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Cavity perturbation by superconducting films in microwave magnetic and electric fields
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Cavity perturbation by superconducting films is treated in an unified way for the sample positions in both
magnetic and electric microwave fields. The role of demagnetizing and depolarizing effects in the boundary
conditions of the fields is analyzed. The general solutions for the complex frequency shift are specified for the
samples having slab geometry and the field being parallel to the plane of the sample. For electromagnetically
thick samples, the shifts for samples placed in the magnetic and electric fields are found to have the same
magnitude and temperature dependence, while for thin films dramatic differences are obtained. The magnitude
of the shift is reduced in the magnetic and increased by orders of magnitude in the electric field. A remarkable
feature in the temperature dependence of the real frequency shift in the electric field is obtained. Experiments
are performed on an YB&u;O,_ 5 thin film, and all the predictions of the theory are confirmed. It is also
shown that microwave cavity perturbation and ac susceptibility measurements in a dc magnetic field can be
covered by the same theory. Their profoundly different temperature dependence can be accounted for by their
different frequencied.S0163-182108)05741-5

[. INTRODUCTION (typically thin films). For a sample which is much thicker
than the microwave penetration depth, a simple relation
Microwave and millimeter-wave measurements on thinholds between the complex conductivity and the complex
films of high-T,, superconductors were carried out by a num-surface impedance
ber of research grougs*8using different experimental tech-
nigues involving resonant structures. From the technological zs: \ /i '“0_‘” —R.+iXs, 1)
point of view it is important to determine the losses of a o110
fabricated thin film and compare it with those of copper. Theyhich is called intrinsic because it depends only on the ma-
potential applications would includg resonators, filt_ers, de""‘Xerial property and not on the sample dimensions. Experi-
lines, couplers, and antenna matching networks with benefitg,onts hased on resonant cavities or other resonant structures
of improved performance, reduced size, and weight in, €.9ysually yield changes of th® factor and frequency shift,

satellite communication receivers. On the more fundament%hich can be related to the values of the reé@J)(and imagi-

scientific side it is interesting to reveal the temperature—nary (X.) part of Z, wherefroma, and o, are readily de-
dependence of the complex conductivity, which governs thegy ,ceqd. s S

response of the superconductor to the microwave field. For a However, for samples whose thickness is comparable or
superconductor in the Me~issner state the temperature depefyen smaller than the microwave penetration depth, the mea-
dent complex conductivityr= o, — i, is due to the quasi- suredQ factor and frequency shift do not yield directly the
particles and condensed superconducting pairs. In the mix&gtrinsic values oRs andXs. Formally, one can still denote
state one also has to take into account the contribution ahe measured quantities &and X, but these depend in a
vortex oscillations resulting in an effective complex nontrivial way on the intrinsicRs and X and the sample
conductivity;**’which is both temperature and field depen- thickness. The usual thickness of high-thin films ranges
dent. The latter can be used to determine the upper criticdtom 100-500 nm. Given the resistivity of these supercon-
fielel orto Study pinning effeCt%z. In what follows we shall ductors abo\/eTC (about 05 MQ m), the microwavdlo_
for simplicity restrict ourselves first to the notation clf the 100 GH2 penetration depth exceeds the film thickness in the
Meissner state giving examples of temperature-depengent normal state and just beloWw,. Hence, the sample is elec-
In later sections we point out that the theory is valid also fortromagnetically thin in this range of temperatures. Upon
the more complicated effective conductivity of the mixed cooling the penetration depth may be reduced below the
state. sample thickness and the sample becomes electromagneti-
There is an important difference between measurementsally thick at very low temperatures. This transition entails
of thick samples(usually single crystajsand thin samples complications in the determination of, and o».
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Several experimental arrangements for the microwave
measurements of thin films have been described in the litera-
ture. One of them consists in replacing the end wall of the
microwave cavity by a thin film samplé=’ Near T, and
above where the penetration depth is larger than the film
thickness, there is a considerable leakage of the microwave
power from the cavity through the thin film. Impedance
transformation theory was used to find the effective imped-

anceZq; on the inner side of the thin film. It includes the

intrinsic impedances and phase shifts in the superconducting >

thin film, in the dielectric substrate, and in the vacuum be-

hind it.*® In order to extract the intrinsi®s and X of the / ﬁf—l’

superconducting thin film from the measurg; and X, it - (b)

is necessary to have a very precise knowledge of the electric /7

permittivity of the substrate including its temperature depe- /

dence. Even then one obtains a complicated set of equations é J X

for arbitrary oy and o», which can be simplified in the limit /

of o,> 04, i.e., only at low temperaturésA complete evalu- / z

ation of the temperature dependencevoincluding the be- = y

havior at the superconducting transition becomes quite un- o . o
certain for thin films in this experimental arrangement. FIG. 1. (a) TEq, cavity with the sample in the magnetic field

Radiation losses can be minimized in stripline resonator§@imum. (b) The induced current in the sample forms a loop
with two ground plane& Still, for the penetration depth com- 9VVing rise to a magnetic dipole moment.

parable or larger than the film thickness, some geometrical . . .
L~ and causing a weak perturbation the complex frequency shift
factors must be evaluated, and the determinatioru ot

: _ can be expressedds?’
higher temperatures is less accurate. The use of a paralle]a P

plate resonator is also convenient only at low temperattires.
Intracavity arrangements where the sample is placed in- ~ ~ f (P-Eg+M-Bg)d’r
side a resonant cavity are particularly attractive because no w—~w0 __ Vs , 2)
energy is radiated through the sample out of the cavity. Two o) f (Do- EX + Hy-BX ) d
choices can be made for the intracavity position of the ve oo ronRo

sample. The first is that the sample is at the position of the -

magnetic field maximu{~—*2 while the other choice is the Wherewy is the complex frequency of the empty cavity and

electric field maximunt®** The problem is reduced to the w=w,+Aw, is the perturbed complex frequends, andV,

cavity perturbation by the superconducting thin film. are the volumes of the sample and cavity, respectively.
In the present paper we analyze the perturbation condig,, D,, H,, andB, are the fields of a mode in the empty

tions for the two intracavity positions and point out the dif- cavity. P andM are the polarization and magnetization, re-

ferences which were not considered before. We start fromgpectively, induced in the sample. If ti@ factor is much

the conventional perturbation theory for paramagnetic andarger than unity, the complex frequency shift can be sepa-

dielectric samples and show how it can be modified to allowrated in real and imaginary parts as

the treatment of metallic samples. For the sake of complete-

ness we present the resulting perturbation expressions with Awg Awy, Afy 1

the induced current in the sample treated as both a bound T~T=T+| (f) ()]

current and a free one. Analytical solutions are found for the @ 0

slab geometry of the sample with profoundly different be-where f,= wq/27 and Q, are the frequency an@ factor,

havior in magnetic and electric fields. In order to providerespectively, of the empty cavity.

experimental support to the theory we present results on a The essential assumption for the validity of EB). is that

thin superconducting film of YB&£u;0;.; placed succes- the insertion of the sample into the cavity produces only a

sively at various positions from the magnetic to the electricsmall difference in the overall geometrical configuration of

field maximum. All the features predicted by the theory havethe fields?* This condition is readily met for dielectric and

been confirmed. paramagnetic samples. However, for highly conductive
We also show that microwave and ac susceptibility measamples one has to reconsider the perturbation conditions.

surements can be treated from a single point of view. The

differences in the experimental signals are found to be due to A. Sample in magnetic field maximum

their different frequencies. ) . .
Let us first consider the case of a conducting sample

placed at the location of the magnetic field maximum in the
cavity. To illustrate this case we show in Figala TE,
cavity with the conducting sample in the center. The field
Cavity perturbation was first considered by Bethe anddistribution was calculated numerically using the commer-
Schwinger®® For a small sample placed in a resonant cavitycially available progranmaria.?® The magnetic field around

II. CAVITY PERTURBATION CONDITIONS
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empty cavity. Only inside the sample the field is drasucaIIyEq_ (6) by the intrinsicy,, due to spins. Thus, EG6) shows

reduced due to the induced surface current. The current hgg~,'c paramagnetic samples cavity perturbation measure-

tmh:gf:é?(; ?Ifui Ig?gg;;?' t%eb)r]és"’:)r;dn:s t?tiéseﬁeigslistgiﬁatmems yield the same kind of information as ac susceptibility
ing magnetic field is the induction of a magnetic dipole. measurements; only the frequency is typically higher in cav-

The complex frequency shift for the magnetic case ity measurements. For a conducting samp}g, is not of
given by the second term in E€). In the case of a para- Primary interest since it is not intrinsic. The interesting quan-
magnetic sample with a homogeneous distribution of spindty iS the conductivity, and we have yet to show how it can
one can simply relate the magnetization to the external field€ obtained from the cavity perturbation measurement. This

~ ~ _— ., . task will be postponed to later sections.
thr(.)ug.hl\/ll = XmHo, Wherexy, is the. susceptibility which is At this ch))int \F/)ve have to reexamine the validity of the
an intrinsic parameter of the material and does not depend o ak perturbation assumption when a highly conducting
the sample dimensions. We assume that the sample is sm o . . : g
50 that the cavity modBlo(r) does not vary much over the g mple is inserted in an empty cavity. To this end it is useful

sample volume, and we can take it as a uniform imposeé‘j express the shift given by E€) in an equivalent form

field Ho_throughout the sample. The magnetizathris then seltrrt]et(;Ni?l (t?r?gtiré?:g?aﬁ.n IfE'\gBI)S éikee(r)]bftrz:\)irr?s Eq(4) and in-
also uniform. For the moment we neglect the eventual de-
magnetizing effects. The problem is how to treat a conductor -

which is free of spin magnetization. It can still be considered Awo) Ho'BgVs 1 " f B(rd® .
as a magnetic material in ac magnetic fields if the induced m_ W, 0 Vs (Nd-r. (@)

We We
shielding current is interpreted as the equivalent of a bound

magnetization current. In this case, however, the flux densityt the sample is a perfect conductor there is no penetration of
B in the sample is not uniform due to the skin effect, and weyne a¢ magnetic flux into the sample, so tBat0 in Eq.(7).

must obey This means that the first term in E€f) gives the complex
frequency shift relative to the empty cavity caused by intro-
B(r)=uo[Ho+M(r)], (4)  ducing a sample which is a perfect conductor. Note that a

ie.. the magnetization must also be space dependent. Tt‘ﬁserfeCt conductor yields a full diamagnetic response in an ac

magnetization is due to the induced macroscopic currenflagnetic field, i.e.ym=—1, so that Eq(6) becomes equal
which itself decays from the surface into the bulk. If we still {0 the first term in Eq(7). The second term in Ed7) can

relate formally this magnetization to the uniform imposedthen be interpreted as the complex frequency shift caused by
field Hy in the sample, we can formally write a normal conductor sample relative to the cavity with a per-

fect conductor sample of the same size. This can be rational-
ized if we imagine that a perfect conductor acquires some
finite conductivity, so that the field partially penetrates into

wherey(r) is introduced as an effective magnetic suscep-the sample and the total shift relative to the empty cavity is

tibility of the conducting sample in an ac magnetic field. It reduced. This second shift term is

turns out that the conducting sample in an ac magnetic field .
appears as an inhomogeneous magnetic material. The inho- iH* f B(P) 4% = Ho-Bo Vs
mogeneity depends on the skin depth which may vary with w, © ' A (1) dr = s, w,
temperature. Under these conditions the second integral in

Eq. (2) can be formally applied to a conducting sample. Itwhere we introduced the space averaged complex relative

yields the complex frequency shift due to the ac magrmticpermeabilityﬁr of the conducting sample in an ac magnetic

w

M(r)=Xm(r)Ho, (5)

®

field . . = =
field. Obviously, we haveu,=1+ y,,. Note that the total
AL 1 shift in Eq. (6) is a measure of the induced current in the
(ﬂ) =— B [y M(r) d3r sample and therefore yields the averaged magnetization or
@ We S }}m. In contrast, the shift in Eq8) is a measure of magnetic
- Ho-BEV, - W flux penetration into the sampl_e and, hence, yiald_s
= TXm T T Xmipy (6) In the case of paramagnetic samples the fldh the
C Cc

sample is only slightly different fronB,, so that Eq.(7)
yields a small difference of two large terms. In such a case
= . .. the decomposition in Eq7) is useless, and E¢p) can better

Xm as the space averaged complex magnetic susceptibility Qfepict the small perturbation of the empty cavity. On the
t:he conducting sample in an ac magnetic field. ObV'°U5|ycontrary, in conducting samples the fieldis significantly

Xm iS not an intrinsic property of the material since it de- reduced with respect B, due to the induced shielding cur-
pends not only on the conductivity but also on the samplaent. Therefore, the second term in H@) becomes much
dimensions. In Eq(6), Vs is the sample volume an®/s  smaller than the first, and the total frequency shift is large.
=H,- B} Vs is the energy of the cavity fields which would be This implies also that the introduction of a conducting
contained inVy if the sample were not there. The ratio sample cannot be treated as a small perturbation on the
W, /W, is the filling factor. empty cavity.

whereW, is the denominator in Eq2). We have introduced
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In order to restore the condition of weak perturbation, we IITITIILLLITITIIL
propose to change the conventional approach in the pertur- F7se=~yhid
bation treatment so that, instead of the empty cavity, we AAe i flf
consider the cavity with a perfect conductor sample inside as Al o
the unperturbed system with the complex frequeagy Let NSO
us denote the new unperturbed field bly(r). This field L, (@)
must be tangential at the surface of the perfect conductor
sample. Obviously, it is not homogeneous for a general
shape of the sample and one could not take it out of the
integral as we did wittH, in Eq. (8).

With the above considerations we obtain the complex fre-

quency shiftAw,=w—w, caused by a normal conductor
relative to a perfect conductor sample in the cavity

i
AR
rry
7y
'

4

B, (arb. units)

ﬁ) R : p \
(w m— VchfvsHp(r)B(r)d r, 9 - -

whereW,, is the energy calculated with the new unperturbed z (mm)
fields. S S
It is important to note that Eq9) has been deducedusing = @45 | T~ 1"
the concept usually applied to magnetic materials, i.e., the
materials which develop magnetization in an external field as
in Eg. (4). This means that the current induced in the con-
ducting sample is treated as a bound current and not as a free
current. Therefore, the fields used in HE§) must be the
solution of the Maxwell equations in such a medium. In the
calculations ofH(r) inside the sample we can take for the 0l T T T T
boundary conditions the value bff,(rs) on the surface since 50 25 0 25 50
it can be considered as an imposed field. If the penetration of y (mm) ©
B(r) into .t_he nonperfect conduct.or sample IS S”.‘a” we have FIG. 2. (a) A cut in thexz plane through the center of the cavity
the conqun of small perturbation, which |mpI|es_ thgt for and sample as presented in Figa)1 The lines of the magnetic field
the tangential component of the perturbed magnet_lc field wg,e shown.(b) The profile of the magnetic field componeBy,
setHy(rs)~Hp(rs) on the sample surface, and this servesy|ong thez axis through the center of the cavity and samfitgThe
also as the boundary condition for the calculatiorBef) in  profile of the magnetic field componeBy, along they axis through
the sample. If, however, the penetration Bfr) into the  the center of the cavity and sample. The dashed lingb)iand (c)
nonperfect conductor sample becomes significant, the peshow the empty cavity fields, while the solid lines are for the per-
turbed field H(r) approaches the empty cavity field,.  fect conductor sample in place.
Hence, for samples in whicHy(r) is much larger thai, ) .
the boundary conditions for the calculation B{r) will ~ c¢an be used for the calculationB{r). For the sample which
change appreciably with the penetration. The calculation ofS Very thin in the direction of the external field, one may
B(r) inside the sample could also be done numerically fronf'@v€Nm~1, S0 thafuNmn>(1—Ny) andH~Hg/u, which
a self-consistent integrodifferential equation which includedS smaller thanH, for the same sample shape. When the
the demagnetizing effects in ac magnetic fiéfs. penetration oB(r) into the sample bgcomes large, we have
In the special case of ellipsoidal samples with one of thd® Setu,~1 and obtairH~H,. Thus, in general, the bound-
axes along the applied field,, one obtains a homogeneous a7y conditions for the calculation d&(r) may change with

N
&)l
!

—
o
!

B, (arb. units)

o
o

H inside a lossless magnetic sanfple the perturbation, which in its turn changes with the conduc-
tivity. Only for samples elongated in the direction of the

Ho magnetic field N,,~0), one hasH~H, regardless of the

H= m (10 penetration oB(r). For illustration Fig. 2a) shows the mag-

netic field in thexz-plane through the center of the cavity
where u, is the relative permeability of the magnetic mate- and sample, while in Figs.(8) and 4c) we show the profiles
rial and Ny,<1 is the demagnetizing factd?. As stated of B, along thez axis andy axis through the center of the
above, a perfect conductor sample in an ac magnetic fieldavity with and without the perfect conductor sample. The
can be considered as a perfect diamagnpegt<0). Hence, profiles were obtained numerically by the commercial pro-
one obtainsH,=Hq/(1—N). This homogeneous field can gram marFiA.?® The empty cavity fieldB, is shown by a
be taken out of the integral in Eq9). For a nonperfect dashed line. In the case of a perfect conductor the profile
conductor there is a penetration B{r) into the sample so showsB=0 inside the sample and an increagdr) at the
that it acts as a nonperfect diamagnet. In the case of a smalhmple surface. This field takes the role of the new unper-
penetration ofB(r) into the sample we may set for the turbed state.
equivalent diamagnet.,<1. If u,N,<(1—N,,), one ob- The above redefined perturbation approach is more suit-
tains from Eq.(10) the fieldH~Hy/(1—N,)=H,, which  able to describe real experiments in which a conducting
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tivity. Namely, as long a$o|> eqw the sample effectively
retains its role as a partial short cut for the electric field lines
between the cavity walls, and the change of the charge den-
sity on the rear and front sides of the sample is negligible.

The complex frequency shift with respect to the empty
cavity is given by Eq(2) in which E, stands for the empty
cavity field. The perturbation can be considered to be weak if
the electric field on the sample surface is not much different
from Ey. With weak dielectric samples this requirement is
well satisfied and Eq2) yields accurately the small complex
frequency shift with respect to the empty cavity. For con-
ducting samples the approximation is very poor and the shift
given by Eq.(2) with Ey is incorrect. Nevertheless, we con-
tinue for the moment with Eq2).

The polarizationP is due to microscopic dipoles in the
case of dielectrics and related to the internal fiEldby P
=Ye€oE, Where'y, is the complex electric susceptibility.
When this relation is used for the complex frequency shift
given by Eq.(2), one obtains

FIG. 3. (8 TEyg, cavity with the sample in the electric field ~ *
maximum.(b) The induced current in the sample forms an electric Awg __ iE* JyP(r) d3r=—75 D0<E(r))rVS
dipole. w |, W, © Vg Xe—WC )

11

sample of a given size is placed in the cavity and the tem-
perature is varied. The measured frequency shifts are relativghere(E(r)), is the average electric field in the sample. In
and could be given a constant offset so that data points exhe case of weak dielectrics there is an almost complete field
trapolate to zero when the conductivity increases toward@enetration so thaE(r)),~Eo, and the complex frequency
infinity. shift yields the intrinsic susceptibility, multiplied by a con-

Finally, one may comment on the complex frequencystant factor(filling factor W,/W,) which can be determined
shift from yet another viewpoint. The ac fieB{r) stored in by a calibration experiment.
the sample will have a phase shift with respedtiigr). The The problem is how to adapt the above perturbation treat-
integral of the in-phase component in EA) yields the field ment to conducting samples. We may start by considering a
energy stored in the sample and, hence, the real frequencglatively strong dielectric sample. It is expected to cause a
shift (Af,/f),. The out-of-phase component is due to dis-large frequency shift with respect to the empty cavity, so that
sipation, and its integral yield&(1/2Qp) . it may appear useful to follow the analogy with the magnetic

case and rewrite Eq11) by decomposing this shift into two

Usi _ f .
B. Sample in electric field maximum parts. UsingD(r) = eoE(r) +P(r) one obtains

field maximum is more complicated. In Fig(a3 we show
the conducting sample at the position where the electric field
is maximum in the empty Tfg, cavity. The electric field was
calculated bymAFIA. The electric field near the conducting Where we have usedD(r)),=D,, i.e., we ignore for the
sample is profoundly changed with respect to the empty cavmoment a possible depolarizing effect. If the fi&lr) in

ity field at this position. The sample acts as a partial short cuthe dielectric is considerably reduced with respect to the field
for the electric field lines between the two walls of the cav-Egy, one can neglect the second term in EtR). However,

ity. The charges are accumulated on the rear and front sideme should be cautious about extending this picture to the
of the sample by the surface current which flows like in anlimit of a perfect dielectric. Namely, wheg, increases the
oscillating electric dipole antenn&ig. 3(b)]. In the case of a wavelength in the dielectric may become smaller than the
perfect conductor, the accumulated charges compensasample size and internal modes are developing. In order to
completely the cavity field inside the sample. The outsidemake an equivalent to a conducting sample one has to pre-
field is strictly perpendicular to the surface of the perfectserve the boundary value problem with equivalent surface
conductor sample. It is stronger at the rear and front sides afharges. The wavelength of the fields in the equivalent di-
the sample in Fig. 3 and decreases on the lateral sides. &lectric sample must be finite and match the fields outside
some surface line it vanishes as the surface charges chante sample. This is achieved if the material acquires a rela-
sign. If the sample is a nonperfect conductor one finds dive permittivity e, which increases to infinity and also a
nonvanishing tangential ac electric field at the lateral sides ofelative permeabilityw, which decreases to zero. Thus, a
the sample. Its strength changes with the conductivity of theerfect dielectric must in this case also be a perfect diamag-
sample. In contrast, the electric field at the rear and fronbet; both conditions are satisfied by the perfect conductor.
sides of the sample practically does not change with conducFhe second term in Eq12) then vanishes and the first term

The case of placing a conducting sample in the electric (

w

A}LO) EX-DoVs 1
- +—D*-f E(r)d®, (12
. WC WC 0 VS ( ) ( )
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can be interpreted as a large shift which occurs when a peposed by the magnetic field in the cavity, modified eventu-
fect conductor is inserted into the cavity. ally by the demagnetizing effect as described above. For the
With the same argument as in the magnetic case we argample in the electric field maximum the figtid(r) changes
led to choose that the unperturbed system consists of thiaroughout the sample having a node in the center of the
cavity with a perfect conductor sample placed inside. Thesample. This field is not imposed by the magnetic field in the
shift caused by a normal conductor relative to the new uneavity and does not depend on the demagnetizing effect. It is
perturbed state with complex frequeneoy may be based on induced through the oscillatinB,(r) in the sample and de-
the second term in Eq12) which becomes pends on eventual depolarizing effects. When the sample be-
comes a nonperfect conductor the fidl{r) inside the
Aw 1 sample is not much changed with respecDigr) as long as
—P| == fy Dy (n)-E(n) d°r, 13 |5 - |
© W, Vs~P |o|>eqw, i.e., as long as the sample acts as an effective
€ short cut for the electric field lines and retains practically the
where we have replace, of the empty cavity withD(r). same accumulation of the charges on the surface. It follows
It results from Dy and the internal polarization which is from this consideration that the induced magnetic fig(a)
equivalent to the charges built on the surface of the perfeds practically unchanged with respecthig(r), regardless of
conductor sample. the penetration oB(r) into the sample. Thus, we find that
Equation(13) was obtained in analogy with E(9) in the  for the sample in the electric field maximum the fi&g(rs)
magnetic case. However, one can show that there is a miser H,(rs) on the surface of the sample serves as the bound-
ing term in Eq.(13) which in some cases may become veryary condition for the calculation d&(r) andB(r). The ex-
important. Already in the above qualitative reasoning we hadeption to this rule is the case of a very strong depolarizing
to include a relative permeability of the sample. One mayeffect which will be discussed below. The calculation of the
expect that this should entail also a magnetic contribution tdields can be done by a self-consistent method using an inte-
the shift. Quite generally, the presence of a time-dependengrodifferential equation in analogy to the magnetic cdse.
Dy(r) in the sample involves also a space variation of the For a general shape of a conducting sample the accumu-
induced magnetic field due to the Maxwell equati®h lated charges on the surface will have a distribution for
pr(r)ziZopr(r). If the sample is flat perpendicular to Which the equivalent dielectric should be inhomogeneous,
the electric field direction the depolarizing effect is small,i.e., its relative permittivity should be space depends(t).
and one findD,(r)~D,. Hence, the space variation of the Ellipsoidal samples are special cases in which the distribu-
field Hp(r) is practically the same as that bfy(r) in the tion of charges is such that the fields in the equivalent dielec-
empty cavity. When the sample is at the position of the electric are uniform and one can ugg as a constant quantity.
tric field maximum and the sample dimensions are assumed For ellipsoidal samples in the electric field one finds a
to be much smaller than the wavelength in vacuum, the magiomogeneous fiel® inside a lossless dielectric samfie
netic field in the sample is negligible. In this case we can
neglect any magnetic field contribution to the complex fre- D= & D (15)
guency shift, and the expression given in Et3) is suffi- 1+(e—1)Ng O
cient. However, when the sample is elongated in the direc\—Nh ree. is the relativ rmittivity of the dielectric material
tion of the electric field the depolarizing effect is large, and c eif S the relative pert y ot the dielectric materia
D,(r) in the sample becomes much larger tanso that the andN <1 |s_thg depolarlzmg_ factor. A perfect condL!ctor in
o an ac electric field acts equivalently to a perfect dielectric
space variation oH(r) over the sample volume becomes

large. When the sample becomes a nonperfect conduct(gref_m)' Hence, we haV@P:.I.DO./Ne' Obviously, this does .
there will be a nonvanishing(r) inside which means that not mean that the real permittivity of the perfect conductor is

. " : e infinite but only that the perfect conductor represents the
even in the position of the maximum electric field one has to ; .
. . oo same boundary value problem as the perfect dielectric. A
include the magnetic contribution to the complex frequency : d i valentl
shift. The general expression is nonperfect conductor still acts equivalently to a very strong
dielectric (¢,>1). Again, we imply the equivalent boundary
1 value problem. IfNg is not too small so tha¢,N.>1, one
=— f [H; (r)-B(r)— D; (r)-E(r)] d%. obtainsD~D,. Only for samples very thin perpendicular to
Wep Jvs the field direction, for whichN, is so small thate,N.<1,
(14 one findsD=¢,D, which is smaller tharD,, for the same

It can be applied to both magnetic and electric cases. In thdample shape. _ _ .
former, the sample is in the node of the electric field so that For thin films one can achieve practically full penetration
D,(r)=0 and only the first term in Eq14) remains. On the SO that the field E(r) becomes uniform throughout
contrary, in the electric field maximum both terms arethe sample. For the equivalent dielectric one may set the
present for the general sample shape. Obviously,(E4.is relatl\ie permittivity as a real and homogeneous quantity
also valid for all intermediate positions of the sample in thee,— |o|/eqw. This will be used later in this paper.
cavity. It represents our main result in the modification of the In Fig. 4a we show the electric field in thgz plane
conventional Eq(2) for the use with conducting samples. through the center of the cavity and the sample located as in
One should note that the field,(r) has different func-  Fig. 3. Figure 4b) shows the results ofiAFIA for the profile
tional forms for the sample in the magnetic and electric fieldof E, along thez axis through the center of the cavity with
maxima. In the former, the field ,(r) is uniform throughout ~ and without the sample. At the lateral surface of the perfect
an ellipsoidal sample. It can be considered as the field imeonductor sample the field, must vanish. If the sample is a

A(up

w
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N SARE where the integration is over the sample surfaxe,) is the
ISR ‘.l: o unit vector normal to the surface at various positiop®n

: N the surface and pointing into the sample. The fields are taken
z @ on the outer side of the sample surface. Note that the vector
product of the fields in Eq(16) is not the Poynting vector
sinceE(ry) is the perturbed field whilél,(rs) is the unper-
turbed field. Equatiori16) holds regardless of the position of
the sample in the electric or magnetic field in the cavity.
Namely, even when the perfect conductor sample is placed
in the position of the electric field maximum, the induced
surface current gives rise to a tangential magnetic field
Hp(rs) at the surface. The electric fielg,(rs) is perpendicu-

lar to the surface of the perfect conductor. When the sample
is not a perfect conductor the fiel(r;) acquires some tan-
gential component, and Eq16) yields the complex fre-
quency shift.

Now we have two choices for the interpretation of the
properties of conducting samples. The first is that we treat
the conductor as a magnetic and dielectric material as in the
previous section. In that case the induced current is inter-
preted as a bound magnetization current if it makes loops or
as a polarization current if it gives rise to surface charges.
For a general position of the sample in the cavity both com-
ponents of the current are present with appropriate weighting

E, (arb. units)

E, (arb. units)

ol | : : : factors. In this picture we have the continuity of the tangen-
50 25 0 25 50 tial components of(r) andH(r) across the surface of the
y (mm) (© sample so that we can apply the divergence theorem

FIG. 4. (a) A cut in theyz plane through the center of the cavity *
and sample as presented in Fig. 3. The lines of the electric field are %S[E(rs) X Hp(rs)] ‘n(rs)ds
shown.(b) The profile of the electric field componeg, along the
z axis through the center of the cavity and samfdeThe profile of . 3
the electric field componeri, along they axis through the center == Jv V-[E(r)X Hp(r)] asr
of the sample. The dashed lines (b) and (c) show the empty S

cavity fields, while the solid lines are for the perfect conductor
sample in place. =— fv Hy (r)-[VXE(r)]d
S
nonperfect conductor this lateral field will not vanish but will
change with conductivity. Figure(d) shows the profiles of +f E(r)-[VXH3(r)]dr. (17)
E, along they direction through the center of the perfect Vs

conductor sample in Fig. 3. Also shown is the profile in the . .~
empty cavity. One can observe a large increase of the fieIM\/e can usgihe Maxvyell quaﬂoﬁs& E(r)=~1wB(r) and
E, at the front and rear sides of the sample with respect t&/ X Hp(r) =iw,Dy(r) in the integrals of Eq(17) and see
the empty cavity valu&,. This field does not change much that the complex frequency shift in EGL6) is equivalent to
when the sample becomes a nonperfect conductor. Eq. (14 derlve~d in ihe previous section. We have to use the
approximationw,~ o~ which is valid for highQ factors
Ill. RELATION TO POYNTING VECTOR and small frequency shifts.
AND SURFACE IMPEDANCE The other choice is to consider the conducting sample as a
) ) i nonmagnetic and nondielectric material. The induced current
In the preceding section we started from EB) which jn the sample is then treated as free current derdity. In
was derived by treating the perturbation of an empty cavibithis picture the perfect conductor has a free surface current
by a weak dielectric or paramagnetic samﬁl’ez: Subse- densityJs=J,8(r —rg), so that the fieldH,(rs) on the outer
quently, we demonstrated the convenience of introducing &jge of the sample surface makes a jump to zero at the inner
new unperturbed state for highly conducting samples. It is;ige of the surface. Therefore, the divergence theorem cannot
also posslble to use the general cavity perturbation approache applied with the fieldH ,(r). The problem can be solved
but starting from the cavity plus the perfect conductoriy the cases when demagnetizing and depolarizing effects are
sample as the unperturbed state and calculating the perturbgnt extremely strong. As explained in the previous section
tion caused by a finite conductivity of the sample. The comyne perturbed fields inside the sample are not much changed
plex frequency shift is found to besee the Appendix with respect to the unperturbed fields. The same holds out-
side the sample. The magnetic field on the outer side of the
Eﬁ [E(rg) X H; (r9]-n(rods,  (16) sample surface does not change appreciably when the sample
s becomes a nonperfect conductor, so that on the outer surface

Awp: i

) oWe,
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of the actual sample one can replabl%Xt(rs)me’“(rs) Equation (18) is valid also for anisotropic samples. In
where the subscrifitdenotes the tangential component of thethat case the conductivity becomes a tensorand the
perturbed field. This is the condition of weak perturbation insecond integrand in Eq18) must be written in the form
which we get the integral of the Poynting vector over theE(r)-&*E*(r).

surface of the conductor sample. The tangential components |n the literature one often finds that microwave measure-
of E andH are continuous across the surface of the samplenents are related to the surface impedance. Therefore, it is
so that we can apply the divergence theorem as in(E§.  yseful to examine how the complex frequency shift is related
However, now we have to use the Maxwell equations to the surface impedance problem. We have already ex-
XE(r)=—iougH(r) and VXH(r)=J(r)+iweyE(r) plained above in which cases one can apply the weak pertur-

which imply that the conductor is nonmagnetie,& 1) and  bation condition and replace the fielit},(r5) in Eq. (16) by

nondielectric €,=1) but sustains an induced free current [N€ fieldH(r) on the surface of the actual sample. Since the

J(r). In this picture we haveD(r)=e,E(r) and B(r) integral in Eq.(16) depends only on the tangential compo-

_ - nents of the fields on the surfaég and H,, one can also
uoH(r). Therefore the complex frequency shift becomes make use of the surface impedance relZigh

Aw 1

p__ B NXEq(rg)=Zg(rg)H(rs). (19)
o chfVS[M0|H(r)|2 ol E(r)[?] d3r

The fieldE; can be formally represented as the sum of inci-
i dent and reflected waves with the ratié°

+
oW,

JJ*(r)E(r)d3r. (18
Vs E, Z— 7,
— =z , (20
E Z.+Z,

The first integral in Eq(18) represents the energy stored

in the conductor sample and yield the real frequency shift. Inyhere z, is the impedance of the vacuum. In E&O) the
a conductor the magnetic energy is much larger than thg, o7 ations of the fields, = e E; andE, =& E, are taken to
electric so that the second term in the first integral in &8) be equal.e=¢ , and the complex amplitudes contain the

can be neglected. The second integral in @&) yields dis- ) | ~
sipation ifJ(r) andE(r) are in phase, i.e., if the conductivity Phase information. On the surface of a perfect conduztor

is real. For a complex conductivity there is a phase shift=0, so thatE,=—E;, i.e., the reflected field is equal in

betweenJ(r) andE(r) and the last term in Eq18) yields ~amplitude and shifted in phase by with respect to the in-

also a contribution to the real frequency shfft. cident wave so that the total field on the surfagevanishes.
It is important to emphasize that in the cases when deFor a nonperfect conductor EO) yields

magnetizing and depolarizing effects are extremely strong

one findsH<H, if the magnetic field is imposed, and when Zo(E,+E,)=Z4(E,—E,). (21

the electric field is impose® <D, which give rise to the o o

induced magnetic field with the same conditircH,. In  Noting thatE; —E,=Z,(H;+H,) one obtains

these cases E@16) must not be replaced by the integral of

the Poynting vector, and Eq18) does not apply. We shall - E
come to this point later in the paper. On the other hand, Egs. ZSZH—, (22
(14) and(16) are generally valid since they involve products t

of 555%26da?sr:)dhl;?,%esrgjr;beigsﬁvevlgii’h are weakly conductin which means thaZ in Eq. (20) is determined by the ratio of

and. in agdition have spi%s and induced ele(\{tric dipolesghe total fields at the s_urface o_f the sample as in(&§). For

Thu’s one Woula have to deal with the equation B(r) the samples whose thickness is much larger than the penetra-
’ tion depth Eq(22) yields the intrinsic impedance which de-

=uolI(r)+VXM(r)+iwP(r)+iwegE(r)]. We have to i ~
W =oE P(1) =% e E d M1 =%-B(r)/ pends on the material parameterbut not on the sample

use33 (r)';lat t(hr)’M (r)—”)(eeo (t'r) an (i (r)=xs (r)d thickness[cf. Eq(1)]. For thin samples the fiel&; on the
go' Sg ab' e .";‘XWG.’th e?hua |o?hconl\?|ns O:FW) ant. surface will depend also on the sample dimensions so that
V(r)E' Sm _mgg it wi f. % z erl _aXW?(E equa (ljon the surface impedance given by E&2) becomes different

x (r)— ~1wB(r) we can find the solutions (r)_an from the intrinsic one. It determines the reflection in E2{)
B(r), given the appropriate bgundary cond|~t|ons. U~S|ng thes%nd the complex frequency shift in EQL6) which is mea-
solutions we can obtaiD(r) = €, €cE(r) with e, =1+ xeand  syred in the experiments. One can introduce the quantity

H(r)=(1—xe)B(r)/uo. The complex frequency shift Z (r.) as the local surface impedance which determines the
is given by Eg.(18) with the first integrand given by ratio of the reflected and incident waves on that position of

[H*(r)-B(r) +D*(r)-E(r)] as calculated by the above out- the surface. The complex frequency shift is then given by
lined procedure. If the sample still acts as a good diamag-

netic and good dielectric, the boundary conditions are the A}Lp i 5 ,

same as discussed in the preceding section. Howevgg, if To oW, jgszs(fs)|Ht(fs)| ds. (23)

<1, xg<1, and|o|< €y, it is more appropriate to use Eq.

(2) for the complex frequency shift with respect to the emptyAgain, this expression does not apply in the cases of ex-
cavity. tremely strong demagnetizing and depolarizing effects.
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We have to remark at this point that the present case of a For the slab geometry we neglect the edge effects and
sample placed in a cavity is different from the cases in whicttake the external field at the boundary plames+d/2 to be
the thin film sample replaces a part of the cavity wafidn uniform and parallel to those planes. Due to the continuity of

our case the standing wave in the cavity imposes sdf(e)  B(z) at the sample surface we must have the boundary con-
on all sides of the sample, and we havS a resuli(it) on ditions for the fieldB(z) in the conductor placed in a mag-
the surface due to the material parameteand the sample npetic field

geometry. On the contrary when the thin film sample makes

a part of the cavity walls we have a transmission of radiation -

out of the cavity. The field,(r) on the outer surface of the B ( iz) = poH|m- (26)

thin film is not known and Eq(16) loses practical signifi-

cance. In such cases it is more appropriate to calculate thEhe boundary condition in Eq26) is valid regardless of the

surface impedance on the inner surface of the thin film bypenetration oB(z) into the sample. As explained in Sec. I

impedance transformation thedty.’ this is the property of the samples elongated in the direction
of the magnetic field.
IV. SOLUTIONS FOR SLAB GEOMETRY The solution of Eq.(25 with the boundary conditions

o . (26) is well known:
A. Magnetic field maximum

Let us assume that the sample shape can be approximated cosH[(1+i )/~5]z}

. (28

Az)p)  poHfmVs
m

Wep

by the slab geometry which describes well most single crys- Bm(2)=poHm N . (27)

tals and thin films of highF. superconductors. We consider CosH(1+1)/o](d/2)}

the sample in the cavity at the position of the magnetic fieldUsing Eq.(27) in Eq. (24) one finds the complex frequency

maximum and oriented with its plane along the field so thathift

the demagnetizing effect is negligible. The magnetic field at

the sample surface is denoted Hy,, where the index m is a S . 1+i d

reminder of the sample position. We take it as a real quantity o a(l—l)tan ? 5

so that the phases of the complex fields and current are rela-

tive toH),. For the sake of convenience we drop the vectoryhere we have useld, L, =V,/d. Itis obvious that the pref-

notation in this section. . actor uoHfnVs/We, stands for the filling factor of the
One can show that different approaches developed in thgample in the cavity. The rest of E€28) is an expression

preceding sections yield the same result for the complex freWhich depends on the raté/d

quency .Shift' we stgrt with qu) which assumes that the .« The a;loproach in which thelsample is treated as a nonmag-

sample is a magnetic material. The complex frequency Shlfﬁetic material yields the same result. As pointed out above

becomes ~
the differential equation foH(z) is the same as Ed25),
AZ)p Him (L2 L2 a2 arfd with the lioundarx condition giyen by EQ6) (?ne ob-
— | =W dxf dyf B(z)dz tains the fieldH,,(z) =By (2)/ uo as in Eq.(27). This solu-
m epl-bLy2 JoLy2 o Jod2 tion implies also the solution for the electric field in the
(24) sample

where we have set the field,(z) as uniform throughout the _ o
sample and equal t |, so that it could be taken out of the E (2= Koo S1+1) sinh{[(1+1)/5]z}
integral. This condition results from the assumption that the m 2 m cosH[(1+i)/3](d/2)}’
sample thickness is much smaller than the wavelength in the (29)
cavity. The sample has dimensiols=L,L,d, and we as- . o

sumedL,,L,>d. In order to evaluate the integral in E@4) ~ The induced current density is given by

we have to find the analytical expression for the flux density

B in the sample. The Maxwell equations in the conductor 3, (2)=H
lead to the differential equatich m Im

1+i
P

sinh[(1+i)/5]z}
cosH[(1+i)/8](d/2)}

2i\ and should be treated as the free current in a nonmagnetic
a§—~—2 B(z)=0, (250  material. When we use E@18) and neglect the integral of
o the electric field energy in the sample we find the result
) . which is identical to that of Eq(.28).
Where we have _adopte_d the time depeNnc_ience of thg field¥ It is easy to verify that one can also use E2@) with the
with the convention expt). In Eq. (25), & is the classical  gyrface impedance defined by the fields on the surface. From
skin depth'd=(2/uewa)Y The differential equation Eq. Eq.(29) one finds
(25) for B(z) in a magnetic medium, in which the induced ~
current is treated as the magnetization current, is the same as - B,  wow

~ ) 1+id
the differential equation foH(z) in a nonmagnetic medium Sm:W_ > 5(1+|)tan}‘( 3 5) -
whereB(z) = uoH(z), and the induced current is treated as "

the free current. The complex frequency shift calculated from EB3) is

(31)
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resistivity of the metal with temperature. We may choose the
sample thicknesd so that at low temperatureés<d and the
i sample is electromagnetically thick. Bot\{,/f),, and
0.15 1 . - A(1/2Qp) nm vary linearly with the penetration dept#, in

; this regime. Whend,, becomes comparable to half of the
sample thicknessl, A(1/2Q,),m reaches a maximum and
decreases at higher temperatures where the penetration be-
comes complete{,>d), i.e., the sample becomes electro-
- magnetically thin. In the limits,>d, A(1/2Q,),, decreases
as (162n). It may appear puzzling that the losses represented
by A(1/2Q,)nm decrease when the resistivity of the sample
increases. In order to understand the physics of this process
one has to analyze the penetrated field and current in the
B sample. Namely, the induced current forms a loop whose
role is to shield the magnetic flux from the sample. Full
penetration must imply that the shielding current has been
T T I reduced practically to zero and this in turn implies that the
0 05 10 15 20 dissipation must vanish. The real frequency shift must satu-
8n /d rate at5,>d since it reflects the total change of the energy
stored in the sample volume.

0.20 X B

0.10 - R

A/2Q) ) + (AF )

FIG. 5. Plots of Af,/f)nm andA(1/2Qp) m given by Eqgs(33)
and(34) for a constant filling factotchosen to be 0)Iof the sample

in the magnetic field maximum in the cavity. The dashed lines B. Electric field maximum
indicate the linear behavior for thick samples,{d), while the Now we consider the sample of approximately slab geom-
dotted line shows the asymptotic behaviosZifor electromagneti-  etry in the electric field maximum as shown in Fig. 3. The
cally thin samples §,>d). depolarizing effect may now be large, and this makes it dif-
ferent with respect to the magnetic case where the demagne-
Az,p MonmVs( izsm ti;ing effect is ne_gligible. _In the picture of equivalent die_lec_—
> ~rw \ rgwd)” (32 tric and magnetic material the complex frequency shift is
m cp \Ko given by Eq.(14). The Maxwell equation for the perfect
which is equivalent to Eq(28). conductor reads
The above complex frequency shift can be related also to
the average relative permeabiliy of the sample. When Eq. dHp(2)=iwDp, (35

(8) is specified to the slab geometry one finds that @§) H ected the ed Hoct d s
- _ ) = where we neglected the edge effects and assum

can be expressed .as&@p/w)m ('iLOH ”m,vs_/WCp)’“" uniform throughout the sample. This also implies that the

Thus, the real and imaginary parts f multiplied by the fieq 1y, which is induced on the surface of the sample due

filling factor yield (Af/f)ym andA(1/2Qp)y, respectively. 4 the oscillatingD ,, is uniform along the surface. One ob-

Equation(28) holds for both normal conductors and su- (5ing by integration of Eq(35) from the center of the slab to
perconductors. In order to separate the real and imaginagye syrface

parts we would have to specify whether the conductor is a

normal metal witho, and §,, as real quantities or a super- d d

conductor withe and's as complex quantities. Hje= HP(E) =iwDp5. (36)
For the moment we proceed with a normal metal and treat

the superconducting case in a later subsection. The real a

imaginary parts of Eq(28) become rﬂus equation relateB, to H, which can be conveniently

used as the boundary condition for the calculation of other

Af, :U/OHﬁmVs- 5. sinh(d/8,)+sin(d/8,) ] fields. I;followg, from Eqs(35) and(36) that the fieldH ,(z)
—] =- — , has a simple linear form
f om W, | d coshd/é,)+cogd/d,)]
33 2Hje
. ) Hp(2)= d zZ. (37)
A( 1 ) _ MoH[mVg 8, sinh(d/ &) —sin(d/ &)
2Qp/ W;p | d coshd/és,)+cogd/sy)| '(34) Besides the unperturbed fieltts,(z) andD, one also needs

the perturbed field8(z) andE(z) for the calculation of the
where the subscript n refers to the normal conductor. complex frequency shift in Eq14). We can use the same

It is interesting to analyze these results. Figure 5 showslifferential equation given in Eq25) but the boundary con-
(Afy/f)nm andA(1/2Q,) nm as functions o5, . The sample  ditions have to be examined carefully. If we assume that the
thicknessd is considered to be a constant so that the prefacdepolarizing factor is not too small, so that one can tBke
tors are fixed. From the experimental point of view we may~D,, (see Sec. ), the fieldH ¢ given by Eq.(36) can also
say that the penetration depth is varied due to a change in thee set for the perturbed field on the surface. One has
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d
- 5) = poHje- (39

~ (d ~
Be E :_Be

The case of extremely small depolarizing factor will be dis-
cussed in the next section. The solution of Ezp) with the
boundary condition§38) is

sinN[(1+i)/8]z}

Be(2)=poHje =~ , 39
(&= mtle g a1 di2)) (39 -
and one finds the electric field
- ~ 1+i)/é
Eo(2)= 2% H B(1+1) cosil(A+i)loly -
2 sinh{[(1+1)/8](d/2)} AT -
One can now evaluate E¢L4) and obtain
Awp|  woHEVE  [1+id 0 05 10 15 20
( o )e—_ ch {a(l—l)COt ?E . (41) 8n/d

The prefactor,uoneVS/WCp is the filling factor of the FIG. 6. Plots of Af,/f),e andA(1/2Q,) . given by Eqs(46)
sample at the position of the maximum electric field in theand(47) for a constant filling factotchosen to be 0)lof the sample
cavity. in the electric field maximum in the cavity. The dashed lines indi-
In the picture of a nonmagnetic and nondielectric con-cate the linear behavior for thick sample$,d), while the dotted
ducting sample which sustains a free current density, on#ne shows the asymptotic behaviéﬁ for electromagnetically thin

finds samples §,>d).
- 1+i| cosH[(1+i)/5]z} perfect conductor. We shall first analyze the case of a normal
Je(2)=Hjje| = | = T2 (42 metal and postpone the discussion of superconductors to the
o ) sink[(1+i)/6](d/2)} next subsection. Witld, real, Eq.(41) can be separated into

and Eq.(18) has to be used for the calculation of the com-the real and imaginary parts
plex frequency shift. The second term in E48) can be

neglected and the final result is the same as in(&g). Afpl “OerVS[ﬁ sinh(d/ &) —sin(d/ &) |
One may note that in this picture the induced boundary f ne Wep [ d coshd/é8,)—cogd/é,) |’
field H|e has also the meaning of an equivalent surface cur- (46)
rent
I A( 1 ) _MoHﬁevS[ 5, sinh(d/8,)+sin(d/ ;) |
H”e=f J(z)dz. (43 2Qp/,. Wep | d coshid/s,)—codd/s,))’
0

(47)
This current gives rise to the accumulation of charges on th@vhere the subscript refers to the normal conductor

sample surface. The space averaged current densiy is  Figure 6 shows the dependence oAf(/f)ne and
=2H)./d which is equivalent td=iwD in the picture of an  A(1/2Q;),e On the penetration depth, while the sample
equivalent dielectric sample. Therefor,depends on the thicknessd is considered to be a constant so that the prefac-
shape of the sample through the depolarizing factor as didor is fixed. At low temperatures where the sample is elec-

cussed above. tromagnetically thick §,<<d), the shifts are linear id, as in
Alternatively, one may use the surface impedance in théhe magnetic case in Fig. 5. At elevated temperatures where
electric case obtained from E¢40) on>d, A(1/2Qy). increases nonlinearly and acqwr&%de-

pendence in the limits,>d. This is remarkably different
~ ) 1+id from the magnetic case in Fig. 5. One can explain this be-
5(1+I)C0tf(? E) (44 havior by analyzing the induced current in the sample. In
contrast to the magnetic case the current in the electric case
and calculate the complex frequency shift from E2p) for  has the same sign on both sides of the sample. When the
the slab geometry penetration depth is increased the current does not diminish
but becomes more uniform throughout the sample. There-
fore, the losses then have to increase with the resistivity of
' 45 the sample, i.e., witl#? . Note that the induced current in the
electric case flows similar to in an anten(i&g. 3, i.e., it
which is identical to Eq(41). does not make a loop and does not serve to shield the mag-
Equation(41) yields the complex frequency shift caused netic flux. In fact Eqs(38),(39) show that the magnetic field
by a normal conductor or a superconductor relative to thehanges sign when going from the left to the right side of the

~ _%_Mow

*He 2

(A:Up) _ZMOHﬁeVs( izse
e Wep \Mowd

w
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sample so that there is no net magnetic flux in the sample.
Hence, full penetration does not imply that the induced cur-

rent vanishes. The real frequency shift must saturatesfor 0.10 - . . . . B
>d because of the same reasons as given in the magnetic | (a)

case 008 054 el - -

’ G 0.4 1 -
Q006 931 meor .

. " S~ 0.2 1 o

C. Arbitrary position - 0.1 - L
. . . < 0044 07 = -

If the sample is placed at an arbitrary position between the T

I I 1
magnetic and electric fields maxima, the boundary condi- 002 0 10 20 30 -
tions will be a mixture of Eqs(26) and (38). Namely, if

B(—d/2)#B(d/2) one can write the sum and difference . . . .
0 025 0580 075 100 126

1./d\ _ d 1 1 1 1 1 1
MOHHmZE B E +B _E , (48 04 -
-0.02 (b) F
T T E( d) (49 004
MO =35 Y - 5 1 _— e . B
le= 2"\ 2 2 -
. +2-0.06 B
so that the boundary values are expressed in the form <
~ -0.08 - -
~[d
B| 5] = #o(Hjm+Hie), (50 -0.10 7 -
012 1 -
d 0 025 050 075 100 125
B| — 5] =no(Hm—Hje). (51) - - - - :
( 2) to(Him—Hje) /T,

One can see that|,, enters the boundary conditions withthe g5 7 (a) Calculated temperature dependences (1/2Q,),

form of Eq. (26) while H| contributes as the field in Eq. gnq A(1/2Q). for a thick superconducting sample witt
(38). Hence, one may say thhlt,, andH) are the boundary  — 105, (T,). For other parameters see the text. The two curves over-
fields induced by the magnetic and electric effects, respegap belowT,, and slightly aboveT., while at elevated tempera-
tively. The induced current in the sample is the superpositiofures the sample becomes electromagnetically thin and the curves
of the loop currenfmagnetic dipole, Fig. ()] and antenna  separate (insed. (b) Calculated temperature dependences of
current[electric dipole, Fig. @)]. The complex frequency (Af,/f),, and (Af,/f), for the same sample as {g).

shift is the superposition of the contributions from E(28)

and (41). Which of the two contributions will prevail de- 5 5

pends on the ratio oH, to Hje but also on the factors )\=)\1—i)\2=7"(1—i), (54
involving d/ 8, as will be discussed in the following sections.

where &, is real. Thus\;=X\, in the normal state. In the

superconducting state with=o;— i, one finds
The ideas developed above apply also in the case of su-

perconducting samples. The corresponding expressions for =~
superconductors can be readily obtained with the conductiv- - / |G|—¢12 (55)
ity o and penetration depth as complex quantities. One ' 2uow|al?

could evaluate the real and imaginary parts of the complex

frequency shift. It is, however, more common to introducewhere plus and minus signs applyXe and\,, respectively.

the complex penetration lengththrough the equation Clearly, when the superconducting state occurs;>0 and
N\, becomes larger than,. At zero temperature one should

have 01(0)=0 and o,(0)=1/ugw\ (0)? where\ (0) is
(52) the zero temperature London penetration length. From Eqg.
(55) one findsk1(0)=X\,(0) and\,(0)=0, i.e.,\ becomes
real and equal tad, (0) so that Eq(53) reduces to the origi-
nal London equation.
Using Eq.(52) one can express EQ8) for the complex
frequency shift of the sample in the magnetic field maximum

B(z)=0. (53) in an equivalent form
Xt d 6
—ann —| |.
d 2%

D. Superconducting samples

1+i

Nl
>

With this definition of X, Eqg. (25 takes the form of the
London equation

2ot
z Xz

In the normal state the real and imaginary partsxofre

found from Eq.(52) to be W

(Aap) _potifnVs
w
m

cp
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If the sample is a superconductor, the real and imaginary parts become

Af, MonmvS[M/dsinr[(xl/|7\|2)d]+(>\2/d)sir{(>\2/|7\|2)d]
Sl X Xod ) “
sm cp costi(\1/[x[*)d]+cog (A, /[N [9)d]
A( 1 ) _ZMOHﬁmVs[)\Z/dSinr[()\l/|X|2)d]—(Nl/d)Sir{()\z/|X|z)d]l -
2Qp/sn © Wep | costi(n,/[X|3)d]+cog (x,/[X|2)d]

where the subscriprefers to the superconducting state. These expressions obviously reduce 8353} for the normal
state whem;=\,=§,/2. Note that the superconductor B0 is still different from a perfect conductor. For the lat&r
— 0, while the superconductor still retains the penetration leRg{l0) so that there is a finite real frequency shift in Esj/)
of the superconductor relative to the perfect conductor. There is no difference @ fdetor, i.e.,A(1/2Qp)sm in Eq. (58)
vanishes at zero temperature. The factors in the brackets in(E@sand (58) were found also by Coffey and Clérmwho

calculated the average relative permeablﬁrry.
For the sample in the electric field maximum E41) can be given an equivalent form usihgfrom Eq. (52)

Az)p) - MOHﬁevS[E r(i)l
( " e— 2 We, {dcot 5| (59

For a superconductor the real and imaginary parts are found to be

(Afp) /vLoHﬁeVs_(M/d)sinf[(hl/lxlz)d]—(kz/d)sir[(hz/|7\|2)d]l

— =-2 — — , (60)

f e Wep | costi(N1/|X[?)d]—cog (N, /[X[?)d]

( 1 ) poH{ Vs <A2/d>sinr[<x1/|X|2>d]+<x1/d>sirt<x2/|x|2>d]] 61
2Qp/ Wep | coshi (A1 /[X|?)d]—cog (A2 /[X|?)d]

Equations(60),(61) reduce to Eqs(46),(47) when ;=X\, shifts in the two cases show no difference bel®yand just
= 5,/2. To the best of our knowledge Eq59)—(61) for the  aboveT, since the sample is electromagnetically thick in this
superconducting sample in the microwave electric field haveegion. For thick samples the expression in the brackets of
not been reported previously. Egs.(57) and(60) for the frequency shift reduces iq(t)/d

In order to illustrate the behavior of the shifts in super-while the brackets for the absorption E¢S8) and (61) re-
conducting samples one needs to assume a model for thgice to,(t)/d. The surface impedanc@s, andZ, given
temperature variations af; and o, which then determine py Eqs (31) and (44), respectively, are both equal to the
the temperature dependenceshgfand A,. For the present intrinsic surface impedancg, in Eq (1). The intrinsic sur-

purpose we assume the two fluid model in whigh(t) . . ~
— o (T)t* and op(t) = 05(0) (1—t%) wheret=T/T, is the face impedance can be expressed using (BB as Z(t)

reduced temperature. The value that has to be taken fori#o@\(t), SO that Ry(t)=pmowho(t) and X(t)

o,(0) depends on the London penetration lengitf0) at = o@A(t).

zero temperature and the operating frequency.tBdt, i.e., At temperatures much larger than the differences be-

in the normal state, we assume a metallic behavigt) — tween the magnetic and electric cases in Fig. 7 become no-
=0,(To)/(at+ B), typical for highT. cuprates and set for ticeable becausé,(t) increases to become comparable and

simplicity «=0.9 and@=0.1. Thus, we get the temperature larger thand (cf. Figs. 5 and &

dependences af,(t), \1(t), and\,(t) relative to the value The other choicel< 6,(T.) becomes very interesting for
of 8, at T.. In what follows we useK=[o,(0)/o,(T.,)]  thin films. The sample is obviously electromagnetically thin
=25, which is typical at microwave frequencies. everywhere in the normal state. For the illustration in Fig. 8

It is interesting to analyze two choices for the samplewe taked=0.15,(T,). For simplicity we assume again that
thicknessd with respect tos,(T.). If we choosed> 6,(T.) the filling factors in the magnetic and electric cases are equal
the sample is electromagnetically thickGt. By cooling it and set the value to I6. This choice simply accounts for
belowT., A1 and\, are further reduced, so that the samplethe change invVgs with respect to the previous case of the
remains electromagnetically thick in the whole temperaturehick sample. A more elaborated approach including the con-
region. sequences of the depolarizing effect will be discussed in the

Figure 7 shows the evolution of the complex frequencynext section. Figure (8 shows that the absorption signal
shift for d=105,(T,) in the cases when the sample is placedA (1/2Q,) is much smaller in the magnetic than in the elec-
in the magnetic or electric field maximum. For simplicity we tric case. Moreover, when the signal amplitudes are com-
have taken the filling factors to be 0.1 in both cases. Thepared to those of the thick sample in Figa) one can ob-
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FIG. 8. () The same as in Fig.(@, but for a thin sample with

FIG. 9. Calculated temperature dependences of the absorption

d=0.15,(T¢). A(1/2Qp) m is much smaller and has a much broader and frequency shift as in Fig. 8 for a thin sample in the electric
transition below T, than A(1/2Q,).. (b) Calculated frequency field, but withK=[o,(0)/0,(T)] = 1, 4, and 25.
shifts for the sample as i@).
could not be physical. To solve the problem one has to ana-

serve that the signal in the magnetic case is reduced mudiize also a more intricate dependence coming from the de-
more than just because of the filling factor. In contrast, thepolarizing effect orH e which will be discussed in the next
signal amplitude in the electric case is even increased witkection.
respect to the thick sample. One also observes that in the There is an additional feature in the signals for thin films
magnetic case the superconducting transition appears broaig- the electric field maximum. The calculations in Fig. 8
ened while it remains sharp in the electric case. were made with the choice of the parametét

The frequency shifts shown in Fig(l§ are particularly =[¢,(0)/o,(T.)]=25 as mentioned above. It is worth not-
interesting. In the magnetic case the amplitude of the signahg that a very interesting behavior is obtained for smaller
is reduced with respect to the thick sample and the shapgalues ofK (Fig. 9. The absorption curves broaden and de-
becomes very flat. At the same time the shape of the signal ipelop a peak just belowW,. The negative peak in the fre-
the electric case changes dramatically with respect to thguency shift also broadens and the curves acquire a steplike
thick sample. The shift in the normal state becomes verform. These cases may become relevant for low temperature
small and a sharp negative peak is seen just bélpwlts  superconductors wheke,(T,) is large and/or for any super-
origin is in the numerator in Eq60) and a rapid drop ok,  conductor in experiments at elevated frequencies where
below T.. One may observe that the magnitude of the fre-o-,(0) is lower.
guency shift at zero temperature is increased with respect to
the thick sample. . . ) _ V. DISCUSSION OF THE EXPERIMENTAL CONDITIONS

The reason why the signals in the electric case grow in FOR THIN FILM SAMPLES
amplitude when the sample becomes thinner, even though
the filling factor is reduced as required by, can be ratio- In a typical microwave conductivity measurement one
nalized when the expressions in the brackets of EBf3.and  uses a sample of given dimensions and measures the changes
(61) are expanded ford/\; ,<1). One finds that these ex- of f andQ as a function of temperature. If the sample is a
pressions increase as ° so that the signal amplitudes in- good conductor in the whole temperature range of the experi-
crease as]_l_ The Corresponding surface |mpedar’i;% in ment, the fleld'|H on its surface does not Change if the CaVity
Egs. (44),(45) also increases as™ * in accord with the ex- Parameters do not change with temperature. It is fixed by the
pression given by Gittleman and Rosenbitfiwt this point ~ dimensions of the sample and its position in the cavity. The
one may address the question of extremely thin sampleghiftsAf,/f andA(1/2Qy) are then functions of the penetra-
Obviously, the divergence of the signal intensitiesder0  tion length\ which itself is a function of temperature.
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The aim of microwave measurements of superconductoréN.—0). The unperturbed fiel®, diverges whileH . re-
is to determine the temperature dependenogét) and  mains finite. This is obvious from the inspection of E(B5),
a,(t). The case of thick samples causes no problem in th€36) whereD,, is the slope of the variation dfi,. The per-
interpretation of the experimental data, i.e., in extractingturbed fieldD saturates foN,— O (see Sec. )l so that the
o1(t) ando,(t) in an unequivocal way. One uses the theo-boundary magnetic field decreases linearly wem0. As a
retical expression for the complex frequency shift which isresult the signal amplitudes do not diverge but saturate at
the same for the position of the sample in both the magnetisome high value.
and electric field maxima. A small misalignment of the One can make a numerical analysis if the thin film sample
sample from a desired position does not change the temperis approximated to an ellipsoid with principal axeg,L,,
ture dependence of the complex frequency shift and th@andd. The electric field is along thg axis as in Fig. 3. The
analysis remains valid. depolarizing factor is then given by an integfal

The situation is more complicated in thin films. In some
of the reported experimerifs'*the sample was placed at the

position of the magnetic field maximum in the cavity. It was N |—><|-de°c ds
oriented so that the microwave magnetic field was parallel to "¢ "ty 2 Jo(s+L2)\(s+L3)(s+LE)(s+dd)’
the plane of the film which means that the condition for a Y Y 62)

thin sample in the slab geometry was met. It was observed
that the microwave absorption increased with temperature | . . . : .
above T, which is in contrast to the negative slope of which can be evaluated numerically. The signal amplitude is
A(1/2Qp)nm in Fig. 5 but agrees qualitatively with the signal
A(1/2Qp)ne in Fig. 6. Also the observed transition beldwy
was sharp as predicted for the electric case, rather than being Se(d)x o
broadened as expected for the magnetic ¢elsd-ig. 8. We ©
claim that the reported observations were due to a small mis-
alignment of the sample from the nodal plane of the electriovhere only the dependence dris pointed out. It includes in
field. Note that in a real experiment the dielectric substrat@rder the unperturbed field, the perturbed field, the volume of
on which the thin film is grown will displace slightly the the sample, and the functiofr,(d) which stands for the
nodal plane of the electric field from its position in the empty expression in the brackets of Ed80),(61). We can choose
cavity. Therefore it becomes very unlikely to reach the exacsome typical size parameters for thin films which are used in
position of the thin film in the nodal plane of the electric microwave measurements. Lef=1 mm andL,=3 mm.
field. The sample thickness is varied from 0.1 mm to the zero
An interesting question is how the signal amplitudes maylimit. The relative permittivitye, in Eq. (63) is not the per-
vary when microwave measurements are carried out on evenittivity of the nonperfect conducting sample treated here
thinner samples. In the magnetic case we must analyze Eggut stands for the nonperfect dielectric with the same bound-
(57),(58) in the limit d— 0. SinceH, is independent oflin ~ ary value problem(see Sec. )l We may replace it by
the slab geometry an¥s>d, one finds by expanding the |o|/eqw which gives the ratio of the induced current density
expressions in the brackets thatAf(/f)s<d and in the conductor to the vacuum displacement current. A typi-
A(1/2Qp)sm=d?. The signals decrease when thinner samplegal value is 10 at microwave frequencies. Experimentally
are measured. This behavior was shown in Fig. 8. Practicallpne observes a step in the absorption curve when the sample
they become unobservable for thin films as pointed ouis cooled from above, to zero temperature. Af=0 the
above. absorption must vanish as can be seen from(Ef). in the
The situation is different in the electric case. It was|imit \,—0. Therefore, we need to analyze the signal level
pointed out in the preceding section that the expansions ifh the normal state. We may choose a typical value pins
Egs.(60),(61) would yield a divergence of the signals in thin for the microwave penetration dep#l just aboveT,. With
films. This would be unphysical and we have to reexaminghese parameters the dependence of the signal level on the
the case. One has to recall that for the slab geometry in theample thickness can be evaluated from @B8). The result
electric case the depolarizing effect plays an important roleis shown in Fig. 10. One can observe that starting from thick
Therefore,H) is not independent of the film thickness. In samples §> &,,) the reduction of the sample thickness first
Eq. (14) we need both the unperturbed and perturbed fieldsprings about a minimum in the signal amplitude, while for
For the unperturbed field one finds the boundary condition inhin samples one finds a tremendous increase of the signal
Eq. (36). From Eq.(15) we found D,=Do/Ne where the  amplitude. At extremely small values dfthe signal ampli-
depolarizing factor depends ah Thus,H|, for the unper- tude saturates. The dashed line in Fig(@®hows the erro-
turbed field depends N, . For the perturbed fields in Eq. neous divergence which would appear if the perturbed field
(14) one finds the boundary condition withreplacingD, in  were not correctly treated in the limit af—0.
Eqg. (36). As we explained in Sec. Il, wheN, is not ex- The shape of the frequency shift signal changes dramati-
tremely small one finds th&@~D,, . It ensues thaltl | given  cally from thick to thin samples. The frequency shift in the
by Eq. (36) can be taken also as the boundary condition ofnormal state is reduced and a large negative peak appears
the perturbed field. This was the case treated in the precedingelow T, . As a good measure of the overall signal amplitude
section. It brings abonlug in the filling factor in Eqs(60),  one can monitor the frequency shift at zero temperdtiig
(61). Now we may examine the case of extremely thin films10(b)]. Its behavior as a function af is found to be similar
(d—0) so that the depolarizing factor becomes very smalls for the absorption signal level.

ed

1+(e—-1N,

}d‘fe(d), (63
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FIG. 10. The variation ofa) the absorption signal level at;
and (b) frequency shift at zero temperature with the sample thick- FIG. 11. Experimental signals of the temperature-dependent mi-
nessd. The calculation was based on HG3), and the parameters Ccrowave absorptiofa) and frequency shifth) at various positions
explained in the text. The curves are labeled by the values off the thin film in the cavity operating in mode(see the tejt

|5‘|/60w. If the perturbed field is not treated correctly, one obtains

an erroneous divergen¢dashed ling the temperature of the sample is varied. Simultaneously,
changes in the absorption were measured by detecting the
VI. MICROWAVE EXPERIMENTS ON THIN FILMS microwave diode current.

Figure 11 shows the temperature dependence of absorp-

In order to provide experimental support to the theory intion and frequency shift measured at various positions of the
the preceding sections we have measured the absorption asdmple along the cavity axis for mode |. The absorption sig-
frequency shift as a function of temperature in annals change significantly only in amplitude but not in shape.
YBa,Cu;0;_ 5 epitaxial thin film on NdGa@substrate. The However, the form of the frequency signals changes dramati-
thickness of the sample was 120 nm which is much less thagally. Obviously the signals in the center of the cavity show
the penetration deptld,(T.)=5 wm. A cylindrical TE;;; the features due to the electric case as in Fig. 8. The signal is
cavity was used. We have introduced an asymmetry in thstrong because the electric field is parallel to the longer side
cavity so that the degeneracy of the modes was lifted. Exef the sample so that the depolarization effect is large. As the
periments were performed in two orthogonal modes withsample is placed at a higher position in the cavity the signal
well separated resonance frequencies. The thin film samplgradually loses electric and gains a magnetic component.
could be mounted on a flat sapphire holder at various posiNote that the magnetic field in mode | is perpendicular to the
tions along the axis of the cavity. In the center of the cavity,film plane so that the film acts as a thick sam{séth some
the longer sidé3 mm) of the film was along the electric field demagnetizing factgland the shape of the magnetic signal is
of mode I (higher frequency modeand the shorter sidél  as shown in Fig. 7.
mm) was along the cavity axis. In this configuration the elec- Measurements in mode Il taken at the same positions of
tric field of mode ll(lower frequency modewas perpendicu- the sample in the cavity were also performed. The intention
lar to the film plane. When the film was raised close to thewas to examine also the signals in the configuration which is
top plate of the cavity the magnetic field of mode | wasopposite to the first, i.e., when the electric field is perpen-
perpendicular to the film plane while the magnetic field ofdicular to the film and the magnetic one is in the film plane.
mode Il was along the longer side of the film. The measurements did not yield detectable signals. This is in

We used a BRUKER microwave bridge operating at 9—10agreement with the expectations based on the theory in the
GHz. It has a built-in automatic frequency contrf@FC) preceding sections. Namely, when the microwave electric
unit which tracks the klystron frequency always in resonancdield is perpendicular to the film the field, in the sample is
with the cavity. Thus, the frequency shift can be measured asot much larger than the empty cavity fielt}. Therefore,
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the induced magnetic field is so small that the signals turn 1 1—b(vlv;) b
. . - f v
out to be unobservable. Similarly, when the magnetic field is —= (1=0)(01=i0,) +Db —(—) (64)
parallel to the film plane and the thickness of the film is O eff 017102)T00n - Tl Vs
much smaller than the penetration depth the shielding current
is negligible and the signal is unobservably small. where b(T)=Bdc/BC2(T) is the reduced field,o((T)

It is also possible to orientate the sample in such a way-io,(T) is the complex conductivity of the Meissner state,
that both the electric and magnetic fields are always in th@ndo,(T) is the normal state conductivity in the vortex core.
film plane. This is achieved upon rotation of the film by 90° The ratio of the actual vortex velocity to the maximum
around the longer sid€8 mm). The electric field in mode | velocity v; in the flux flow regime is the mobility factor
coincides with this axis so that the electric contribution to thewhich  results from complicated flux dynamics
signal remains unchanged. On the contrary, the magnetiprocesse§9‘44Since the study of the flux dynamics is not in
field in mode | lies in the film plane and yields no detectablethe focus of the present paper we consider just the simple
signal. Consequently one observes only the electric signdlux flow limit v/v¢=1. Our aim is to show that the steplike
which becomes weaker when the sample is raised from thabsorption curves at microwave frequencies gradually
center to the top plate of the cavity. When mode Il is turnedchange shape into the familiar ac-susceptibility curves with a
on for the same sample orientation the electric field is along’®@k belowT. only due to their different frequencies.
the shorter sidél mm) of the film. The observed signal has ~ 1he phenomenology of current and field penetration de-
the same features as in mode | but the amplitude of the sign&FiPed in the previous sections can be adapted to the present
is stronger reduced due to the lower depolarization effectc@se straightforwardly. The effective complex conductivity
The magnetic field in mode Il is again in the film plane and? efi= Teri— i e replacess =0 —io in the calculation of
yields no detectable signal. To summarize, when both fieldd; and \, in Eqg. (55), and the complex permeability,
are in the film plane one observes only the electric signalfollows from Egs.(56)—(58). However, the complexity of
Close to the magnetic field maximum the signal is reducede .« in Eq. (64) brings about new features which have to be
but its shape still reveals the electric signal. We have alsaliscussed.
observed that thinner films yielded stronger sigrials. At the superconducting transition the reduced fieldis

=1 so that the effective conductivity in E¢4) equalso,
as expected. At lower temperaturdess reduced from unity
VII. RELATION TO AC SUSCEPTIBILITY towards the zero temperature valug0)=By./B.,(0).

From Eq.(64) one can see that just beloW, Treﬁ must

We have pointed out in this paper that microwave cavit
P pap Y ecome complex. Howeves;, grows belowT., and when

erturbation measurement yields the average relative perm 2 ) . . .
P y 9 P e conditiono,> o4, o,/b is attained, the first term in Eq.

ability fr =1+ Xm of the sample when the driving field is the g4) hecomes approximately equal b, and is smaller

microwave magnetic field. Alternatively and much more fre-ihap the second term. The effective conductivity is then prac-
quently, ac susceptibility,,, is measured at low frequencies tically real, even though the sample is in the superconducting
(10—-1@ Hz) using the induction coil method. It may be of state. Namely, the response of the superconductor in the
interest to clarify the relationship between the two tech-mixed state to the ac field consists predominantly in the vis-

niques. cous vortex motion so that the conductivity is real. The
In the previous sections we have described the temper@bove é:ondition is frequency dependent since of}/
ture dependences ofAf,/f),, and A(1/2Q,)y, for a super-  =uowA( . For the same\,_ at a given temperaturé<T,,

conductor in the absence of a dc external magnetic field. w2 can have orders of magnitude different values. At low
ac susceptibility measurements the sample is placed in a dgequencies, as commonly used in the measurements of ac
magnetic fieldH 4, and a small ac fieldH ,expet) is super-  Susceptibility,o is very large and the first term in E(64)
imposed. Microwave measurements can also be made wit negligible with respect to the second. Hence, the effective
the sample exposed to a dc fight .2-36-3The two tech- conductivity is practically real above and beldw. There

niques can, under these circumstances, be treated from &h NOwever, a change in its temperature dependence. Above

unique viewpoint, the only difference being the frequency e the temperature dependence is thagfT), while below

scale. T. one has a reab4~ zrnBCZ/BdC which increases much
We shall consider the cases when the applied dc field i§ster thana,(T) due to the temperature dependence of
much larger than the lower critical fiel@y:>B , so that Bc,(T). Hence, the resulting penetration depth may rapidly
the internal flux density in the mixed stateBg.~ uoHq..  d€crease below the size of the sample and one observes a
We also assume that it is practically constant throughout th@ak in the absorption curve as predicted from @¢). This
sample as in a field cooled experiment. When the driving a€rossover from an electromagnetically thin to thick sample is
field is superimposed parallel to the dc field the inducedield and frequency dependent because of the field and fre-
current is perpendicular to the vortices, so that the Lorentfluéncy dependency afe;. At microwave frequencies this
force exerts oscillations of the vortices around their equilib-P&ak belowT is not observed because is orders of mag-
rium positions. In this case the induced current is carried bylitude smaller, so that the first term in E@4) does not
a combined motion of both superconducting and normabecome negligible immediately beloW., i.e., o¢ remains
electrons, and the effective complex conductivity is givencomplex. Figure 12 shows a set of curves for the same low
by19:20 temperature reduced fielh(0)=10"%, but for several
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FIG. 12. The real and imaginary parts of the complex permeMUM. A relation of microwave measurements to ac suscep-

ability , calculated from Eqs(57),(58) with oo from Eq. (64,  UPility measurements was also discussed.
We takeb(0)=10* andd=0.35,(T,). The frequency» is a typi-
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an ac susceptibility measurement reflects the actual flux dy-
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namics in the sampfe. APPENDIX: PERTURBATION APPROACH

VIIl. CONCLUSIONS ' I__et us assume a caviFy with a perfect conduqtor placed

inside and consider the fields of a mode formed in the vol-
We have analyzed the cavity perturbation due to a conume V between the cavity walls and the samkg. 13.

ducting sample. It was shown that the conventional pictureThe Maxwell equations in this case can be expressed as
of the empty cavity as the unperturbed state was not satisy E,= —iZ)po and Vx Hp=iZ>pr where the time depen-

factory. An unperturbed state consisting of the cavity and . . -~ .
perfect conductor sample was introduced. Differences in th@ence of the fields is exja;f). The complex frequency is

signal response between the positions of maximum magnetige= @p(1+1/2Qp) wherew,, is the real frequency ar@, is
and maximum electric field were clarified. Different treat- e Q factor determined by the losses in the cavity walls.
ments of the magnetic and dielectric properties of the sampl@N€ can use the operator algebra and Maxwell equations to
were presented in order to avoid possible confusion wheRTOVe that

applying different perturbation equations. Also, the boundary

conditions for the fields in the sample were analyzed and in f [V (Ef X Hp)+ V- (EpXH%)]dr

particular their eventual changes with the conductivity of the v

sample. Explicit expressions are derived for the sample in

the slab geometry for both magnetic and electric field posi- = —i(z,p—z,;)J (€0Ep- E; +poH - H;)d3r.

tions. When the thicknesd of the sample is much larger v

than the normal state penetration degihthe losses and (A1)
frequency shifts in both sample positions vary linearly with

8, . Dramatic differences are found for thin films in which ~ The volume integral on the left hand side can be trans-
d< 4. The losses due to the imposed magnetic microwavéormed into the integral over the surface enclosing the vol-
field are significantly reduced and follow the law umeV

A(1/2Q) nm~ 6, 2. On the contrary, at the electric field po-

sitiqn one findsA(1/2Q) e~ 5,3. The former_ beqomes ex- J' [V-(E; ><Hp)+V~(Ep><H;)]d3r

perimentally undetectable. This holds also in thin supercon- v

ducting films. It is shown that the best choice for measuring

the Io_sses in_ thin film _samples is the positio_n _of maximum — 3g [E; ><Hp+Ep><H;]-ncdsc

electric field in the cavity. The frequency shift in that posi- Se

tion shows a remarkable peak just beldw. We have dem-

onstrated these pr(_edic_:tions by _microwa_v_e mgasuremer_uts on + jg [E; ><Hp+Ep><H;] (A2)

an YBgCuO; _ 5 thin film at various positions in the cavity s
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whereS; and S are the surfaces of the cavity walls and the When the sample becomes a nonperfect but still a good con-
sample, respectively. The second surface integral vanishehictor the fields are slightly changed at the sample surface
becauseE, is normal to the surface of a perfect conductor.and in its vicinity, but not at the cavity walls which are
Thus, Eq.(A1) can be written in the form assumed to be relatively far away. Under these conditions
one can replace the fieldsandH in the integral ovelS; in
% [E} X Hp+EpX HE]'ncdSﬁﬂch, (A3)  Edq.(A5) by E, andH,,, respectively. This integral then be-

Sc Qp comes equal to EgA3). In the integral over the sample
where we have usedl., to denote the energy of the fields in surfaceSin Eg. (A5) only the second term remains. Itis due
the cavity with the perfect conductor sample. tq the fact that the perturbed fiel is not strictly perpen-

The perturbation consists in making the sample a nonpedicular to the sample surface but has a small tangential com-
fect conductor. The Maxwell equations for the new fields argPonent. Turing now the attention to the volume integral on
VXE=—iwB and VXH=i®D where o= w(1+i/2Q) is the right-hand side of Ec{A4) one can say that close to the
the shifted complex frequency. We can consider a volumsample the perturbed fields differ from the unperturbed ones

integral containing products of unperturbed and perturbed¥ Small perpendicular components, while the parallel com-
fields and find ponents are only slightly changed. Farther from the sample

even these differences vanish. Hence, one can replaoe

H by E, and H,, respectively, and the integral becomes
W¢,. With the above approximations one can write &)

in the form

f [V-(EfXH)+V-(ExH})]d
\%

= —i(z)—z);)fv(eoE- Ey +uoH-Hy)dr. (Ad)
@p

Qp

When the divergence theorem is used one obtains Wept ﬁ(EX H;)-nds= —i(Z,—Z,;)WCp, (AB)

f [V-(EfXH)+V-(ExH3)]dr
\%
It leads to the final form for the complex frequency shift
= iC[E; XH+EXH{]-nds;

Aw, (0—wp)

i
* * * .
+ #)S[EDXHJrEXHp]-nds. (AS5) . fﬁS(Epr) nds. (A7)

w w
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