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Fiske steps in annular Josephson junctions with trapped flux quanta
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The position and amplitude of self-resonances~Fiske steps! of an annular Josephson junction with magnetic
flux trapped in one of two electrodes have been calculated using a first-order perturbation method. The external
magnetic field is supposed to be zero such that the only magnetic field to be considered is that provided by the
flux quanta trapped in the junction annular electrodes during the cooling transition. Our analysis is carried out
for the two-dimensional case so that the finite width of the ring tunnel barrier is taken into account. We find
that in such a structure, although a two-dimensional one, a simply infinite series of modes is excited. We
discuss the dependence of the amplitude and the position of the resonances on the ratio of the inner to outer
radius of the junction, and we show that only the first Fiske step has a significant amplitude. The agreement
between the predictions of the theory and the existing experimental data is very good.
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I. INTRODUCTION

Annular Josephson tunnel junctions have received c
tinuous attention in the course of the last two decades
cause of the particularly attractive phenomenology c
nected with them.1–8 Investigations of the soliton
propagation can be carried out in the absence of disturb
boundary reflections exclusively in the annular geome
Annular junctions also have the unique property that fluxo
~magnetic fluxoid quanta! can be permanently trapped in th
junction barrier during the cooling process due to the to
logically nonconnected geometry of one or both the el
trodes. This leads, for example, to the nucleation of solit
antisoliton pairs when a parallel magnetic field is presen
the plane of the junction barrier and to a number of intere
ing related phenomena.

The termannular has been reserved in the literature to
geometry in which the width of the ring is small in compa
son with the ring radius and the circumference of the ring
long in comparison with the Josephson penetration depthl j .
In this case, it is possible to reduce the investigation of
junction electrodynamics to a one-dimensional~1D! prob-
lem. On the other hand, whenn fluxons have been trappe
and the circumferenceL of the junction is, roughly speaking
smaller than 2nl j , the trapped fluxons do not localize. I
this case, if no external magnetic field is present, a sim
configuration with cylindrical symmetry sets in.

Recently, the static and dynamics properties of annu
junctions in the presence of a uniform magnetic field appl
parallel to the junction plane have been investigated in R
5–7. The analysis carried out in those works allows for
presence of trapped fluxons in the junction barrier throu
the hole of the primary electrode. However, the presence
uniform barrier-parallel magnetic field shades the underly
cylindrical symmetry and does not permit full appreciati
PRB 580163-1829/98/58~17!/11685~7!/$15.00
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of the peculiar phenomenology exhibited by this configu
tion.

In this paper we focus our attention on the problem of
annular Josephson tunnel junction in the presence of c
trally trapped fluxons and in zero external field. We consid
junctions for whichL<2nl j , unless otherwise specified
and treat them fully two dimensionally. After the fluxons
have been trapped, during the cooling transition, the res
ing configuration~see Fig. 1! has an especially simple cha
acter. The magnetic field lines are radially directed and u
formly spread all around the junction circumference with
good approximation. At the same time the magnetic flux c
take on only values which are integer multiples ofF0
5h/2e. This highly symmetric configuration, as well as th
presence of trapped fluxons in itself, has a remarkable in
ence over the static and dynamic behavior of the juncti
For example, the Josephson critical current may be co
pletely suppressed under these conditions.5,6,9,10 The self-
resonance properties of the junction~Fiske steps! should also
undergo important changes, which is the subject of this
per.

It is well known that Fiske steps are excited in the jun
tion cavity as a result of the interaction between the Jose
son current and the electromagnetic fields.11–13 The reso-
nances appear in the zero-frequency current-voltage (I -V)
characteristic at certain fixed voltages, which depend on
junction geometry, and their amplitude is modulated by
magnetic field intensity. In a previous paper,14 on the basis of
a simplified analysis, two of the present authors pointed
the very symmetric self-resonance properties which an e
trically small annular junction with trapped fluxons shou
exhibit in a zero external magnetic field.

We reconsider here in full detail the problem of the d
termination of the positions and amplitudes of the Fiske re
nances, by using a first-order perturbation method. The s
11 685 ©1998 The American Physical Society
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plifying hypothesis of a vanishing ring width, which wa
implicit in Ref. 14, will be dropped in this paper. Our anal
sis reproduces the results of Nerenberg and Blackburn15 ~as
far as thepositionsof the Fiske resonances are concern!
for the case of a circular junction when the inner radius
the ring vanishes. On the other hand, we find, even fo
finite junction width, a very peculiar amplitude distributio
of the steps which reflects both the high degree of symm
of the configuration~zero uniform external field! and the
fluxoid quantization requirement. We give a complete d
cussion of these two main topics and some quantitative e
mates of the appropriate model parameters. Finally, we c
pare the predictions of the theory with the experimen
results reported by Verniket al.8 on annular junctions with
trapped fluxons. We show that our model accounts quan
tively for all the significant observed experimental feature

II. THEORY OF THE 2D ANNULAR CAVITY

Let us consider an annular junction, made of two identi
superconductors, withn trapped fluxons as sketched in Fi
1. The internal and external radius of the junction are
noted byRi and Re , respectively. We will assume that th
electrode thickness is larger then the London penetra
depthlL . The circumference of the junction, 2pRe , is as-
sumed to be shorter than 2nl j , wherel j5(\/2m0e j1d)1/2 is
the Josephson penetration depth~a fluxon can be considere
2l j ‘‘long’’ !. The symbolsj 1 and d denote the maximum
Josephson current density and the effective magnetic th
nessd52lL1s, respectively, ands is the tunnel barrier
thickness. In this case the magnetic field in the barrier can
considered, to a good approximation, radial and uniform
distributed all around the circular junction edge. Moreov
the flux threading the barrier is quantized and can be wri
as F5nF0 , wheren51,2... is the number of the trappe
flux quanta. The invariant-gauge phase differencew between

FIG. 1. Schematic of an annular Josephson junction with fl
trapped in the top electrode. Shown are the magnetic field l
threading the electrode. Also shown is the coordinate system u
f
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the two superconducting junction electrodes satisfies the
sephson equations

¹w5~2pm0d/F0!H3uz ~1!

and

]w/]t52eV/\, ~2!

with uz a unit vector normal to the junction plane,V the total
barrier voltage, both ac and dc, andH the magnetic field. In
the case ofn flux quanta trapped through the central hole
the annular junction in the primary electrode, the magne
field in the plane of the barrier has in a first approximati
only a radial component, which can be easily calculated.
distancer, the magnetic field crosses a surface 2prd. Thus,
if the screening effect of the Josephson current is negle
(l j→`), the magnetic field ofn trapped flux quanta is given
by

Hn5nF0 /~2prm0d!. ~3!

Equation~3! can be used in Eq.~1! for the field H. In
cylindrical-polar coordinates (r ,u), this results simply in

]w

]r
50, ~4!

]w

]u
52n. ~5!

Then Eqs.~2!, ~4!, and~5! give a zero-order~no self-fields!
invariant-gauge phase difference between the two electro
as9

w5vt2nu1const, ~6!

wherev52pV0 /F0 is the Josephson frequency andV0 the
dc part of the total voltage. We refer to Eq.~6! as the ‘‘linear
phase-difference approximation.’’ The better the conditi
L,2nl j is satisfied, the closer Eq.~6! represents the true
phase difference between the electrodes.

A. Basic equations

The calculation of the Fiske step amplitudes can be c
ried out on the basis of a first-order perturbative calculat
scheme.11,12We shall take, from Eq.~6!, for the lowest-order
approximationw'(vt2nu) ~the constant has been arb
trarily chosen zero!, and then we shall introduce the sma
additive correctionuw1(r ,u,t)u!1 to improve the solution:
that is,

w'vt2nu1w1~r ,u,t !. ~7!

The partial differential equation governingw1(r ,u,t) or,
which is the same, the self-induced perturbation voltagev
5(F0/2p)]w1 /]t, V5V01v was given by Ecket al.11 and
Kulik.12 It may be expressed in polar coordinates as15

1

r

]

]r S r
]v
]r D1

1

r 2

]2v
]u22

1

c̄2

]2v
]t2

2
v

c̄2Q

]v
]t

5S F0v

2pl j
2D cos~vt2nu!, ~8!

x
s
d.
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PRB 58 11 687FISKE STEPS IN ANNULAR JOSEPHSON JUNCTIONS . . .
where the additive correctionw1(r ,u,t) has been dropped in
the argument of the cosine, which is the present approxi
tion ~step amplitudes much smaller than the maximum
sephson current, self-fields negligible!. In Eq. ~8!, c̄
5(s/m0«d)1/2 is the Swihart velocity,« is the dielectric con-
stant of the barrier region, andQ is an adjustable loss param
eter or the ‘‘quality factor’’ of the junction cavity. It is also
interesting to point out that an energy feeding mechanism
naturally understood in the choicew'vt2nu on the right-
hand side of Eq.~8!.

Boundary conditions require periodicity with respect tou
and

]v
]r U

r 5Ri ,Re

50, ~9!

which state the total reflection condition of the electroma
netic waves at the inner and outer boundaries.

B. Analytical solution

Solutions will be sought now in the form of normal mod
of a ‘‘flat’’ cylindrical-toroidal cavity operating in the TM
mode~at frequencyv!, with no field variation in thez direc-
tion:

v~r ,u,t !5(
k,m

$@Jk~gkmr !1ckmNk~gkmr !#

3~Akm
~1!cosku1Akm

~2!sin ku!cosvt

1@Jk~gkmr !1ckmNk~gkmr !#

3~Bkm
~1!cosku1Bkm

~2!sin ku!sin vt%, ~10!

whereJk and Nk are thekth-order Bessel functions of th
first and second kind, respectively,16 Ri,r ,Re . The sum
over k runs from 0 to infinity, whilem ranges from 1 to
infinity. Then the boundary conditions at the inner and ou
peripheries (r 5Ri , Re), Eq.~9!, are accounted for by requir
ing

Jk8~gkmRe!1ckmNk8~gkmRe!50,

Jk8~gkmRi !1ckmNk8~gkmRi !50, ~11!

where the primes indicate the derivative with respect to
argument.

Equations~11! are a transcendent system of equations
the unknownsgkm andckm . As shown hereafter, these equ
tions determine the positions at which resonances will
pear. In order to use a dimensionless notation, we de
(Xkm5gkmRe , ckm) the mth root of Eq.~11! and introduce
d5Ri /Re , the ratio between the inner and outer radii of t
junction. Then Eqs.~11! become
a-
-

is

-

r

e

r

-
te

Jk8~Xkm!1ckmNk8~Xkm!50,

Jk8~Xkmd!1ckmNk8~Xkmd!50. ~12!

When d→0, thenckm→0 and Eqs.~12! reduce to the sim-
pler conditionJk8(Xkm)50, which determines the position o
the self-resonances in a small circular junction.15 The coef-
ficients of the expansion in modes, Eq.~10!, are determined
by substituting this expansion into Eq.~8!. For eachm, with
kÞn, a particularly simple result is obtained:

Akm
~1!5Akm

~2!5Bkm
~1!5Bkm

~2!50. ~13!

For eachm, with k5n we get

Anm
~1!5S F0c̄2

2pl j
2v D F ~12 c̄2gnm

2 /v2!

~12 c̄2gnm
2 /v2!21~1/Q!2Ganm ,

~14!

Anm
~2!5S F0c̄2

2pl j
2v D F 1/Q

~12 c̄2gnm
2 /v2!21~1/Q!2Ganm , ~15!

where

anm5Re
2gnmY H Re

2

2 S 12
n2

gnm
2 Re

2D
3@Jn~gnmRe!1cnmNnm~gnmRe!#

2

2
Ri

2

2 S 12
n2

gnm
2 Ri

2D
3@Jn~gnmRi !1cnmNnm~gnmRi !#

2J ~16!

andgnm are the following integrals:

gnm5E
d

1

y@Jn~Xnmy!1cnmNn~Xnmy!#dy. ~17!

Moreover,

Bnm
~1!52Anm

~2! ,

Bnm
~2!5Anm

~1! . ~18!

Once all the coefficientsAkm
(1) , Akm

(2) , Bkm
(1) , and Bkm

(2) have
been obtained, the expansion forv(r ,u,t) is fully deter-
mined. This expansion can be cast in the form (Ri,r ,Re)

v~r ,u,t !5 (
m51

`

$Jn~gnmr !1cnmNn~gnmr !%

3@Anmcos~vt2nu1anm!#,

Anm5A~Anm
~1!!21~Anm

~2!!2,

anm5tan21S Anm
~2!

Anm
~1!D , ~19!

which shows the ‘‘mixed’’ nature of such a wave: progre
sive in u and stationary inr. We note explicitly that in the
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presence ofn vortices only thenth azimuthal mode is se
lected, while the remaining modes (kÞn) have zero ampli-
tude.

C. I -V characteristics of the resonances

With v(r ,u,t) fully determined, we are in position fo
calculating theI -V characteristics of the resonances. W
start calculating the phase which can be written as

w5vt2nu2c01
2e

\ E t

v~ t8!dt8, ~20!

where the phase constantc0 has been introduced. Its valu
will be fixed by the maximization requirement for th
.
r

of
re
current.17 We shall adopt the same view of the authors
Refs. 15 and 17 and think of it as a necessary relative ph
shift between the free-junction oscillations@'sin(vt2nu)#
and the effective self-field generation, which also occurs
lowest order at an angular frequencyv. The net Josephson
current is given byj 5 j 1 sin(w); this is frequency modulated
and contains a nonzero dc~zero-frequency! term which we
denote^j&. The time-independent spatially averaged curr
densityJdc is just

Jdc5
1

p~Re
22Ri

2!
E

Ri

ReE
0

2p

^ j &r du dr. ~21!

The time-averaging procedure gives
ad
^ j &5^ j 1w1cosw0&5S e j1
\v D(

m
$@Jn~gnmr !1cnmNn~gnmr !#@Anm

~1!cosnu1Anm
~2!sin nu#sin~nu1c0!

2@Jn~gnmr !2cnmNn~gnmr !#@Bnm
~1!cosnu1Bnm

~2!sin nu#cos~nu1c0!%. ~22!

Integration over the space coordinates of the previous expression for^j& and Eqs.~18! leads to

Jdc5S e j1
\v D S 2Re

2

Re
22Ri

2D(
m

gnm@Anm
~1!sin c01Anm

~2!cosc0#. ~23!

The last step is finding the maximum with respect toc0 of Jdc as given in Eq.~23!. This is easily done, and the results re

Jdc5S e j1
\v D S 2Re

2

Re
22Ri

2D(
m

gnmA~Anm
~1!!21~Anm

~2!!2, ~24!

which corresponds to the optimal choice forc0 as

c05tan21F(mgnmAnm
~1!

(mgnmAnm
~2!G ,

or substituting the expressions forAnm
(1) andAnm

(2) we find

Jdc

j 1
5S Re

2

l j
2D S 1

h2D(
m

Fm~n,d!

A~12Xnm
2 /h2!21S 1

QD 2 5S Re
2

l j
2D J* , ~25!

where

Fm~n,d!52gnm
2 Y H ~12d2!F S 12

n2

Xnm
2 D @Jn~Xnm!1cnmNnm~Xnm!#22d2S 12

n2

~Xnmd!2D @Jn~Xnmd!1cnmNnm~Xnmd!#2G J .

~26!
s
er
We have introduced the normalized voltageh5vRe / c̄ and
the ‘‘simplified current’’J* as in Ref. 15. Equation~25! plus
the expressions forFm(n,r ) and gnm constitute a complete
solution of the problem.

At a fixed value ofn, the number of trapped fluxons, Eq
~25!, is essentially a sum of many resonance lines cente
~apart for a small shift due to the losses! at dimensionless
voltagesh5Xnm, m51,2,3..., whereXnm are solutions of
Eq. ~12! andn is fixed, we remark again, by the number
flux quanta present in the junction. The usual units are
covered through the formula
ed

-

Vnm5Xnm~ c̄F0/2pRe!. ~27!

From Eq.~25! the maximum amplitude of themth step is
obtained to a very good approximation ath5Xnm . At this
value themth term of Eq.~25! takes the form

Jn max
m

j 1
5S Re

2

l j
2D QFm~n,d!

Xnm
2 . ~28!

Equation~28! is the central result of this work. It provide
the amplitudes of themth Fiske step for an assigned numb
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of flux quanta trapped for arbitraryd. When the width of the
ring decreases (d→1), the amplitude of the first ste
tends to the limiting value (Jdc/ j 1)max5(Re/lj)

2Q/(4n2),
F1(n,d→1)51/4. It is also shown below that, in the sam
limit, Fiske steps of higher order~which are associated with
the presence of standing waves between the inner and o
edges of the junction! move towards very high voltage.

III. DISCUSSION

In Tables I and II the positions of the first and seco
Fiske steps (m51,2), as calculated from Eq.~12!, are given
for increasing inner hole radius (d→1). Table I shows the
case of one flux quantum trapped, Table II the case of
quanta trapped. We see thatX11→1.0 andX21→2.0, and in
general we can expectXn1→n. This means that, in the limi
of a vanishing ring width, resonances can appear at volta
Vn5n( c̄F0/2pRe), which are the same positions of th
Fiske steps of a square junction of lengthW,l j in a parallel
magnetic field when 2pRe is substituted for 2W.

The position of the second Fiske step~and necessarily
higher-order steps! moves towards very high voltage as th
inner radius increases. In a vanishing-width junction, o
the first step is present at a finite voltage because only
azimuthal mode is possible.

On the other hand, even in the case in which many re
nances are present at finite voltages, especially forRi→0, the
relative amplitudes of the steps following the first (m51)

TABLE I. Positions of the first (X11) and second (X12) Fiske
steps as a function ofd5Ri /Re , the inner to outer radius ratio o
the junction when one (n51) flux quantum is trapped.

d X11 X12

1026 1.841 5.331
1/7 1.766 5.024
1/5 1.705 4.960
1/3 1.540 5.273
0.5 1.354 6.564
0.7 1.182 10.591
0.9 1.053 31.446
0.99 1.005

0.99999 1.0000

TABLE II. Positions of the first (X21) and second (X22) Fiske
steps as a function ofd5Ri /Re , the inner to outer radius ratio o
the junction when two (n52) flux quanta are trapped.

d X21 X22

1026 3.054 6.706
1/7 3.048 6.633
1/5 3.034 6.494
1/3 2.932 6.270
0.5 2.681 7.062
0.7 2.362 10.798
0.9 2.106 31.500
0.99 2.010

0.99999 2.0000
ter

o

es

y
e

o-

are very small. Table III, which gives the values
Fm(n,d)/2Xnm

2 as a function of~n,m! in the caseRi50,
shows clearly this behavior. This result is confirmed by loo
ing at Table IV in which the same quantity of Table III
reported, but for the value ofd which is fixed there to 1/3.
Subsequent Fiske steps are even smaller in amplitude for
case.

For fixed n, Fiske resonances start ath5Xnm , m
51,2,3,... . Furthermore, the amplitude of such resonance
a quickly decreasing function of the resonance orderm.
From the practical point of view, asn increases, only one
peak is expected at larger and larger distanceXn1 from the
origin. For example, for a junction with inner radiusRi'0,
Xn151.841, 3.054, 4.201, 5.317, 6.415, and 7.501, resp
tively, with n51,2,3... trapped flux quanta. These corr
spond, for a junction withRe550mm and c̄5107 m/s to
voltages of 121, 201, 253, 277, 351, 423, and 442mV, re-
spectively.

In a cylindrical junction with no center hole14 in a parallel
uniform magnetic field, Fiske steps are predicted to appea
dimensionless voltagesh5Xkm , whereXkm is themth zero
of Jk8(x). Thus a doubly infinite series of resonances exi
depending on the two integersk andm. Current step ampli-
tudes at these voltages are modulated by the magnitud
the uniform external magnetic field in the plane of the jun
tion, which can assume, of course, all possible continu
values.

In an annular junction, the positions of the possible re
nances are predicted from Eq.~12! and depend on the choic
of the two integer numbers. However, in the absence of
external magnetic field and withn trapped flux quanta, only
the series withk5n is selected. Within this series, even wi
a vanishing inner hole radius, only the first step has a s
nificant amplitude. For a larger inner radius, the amplitude
the first step increases; at the same time, the distance~on the
voltage axis! between the first and subsequent steps increa
more and more. For example, a junction withRe550mm,

TABLE III. Normalized amplitudes@Fm(n,d)/2Xnm
2 # of the first

three Fiske steps forn51,2,3 trapped flux quanta, for a junctio
with a vanishing inner radius (Ri→0).

Fm(n, d50)/(2Xnm
2 )

n\ m
1 2 3

1 6.931022 3.931024 3.431025

2 2.231022 5.131024 6.431025

3 1.131022 4.931024 7.631025

TABLE IV. Normalized amplitudes@Fm(n,d)/2Xnm
2 # of the first

three Fiske steps forn51,2,3 trapped flux quanta for a junctio
with a finite inner to outer radius ratio (d5Ri /Re51/3).

Fm(n, d51/3)/(2Xnm
2 )

n\ m
1 2 3

1 1.0431021 3.231025 1.0131027

2 2.731022 2.431024 1.8931026

3 1.231022 4.431024 1.0831025
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Ri535mm, andc̄5107 m/s and one fluxon trapped exhibi
the second step at 699mV, quite far from the first step
which should be located around 78mV.

IV. COMPARISON WITH EXPERIMENTS

We have compared the results of our theory with the
periments of Verniket al. on annular junctions.8 These au-
thors have studied the properties of an annu
Nb/Al-AlO x /Nb Josephson junction with various number
fluxons trapped in the tunnel barrier. The external radiusRe
of the junction was 71mm, and the internal radiusRi was 61
mm (d5Ri /Re50.859). The Josephson penetration depthl j
was calculated to be approximately 50mm; hence, the length
of the external circumference 2pRe was about 8lJ .

After the trapping of a different numbers of fluxons, th
authors of Ref. 8 measured both the dependence of the
sephson critical currentI c on the parallel magnetic fieldH
and theI -V characteristic. The experimentalI c vs H depen-
dences, obtained by these authors for various numbersn of
trapped fluxons, are represented by closed dots in Fig.~a!
(n50), Fig. 2~b! (n52), and Fig. 2~c! (n54). We calcu-
lated the I c vs H dependences, for the same number
trapped fluxons, by the following analytical formulawhich
restson a linear phase-difference approximation:9

I c

I 0
5U 2

~12d2!
E

d

1

xJnS x
H

H0
DdxU

~n50,1,2...!

,

H05
F0

2pRem0d
, I 05 j 1p~Re

22Ri
2!. ~29!

We used the same value for the effective magnetic thickn
d in all calculated theoretical dependences. This value od
(d50.178mm) was defined as a fit parameter in the case
n50. The results of the calculations obtained by Eq.~29! are
shown in Figs. 2~a!–2~c! as solid lines. As can be seen fro
Fig. 2, good agreement is found between the experime
and theoreticalI c vs H patterns. Incidentally, this agreeme
is better than that found by the authors of Ref. 8. In fact, th
used a simple form of Eq.~29! valid in the limit Ri /Re→1
~in their caseRi /Re50.859). This means that both the p
rameters of the junctions and the experimental conditi
which were used in Ref. 8 match the main assumption of
theory described in Sec. II, i.e., the assumption of an es
tially linear dependence for the invariant-gauge phase dif
ence from the coordinates.

Now, in exact agreement with the prediction of our theo
~see Sec. III!, the authors of Ref. 8 found that, in the case
two trapped fluxons, theI -V characteristic in zero paralle
magnetic field showsonly the resonance branch (n52, m
51), with a normalized maximal amplitude of 0.45~Fig. 4
of Ref. 8!. For the case of four trapped fluxons,only the
resonance branch (n54, m51), with a normalized maxima
amplitude of 0.23, was observed in the zero parallel m
netic field~see Fig. 5 of Ref. 8!, so that the ratio between th
experimental values of the maximal resonance branch am
tude atn52 andn54 was 1.95.

When a parallel magnetic field was applied, lower-ord
resonance branches manifest themselves as a conseque
the broken cylindrical symmetry. The voltage positions
-
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the registered first, second, third, and fourth resonance s
were 50, 100, 150, and 200mV, respectively.

Solving the system~12!, with d50.859, we obtainX11
51.08, X2152.15, X3153.23, andX4154.30. Substituting
these values into Eq.~27!, with a Swihart velocity c̄
50.9973107 m/s, we obtain for the theoretical voltage p
sitions of resonance stepsV11550.0mV, V215100.0mV,
V315149.9mV, and V415199.9mV, which are in very
good agreement with the experimental data. We are als
a position to account for the ratio between the amplitud
of the two steps at zero field. Using Eq.~28!, we calculate

FIG. 2. Magnetic fieldH dependence of the critical currentI c

with ~a! no trapped fluxons,~b! two (n52) trapped fluxons, and~c!
four (n54) trapped fluxons. The data points represent the exp
mental data of Verniket al. ~Ref. 8!: the solid line shows the the
oretical dependence given by Eq.~29!.
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the ratio between the amplitudes of the resonances
the junction used in the experiments withn52 and
n54 trapped vortices asJ2 max

1 /J4 max
1 5@F1(2,0.859)X41#/

@F1(4,0.859)X21#'X41/X2152.0, which is also in excellen
agreement with the observed experimental result.

Thus our theory~a fully 2D, analytical, improved treat
ment of the self-resonances in an annular junction! accounts
for all the significant features obtained in the experiments
Ref. 8 with a quantitative agreement which can be cons
ered very good. It is worth noticing that good agreemen
obtained in spite of the conditionL,2nl j not being verified
for n52. The point is that the conditionL,2nl j ~a purely
geometrical one! is probably too severe for a linear phas
difference approximation~or some form of approximation
equivalent to it! to be safely applied.

V. CONCLUSIONS

In conclusion, Fiske steps may be excited in an annu
Josephson tunnel junction with trapped flux quanta and z
external field. In this case the necessary magnetic fiel
provided by the flux quanta themselves. The local value
the magnetic field is fixed by the condition that the fl
across the barrier be an integral number ofF05h/2e. We
have found expressions for the amplitudes and position
F.

.

of

f
-
s

r
ro
is
f

of

the Fiske steps of such a configuration, employing a sim
perturbation technique. Our analysis takes into account
finite width of the annular junction barrier so that our resu
apply to annular junctions, withL,2nl j , for an arbitrary
electrode inner radius.

Current peaks are shown to occur at a discrete posi
depending on a single integer mode numberm, once the
number of flux quantan in the junction has been fixed. With
fixed n, the amplitude of the steps decreases quickly with
order of the steps. This allows us to state that this spe
configuration exhibits actually only one step with a signi
cant amplitude. Moreover, as the hole radius reduces,
amplitude of the first Fiske step decreases. Higher-or
steps appear at large voltages even for a small hole ra
and then out of the range of any practical consideration
soon as the hole radius is made larger. We have tested
theory against the existing experimental results on ann
junctions and obtained very good agreement.
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