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Cavity perturbation by superconducting films in microwave magnetic and electric fields
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Cavity perturbation by superconducting films is treated in an unified way for the sample positions in both
magnetic and electric microwave fields. The role of demagnetizing and depolarizing effects in the boundary
conditions of the fields is analyzed. The general solutions for the complex frequency shift are specified for the
samples having slab geometry and the field being parallel to the plane of the sample. For electromagnetically
thick samples, the shifts for samples placed in the magnetic and electric fields are found to have the same
magnitude and temperature dependence, while for thin films dramatic differences are obtained. The magnitude
of the shift is reduced in the magnetic and increased by orders of magnitude in the electric field. A remarkable
feature in the temperature dependence of the real frequency shift in the electric field is obtained. Experiments
are performed on an YBa2Cu3O72d thin film, and all the predictions of the theory are confirmed. It is also
shown that microwave cavity perturbation and ac susceptibility measurements in a dc magnetic field can be
covered by the same theory. Their profoundly different temperature dependence can be accounted for by their
different frequencies.@S0163-1829~98!05741-5#
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I. INTRODUCTION

Microwave and millimeter-wave measurements on t
films of high-Tc superconductors were carried out by a nu
ber of research groups1–18using different experimental tech
niques involving resonant structures. From the technolog
point of view it is important to determine the losses of
fabricated thin film and compare it with those of copper. T
potential applications would include resonators, filters, de
lines, couplers, and antenna matching networks with ben
of improved performance, reduced size, and weight in, e
satellite communication receivers. On the more fundame
scientific side it is interesting to reveal the temperatu
dependence of the complex conductivity, which governs
response of the superconductor to the microwave field. F
superconductor in the Meissner state the temperature de
dent complex conductivitys̃5s12 is2 is due to the quasi-
particles and condensed superconducting pairs. In the m
state one also has to take into account the contribution
vortex oscillations resulting in an effective comple
conductivity,19,20 which is both temperature and field depe
dent. The latter can be used to determine the upper cri
field21 or to study pinning effects.22 In what follows we shall
for simplicity restrict ourselves first to the notation of th
Meissner state giving examples of temperature-dependens̃.
In later sections we point out that the theory is valid also
the more complicated effective conductivity of the mix
state.

There is an important difference between measurem
of thick samples~usually single crystals! and thin samples
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~typically thin films!. For a sample which is much thicke
than the microwave penetration depth, a simple relat
holds between the complex conductivity and the comp
surface impedance

Z̃s5Ai
m0v

s12 is2
5Rs1 iXs , ~1!

which is called intrinsic because it depends only on the m
terial property and not on the sample dimensions. Exp
ments based on resonant cavities or other resonant struc
usually yield changes of theQ factor and frequency shift
which can be related to the values of the real (Rs) and imagi-
nary (Xs) part of Zs wherefroms1 and s2 are readily de-
duced.

However, for samples whose thickness is comparable
even smaller than the microwave penetration depth, the m
suredQ factor and frequency shift do not yield directly th
intrinsic values ofRs andXs . Formally, one can still denote
the measured quantities asR and X, but these depend in a
nontrivial way on the intrinsicRs and Xs and the sample
thickness. The usual thickness of high-Tc thin films ranges
from 100–500 nm. Given the resistivity of these superco
ductors aboveTc ~about 0.5 mV m), the microwave~10–
100 GHz! penetration depth exceeds the film thickness in
normal state and just belowTc . Hence, the sample is elec
tromagnetically thin in this range of temperatures. Up
cooling the penetration depth may be reduced below
sample thickness and the sample becomes electromag
cally thick at very low temperatures. This transition enta
complications in the determination ofs1 ands2.
11 652 ©1998 The American Physical Society
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Several experimental arrangements for the microw
measurements of thin films have been described in the lit
ture. One of them consists in replacing the end wall of
microwave cavity by a thin film sample.1–7 Near Tc and
above where the penetration depth is larger than the
thickness, there is a considerable leakage of the microw
power from the cavity through the thin film. Impedan
transformation theory was used to find the effective imp
anceZ̃eff on the inner side of the thin film. It includes th
intrinsic impedances and phase shifts in the superconduc
thin film, in the dielectric substrate, and in the vacuum b
hind it.4,5 In order to extract the intrinsicRs and Xs of the
superconducting thin film from the measuredReff andXeff , it
is necessary to have a very precise knowledge of the ele
permittivity of the substrate including its temperature de
dence. Even then one obtains a complicated set of equa
for arbitrarys1 ands2, which can be simplified in the limit
of s2@s1, i.e., only at low temperatures.5 A complete evalu-
ation of the temperature dependence ofs̃ including the be-
havior at the superconducting transition becomes quite
certain for thin films in this experimental arrangement.

Radiation losses can be minimized in stripline resona
with two ground planes.9 Still, for the penetration depth com
parable or larger than the film thickness, some geometr
factors must be evaluated, and the determination ofs̃ at
higher temperatures is less accurate. The use of a par
plate resonator is also convenient only at low temperature17

Intracavity arrangements where the sample is placed
side a resonant cavity are particularly attractive because
energy is radiated through the sample out of the cavity. T
choices can be made for the intracavity position of
sample. The first is that the sample is at the position of
magnetic field maximum10–12 while the other choice is the
electric field maximum.13,14 The problem is reduced to th
cavity perturbation by the superconducting thin film.

In the present paper we analyze the perturbation co
tions for the two intracavity positions and point out the d
ferences which were not considered before. We start fr
the conventional perturbation theory for paramagnetic
dielectric samples and show how it can be modified to all
the treatment of metallic samples. For the sake of compl
ness we present the resulting perturbation expressions
the induced current in the sample treated as both a bo
current and a free one. Analytical solutions are found for
slab geometry of the sample with profoundly different b
havior in magnetic and electric fields. In order to provi
experimental support to the theory we present results o
thin superconducting film of YBa2Cu3O7-d placed succes
sively at various positions from the magnetic to the elec
field maximum. All the features predicted by the theory ha
been confirmed.

We also show that microwave and ac susceptibility m
surements can be treated from a single point of view. T
differences in the experimental signals are found to be du
their different frequencies.

II. CAVITY PERTURBATION CONDITIONS

Cavity perturbation was first considered by Bethe a
Schwinger.23 For a small sample placed in a resonant cav
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and causing a weak perturbation the complex frequency s
can be expressed as23–27

ṽ2ṽ0

ṽ
52

E
VS

~P•E0* 1M•B0* !d3r

E
VC

~D0•E0* 1H0•B0* !d3r
, ~2!

whereṽ0 is the complex frequency of the empty cavity an
ṽ5ṽ01Dṽ0 is the perturbed complex frequency.Vs andVc
are the volumes of the sample and cavity, respectiv
E0 , D0 , H0, andB0 are the fields of a mode in the emp
cavity. P andM are the polarization and magnetization, r
spectively, induced in the sample. If theQ factor is much
larger than unity, the complex frequency shift can be se
rated in real and imaginary parts as

Dṽ0

ṽ
'

Dṽ0

v
5

D f 0

f
1 iDS 1

2Q0
D , ~3!

where f 05v0/2p and Q0 are the frequency andQ factor,
respectively, of the empty cavity.

The essential assumption for the validity of Eq.~2! is that
the insertion of the sample into the cavity produces onl
small difference in the overall geometrical configuration
the fields.24 This condition is readily met for dielectric an
paramagnetic samples. However, for highly conduct
samples one has to reconsider the perturbation condition

A. Sample in magnetic field maximum

Let us first consider the case of a conducting sam
placed at the location of the magnetic field maximum in t
cavity. To illustrate this case we show in Fig. 1~a! a TE102
cavity with the conducting sample in the center. The fie
distribution was calculated numerically using the comm
cially available programMAFIA .28 The magnetic field around

FIG. 1. ~a! TE102 cavity with the sample in the magnetic fiel
maximum. ~b! The induced current in the sample forms a lo
giving rise to a magnetic dipole moment.
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11 654 PRB 58D.-N. PELIGRAD et al.
the sample is not very much perturbed with respect to
empty cavity. Only inside the sample the field is drastica
reduced due to the induced surface current. The current
the form of a loop@Fig. 1~b!#, and its role is to shield the
magnetic flux. Clearly, the response to the external osci
ing magnetic field is the induction of a magnetic dipole.

The complex frequency shift for the magnetic case
given by the second term in Eq.~2!. In the case of a para
magnetic sample with a homogeneous distribution of sp
one can simply relate the magnetization to the external fi
throughM5x̃mH0, wherex̃m is the susceptibility which is
an intrinsic parameter of the material and does not depen
the sample dimensions. We assume that the sample is s
so that the cavity modeH0(r ) does not vary much over th
sample volume, and we can take it as a uniform impo
field H0 throughout the sample. The magnetizationM is then
also uniform. For the moment we neglect the eventual
magnetizing effects. The problem is how to treat a conduc
which is free of spin magnetization. It can still be consider
as a magnetic material in ac magnetic fields if the indu
shielding current is interpreted as the equivalent of a bo
magnetization current. In this case, however, the flux den
B in the sample is not uniform due to the skin effect, and
must obey

B~r !5m0@H01M ~r !#, ~4!

i.e., the magnetization must also be space dependent.
magnetization is due to the induced macroscopic cur
which itself decays from the surface into the bulk. If we s
relate formally this magnetization to the uniform impos
field H0 in the sample, we can formally write

M ~r !5x̃m~r !H0 , ~5!

wherex̃m(r ) is introduced as an effective magnetic susc
tibility of the conducting sample in an ac magnetic field.
turns out that the conducting sample in an ac magnetic fi
appears as an inhomogeneous magnetic material. The i
mogeneity depends on the skin depth which may vary w
temperature. Under these conditions the second integra
Eq. ~2! can be formally applied to a conducting sample.
yields the complex frequency shift due to the ac magn
field

S Dṽ0

v
D

m

52
1

Wc
B0* •*VS

M ~r ! d3r

52xD m

H0•B0* Vs

Wc
52xD m

Ws

Wc
, ~6!

whereWc is the denominator in Eq.~2!. We have introduced

xD m as the space averaged complex magnetic susceptibili
the conducting sample in an ac magnetic field. Obviou
xD m is not an intrinsic property of the material since it d
pends not only on the conductivity but also on the sam
dimensions. In Eq.~6!, Vs is the sample volume andWs

5H0•B0* Vs is the energy of the cavity fields which would b
contained inVs if the sample were not there. The rat
Ws /Wc is the filling factor.
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Clearly, for paramagnetic samples one can replacex̃m in
Eq. ~6! by the intrinsicx̃m due to spins. Thus, Eq.~6! shows
that for paramagnetic samples cavity perturbation meas
ments yield the same kind of information as ac susceptibi
measurements; only the frequency is typically higher in c
ity measurements. For a conducting sample,xD m is not of
primary interest since it is not intrinsic. The interesting qua
tity is the conductivity, and we have yet to show how it c
be obtained from the cavity perturbation measurement. T
task will be postponed to later sections.

At this point we have to reexamine the validity of th
weak perturbation assumption when a highly conduct
sample is inserted in an empty cavity. To this end it is use
to express the shift given by Eq.~6! in an equivalent form
with two contributions. IfM is taken from Eq.~4! and in-
serted in the integral in Eq.~6!, one obtains

S Dṽ0

v
D

m

5
H0•B0* Vs

Wc
2

1

Wc
H0* •E

VS

B~r !d3r . ~7!

If the sample is a perfect conductor there is no penetratio
the ac magnetic flux into the sample, so thatB50 in Eq.~7!.
This means that the first term in Eq.~7! gives the complex
frequency shift relative to the empty cavity caused by int
ducing a sample which is a perfect conductor. Note tha
perfect conductor yields a full diamagnetic response in an
magnetic field, i.e.,xD m521, so that Eq.~6! becomes equa
to the first term in Eq.~7!. The second term in Eq.~7! can
then be interpreted as the complex frequency shift cause
a normal conductor sample relative to the cavity with a p
fect conductor sample of the same size. This can be ratio
ized if we imagine that a perfect conductor acquires so
finite conductivity, so that the field partially penetrates in
the sample and the total shift relative to the empty cavity
reduced. This second shift term is

1

Wc
H0* •E

VS

B~r ! d3r5mD r

H0•B0* Vs

Wc
, ~8!

where we introduced the space averaged complex rela
permeabilitymD r of the conducting sample in an ac magne
field. Obviously, we havemD r511xD m . Note that the total
shift in Eq. ~6! is a measure of the induced current in t
sample and therefore yields the averaged magnetizatio

x̃m . In contrast, the shift in Eq.~8! is a measure of magneti
flux penetration into the sample and, hence, yieldsmD r .

In the case of paramagnetic samples the fieldB in the
sample is only slightly different fromB0, so that Eq.~7!
yields a small difference of two large terms. In such a ca
the decomposition in Eq.~7! is useless, and Eq.~6! can better
depict the small perturbation of the empty cavity. On t
contrary, in conducting samples the fieldB is significantly
reduced with respect toB0 due to the induced shielding cur
rent. Therefore, the second term in Eq.~7! becomes much
smaller than the first, and the total frequency shift is lar
This implies also that the introduction of a conductin
sample cannot be treated as a small perturbation on
empty cavity.
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In order to restore the condition of weak perturbation,
propose to change the conventional approach in the pe
bation treatment so that, instead of the empty cavity,
consider the cavity with a perfect conductor sample inside
the unperturbed system with the complex frequencyṽp . Let
us denote the new unperturbed field byHp(r ). This field
must be tangential at the surface of the perfect condu
sample. Obviously, it is not homogeneous for a gene
shape of the sample and one could not take it out of
integral as we did withH0 in Eq. ~8!.

With the above considerations we obtain the complex
quency shiftDṽp5ṽ2ṽp caused by a normal conducto
relative to a perfect conductor sample in the cavity

S Dṽp

v
D

m

52
1

Wcp
E

VS

Hp* ~r !•B~r ! d3r , ~9!

whereWcp is the energy calculated with the new unperturb
fields.

It is important to note that Eq.~9! has been deduced usin
the concept usually applied to magnetic materials, i.e.,
materials which develop magnetization in an external field
in Eq. ~4!. This means that the current induced in the co
ducting sample is treated as a bound current and not as a
current. Therefore, the fields used in Eq.~9! must be the
solution of the Maxwell equations in such a medium. In t
calculations ofHp(r ) inside the sample we can take for th
boundary conditions the value ofHp(r s) on the surface since
it can be considered as an imposed field. If the penetratio
B(r ) into the nonperfect conductor sample is small we ha
the condition of small perturbation, which implies that f
the tangential component of the perturbed magnetic field
set Ht(r s)'Hp(r s) on the sample surface, and this serv
also as the boundary condition for the calculation ofB(r ) in
the sample. If, however, the penetration ofB(r ) into the
nonperfect conductor sample becomes significant, the
turbed field H(r ) approaches the empty cavity fieldH0.
Hence, for samples in whichHp(r ) is much larger thanH0,
the boundary conditions for the calculation ofB(r ) will
change appreciably with the penetration. The calculation
B(r ) inside the sample could also be done numerically fr
a self-consistent integrodifferential equation which includ
the demagnetizing effects in ac magnetic fields.29

In the special case of ellipsoidal samples with one of
axes along the applied fieldH0, one obtains a homogeneou
H inside a lossless magnetic sample25

H5
H0

11~m r21!Nm
, ~10!

wherem r is the relative permeability of the magnetic mat
rial and Nm<1 is the demagnetizing factor.30 As stated
above, a perfect conductor sample in an ac magnetic fi
can be considered as a perfect diamagnet (m r50). Hence,
one obtainsHp5H0 /(12Nm). This homogeneous field ca
be taken out of the integral in Eq.~9!. For a nonperfect
conductor there is a penetration ofB(r ) into the sample so
that it acts as a nonperfect diamagnet. In the case of a s
penetration ofB(r ) into the sample we may set for th
equivalent diamagnetm r!1. If m rNm!(12Nm), one ob-
tains from Eq.~10! the field H'H0 /(12Nm)5Hp , which
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can be used for the calculation ofB(r ). For the sample which
is very thin in the direction of the external field, one ma
haveNm'1, so thatm rNm@(12Nm) andH'H0 /m r which
is smaller thanHp for the same sample shape. When t
penetration ofB(r ) into the sample becomes large, we ha
to setm r'1 and obtainH'H0. Thus, in general, the bound
ary conditions for the calculation ofB(r ) may change with
the perturbation, which in its turn changes with the cond
tivity. Only for samples elongated in the direction of th
magnetic field (Nm'0), one hasH'H0 regardless of the
penetration ofB(r ). For illustration Fig. 2~a! shows the mag-
netic field in thexz-plane through the center of the cavi
and sample, while in Figs. 2~b! and 2~c! we show the profiles
of Bx along thez axis andy axis through the center of th
cavity with and without the perfect conductor sample. T
profiles were obtained numerically by the commercial p
gram MAFIA .28 The empty cavity fieldB0 is shown by a
dashed line. In the case of a perfect conductor the pro
showsB50 inside the sample and an increasedBp(r ) at the
sample surface. This field takes the role of the new unp
turbed state.

The above redefined perturbation approach is more s
able to describe real experiments in which a conduct

FIG. 2. ~a! A cut in thexz plane through the center of the cavit
and sample as presented in Fig. 1~a!. The lines of the magnetic field
are shown.~b! The profile of the magnetic field componentBx

along thez axis through the center of the cavity and sample.~c! The
profile of the magnetic field componentBx along they axis through
the center of the cavity and sample. The dashed lines in~b! and~c!
show the empty cavity fields, while the solid lines are for the p
fect conductor sample in place.
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11 656 PRB 58D.-N. PELIGRAD et al.
sample of a given size is placed in the cavity and the te
perature is varied. The measured frequency shifts are rela
and could be given a constant offset so that data points
trapolate to zero when the conductivity increases towa
infinity.

Finally, one may comment on the complex frequen
shift from yet another viewpoint. The ac fieldB(r ) stored in
the sample will have a phase shift with respect toHp(r ). The
integral of the in-phase component in Eq.~9! yields the field
energy stored in the sample and, hence, the real frequ
shift (D f p / f )m . The out-of-phase component is due to d
sipation, and its integral yieldsD(1/2Qp)m .

B. Sample in electric field maximum

The case of placing a conducting sample in the elec
field maximum is more complicated. In Fig. 3~a! we show
the conducting sample at the position where the electric fi
is maximum in the empty TE102 cavity. The electric field was
calculated byMAFIA . The electric field near the conductin
sample is profoundly changed with respect to the empty c
ity field at this position. The sample acts as a partial short
for the electric field lines between the two walls of the ca
ity. The charges are accumulated on the rear and front s
of the sample by the surface current which flows like in
oscillating electric dipole antenna@Fig. 3~b!#. In the case of a
perfect conductor, the accumulated charges compen
completely the cavity field inside the sample. The outs
field is strictly perpendicular to the surface of the perfe
conductor sample. It is stronger at the rear and front side
the sample in Fig. 3 and decreases on the lateral sides
some surface line it vanishes as the surface charges ch
sign. If the sample is a nonperfect conductor one find
nonvanishing tangential ac electric field at the lateral side
the sample. Its strength changes with the conductivity of
sample. In contrast, the electric field at the rear and fr
sides of the sample practically does not change with cond

FIG. 3. ~a! TE102 cavity with the sample in the electric fiel
maximum.~b! The induced current in the sample forms an elec
dipole.
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tivity. Namely, as long asus̃u@e0v the sample effectively
retains its role as a partial short cut for the electric field lin
between the cavity walls, and the change of the charge d
sity on the rear and front sides of the sample is negligible31

The complex frequency shift with respect to the emp
cavity is given by Eq.~2! in which E0 stands for the empty
cavity field. The perturbation can be considered to be wea
the electric field on the sample surface is not much differ
from E0. With weak dielectric samples this requirement
well satisfied and Eq.~2! yields accurately the small comple
frequency shift with respect to the empty cavity. For co
ducting samples the approximation is very poor and the s
given by Eq.~2! with E0 is incorrect. Nevertheless, we con
tinue for the moment with Eq.~2!.

The polarizationP is due to microscopic dipoles in th
case of dielectrics and related to the internal fieldE by P
5x̃ee0E, where x̃e is the complex electric susceptibility
When this relation is used for the complex frequency sh
given by Eq.~2!, one obtains

S Dṽ0

v
D

e

52
1

Wc
E0* •*VS

P~r ! d3r52x̃e

D0* ^E~r !& rVs

Wc
,

~11!

where^E(r )& r is the average electric field in the sample.
the case of weak dielectrics there is an almost complete fi
penetration so that̂E(r )& r'E0, and the complex frequenc
shift yields the intrinsic susceptibilityx̃e multiplied by a con-
stant factor~filling factor Ws /Wc) which can be determined
by a calibration experiment.

The problem is how to adapt the above perturbation tre
ment to conducting samples. We may start by considerin
relatively strong dielectric sample. It is expected to caus
large frequency shift with respect to the empty cavity, so t
it may appear useful to follow the analogy with the magne
case and rewrite Eq.~11! by decomposing this shift into two
parts. UsingD(r )5e0E(r )1P(r ) one obtains

S Dṽ0

v
D

e

52
E0* •D0Vs

Wc
1

1

Wc
D0* •E

VS

E~r !d3r , ~12!

where we have used̂D(r )& r5D0, i.e., we ignore for the
moment a possible depolarizing effect. If the fieldE(r ) in
the dielectric is considerably reduced with respect to the fi
E0, one can neglect the second term in Eq.~12!. However,
one should be cautious about extending this picture to
limit of a perfect dielectric. Namely, whene r increases the
wavelength in the dielectric may become smaller than
sample size and internal modes are developing. In orde
make an equivalent to a conducting sample one has to
serve the boundary value problem with equivalent surf
charges. The wavelength of the fields in the equivalent
electric sample must be finite and match the fields outs
the sample. This is achieved if the material acquires a r
tive permittivity e r which increases to infinity and also
relative permeabilitym r which decreases to zero. Thus,
perfect dielectric must in this case also be a perfect diam
net; both conditions are satisfied by the perfect conduc
The second term in Eq.~12! then vanishes and the first term
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PRB 58 11 657CAVITY PERTURBATION BY SUPERCONDUCTING . . .
can be interpreted as a large shift which occurs when a
fect conductor is inserted into the cavity.

With the same argument as in the magnetic case we
led to choose that the unperturbed system consists of
cavity with a perfect conductor sample placed inside. T
shift caused by a normal conductor relative to the new
perturbed state with complex frequencyṽp may be based on
the second term in Eq.~12! which becomes

S Dṽp

v
D

e

5
1

Wcp
*VS

Dp* ~r !•E~r ! d3r , ~13!

where we have replacedD0 of the empty cavity withDp(r ).
It results from D0 and the internal polarization which i
equivalent to the charges built on the surface of the per
conductor sample.

Equation~13! was obtained in analogy with Eq.~9! in the
magnetic case. However, one can show that there is a m
ing term in Eq.~13! which in some cases may become ve
important. Already in the above qualitative reasoning we h
to include a relative permeability of the sample. One m
expect that this should entail also a magnetic contribution
the shift. Quite generally, the presence of a time-depend
Dp(r ) in the sample involves also a space variation of
induced magnetic field due to the Maxwell equation¹

3Hp(r )5 i ṽpDp(r ). If the sample is flat perpendicular t
the electric field direction the depolarizing effect is sma
and one findsDp(r )'D0. Hence, the space variation of th
field Hp(r ) is practically the same as that ofH0(r ) in the
empty cavity. When the sample is at the position of the el
tric field maximum and the sample dimensions are assu
to be much smaller than the wavelength in vacuum, the m
netic field in the sample is negligible. In this case we c
neglect any magnetic field contribution to the complex f
quency shift, and the expression given in Eq.~13! is suffi-
cient. However, when the sample is elongated in the dir
tion of the electric field the depolarizing effect is large, a
Dp(r ) in the sample becomes much larger thanD0 so that the
space variation ofHp(r ) over the sample volume become
large. When the sample becomes a nonperfect condu
there will be a nonvanishingB(r ) inside which means tha
even in the position of the maximum electric field one has
include the magnetic contribution to the complex frequen
shift. The general expression is

Dṽp

v
52

1

Wcp
E

VS

@Hp* ~r !•B~r !2Dp* ~r !•E~r !# d3r .

~14!

It can be applied to both magnetic and electric cases. In
former, the sample is in the node of the electric field so t
Dp(r )50 and only the first term in Eq.~14! remains. On the
contrary, in the electric field maximum both terms a
present for the general sample shape. Obviously, Eq.~14! is
also valid for all intermediate positions of the sample in t
cavity. It represents our main result in the modification of t
conventional Eq.~2! for the use with conducting samples.

One should note that the fieldHp(r ) has different func-
tional forms for the sample in the magnetic and electric fi
maxima. In the former, the fieldHp(r ) is uniform throughout
an ellipsoidal sample. It can be considered as the field
r-
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posed by the magnetic field in the cavity, modified even
ally by the demagnetizing effect as described above. For
sample in the electric field maximum the fieldHp(r ) changes
throughout the sample having a node in the center of
sample. This field is not imposed by the magnetic field in
cavity and does not depend on the demagnetizing effect.
induced through the oscillatingDp(r ) in the sample and de
pends on eventual depolarizing effects. When the sample
comes a nonperfect conductor the fieldD(r ) inside the
sample is not much changed with respect toDp(r ) as long as
us̃u@e0v, i.e., as long as the sample acts as an effec
short cut for the electric field lines and retains practically t
same accumulation of the charges on the surface. It follo
from this consideration that the induced magnetic fieldH(r )
is practically unchanged with respect toHp(r ), regardless of
the penetration ofB(r ) into the sample. Thus, we find tha
for the sample in the electric field maximum the fieldDp(r s)
or Hp(r s) on the surface of the sample serves as the bou
ary condition for the calculation ofE(r ) andB(r ). The ex-
ception to this rule is the case of a very strong depolariz
effect which will be discussed below. The calculation of t
fields can be done by a self-consistent method using an i
grodifferential equation in analogy to the magnetic case.29

For a general shape of a conducting sample the accu
lated charges on the surface will have a distribution
which the equivalent dielectric should be inhomogeneo
i.e., its relative permittivity should be space dependente r(r ).
Ellipsoidal samples are special cases in which the distri
tion of charges is such that the fields in the equivalent die
tric are uniform and one can usee r as a constant quantity.

For ellipsoidal samples in the electric field one finds
homogeneous fieldD inside a lossless dielectric sample32

D5
e r

11~e r21!Ne
D0 , ~15!

wheree r is the relative permittivity of the dielectric materia
andNe<1 is the depolarizing factor. A perfect conductor
an ac electric field acts equivalently to a perfect dielec
(e r→`). Hence, we haveDp5D0 /Ne . Obviously, this does
not mean that the real permittivity of the perfect conducto
infinite but only that the perfect conductor represents
same boundary value problem as the perfect dielectric
nonperfect conductor still acts equivalently to a very stro
dielectric (e r@1). Again, we imply the equivalent boundar
value problem. IfNe is not too small so thate rNe@1, one
obtainsD'Dp . Only for samples very thin perpendicular t
the field direction, for whichNe is so small thate rNe!1,
one findsD5e rD0 which is smaller thanDp for the same
sample shape.

For thin films one can achieve practically full penetrati
so that the field E(r ) becomes uniform throughou
the sample. For the equivalent dielectric one may set
relative permittivity as a real and homogeneous quan
e r→us̃u/e0v. This will be used later in this paper.

In Fig. 4~a! we show the electric field in theyz plane
through the center of the cavity and the sample located a
Fig. 3. Figure 4~b! shows the results ofMAFIA for the profile
of Ey along thez axis through the center of the cavity wit
and without the sample. At the lateral surface of the perf
conductor sample the fieldEy must vanish. If the sample is
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nonperfect conductor this lateral field will not vanish but w
change with conductivity. Figure 4~c! shows the profiles of
Ey along they direction through the center of the perfe
conductor sample in Fig. 3. Also shown is the profile in t
empty cavity. One can observe a large increase of the fi
Ep at the front and rear sides of the sample with respec
the empty cavity valueE0. This field does not change muc
when the sample becomes a nonperfect conductor.

III. RELATION TO POYNTING VECTOR
AND SURFACE IMPEDANCE

In the preceding section we started from Eq.~2! which
was derived by treating the perturbation of an empty cav
by a weak dielectric or paramagnetic sample.23–27 Subse-
quently, we demonstrated the convenience of introducin
new unperturbed state for highly conducting samples. I
also possible to use the general cavity perturbation appro
but starting from the cavity plus the perfect conduc
sample as the unperturbed state and calculating the pertu
tion caused by a finite conductivity of the sample. The co
plex frequency shift is found to be~see the Appendix!

Dṽp

v
5

i

vWcp
R

S
@E~r s!3Hp* ~r s!#•n~r s!ds, ~16!

FIG. 4. ~a! A cut in theyz plane through the center of the cavi
and sample as presented in Fig. 3. The lines of the electric field
shown.~b! The profile of the electric field componentEy along the
z axis through the center of the cavity and sample.~c! The profile of
the electric field componentEy along they axis through the cente
of the sample. The dashed lines in~b! and ~c! show the empty
cavity fields, while the solid lines are for the perfect conduc
sample in place.
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where the integration is over the sample surface.n„r s) is the
unit vector normal to the surface at various positionsr s on
the surface and pointing into the sample. The fields are ta
on the outer side of the sample surface. Note that the ve
product of the fields in Eq.~16! is not the Poynting vector
sinceE(r s) is the perturbed field whileHp(r s) is the unper-
turbed field. Equation~16! holds regardless of the position o
the sample in the electric or magnetic field in the cavi
Namely, even when the perfect conductor sample is pla
in the position of the electric field maximum, the induce
surface current gives rise to a tangential magnetic fi
Hp(r s) at the surface. The electric fieldEp(r s) is perpendicu-
lar to the surface of the perfect conductor. When the sam
is not a perfect conductor the fieldE(r s) acquires some tan
gential component, and Eq.~16! yields the complex fre-
quency shift.

Now we have two choices for the interpretation of t
properties of conducting samples. The first is that we tr
the conductor as a magnetic and dielectric material as in
previous section. In that case the induced current is in
preted as a bound magnetization current if it makes loop
as a polarization current if it gives rise to surface charg
For a general position of the sample in the cavity both co
ponents of the current are present with appropriate weigh
factors. In this picture we have the continuity of the tange
tial components ofE(r ) andHp(r ) across the surface of th
sample so that we can apply the divergence theorem

R
S
@E~r s!3Hp* ~r s!#•n~r s!ds

52E
VS

¹•@E~r !3Hp* ~r !# d3r

52E
VS

Hp* ~r !•@¹3E~r !# d3r

1E
VS

E~r !•@¹3Hp* ~r !# d3r . ~17!

We can use the Maxwell equations¹3E(r )52 i ṽB(r ) and
¹3Hp(r )5 i ṽpDp(r ) in the integrals of Eq.~17! and see
that the complex frequency shift in Eq.~16! is equivalent to
Eq. ~14! derived in the previous section. We have to use
approximationṽp'ṽ'v which is valid for highQ factors
and small frequency shifts.

The other choice is to consider the conducting sample
nonmagnetic and nondielectric material. The induced curr
in the sample is then treated as free current densityJ(r ). In
this picture the perfect conductor has a free surface cur
densityJs5Jpd(r2r s), so that the fieldHp(r s) on the outer
side of the sample surface makes a jump to zero at the in
side of the surface. Therefore, the divergence theorem ca
be applied with the fieldHp(r ). The problem can be solve
in the cases when demagnetizing and depolarizing effects
not extremely strong. As explained in the previous sect
the perturbed fields inside the sample are not much chan
with respect to the unperturbed fields. The same holds
side the sample. The magnetic field on the outer side of
sample surface does not change appreciably when the sa
becomes a nonperfect conductor, so that on the outer sur

re

r



he
in

he
en
p

n

s

d
. I
th

y
hi

de
on
n

of
l
q
ts

tin
le

n

es

t

t-
a
th
if
.
ty

n

re-
it is
ted
ex-

rtur-

the
o-

ci-

e
r
n

f

etra-
-

that

tity
the
of

y

ex-

PRB 58 11 659CAVITY PERTURBATION BY SUPERCONDUCTING . . .
of the actual sample one can replaceHp
ext(r s)'Ht

ext(r s)
where the subscriptt denotes the tangential component of t
perturbed field. This is the condition of weak perturbation
which we get the integral of the Poynting vector over t
surface of the conductor sample. The tangential compon
of E andH are continuous across the surface of the sam
so that we can apply the divergence theorem as in Eq.~17!.
However, now we have to use the Maxwell equations¹

3E(r )52 i ṽm0H(r ) and ¹3H(r )5J(r )1 i ṽe0E(r )
which imply that the conductor is nonmagnetic (m̃ r51) and
nondielectric (ẽ r51) but sustains an induced free curre
J(r ). In this picture we haveD(r )5e0E(r ) and B(r )
5m0H(r ). Therefore the complex frequency shift become

Dṽp

v
52

1

Wcp
E

VS

@m0uH~r !u22e0uE~r !u2# d3r

1
i

vWcp
E

VS

J* ~r !E~r !d3r . ~18!

The first integral in Eq.~18! represents the energy store
in the conductor sample and yield the real frequency shift
a conductor the magnetic energy is much larger than
electric so that the second term in the first integral in Eq.~18!
can be neglected. The second integral in Eq.~18! yields dis-
sipation ifJ(r ) andE(r ) are in phase, i.e., if the conductivit
is real. For a complex conductivity there is a phase s
betweenJ(r ) and E(r ) and the last term in Eq.~18! yields
also a contribution to the real frequency shift.34

It is important to emphasize that in the cases when
magnetizing and depolarizing effects are extremely str
one findsH!Hp if the magnetic field is imposed, and whe
the electric field is imposedD!Dp which give rise to the
induced magnetic field with the same conditionH!Hp . In
these cases Eq.~16! must not be replaced by the integral
the Poynting vector, and Eq.~18! does not apply. We shal
come to this point later in the paper. On the other hand, E
~14! and~16! are generally valid since they involve produc
of perturbed and unperturbed fields.

We may also have samples which are weakly conduc
and, in addition, have spins and induced electric dipo
Thus, one would have to deal with the equation¹3B(r )
5m0@J(r )1¹3M (r )1 ivP(r )1 ive0E(r )#. We have to
use J(r )5s̃E(r ), P(r )5x̃ee0E(r ) and M (r )5x̃BB(r )/
m0,33 so that the Maxwell equation contains onlyE(r ) and
B(r ). Combining it with the other Maxwell equatio
¹3E(r )52 ivB(r ) we can find the solutions forE(r ) and
B(r ), given the appropriate boundary conditions. Using th
solutions we can obtainD(r )5 ẽ re0E(r ) with ẽ r511x̃e and
H(r )5(12x̃B)B(r )/m0. The complex frequency shif
is given by Eq. ~18! with the first integrand given by
@H* (r )•B(r )1D* (r )•E(r )# as calculated by the above ou
lined procedure. If the sample still acts as a good diam
netic and good dielectric, the boundary conditions are
same as discussed in the preceding section. However,x̃e

,1, x̃B,1, andus̃u,e0v, it is more appropriate to use Eq
~2! for the complex frequency shift with respect to the emp
cavity.
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Equation ~18! is valid also for anisotropic samples. I
that case the conductivity becomes a tensorŝ and the
second integrand in Eq.~18! must be written in the form
E(r )•ŝ* •E* (r ).

In the literature one often finds that microwave measu
ments are related to the surface impedance. Therefore,
useful to examine how the complex frequency shift is rela
to the surface impedance problem. We have already
plained above in which cases one can apply the weak pe
bation condition and replace the fieldHp(r s) in Eq. ~16! by
the fieldH(r s) on the surface of the actual sample. Since
integral in Eq.~16! depends only on the tangential comp
nents of the fields on the surfaceEt and Ht , one can also
make use of the surface impedance relation25,26

n3Et~r s!5Z̃s~r s!Ht~r s!. ~19!

The fieldEt can be formally represented as the sum of in
dent and reflected waves with the ratio25,26

Ẽr

Ẽi

5
Z̃s2Z0

Z̃s1Z0

, ~20!

whereZ0 is the impedance of the vacuum. In Eq.~20! the
polarizations of the fieldsEi5ei Ẽi andEr5er Ẽr are taken to
be equal,ei5er , and the complex amplitudes contain th
phase information. On the surface of a perfect conductoZ̃

50, so thatẼr52Ẽi , i.e., the reflected field is equal i
amplitude and shifted in phase byp with respect to the in-
cident wave so that the total field on the surfaceẼt vanishes.
For a nonperfect conductor Eq.~20! yields

Z0~Ẽi1Ẽr !5Z̃s~Ẽi2Ẽr !. ~21!

Noting thatẼi2Ẽr5Z0(H̃ i1H̃r) one obtains

Z̃s5
Ẽt

H̃ t

, ~22!

which means thatZ̃s in Eq. ~20! is determined by the ratio o
the total fields at the surface of the sample as in Eq.~19!. For
the samples whose thickness is much larger than the pen
tion depth Eq.~22! yields the intrinsic impedance which de
pends on the material parameters̃ but not on the sample
thickness@cf. Eq.~1!#. For thin samples the fieldEt on the
surface will depend also on the sample dimensions so
the surface impedance given by Eq.~22! becomes different
from the intrinsic one. It determines the reflection in Eq.~20!
and the complex frequency shift in Eq.~16! which is mea-
sured in the experiments. One can introduce the quan
Z̃s(r s) as the local surface impedance which determines
ratio of the reflected and incident waves on that position
the surface. The complex frequency shift is then given b

Dṽp

v
5

i

vWcp
R

S
Z̃s~r s!uHt~r s!u2ds. ~23!

Again, this expression does not apply in the cases of
tremely strong demagnetizing and depolarizing effects.
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11 660 PRB 58D.-N. PELIGRAD et al.
We have to remark at this point that the present case
sample placed in a cavity is different from the cases in wh
the thin film sample replaces a part of the cavity walls.4,5 In
our case the standing wave in the cavity imposes someHt(r )
on all sides of the sample, and we have a resultantEt(r ) on
the surface due to the material parameters̃ and the sample
geometry. On the contrary when the thin film sample ma
a part of the cavity walls we have a transmission of radiat
out of the cavity. The fieldHt(r ) on the outer surface of th
thin film is not known and Eq.~16! loses practical signifi-
cance. In such cases it is more appropriate to calculate
surface impedance on the inner surface of the thin film
impedance transformation theory.4,5,7

IV. SOLUTIONS FOR SLAB GEOMETRY

A. Magnetic field maximum

Let us assume that the sample shape can be approxim
by the slab geometry which describes well most single cr
tals and thin films of high-Tc superconductors. We conside
the sample in the cavity at the position of the magnetic fi
maximum and oriented with its plane along the field so t
the demagnetizing effect is negligible. The magnetic field
the sample surface is denoted byH im where the index m is a
reminder of the sample position. We take it as a real quan
so that the phases of the complex fields and current are
tive to H im . For the sake of convenience we drop the vec
notation in this section.

One can show that different approaches developed in
preceding sections yield the same result for the complex
quency shift. We start with Eq.~9! which assumes that th
sample is a magnetic material. The complex frequency s
becomes

S Dṽp

v
D

m

52
H im

Wcp
E

2Lx/2

Lx/2

dxE
2Ly/2

Ly/2

dyE
2d/2

d/2

B̃~z!dz,

~24!

where we have set the fieldHp(z) as uniform throughout the
sample and equal toH im so that it could be taken out of th
integral. This condition results from the assumption that
sample thickness is much smaller than the wavelength in
cavity. The sample has dimensionsVs5LxLyd, and we as-
sumedLx ,Ly@d. In order to evaluate the integral in Eq.~24!
we have to find the analytical expression for the flux dens
B̃ in the sample. The Maxwell equations in the conduc
lead to the differential equation34

S ]z
22

2i

d̃2D B̃~z!50, ~25!

where we have adopted the time dependence of the fi
with the convention exp(ivt). In Eq. ~25!, d̃ is the classical
skin depth d̃5(2/m0vs̃)1/2. The differential equation Eq
~25! for B̃(z) in a magnetic medium, in which the induce
current is treated as the magnetization current, is the sam
the differential equation forH̃(z) in a nonmagnetic medium
whereB̃(z)5m0H̃(z), and the induced current is treated
the free current.
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For the slab geometry we neglect the edge effects
take the external field at the boundary planesz56d/2 to be
uniform and parallel to those planes. Due to the continuity
B̃(z) at the sample surface we must have the boundary c
ditions for the fieldB̃(z) in the conductor placed in a mag
netic field

B̃mS 6
d

2D5m0H im . ~26!

The boundary condition in Eq.~26! is valid regardless of the
penetration ofB̃(z) into the sample. As explained in Sec.
this is the property of the samples elongated in the direc
of the magnetic field.

The solution of Eq.~25! with the boundary conditions
~26! is well known:

B̃m~z!5m0H im
cosh$@~11 i !/ d̃ #z%

cosh$@~11 i !/ d̃ #~d/2!%
. ~27!

Using Eq.~27! in Eq. ~24! one finds the complex frequenc
shift

S Dṽp

v
D

m

52
m0H i

2
mVs

Wcp
F d̃

d
~12 i !tanhS 11 i

d̃

d

2D G , ~28!

where we have usedLxLy5Vs /d. It is obvious that the pref-
actor m0H i

2
mVs /Wcp stands for the filling factor of the

sample in the cavity. The rest of Eq.~28! is an expression
which depends on the ratiod̃/d.

The approach in which the sample is treated as a nonm
netic material yields the same result. As pointed out ab
the differential equation forH̃(z) is the same as Eq.~25!,
and with the boundary condition given by Eq.~26! one ob-
tains the fieldH̃m(z)5B̃m(z)/m0 as in Eq.~27!. This solu-
tion implies also the solution for the electric field in th
sample

Ẽm~z!5
m0v

2
H imd̃~11 i !

sinh$@~11 i !/ d̃ #z%

cosh$@~11 i !/ d̃ #~d/2!%
.

~29!

The induced current density is given by

J̃m~z!5H imS 11 i

d̃
D sinh$@~11 i !/ d̃ #z%

cosh$@~11 i !/ d̃ #~d/2!%
~30!

and should be treated as the free current in a nonmagn
material. When we use Eq.~18! and neglect the integral o
the electric field energy in the sample we find the res
which is identical to that of Eq.~28!.

It is easy to verify that one can also use Eq.~23! with the
surface impedance defined by the fields on the surface. F
Eq. ~29! one finds

Z̃sm5
Ẽim

H im

5
m0v

2 F d̃~11 i !tanhS 11 i

d̃

d

2D G . ~31!

The complex frequency shift calculated from Eq.~23! is
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S Dṽp

v
D

m

52
m0H i

2
mVs

Wcp
S i Z̃sm

m0vd
D , ~32!

which is equivalent to Eq.~28!.
The above complex frequency shift can be related als

the average relative permeabilitymD r of the sample. When Eq
~8! is specified to the slab geometry one finds that Eq.~28!

can be expressed as (Dṽp /v)m52(m0H2
imVs /Wcp)mD r .

Thus, the real and imaginary parts ofmD r multiplied by the
filling factor yield (D f / f p)m andD(1/2Qp)m , respectively.

Equation~28! holds for both normal conductors and s
perconductors. In order to separate the real and imagin
parts we would have to specify whether the conductor i
normal metal withsn and dn as real quantities or a supe
conductor withs̃ and d̃ as complex quantities.

For the moment we proceed with a normal metal and tr
the superconducting case in a later subsection. The real
imaginary parts of Eq.~28! become

S D f p

f D
nm

52
m0H i

2
mVs

Wcp
Fdn

d

sinh~d/dn!1sin~d/dn!

cosh~d/dn!1cos~d/dn!G ,
~33!

DS 1

2Qp
D

nm

5
m0H i

2
mVs

Wcp
Fdn

d

sinh~d/dn!2sin~d/dn!

cosh~d/dn!1cos~d/dn!G ,
~34!

where the subscript n refers to the normal conductor.
It is interesting to analyze these results. Figure 5 sho

(D f p / f )nm andD(1/2Qp)nm as functions ofdn . The sample
thicknessd is considered to be a constant so that the pre
tors are fixed. From the experimental point of view we m
say that the penetration depth is varied due to a change in

FIG. 5. Plots of (D f p / f )nm andD(1/2Qp)nm given by Eqs.~33!
and~34! for a constant filling factor~chosen to be 0.1! of the sample
in the magnetic field maximum in the cavity. The dashed lin
indicate the linear behavior for thick samples (dn!d), while the
dotted line shows the asymptotic behavior 1/dn

2 for electromagneti-
cally thin samples (dn@d).
to

ry
a

at
nd

s

c-
y
he

resistivity of the metal with temperature. We may choose
sample thicknessd so that at low temperaturesdn!d and the
sample is electromagnetically thick. Both (D f p / f )nm and
D(1/2Qp)nm vary linearly with the penetration depthdn in
this regime. Whendn becomes comparable to half of th
sample thicknessd, D(1/2Qp)nm reaches a maximum an
decreases at higher temperatures where the penetration
comes complete (dn.d), i.e., the sample becomes electr
magnetically thin. In the limitdn@d, D(1/2Qp)nm decreases
as (1/dn

2). It may appear puzzling that the losses represen
by D(1/2Qp)nm decrease when the resistivity of the samp
increases. In order to understand the physics of this pro
one has to analyze the penetrated field and current in
sample. Namely, the induced current forms a loop wh
role is to shield the magnetic flux from the sample. F
penetration must imply that the shielding current has b
reduced practically to zero and this in turn implies that t
dissipation must vanish. The real frequency shift must sa
rate atdn@d since it reflects the total change of the ener
stored in the sample volume.

B. Electric field maximum

Now we consider the sample of approximately slab geo
etry in the electric field maximum as shown in Fig. 3. T
depolarizing effect may now be large, and this makes it d
ferent with respect to the magnetic case where the dema
tizing effect is negligible. In the picture of equivalent diele
tric and magnetic material the complex frequency shift
given by Eq. ~14!. The Maxwell equation for the perfec
conductor reads

]zHp~z!5 ivDp , ~35!

where we neglected the edge effects and assume thatDp is
uniform throughout the sample. This also implies that t
field H ie , which is induced on the surface of the sample d
to the oscillatingDp , is uniform along the surface. One ob
tains by integration of Eq.~35! from the center of the slab to
the surface

H ie5HpS d

2D5 ivDp

d

2
. ~36!

This equation relatesDp to H ie which can be conveniently
used as the boundary condition for the calculation of ot
fields. It follows from Eqs.~35! and~36! that the fieldHp(z)
has a simple linear form

Hp~z!5
2H ie

d
z. ~37!

Besides the unperturbed fieldsHp(z) andDp one also needs
the perturbed fieldsB̃(z) andẼ(z) for the calculation of the
complex frequency shift in Eq.~14!. We can use the sam
differential equation given in Eq.~25! but the boundary con-
ditions have to be examined carefully. If we assume that
depolarizing factor is not too small, so that one can takeD
'Dp ~see Sec. II.!, the fieldH ie given by Eq.~36! can also
be set for the perturbed field on the surface. One has

s
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B̃eS d

2D52B̃eS 2
d

2D5m0H ie . ~38!

The case of extremely small depolarizing factor will be d
cussed in the next section. The solution of Eq.~25! with the
boundary conditions~38! is

B̃e~z!5m0H ie
sinh$@~11 i !/ d̃ #z%

sinh$@~11 i !/ d̃ #~d/2!%
, ~39!

and one finds the electric field

Ẽe~z!5
m0v

2
H ied̃~11 i !

cosh$@~11 i !/ d̃ #z%

sinh$@~11 i !/ d̃ #~d/2!%
. ~40!

One can now evaluate Eq.~14! and obtain

S Dṽp

v
D

e

52
m0H i

2
eVs

Wcp
F d̃

d
~12 i !cothS 11 i

d̃

d

2D G . ~41!

The prefactorm0H i
2

eVs /Wcp is the filling factor of the
sample at the position of the maximum electric field in t
cavity.

In the picture of a nonmagnetic and nondielectric co
ducting sample which sustains a free current density,
finds

J̃e~z!5H ieS 11 i

d̃
D cosh$@~11 i !/ d̃ #z%

sinh$@~11 i !/ d̃ #~d/2!%
, ~42!

and Eq.~18! has to be used for the calculation of the co
plex frequency shift. The second term in Eq.~18! can be
neglected and the final result is the same as in Eq.~41!.

One may note that in this picture the induced bound
field H ie has also the meaning of an equivalent surface c
rent

H ie5E
0

d/2

J̃~z!dz. ~43!

This current gives rise to the accumulation of charges on
sample surface. The space averaged current densityJ̄
52H ie /d which is equivalent toJ̄[ ivD in the picture of an
equivalent dielectric sample. Therefore,J̄ depends on the
shape of the sample through the depolarizing factor as
cussed above.

Alternatively, one may use the surface impedance in
electric case obtained from Eq.~40!

Z̃se5
Ẽie

H ie
5

m0v

2 F d̃~11 i !cothS 11 i

d̃

d

2D G ~44!

and calculate the complex frequency shift from Eq.~23! for
the slab geometry

S Dṽp

v
D

e

52
m0H i

2
eVs

Wcp
S i Z̃se

m0vd
D , ~45!

which is identical to Eq.~41!.
Equation~41! yields the complex frequency shift cause

by a normal conductor or a superconductor relative to
-

-
e

-

y
r-

e

s-

e

e

perfect conductor. We shall first analyze the case of a nor
metal and postpone the discussion of superconductors to
next subsection. Withdn real, Eq.~41! can be separated int
the real and imaginary parts

S D f p

f D
ne

52
m0H i

2
eVs

Wcp
Fdn

d

sinh~d/dn!2sin~d/dn!

cosh~d/dn!2cos~d/dn!G ,
~46!

DS 1

2Qp
D

ne

5
m0H i

2
eVs

Wcp
Fdn

d

sinh~d/dn!1sin~d/dn!

cosh~d/dn!2cos~d/dn!G ,
~47!

where the subscriptn refers to the normal conductor.
Figure 6 shows the dependence of (D f p / f )ne and

D(1/2Qp)ne on the penetration depthdn while the sample
thicknessd is considered to be a constant so that the pref
tor is fixed. At low temperatures where the sample is el
tromagnetically thick (dn!d), the shifts are linear indn as in
the magnetic case in Fig. 5. At elevated temperatures wh
dn.d, D(1/2Qp)e increases nonlinearly and acquiresdn

2 de-
pendence in the limitdn@d. This is remarkably different
from the magnetic case in Fig. 5. One can explain this
havior by analyzing the induced current in the sample.
contrast to the magnetic case the current in the electric c
has the same sign on both sides of the sample. When
penetration depth is increased the current does not dimi
but becomes more uniform throughout the sample. The
fore, the losses then have to increase with the resistivity
the sample, i.e., withdn

2 . Note that the induced current in th
electric case flows similar to in an antenna~Fig. 3!, i.e., it
does not make a loop and does not serve to shield the m
netic flux. In fact Eqs.~38!,~39! show that the magnetic field
changes sign when going from the left to the right side of

FIG. 6. Plots of (D f p / f )ne andD(1/2Qp)ne given by Eqs.~46!
and~47! for a constant filling factor~chosen to be 0.1! of the sample
in the electric field maximum in the cavity. The dashed lines in
cate the linear behavior for thick samples (dn!d), while the dotted
line shows the asymptotic behaviordn

2 for electromagnetically thin
samples (dn@d).
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sample so that there is no net magnetic flux in the sam
Hence, full penetration does not imply that the induced c
rent vanishes. The real frequency shift must saturate fodn
@d because of the same reasons as given in the mag
case.

C. Arbitrary position

If the sample is placed at an arbitrary position between
magnetic and electric fields maxima, the boundary con
tions will be a mixture of Eqs.~26! and ~38!. Namely, if
B̃(2d/2)ÞB̃(d/2) one can write the sum and difference

m0H im5
1

2F B̃S d

2D1B̃S 2
d

2D G , ~48!

m0H ie5
1

2F B̃S d

2D2B̃S 2
d

2D G , ~49!

so that the boundary values are expressed in the form

B̃S d

2D5m0~H im1H ie!, ~50!

B̃S 2
d

2D5m0~H im2H ie!. ~51!

One can see thatH im enters the boundary conditions with th
form of Eq. ~26! while H ie contributes as the field in Eq
~38!. Hence, one may say thatH im andH ie are the boundary
fields induced by the magnetic and electric effects, resp
tively. The induced current in the sample is the superposi
of the loop current@magnetic dipole, Fig. 1~b!# and antenna
current @electric dipole, Fig. 3~b!#. The complex frequency
shift is the superposition of the contributions from Eqs.~28!
and ~41!. Which of the two contributions will prevail de
pends on the ratio ofH im to H ie but also on the factors
involving d/dn as will be discussed in the following section

D. Superconducting samples

The ideas developed above apply also in the case of
perconducting samples. The corresponding expressions
superconductors can be readily obtained with the conduc
ity s̃ and penetration depthd̃ as complex quantities. On
could evaluate the real and imaginary parts of the comp
frequency shift. It is, however, more common to introdu
the complex penetration lengthl̃ through the equation

11 i

d̃
5

1

l̃
. ~52!

With this definition of l̃, Eq. ~25! takes the form of the
London equation

S ]z
22

1

l̃2D B̃~z!50. ~53!

In the normal state the real and imaginary parts ofl̃ are
found from Eq.~52! to be
e.
r-

tic

e
i-

c-
n

u-
for
v-

x

l̃5l12 il25
dn

2
~12 i !, ~54!

wheredn is real. Thus,l15l2 in the normal state. In the
superconducting state withs̃5s12 is2 one finds

l1,25A us̃u6s2

2m0vus̃u2
, ~55!

where plus and minus signs apply tol1 andl2, respectively.
Clearly, when the superconducting state occurs,s2.0 and
l1 becomes larger thanl2. At zero temperature one shoul
have s1(0)50 and s2(0)51/m0vlL(0)2 where lL(0) is
the zero temperature London penetration length. From
~55! one findsl1(0)5lL(0) andl2(0)50, i.e.,l̃ becomes
real and equal tolL(0) so that Eq.~53! reduces to the origi-
nal London equation.

Using Eq.~52! one can express Eq.~28! for the complex
frequency shift of the sample in the magnetic field maximu
in an equivalent form

S Dṽp

v
D

m

522
m0H i

2
mVs

Wcp
F l̃

d
tanhS d

2l̃
D G . ~56!

FIG. 7. ~a! Calculated temperature dependences ofD(1/2Qp)m

and D(1/2Qp)e for a thick superconducting sample withd
510dn(Tc). For other parameters see the text. The two curves o
lap belowTc , and slightly aboveTc , while at elevated tempera
tures the sample becomes electromagnetically thin and the cu
separate ~inset!. ~b! Calculated temperature dependences
(D f p / f )m and (D f p / f )e for the same sample as in~a!.
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If the sample is a superconductor, the real and imaginary parts become

S D f p

f D
sm

522
m0H i

2
mVs

Wcp
Fl1 /dsinh@~l1 /ul̃u2!d#1~l2 /d!sin@~l2 /ul̃u2!d#

cosh@~l1 /ul̃u2!d#1cos@~l2 /ul̃u2!d#
G , ~57!

DS 1

2Qp
D

sm

52
m0H i

2
mVs

Wcp
Fl2 /dsinh@~l1 /ul̃u2!d#2~l1 /d!sin@~l2 /ul̃u2!d#

cosh@~l1 /ul̃u2!d#1cos@~l2 /ul̃u2!d#
G , ~58!

where the subscripts refers to the superconducting state. These expressions obviously reduce to Eqs.~33!,~34! for the normal
state whenl15l25dn/2. Note that the superconductor atT50 is still different from a perfect conductor. For the latterdn
→0, while the superconductor still retains the penetration lengthlL(0) so that there is a finite real frequency shift in Eq.~57!
of the superconductor relative to the perfect conductor. There is no difference in theQ factor, i.e.,D(1/2Qp)sm in Eq. ~58!
vanishes at zero temperature. The factors in the brackets in Eqs.~57! and ~58! were found also by Coffey and Clem35 who
calculated the average relative permeabilitymD r .

For the sample in the electric field maximum Eq.~41! can be given an equivalent form usingl̃ from Eq. ~52!

S Dṽp

v
D

e

522
m0H i

2
eVs

Wcp
F l̃

d
cothS d

2l̃
D G . ~59!

For a superconductor the real and imaginary parts are found to be

S D f p

f D
se

522
m0H i

2
eVs

Wcp
F ~l1 /d!sinh@~l1 /ul̃u2!d#2~l2 /d!sin@~l2 /ul̃u2!d#

cosh@~l1 /ul̃u2!d#2cos@~l2 /ul̃u2!d#
G , ~60!

DS 1

2Qp
D

se

52
m0H i

2
eVs

Wcp
F ~l2 /d!sinh@~l1 /ul̃u2!d#1~l1 /d!sin@~l2 /ulu2!d#

cosh@~l1 /ul̃u2!d#2cos@~l2 /ul̃u2!d#
G . ~61!
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Equations~60!,~61! reduce to Eqs.~46!,~47! when l15l2

5dn/2. To the best of our knowledge Eqs.~59!–~61! for the
superconducting sample in the microwave electric field h
not been reported previously.

In order to illustrate the behavior of the shifts in supe
conducting samples one needs to assume a model for
temperature variations ofs1 and s2 which then determine
the temperature dependences ofl1 and l2. For the present
purpose we assume the two fluid model in whichs1(t)
5sn(Tc)t

4 ands2(t)5s2(0)(12t4) wheret5T/Tc is the
reduced temperature. The value that has to be taken
s2(0) depends on the London penetration lengthlL(0) at
zero temperature and the operating frequency. Fort.1, i.e.,
in the normal state, we assume a metallic behaviorsn(t)
5sn(Tc)/(at1b), typical for high-Tc cuprates and set fo
simplicity a50.9 andb50.1. Thus, we get the temperatu
dependences ofdn(t), l1(t), andl2(t) relative to the value
of dn at Tc . In what follows we useK5@s2(0)/sn(Tc)#
525, which is typical at microwave frequencies.

It is interesting to analyze two choices for the sam
thicknessd with respect todn(Tc). If we choosed@dn(Tc)
the sample is electromagnetically thick atTc . By cooling it
belowTc , l1 andl2 are further reduced, so that the samp
remains electromagnetically thick in the whole temperat
region.

Figure 7 shows the evolution of the complex frequen
shift for d510dn(Tc) in the cases when the sample is plac
in the magnetic or electric field maximum. For simplicity w
have taken the filling factors to be 0.1 in both cases. T
e

-
he

or

e

y

e

shifts in the two cases show no difference belowTc and just
aboveTc since the sample is electromagnetically thick in th
region. For thick samples the expression in the brackets
Eqs.~57! and~60! for the frequency shift reduces tol1(t)/d
while the brackets for the absorption Eqs.~58! and ~61! re-

duce tol2(t)/d. The surface impedancesZ̃sm andZ̃se given
by Eqs ~31! and ~44!, respectively, are both equal to th

intrinsic surface impedanceZ̃s in Eq ~1!. The intrinsic sur-

face impedance can be expressed using Eq.~52! as Z̃s(t)

5 im0vl̃(t), so that Rs(t)5m0vl2(t) and Xs(t)
5m0vl1(t).

At temperatures much larger thanTc the differences be-
tween the magnetic and electric cases in Fig. 7 become
ticeable becausedn(t) increases to become comparable a
larger thand ~cf. Figs. 5 and 6!.

The other choiced!dn(Tc) becomes very interesting fo
thin films. The sample is obviously electromagnetically th
everywhere in the normal state. For the illustration in Fig
we taked50.1dn(Tc). For simplicity we assume again tha
the filling factors in the magnetic and electric cases are eq
and set the value to 1023. This choice simply accounts fo
the change inVs with respect to the previous case of th
thick sample. A more elaborated approach including the c
sequences of the depolarizing effect will be discussed in
next section. Figure 8~a! shows that the absorption sign
D(1/2Qp) is much smaller in the magnetic than in the ele
tric case. Moreover, when the signal amplitudes are co
pared to those of the thick sample in Fig. 7~a!, one can ob-



u
th
i
t

o

n
a
al
th
er

re
ct

i
u

-
-

le

na-
de-
t

s
8

t-
ller
e-
-
plike
ture
-
ere

ne
nges
a

eri-
ity
the
he
-

e
tion

tric

PRB 58 11 665CAVITY PERTURBATION BY SUPERCONDUCTING . . .
serve that the signal in the magnetic case is reduced m
more than just because of the filling factor. In contrast,
signal amplitude in the electric case is even increased w
respect to the thick sample. One also observes that in
magnetic case the superconducting transition appears br
ened while it remains sharp in the electric case.

The frequency shifts shown in Fig. 8~b! are particularly
interesting. In the magnetic case the amplitude of the sig
is reduced with respect to the thick sample and the sh
becomes very flat. At the same time the shape of the sign
the electric case changes dramatically with respect to
thick sample. The shift in the normal state becomes v
small and a sharp negative peak is seen just belowTc . Its
origin is in the numerator in Eq.~60! and a rapid drop ofl2
below Tc . One may observe that the magnitude of the f
quency shift at zero temperature is increased with respe
the thick sample.

The reason why the signals in the electric case grow
amplitude when the sample becomes thinner, even tho
the filling factor is reduced as required byVs , can be ratio-
nalized when the expressions in the brackets of Eqs.~60! and
~61! are expanded for (d/l1,2!1). One finds that these ex
pressions increase asd22 so that the signal amplitudes in
crease asd21. The corresponding surface impedanceZ̃se in
Eqs. ~44!,~45! also increases asd21 in accord with the ex-
pression given by Gittleman and Rosenblum.36 At this point
one may address the question of extremely thin samp
Obviously, the divergence of the signal intensities ford→0

FIG. 8. ~a! The same as in Fig. 7~a!, but for a thin sample with
d50.1dn(Tc). D(1/2Qp)m is much smaller and has a much broad
transition belowTc than D(1/2Qp)e . ~b! Calculated frequency
shifts for the sample as in~a!.
ch
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could not be physical. To solve the problem one has to a
lyze also a more intricate dependence coming from the
polarizing effect onH ie which will be discussed in the nex
section.

There is an additional feature in the signals for thin film
in the electric field maximum. The calculations in Fig.
were made with the choice of the parameterK
5@s2(0)/sn(Tc)#525 as mentioned above. It is worth no
ing that a very interesting behavior is obtained for sma
values ofK ~Fig. 9!. The absorption curves broaden and d
velop a peak just belowTc . The negative peak in the fre
quency shift also broadens and the curves acquire a ste
form. These cases may become relevant for low tempera
superconductors wheresn(Tc) is large and/or for any super
conductor in experiments at elevated frequencies wh
s2(0) is lower.

V. DISCUSSION OF THE EXPERIMENTAL CONDITIONS
FOR THIN FILM SAMPLES

In a typical microwave conductivity measurement o
uses a sample of given dimensions and measures the cha
of f and Q as a function of temperature. If the sample is
good conductor in the whole temperature range of the exp
ment, the fieldH i on its surface does not change if the cav
parameters do not change with temperature. It is fixed by
dimensions of the sample and its position in the cavity. T
shiftsD f p / f andD(1/2Qp) are then functions of the penetra
tion lengthl̃ which itself is a function of temperature.

r
FIG. 9. Calculated temperature dependences of the absorp

and frequency shift as in Fig. 8 for a thin sample in the elec
field, but withK5@s2(0)/sn(Tc)# 5 1, 4, and 25.
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The aim of microwave measurements of superconduc
is to determine the temperature dependencess1(t) and
s2(t). The case of thick samples causes no problem in
interpretation of the experimental data, i.e., in extract
s1(t) ands2(t) in an unequivocal way. One uses the the
retical expression for the complex frequency shift which
the same for the position of the sample in both the magn
and electric field maxima. A small misalignment of th
sample from a desired position does not change the temp
ture dependence of the complex frequency shift and
analysis remains valid.

The situation is more complicated in thin films. In som
of the reported experiments10–12the sample was placed at th
position of the magnetic field maximum in the cavity. It w
oriented so that the microwave magnetic field was paralle
the plane of the film which means that the condition fo
thin sample in the slab geometry was met. It was obser
that the microwave absorption increased with tempera
above Tc which is in contrast to the negative slope
D(1/2Qp)nm in Fig. 5 but agrees qualitatively with the sign
D(1/2Qp)ne in Fig. 6. Also the observed transition belowTc
was sharp as predicted for the electric case, rather than b
broadened as expected for the magnetic case~cf. Fig. 8!. We
claim that the reported observations were due to a small m
alignment of the sample from the nodal plane of the elec
field. Note that in a real experiment the dielectric substr
on which the thin film is grown will displace slightly th
nodal plane of the electric field from its position in the emp
cavity. Therefore it becomes very unlikely to reach the ex
position of the thin film in the nodal plane of the electr
field.

An interesting question is how the signal amplitudes m
vary when microwave measurements are carried out on
thinner samples. In the magnetic case we must analyze
~57!,~58! in the limit d→0. SinceH im is independent ofd in
the slab geometry andVs}d, one finds by expanding th
expressions in the brackets that (D f p / f )sm}d and
D(1/2Qp)sm}d3. The signals decrease when thinner samp
are measured. This behavior was shown in Fig. 8. Practic
they become unobservable for thin films as pointed
above.

The situation is different in the electric case. It w
pointed out in the preceding section that the expansion
Eqs.~60!,~61! would yield a divergence of the signals in th
films. This would be unphysical and we have to reexam
the case. One has to recall that for the slab geometry in
electric case the depolarizing effect plays an important r
Therefore,H ie is not independent of the film thickness.
Eq. ~14! we need both the unperturbed and perturbed fie
For the unperturbed field one finds the boundary condition
Eq. ~36!. From Eq. ~15! we found Dp5D0 /Ne where the
depolarizing factor depends ond. Thus,H ie for the unper-
turbed field depends ond/Ne . For the perturbed fields in Eq
~14! one finds the boundary condition withD replacingDp in
Eq. ~36!. As we explained in Sec. II, whenNe is not ex-
tremely small one finds thatD'Dp . It ensues thatH ie given
by Eq. ~36! can be taken also as the boundary condition
the perturbed field. This was the case treated in the prece
section. It brings aboutH ie

2 in the filling factor in Eqs.~60!,
~61!. Now we may examine the case of extremely thin film
(d→0) so that the depolarizing factor becomes very sm
rs
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(Ne→0). The unperturbed fieldDp diverges whileH ie re-
mains finite. This is obvious from the inspection of Eqs.~35!,
~36! whereDp is the slope of the variation ofHp . The per-
turbed fieldD saturates forNe→0 ~see Sec. II! so that the
boundary magnetic field decreases linearly whend→0. As a
result the signal amplitudes do not diverge but saturate
some high value.

One can make a numerical analysis if the thin film sam
is approximated to an ellipsoid with principal axesLx ,Ly ,
andd. The electric field is along they axis as in Fig. 3. The
depolarizing factor is then given by an integral32

Ne5NLy
5

LxLyd

2 E
0

` ds

~s1Ly
2!A~s1Lx

2!~s1Ly
2!~s1d2!

,

~62!

which can be evaluated numerically. The signal amplitude

Se~d!}
d

Ne
F e rd

11~e r21!Ne
Gd•Fe~d!, ~63!

where only the dependence ond is pointed out. It includes in
order the unperturbed field, the perturbed field, the volume
the sample, and the functionFe(d) which stands for the
expression in the brackets of Eqs.~60!,~61!. We can choose
some typical size parameters for thin films which are used
microwave measurements. LetLx51 mm andLy53 mm.
The sample thickness is varied from 0.1 mm to the z
limit. The relative permittivitye r in Eq. ~63! is not the per-
mittivity of the nonperfect conducting sample treated he
but stands for the nonperfect dielectric with the same bou
ary value problem~see Sec. II!. We may replace it by
us̃u/e0v which gives the ratio of the induced current dens
in the conductor to the vacuum displacement current. A ty
cal value is 107 at microwave frequencies. Experimental
one observes a step in the absorption curve when the sa
is cooled from aboveTc to zero temperature. AtT50 the
absorption must vanish as can be seen from Eq.~61! in the
limit l2→0. Therefore, we need to analyze the signal le
in the normal state. We may choose a typical value of 5mm
for the microwave penetration depthdn just aboveTc . With
these parameters the dependence of the signal level on
sample thickness can be evaluated from Eq.~63!. The result
is shown in Fig. 10. One can observe that starting from th
samples (d.dn) the reduction of the sample thickness fir
brings about a minimum in the signal amplitude, while f
thin samples one finds a tremendous increase of the si
amplitude. At extremely small values ofd the signal ampli-
tude saturates. The dashed line in Fig. 10~a! shows the erro-
neous divergence which would appear if the perturbed fi
were not correctly treated in the limit ofd→0.

The shape of the frequency shift signal changes dram
cally from thick to thin samples. The frequency shift in th
normal state is reduced and a large negative peak app
belowTc . As a good measure of the overall signal amplitu
one can monitor the frequency shift at zero temperature@Fig.
10~b!#. Its behavior as a function ofd is found to be similar
as for the absorption signal level.
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VI. MICROWAVE EXPERIMENTS ON THIN FILMS

In order to provide experimental support to the theory
the preceding sections we have measured the absorption
frequency shift as a function of temperature in
YBa2Cu3O72d epitaxial thin film on NdGaO3 substrate. The
thickness of the sample was 120 nm which is much less t
the penetration depthdn(Tc)55 mm. A cylindrical TE111
cavity was used. We have introduced an asymmetry in
cavity so that the degeneracy of the modes was lifted.
periments were performed in two orthogonal modes w
well separated resonance frequencies. The thin film sam
could be mounted on a flat sapphire holder at various p
tions along the axis of the cavity. In the center of the cav
the longer side~3 mm! of the film was along the electric field
of mode I ~higher frequency mode! and the shorter side~1
mm! was along the cavity axis. In this configuration the ele
tric field of mode II~lower frequency mode! was perpendicu-
lar to the film plane. When the film was raised close to
top plate of the cavity the magnetic field of mode I w
perpendicular to the film plane while the magnetic field
mode II was along the longer side of the film.

We used a BRUKER microwave bridge operating at 9–
GHz. It has a built-in automatic frequency control~AFC!
unit which tracks the klystron frequency always in resona
with the cavity. Thus, the frequency shift can be measure

FIG. 10. The variation of~a! the absorption signal level atTc

and ~b! frequency shift at zero temperature with the sample thi
nessd. The calculation was based on Eq.~63!, and the parameter
explained in the text. The curves are labeled by the values

us̃u/e0v. If the perturbed field is not treated correctly, one obta
an erroneous divergence~dashed line!.
nd

n

e
x-
h
le
i-
,

-

e

f

0

e
as

the temperature of the sample is varied. Simultaneou
changes in the absorption were measured by detecting
microwave diode current.

Figure 11 shows the temperature dependence of abs
tion and frequency shift measured at various positions of
sample along the cavity axis for mode I. The absorption s
nals change significantly only in amplitude but not in sha
However, the form of the frequency signals changes dram
cally. Obviously the signals in the center of the cavity sho
the features due to the electric case as in Fig. 8. The sign
strong because the electric field is parallel to the longer s
of the sample so that the depolarization effect is large. As
sample is placed at a higher position in the cavity the sig
gradually loses electric and gains a magnetic compon
Note that the magnetic field in mode I is perpendicular to
film plane so that the film acts as a thick sample~with some
demagnetizing factor! and the shape of the magnetic signal
as shown in Fig. 7.

Measurements in mode II taken at the same positions
the sample in the cavity were also performed. The intent
was to examine also the signals in the configuration whic
opposite to the first, i.e., when the electric field is perpe
dicular to the film and the magnetic one is in the film plan
The measurements did not yield detectable signals. This
agreement with the expectations based on the theory in
preceding sections. Namely, when the microwave elec
field is perpendicular to the film the fieldDp in the sample is
not much larger than the empty cavity fieldD0. Therefore,

-

of

s

FIG. 11. Experimental signals of the temperature-dependent
crowave absorption~a! and frequency shift~b! at various positions
of the thin film in the cavity operating in mode I~see the text!.
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the induced magnetic field is so small that the signals t
out to be unobservable. Similarly, when the magnetic field
parallel to the film plane and the thickness of the film
much smaller than the penetration depth the shielding cur
is negligible and the signal is unobservably small.

It is also possible to orientate the sample in such a w
that both the electric and magnetic fields are always in
film plane. This is achieved upon rotation of the film by 9
around the longer side~3 mm!. The electric field in mode I
coincides with this axis so that the electric contribution to
signal remains unchanged. On the contrary, the magn
field in mode I lies in the film plane and yields no detecta
signal. Consequently one observes only the electric sig
which becomes weaker when the sample is raised from
center to the top plate of the cavity. When mode II is turn
on for the same sample orientation the electric field is alo
the shorter side~1 mm! of the film. The observed signal ha
the same features as in mode I but the amplitude of the si
is stronger reduced due to the lower depolarization eff
The magnetic field in mode II is again in the film plane a
yields no detectable signal. To summarize, when both fie
are in the film plane one observes only the electric sign
Close to the magnetic field maximum the signal is reduc
but its shape still reveals the electric signal. We have a
observed that thinner films yielded stronger signals.13

VII. RELATION TO AC SUSCEPTIBILITY

We have pointed out in this paper that microwave cav
perturbation measurement yields the average relative pe

ability mD r511xD m of the sample when the driving field is th
microwave magnetic field. Alternatively and much more fr

quently, ac susceptibilityxD m is measured at low frequencie
(10 – 105 Hz! using the induction coil method. It may be o
interest to clarify the relationship between the two tec
niques.

In the previous sections we have described the temp
ture dependences of (D f p / f )m andD(1/2Qp)m for a super-
conductor in the absence of a dc external magnetic field
ac susceptibility measurements the sample is placed in
magnetic fieldHdc and a small ac fieldHacexp(ivt) is super-
imposed. Microwave measurements can also be made
the sample exposed to a dc fieldHdc .21,36–39The two tech-
niques can, under these circumstances, be treated from
unique viewpoint, the only difference being the frequen
scale.

We shall consider the cases when the applied dc fiel
much larger than the lower critical field,Bdc@Bc1

, so that

the internal flux density in the mixed state isBdc'm0Hdc .
We also assume that it is practically constant throughout
sample as in a field cooled experiment. When the driving
field is superimposed parallel to the dc field the induc
current is perpendicular to the vortices, so that the Lore
force exerts oscillations of the vortices around their equi
rium positions. In this case the induced current is carried
a combined motion of both superconducting and norm
electrons, and the effective complex conductivity is giv
by19,20
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s̃ eff

5
12b~v/v f !

~12b!~s12 is2!1bsn
1

b

sn
S v
v f

D , ~64!

where b(T)5Bdc /Bc2
(T) is the reduced field,s1(T)

2 is2(T) is the complex conductivity of the Meissner stat
andsn(T) is the normal state conductivity in the vortex cor
The ratio of the actual vortex velocityv to the maximum
velocity v f in the flux flow regime is the mobility factor
which results from complicated flux dynamic
processes.39–44Since the study of the flux dynamics is not
the focus of the present paper we consider just the sim
flux flow limit v/v f51. Our aim is to show that the steplik
absorption curves at microwave frequencies gradu
change shape into the familiar ac-susceptibility curves wit
peak belowTc only due to their different frequencies.

The phenomenology of current and field penetration
scribed in the previous sections can be adapted to the pre
case straightforwardly. The effective complex conductiv
s̃ eff5seff8 2 iseff9 replacess̃5s12 is2 in the calculation of

l1 and l2 in Eq. ~55!, and the complex permeabilitymD r
follows from Eqs.~56!–~58!. However, the complexity of
s̃eff in Eq. ~64! brings about new features which have to
discussed.

At the superconducting transition the reduced field isb
51 so that the effective conductivity in Eq.~64! equalssn
as expected. At lower temperaturesb is reduced from unity
towards the zero temperature valueb(0)5Bdc /Bc2

(0).

From Eq. ~64! one can see that just belowTc , s̃eff must
become complex. However,s2 grows belowTc , and when
the conditions2@s1, sn /b is attained, the first term in Eq
~64! becomes approximately equal toi /s2 and is smaller
than the second term. The effective conductivity is then pr
tically real, even though the sample is in the superconduc
state. Namely, the response of the superconductor in
mixed state to the ac field consists predominantly in the v
cous vortex motion so that the conductivity is real. T
above condition is frequency dependent since (1/s2)
5m0vlL

2 . For the samelL at a given temperatureT,Tc ,
s2 can have orders of magnitude different values. At lo
frequencies, as commonly used in the measurements o
susceptibility,s2 is very large and the first term in Eq.~64!
is negligible with respect to the second. Hence, the effec
conductivity is practically real above and belowTc . There
is, however, a change in its temperature dependence. Ab
Tc the temperature dependence is that ofsn(T), while below
Tc one has a realseff'snBc2

/Bdc which increases much

faster thansn(T) due to the temperature dependence
Bc2

(T). Hence, the resulting penetration depth may rapi
decrease below the size of the sample and one observ
peak in the absorption curve as predicted from Eq.~34!. This
crossover from an electromagnetically thin to thick sample
field and frequency dependent because of the field and
quency dependency ofseff . At microwave frequencies this
peak belowTc is not observed becauses2 is orders of mag-
nitude smaller, so that the first term in Eq.~64! does not
become negligible immediately belowTc , i.e., s̃eff remains
complex. Figure 12 shows a set of curves for the same
temperature reduced fieldb(0)51024, but for several
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different frequencies. For the microwave frequency
choose@s2(0)/sn(Tc)#525 as in Sec. IV, and for lowe
frequencies we take the values which grow inversely w
frequency. One can observe that when the frequency is l
ered the steplike absorption curve at high frequencies gra
ally changes shape into a curve with a peak at lower frequ
cies. The detailed shape of the absorption curve observe
an ac susceptibility measurement reflects the actual flux
namics in the sample.40–44

VIII. CONCLUSIONS

We have analyzed the cavity perturbation due to a c
ducting sample. It was shown that the conventional pict
of the empty cavity as the unperturbed state was not s
factory. An unperturbed state consisting of the cavity an
perfect conductor sample was introduced. Differences in
signal response between the positions of maximum magn
and maximum electric field were clarified. Different trea
ments of the magnetic and dielectric properties of the sam
were presented in order to avoid possible confusion w
applying different perturbation equations. Also, the bound
conditions for the fields in the sample were analyzed and
particular their eventual changes with the conductivity of
sample. Explicit expressions are derived for the sample
the slab geometry for both magnetic and electric field po
tions. When the thicknessd of the sample is much large
than the normal state penetration depthdn the losses and
frequency shifts in both sample positions vary linearly w
dn . Dramatic differences are found for thin films in whic
d!d. The losses due to the imposed magnetic microw
field are significantly reduced and follow the la
D(1/2Q)nm;dn

22 . On the contrary, at the electric field po
sition one findsD(1/2Q)ne;dn

2 . The former becomes ex
perimentally undetectable. This holds also in thin superc
ducting films. It is shown that the best choice for measur
the losses in thin film samples is the position of maximu
electric field in the cavity. The frequency shift in that pos
tion shows a remarkable peak just belowTc . We have dem-
onstrated these predictions by microwave measurement
an YBa2Cu3O72d thin film at various positions in the cavit

FIG. 12. The real and imaginary parts of the complex perm

ability mD r calculated from Eqs.~57!,~58! with seff from Eq. ~64!.
We takeb(0)51024 andd50.3dn(Tc). The frequencyv is a typi-
cal microwave frequency. The labels indicate lower frequencie
e
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from the electric field maximum to the magnetic field max
mum. A relation of microwave measurements to ac susc
tibility measurements was also discussed.
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APPENDIX: PERTURBATION APPROACH

Let us assume a cavity with a perfect conductor plac
inside and consider the fields of a mode formed in the v
ume V between the cavity walls and the sample~Fig. 13!.
The Maxwell equations in this case can be expressed a¹

3Ep52 i ṽpBp and ¹3Hp5 i ṽpDp where the time depen
dence of the fields is exp(iṽpt). The complex frequency is
ṽp5vp(11 i /2Qp) wherevp is the real frequency andQp is
the Q factor determined by the losses in the cavity wal
One can use the operator algebra and Maxwell equation
prove that

E
V
@¹•~Ep* 3Hp!1¹•~Ep3Hp* !#d3r

52 i ~ṽp2ṽp* !E
V
~e0Ep•Ep* 1m0Hp•Hp* !d3r .

~A1!

The volume integral on the left hand side can be tra
formed into the integral over the surface enclosing the v
umeV

E
V
@¹•~Ep* 3Hp!1¹•~Ep3Hp* !#d3r

5 R
Sc

@Ep* 3Hp1Ep3Hp* #•ncdsc

1 R
S
@Ep* 3Hp1Ep3Hp* # ~A2!

-

FIG. 13. Cavity with sample inside it.Sc andS are the surfaces
of the cavity walls and sample, respectively.nc and n are unit
vectors which point out of the enclosed volumeV.
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whereSc andS are the surfaces of the cavity walls and t
sample, respectively. The second surface integral vani
becauseEp is normal to the surface of a perfect conduct
Thus, Eq.~A1! can be written in the form

R
Sc

@Ep* 3Hp1Ep3Hp* #•ncdsc5
vp

Qp
Wcp , ~A3!

where we have usedWcp to denote the energy of the fields
the cavity with the perfect conductor sample.

The perturbation consists in making the sample a non
fect conductor. The Maxwell equations for the new fields
¹3E52 i ṽB and ¹3H5 i ṽD where ṽ5v(11 i /2Q) is
the shifted complex frequency. We can consider a volu
integral containing products of unperturbed and pertur
fields and find

E
V
@¹•~Ep* 3H!1¹•~E3Hp* !#d3r

52 i ~ṽ2ṽp* !E
V
~e0E•Ep* 1m0H•Hp* !d3r . ~A4!

When the divergence theorem is used one obtains

E
V
@¹•~Ep* 3H!1¹•~E3Hp* !#d3r

5 R
Sc

@Ep* 3H1E3Hp* #•ncdsc

1 R
S
@Ep* 3H1E3Hp* #•nds. ~A5!
,

,

o

es
.

r-
e

e
d

When the sample becomes a nonperfect but still a good c
ductor the fields are slightly changed at the sample surf
and in its vicinity, but not at the cavity walls which ar
assumed to be relatively far away. Under these conditi
one can replace the fieldsE andH in the integral overSc in
Eq. ~A5! by Ep andHp , respectively. This integral then be
comes equal to Eq.~A3!. In the integral over the sampl
surfaceS in Eq. ~A5! only the second term remains. It is du
to the fact that the perturbed fieldE is not strictly perpen-
dicular to the sample surface but has a small tangential c
ponent. Turning now the attention to the volume integral
the right-hand side of Eq.~A4! one can say that close to th
sample the perturbed fields differ from the unperturbed o
by small perpendicular components, while the parallel co
ponents are only slightly changed. Farther from the sam
even these differences vanish. Hence, one can replaceE and
H by Ep and Hp , respectively, and the integral becom
Wcp . With the above approximations one can write Eq.~A4!
in the form

vp

Qp
Wcp1 R

S
~E3Hp* !•nds52 i ~ṽ2ṽp* !Wcp . ~A6!

It leads to the final form for the complex frequency sh

Dṽp

v
5

~ṽ2ṽp!

v
5

i

vWcp
R

S
~E3Hp* !•nds. ~A7!
h,

k,

.

.
s-

.
.
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