic field. In

the case oh flux quanta trapped through the central hole of
the annular junction in the primary electrode, the magnetic
field in the plane of the barrier has in a first approximation
only a radial component, which can be easily calculated. At
distancer, the magnetic field crosses a surfacerd. Thus,

if the screening effect of the Josephson current is neglected
(Nj— ), the magnetic field of trapped flux quanta is given

by

FIG. 1. Schematic of an annular Josephson junction with flux  Eduation(3) can be used in Eql) for the fieldH. In
trapped in the top electrode. Shown are the magnetic field lineSYlindrical-polar coordinatesr(6), this results simply in
threading the electrode. Also shown is the coordinate system used.

de

5 =0 (4)
plifying hypothesis of a vanishing ring width, which was
implicit in Ref. 14, will be dropped in this paper. Our analy- M
sis reproduces the results of Nerenberg and BlacKBuas T -n. (5)

far as thepositionsof the Fiske resonances are concejned

for the case of a circular junction when the inner radius ofThen Eqgs.(2), (4), and(5) give a zero-ordefno self-fields

the ring vanishes. On the other hand, we find, even for @nvariant-gauge phase difference between the two electrodes
finite junction width, a very peculiar amplitude distribution g&

of the steps which reflects both the high degree of symmetry

of the configuration(zero uniform external fieldand the ¢=owt—nH+const, (6)

fluxoid quantization requirement. We give a complete dis'wherew=27rvold>0 is the Josephson frequency avig the

cussion of these two main topics and some quantitative estl; part of the total voltage. We refer to H6) as the “linear

mates of the appropriate model parameters. Finally, we CorT‘bhase—difference approximation.” The better the condition
pare the predictions of 'the theory with the expenm'entall_<2m\_ is satisfied, the closer Ed6) represents the true
results reported by Vernikt al® on annular junctions with hase difference be,tween the electrodes
trapped fluxons. We show that our model accounts quantit£ '
tively for all the significant observed experimental features. . .
A. Basic equations
The calculation of the Fiske step amplitudes can be car-

Il. THEORY OF THE 2D ANNULAR CAVITY ried out on the basis of a first-order perturbative calculation
. o . _schemé!*2We shall take, from Eq6), for the lowest-order
Let us consider an annular junction, made of two 'dent'ca%\pproximationgo%(wt—n0) (the constant has been arbi-
superconductors, with trapped fluxons as sketched in Fig. oy chosen zerp and then we shall introduce the small

1. The internal and externa}l radius of Fhe junction are deédditive correction ¢ (r, 6,t)| <1 to improve the solution:
noted byR; andR., respectively. We will assume that the that i

i . © that is,
electrode thickness is larger then the London penetration
depth, . The circumference of the junctionsR,, is as- p~wt—no+ ¢, (r,6,t). (7)
sumed to be shorter tham®;, where\ ;= (f/2uqej,d)*?is o _ _ _
the Josephson penetration defaHfluxon can be considered 1he partial differential equation governing,(r,6,t) or,
2\; “long™ ). The symbolsj; and d denote the maximum which is the same, the self-induced perturbation voltage

i _ _ : 11
Josephson current density and the effective magnetic thick= (Po/2m)d@1/0t, V=V, +v was given by Eclet al.* and
nessd=2\_+s, respectively, ands is the tunnel barrier KuUlik.™ It may be expressed in polar coordinate&’as
thickness. In this case the magnetic field in the barrier can be 2 2

. . ; . . 190 Jv 19v 190
considered, to a good approximation, radial and uniformly - (r _) s —
distributed all around the circular junction edge. Moreover, ror\ dr] r°d6° c°dt
the flux threading the barrier is quantized and can be written
as®=nd,, wheren=1,2... is the number of the trapped

® Jdu Dow
i : TCQ at
flux quanta. The invariant-gauge phase differeadeetween

W) cof wt—né), (8)
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where the additive correctiop,(r, 6,t) has been dropped in Ji(Xiem) + CrmNE(Xim) =0,
the argument of the cosine, which is the present approxima-
tion (step amplitudes much smaller than the maximum Jo- I (Ximd) + CmN i (Xied) = 0. (12)

sephson current, self-fields negligibleln Eq. (8),

= (s/ woed) 2 is the Swihart velocitys is the dielectric con- When 6—0, thenc,,—0 and Egqs(12) reduce to the sim-
stant of the barrier region, ar@is an adjustable loss param- pler conditionJ (Xy) =0, which determines the position of
eter or the “quality factor” of the junction cavity. It is also the self-resonances in a small circular juncttdhe coef-
interesting to point out that an energy feeding mechanism ificients of the expansion in modes, E@0), are determined
naturally understood in the choiee~ wt—n@ on the right- by substituting this expansion into E@). For eachm, with

hand side of Eq(8). k#n, a particularly simple result is obtained:
Boundary conditions require periodicity with respectfto L ) L )
and AN=A2=BNL=BZ=0. (13)
For eachm, with k=n we get
dv r
W = O, (9) A(l): (DOEZ __Z‘Yﬁm/wz a
r=Ri\Re nm 277)\j2w m/a) 1/Q)2_ nm:
(14
which state the total reflection condition of the electromag- =2\ 1
: ; : dyc 1/Q
netic waves at the inner and outer boundaries. A2 — 5 anm, (15)
nm 27\ jw ynm/(u 1/Q)2 nm
B. Analytical solution where
Solutions will be sought now in the form of normal modes R? n2
of a “flat” cylindrical-toroidal cavity operating in the TM 8nm= Renm > 1- W
mode(at frequencyw), with no field variation in thez direc- nm-'e
tion: X[ Jn( '}’nmRe)+CnmNnm(7nmRe)]z
R
2 AR
U(rﬁ,t):kzn {LICYim™) + CemNi( Vi) ] YomRi
X(A(l)COSk9+A sin k#)cos wt X[\]n(')’nmRi)_"CnmNnm(ynmRi)]z] (16)
+ LI Yieml) + CemNi Yim) ] andg,, are the following integrals:

X (Biticoskd+ Bisin k6)sin wt}, (10 .
Onm= f,s Y[In(XnmY) + CamNn(Xnmy) 1dy. (17)
where J, and N, are thekth-order Bessel functions of the

first and second kind, respectivéfyR,<r<R,. The sum Moreover,
over k runs from O to infinity, whilem ranges from 1 to

(1) _ A(2)
infinity. Then the boundary conditions at the inner and outer Brm=~Anm:
peripheries (=R, Re), EQ.(9), are accounted for by requir- 52— A 18)
ing nm nm-
Once all the coefficients\()), A2 B(Y and B{2) have
, , _ been obtained, the expansion fofr,6,t) is fully deter-
Jc(vimRe) + CrmNi(7imRe) =0, mined. This expansion can be cast in the folR<(r <R,)
‘]I’<(')’kai)+Cklei('}’kai):0a (11 U(raavt)zrn}::l 190(Yamt) + CamNa(Yamf)}
where the primes indicate the derivative with respect to the X[Annco @t —nO+ anm)],
argument. T 5
Equations(11) are a transcendent system of equations for Anm= V(Arm) "+ (Arm) %,

the unknownsy,,, andc,,. As shown hereafter, these equa-
tions determine the positions at which resonances will ap-
pear. In order to use a dimensionless notation, we denote @pm=tan
(Xkm= YkmRe» Ckm) the mth root of Eqg.(11) and introduce

5=R; /R, the ratio between the inner and outer radii of thewhich shows the “mixed” nature of such a wave: progres-
junction. Then Eqs(11) become sive in 6 and stationary irr. We note explicitly that in the

AT”}) , (19)
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presence oh vortices only thenth azimuthal mode is se- current!’ We shall adopt the same view of the authors in
lected, while the remaining modek+#n) have zero ampli- Refs. 15 and 17 and think of it as a necessary relative phase
tude. shift between the free-junction oscillatiofis=sin(wt—n6)]
and the effective self-field generation, which also occurs to

C. |-V characteristics of the resonances lowest order at an angular frequeney The net Josephson
current is given by =j sin(g); this is frequency modulated
and contains a nonzero deero-frequencyterm which we
denote(j). The time-independent spatially averaged current
densityJy. is just

With v(r,6,t) fully determined, we are in position for
calculating thel-V characteristics of the resonances. We
start calculating the phase which can be written as

2e [t
o=wt—no— o+ — f v(t")dt’, 20 Joc= _RZ_RQSJ f27<l>r dedr. @D

(
where the phase constas has been introduced. Its value
will be fixed by the maximization requirement for the The time-averaging procedure gives

(iy={j1¢1€08 @) = ( )E{[J (Ynml )+ CamNn( Yot JLAGHCOS NG+ AZ)sin n6]sin(n o+ i)

~[30(Ynm) = CamNn( ¥oml ) [ Bimcosné+ B{sin nglcog ng+ o)} (22)

Integration over the space coordinates of the previous expressidj) ford Eqs.(18) leads to

ej;
Jdc=( m)( )E Gnml ARSI o+ AfRic0S o). (23
The last step is finding the maximum with respecitpof J,. as given in Eq(23). This is easily done, and the results read
ejs 2R2
Jdc=(% 2] 22 Qo (Ag)*+ (A (24
which corresponds to the optimal choice 65 as
(1)
mgnmA
Yo=tan 1 }
° = Gl

or substituting the expressions faf-) and Al2) we find

Jdc

{31y

Fm(N, ) Re) .
7= %2 J*, (25)

j
e

where

2 2
Fm(n15):29ﬁm/ {(1_52)[(1_X_nQ_>[Jn(Xnm)+CnmNnm(Xnm)] -6 (1 WZ)[J (Xnm5)+cnm nm(Xnm5)]2”

nm

(26)
|
We have introduced the normalized voltage wR./c and Vom=Xnm(CPo/27Re). (27
the “simplified current” J* as in Ref. 15. Equatio(25) plus
the expressions foF,(n,r) andg,, constitute a complete From Eqg.(25) the maximum amplitude of theath step is
solution of the problem. obtained to a very good approximation at X,,,. At this
At a fixed value ofn, the number of trapped fluxons, Eq. value themth term of Eq.(25) takes the form

(25), is essentially a sum of many resonance lines centered
(apart for a small shift due to the los$ext dimensionless IN max Ri QF(n,d)
voltages 7= X,m,» M=1,2,3..., whereX,,, are solutions of i = sz —X? (28

Eqg. (12) andn is fixed, we remark again, by the number of
flux quanta present in the junction. The usual units are reEquation(28) is the central result of this work. It provides
covered through the formula the amplitudes of thenth Fiske step for an assigned number
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TABLE |I. Positions of the first X;;) and second X,,) Fiske TABLE Ill. Normalized ampIitude$Fm(n,5)/2Xﬁm] of the first
steps as a function =R, /R,, the inner to outer radius ratio of three Fiske steps fan=1,2,3 trapped flux quanta, for a junction
the junction when onen(=1) flux quantum is trapped. with a vanishing inner radiusR;—0).

s X11 X12 Fm(n, 6=0)/(2X2.)

10°° 1.841 5.331 n \ m 1 2 3

17 1.766 5.024 - » .

15 1705 4.960 ! 69107 3101 3107

1/3 1.540 5.273 : e st o

05 1.354 6.564 Lixi 4.9x1 rexi

0.7 1.182 10.591

(;)59 1'8(5):; 31.446 are very small. Table Ill, which gives the values of
' ' Fm(n,5)/2X§m as a function of(n,m in the caseR;=0,

0.99999 1.0000

shows clearly this behavior. This result is confirmed by look-
ing at Table IV in which the same quantity of Table Il is
of flox quana vapped for abiva: When te with oftne | SFOTEC b o he velue o wiich e e 1945,
ring decreases &—1), the amplitude of the first step case q P P

tends to the limiting value Jyc/j1) ™= (Re/\))?Q/(4n?), L . _
F.(n,6—1)=1/4. It is also shown below that, in the same For fixed n, Fiske resonances start aj=Xpm, m

limit, Fiske steps of higher ordéwhich are associated with =1,2,3,... . Furthermore, the amplitude of such resonances is

; ; a _quickly decreasing function of the resonance order
the presence of standing waves between the inner and outEr ; . . X
rom the practical point of view, as increases, only one

edges of the junctignmove towards very high voltage. peak is expected at larger and larger distaXge from the

origin. For example, for a junction with inner radi&&~0,
lll. DISCUSSION Xm=1.841, 3.054, 4.201, 5.317, 6.415, and 7.501, respec-

In Tables | and Il the positions of the first and secondt've'y(’:I V¥'th n_=1,2t_,3... t_rt?gpidSJqu qua(;lt_a_. 11'0r71e5(/a cf[orre—
Fiske stepsri=1,2), as calculated from E¢12), are given spI(:n ' orfaléLinczgnln \é"é3 92;7 BfLST 323(:_ q ms 1o
for increasing inner hole radiusst-1). Table | shows the vo a{gesl 0 ' ' ' ' ' » and 44z re-
case of one flux quantum trapped, Table Il the case of twoPectvely. . , .
quanta trapped. We see théf,—1.0 andX,;—2.0, and in In a cylindrical junction with no center hdféin a parallel
general we can.expemnlﬂn. lThis. meansztlhat i the limit Uniform magnetic field, Fiske steps are predicted to appear at
of a vanishing ring width, resonances can appear at voltage m(-?nsmnless voltage$=.x|§m', wher'eka Is themth zero .
V,=n(cdy/27R,), which are the same positions of the 0 Jk(x)_. Thus a doubly infinite series of resonances e>_(|sts
Fiske steps of a square junction of len§fth<\; in a parallel depending on the wo integeksandm. Current step ampll—
magnetic field when 2R, is substituted for RV. tudes at these voltages are modulated by the magnitude of
The position of the gecond Fiske stégnd necessarily the uniform external magnetic field in the plane of the junc-
higher-order stepsmoves towards very high voltage as the fion, which can assume, of course, all possible continuous
inner radius increases. In a vanishing-width junction, onlyvallues. lar iunction. th i f th bl
the first step is present at a finite voltage because only the N an annuiar junction, th€ positions of the possible reso-
azimuthal mode is possible. nances are predicted from Ed2) and depend on the choice
On the other hand, even in the case in which many res?f the two integer numbers. However, in the absence of an
nances are present at finite voltages, especialliRfer 0, the externa_ll magnetic f|e|d and with t_rapped_ flux quanta, only
relative amplitudes of the steps following the firsh+ 1) the series wittkk=n is selected. Within this series, even with
a vanishing inner hole radius, only the first step has a sig-
TABLE Il. Positions of the first K»;) and secondX,y) Fiske nificant amplitude. For a larger inner radius, the amplitude of
steps as a function of=R;/R., the inner to outer radius ratio of the first st(_ap Increases, at_ the same time, the d'St@‘Fme
the junction when tworf=2) flux quanta are trapped. voltage axig between the first and subsequent steps increases
more and more. For example, a junction wig=50 um,

) Xo1 X22 ) , 5 ]
TABLE IV. Normalized amplitude§F ,(n, 6)/2X7,,,,] of the first

10°° 3.054 6.706 three Fiske steps fon=1,2,3 trapped flux quanta for a junction

1/7 3.048 6.633 with a finite inner to outer radius ratioS€ R; /R.=1/3).

1/5 3.034 6.494

13 2.932 6.270 Fm(n, 6=1/3)/(2X3,)

0.5 2.681 7.062 N \ m 1 ) 3

0.7 2.362 10.798

0.9 2.106 31.500 1 1.04x10°* 3.2x10°° 1.01x10°7

0.99 2.010 2 2.7X1072 2.4x1074 1.89x10°©
0.99999 2.0000 3 1.2x1072 4.4x1074 1.08<10°°
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R;=35um, andc=10" m/s and one fluxon trapped exhibits
the second step at 69RV, quite far from the first step,
which should be located around 78/.

2.5 " T " T ; T T T ; T

IV. COMPARISON WITH EXPERIMENTS

[ (mA)

4

We have compared the results of our theory with the ex-
periments of Verniket al. on annular junction§.These au-
thors have studied the properties of an annular
Nb/AI-AlO, /Nb Josephson junction with various number of
fluxons trapped in the tunnel barrier. The external radiys
of the junction was 7Jum, and the internal radiug; was 61
um (6=R;/R.=0.859). The Josephson penetration deygth
was calculated to be approximately afh; hence, the length
of the external circumferencenR, was about & ;.

After the trapping of a different humbers of fluxons, the
authors of Ref. 8 measured both the dependence of the Jc 1.2 — — T
sephson critical currerlt, on the parallel magnetic fielt I
and thel -V characteristic. The experimental vs H depen-
dences, obtained by these authors for various numbeirs
trapped fluxons, are represented by closed dots in Faj. 2
(n=0), Fig. 2b) (n=2), and Fig. Zc) (n=4). We calcu-
lated thel. vs H dependences, for the same number of
trapped fluxons, by the following analytical formukhich
restson a linear phase-difference approximatfon:

. | 2 fl" H
o |(1=8% J5 ¥ A,

I (mA)

<

dx

(n=0,1,2..)

lo=j1m(RE—R?). (29)

0
Ho= 2mRuod’

We used the same value for the effective magnetic thicknes:

d in all calculated theoretical dependences. This valud of

(d=0.178um) was defined as a fit parameter in the case of

n=0. The results of the calculations obtained by &9) are

shown in Figs. 2a)—2(c) as solid lines. As can be seen from

Fig. 2, good agreement is found between the experimenta

and theoretical . vs H patterns. Incidentally, this agreement

is better than that found by the authors of Ref. 8. In fact, they

used a simple form of Eq29) valid in the limit R;/R,—1

(in their caseR;/R.=0.859). This means that both the pa- 6 4 2 0 2 4 &6

rameters of the junctions and the experimental conditions H (Oe)

which were used in Ref. 8 match the main assumption of the

theory described in Sec. Il i.e., the assumption of an essen- FIG. 2. Magnetic fieldH dependence of the critical curreht

tially linear dependence for the invariant-gauge phase differWith (&) no trapped fluxonsgp) two (n=2) trapped fluxons, an)

ence from the coordinates. four (n=4) trapped fluxons. The data points represent the experi-
Now, in exact agreement with the prediction of our theorymen,tal data of VerniIeF al. (Ref. 8: the solid line shows the the-

(see Sec. Il the authors of Ref. 8 found that, in the case of°élical dependence given by Eg9).

two trapped fluxons, thé-V characteristic in zero parallel

magnetic field showsnly the resonance brancm€2, m  the registered first, second, third, and fourth resonance steps

=1), with a normalized maximal amplitude of 0.46ig. 4  were 50, 100, 150, and 204V, respectively.

of Ref. 8. For the case of four trapped fluxonsnly the Solving the system(12), with §=0.859, we obtainX;

resonance brancmE 4, m=1), with a normalized maximal =1.08, X;;=2.15, X3,=3.23, andX,;=4.30. Substituting

amplitude of 0.23, was observed in the zero parallel magthese values into Eq(27), with a Swihart velocity c

netic field(see Fig. 5 of Ref. B so that the ratio between the =0.997x 10" m/s, we obtain for the theoretical voltage po-

experimental values of the maximal resonance branch amplsitions of resonance steps;;=50.0uV, V,;=100.0uV,

tude ath=2 andn=4 was 1.95. V31=149.9uV, and V,,=199.9xV, which are in very
When a parallel magnetic field was applied, lower-ordergood agreement with the experimental data. We are also in

resonance branches manifest themselves as a consequence gfosition to account for the ratio between the amplitudes

the broken cylindrical symmetry. The voltage positions ofof the two steps at zero field. Using E@8), we calculate

I (mA)
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the ratio between the amplitudes of the resonances dhe Fiske steps of such a configuration, employing a simple
the junction used in the experiments with=2 and perturbation technique. Our analysis takes into account the
n=4 trapped vortices asl} . ./J5ma=[F1(2,0.859X,,]/ finite width of the annular junction barrier so that our results
[F1(4,0.859),,]~X,41/X51= 2.0, which is also in excellent apply to annular junctions, with<2n\;, for an arbitrary
agreement with the observed experimental result. electrode inner radius.
Thus our theory(a fully 2D, analytical, improved treat- Current peaks are shown to occur at a discrete position
ment of the self-resonances in an annular jungtactounts depending on a single integer mode numbgronce the
for all the significant features obtained in the experiments ofiumber of flux quanta in the junction has been fixed. With
Ref. 8 with a quantitative agreement which can be considfixed n, the amplitude of the steps decreases quickly with the
ered very good. It is worth noticing that good agreement igorder of the steps. This allows us to state that this special
obtained in spite of the conditidn<2n\; not being verified ~ configuration exhibits actually only one step with a signifi-
for n=2. The point is that the conditioh<2n\; (a purely ~ cant amplitude. Moreover, as the hole radius reduces, the
geometrical ongis probably too severe for a linear phase-amplitude of the first Fiske step decreases. Higher-order
difference approximatiorfor some form of approximation steps appear at large voltages even for a small hole radius
equivalent to it to be safely applied. and then out of the range of any practical consideration as
soon as the hole radius is made larger. We have tested the
theory against the existing experimental results on annular
V. CONCLUSIONS junctions and obtained very good agreement.

In conclusion, Fiske steps may be excited in an annular
Josephson tunnel junction with trapped flux quanta and zero
external field. In this case the necessary magnetic field is
provided by the flux quanta themselves. The local value of We wish to thank Professor I. Kulik for helpful discus-
the magnetic field is fixed by the condition that the flux sions and comments on this subject while he was visiting our
across the barrier be an integral numberdgf=h/2e. We  Institute. We also gratefully acknowledge discussions with
have found expressions for the amplitudes and positions df1. Fistul'.
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