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Chain model for the spiral instability of the force-free configuration
in thin superconducting films
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The developed stage of a spiral instability of the magnetic flux line in a thin film is studied. The instability
of a one-dimensional~1D! flux-line lattice parallel to a thin superconducting film surface and to a transport
current is modeled as a transformation of initial linear flux lines into chains of 2D vortices crossing the film and
tilted in the field direction. The pitch length of the first instable spiral-like chain structure turns out to be of the
order of a film thickness at all fields, which leads to a dissipation rate comparable in magnitude with the
experimental one.@S0163-1829~98!08941-3#
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I. INTRODUCTION

The resistive behavior of a current-carrying type-II sup
conductor subjected to a longitudinal magnetic field is s
poorly understood theoretically1 and far from being com-
pletely documented experimentally. In this configuratio
usually called ‘‘force-free,’’2 the transport current exerts n
~Lorentz! force upon flux lines~FL’s! parallel to its direc-
tion. Thus, the theoretical problem is to comprehend the
sons for a flux motion and energy dissipation in this case
other words, the mechanism of resistivity, which is s
disputable.3

Experimentally, the longitudinal resistivity exhibits
rather specific behavior. Typical of this are the enhancem
of a critical current in a parallel field4 and the onset of a
considerable longitudinal magnetic moment~depending on
the current applied! in a small or even zero external field.2,5,6

An interesting feature of this state is the appearance of
regular5,6 or stochastic7 oscillations of the longitudinal mag
netic moment and voltage.

Assuming a steady-state electric field in a current dir
tion requires a continuous flow of a transverse componen
a magnetic field in a sample. It was comprehended that s
a flow may be provided by the entry of inward-collapsi
right-handed spiral vortices following the pattern of a str
field.2 But this process leads to a continuous buildup o
longitudinal magnetic flux in the sample.8

A principal solution to circumvent this dilemma was su
gested by Clem9 who discovered in 1977 an instability of
single flux line in a current-carrying superconductor agai
certain left-handed helical perturbations provided the curr
is sufficiently high. Thus, the longitudinal resistivity may b
caused by a succession of right-handed helices entering
left-handed helices leaving the sample~both events contrib-
ute to the positive longitudinal electric field!. Above the
PRB 580163-1829/98/58~17!/11638~14!/$15.00
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characteristic current of instability, various types of dissip
tion cycles become possible.9–13

Following the pioneering work of Clem,9 Brandt consid-
ered a more realistic case of the helical instability of a flu
line lattice~FLL! ~Ref. 10! in fieldsH@Hc1 , the field of the
first magnetic vortex penetration in the bulk sample.
found that a critical current of a homogeneous helical dist
tion of the FLL is equal to zero in the pin-free case: e.g.,
force-free configuration is absolutely instable in an ide
bulk superconductor, though, thanks to the very large typ
wavelength of this instability~of the order of sample length!,
even a very weak pinning may stabilize the FLL.11 Later on,
comprehensive models for a steady-state dissipation in a
gitudinal field were advanced by Clem12 and Brandt13 who
explained the onset of a longitudinal paramagnetic mom
and gave reasonable values for the oscillation frequenc
some shuttle process of the flux entry and exit. The prob
which remained unsolved was an extremely low dissipat
rate proportional to (j/R)2, wherej is the superconducting
coherence length andR is a transverse size of a sampl
which was many orders less than voltage oscillations
served in experiment.6

To study in detail the local mechanism triggering the s
ral instability and look for regimes yielding a higher ener
dissipation, the low-dimensional case of a thin supercond
ing film carrying a transport current parallel to an extern
magnetic field may be considered. Theoretically, it is fav
able because the process of FLL formation in the increas
magnetic field is well studied in films at all stages: fro
well-separated single FL’s to a one-dimensional FLL a
then to a few-layer FLL.14–16

The nucleation of a left-handed instability in thin film
was considered in Ref. 17 where the characteristic curren
instability was found to be of the order of the critical curren
observed in thin films. The threshold characteristic field
the instability turned out to be close to the first critical fie
11 638 ©1998 The American Physical Society
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PRB 58 11 639CHAIN MODEL FOR THE SPIRAL INSTABILITY OF . . .
of FL penetration into the film,Hc1(d),14 where d is the
thickness of the film.

To obtain the dissipation rate in thin films one shou
consider the further development of the growing left-hand
spiral and, for the realistic case of a field well above t
Hc1(d), take into account the interaction with the other FL
Finally, the steady-state dissipation cycle regime of the s
of a ‘‘shuttle process’’ considered by Clem12 should be ad-
vanced to explain the resistivity in the longitudinal geomet

For these aims, a model of a spiral instability in films
advanced in this paper, based on the idea of the transfo
tion of the growing left-handed spiral into a chain of tilte
vortices crossing the film. Section II contains a qualitat
description of the model and the calculation of a single flu
line instability valid for an external field slightly abov
Hc1(d). In Sec. III we consider the instability of a one
dimensional~1D! FLL valid for a field well aboveHc1(d)
and estimate the resistivity following from the correspond
‘‘shuttle process.’’ The results are summarized in Sec. IV

II. CHAIN INSTABILITY OF A SINGLE FLUX LINE

A. Qualitative description of the model

A basic reason for the instability of a magnetic FL paral
to a transport current is the Lorentz force applied upon
FL element and proportional to the vector productj3n
wherej is a local density of the transport current andn is the
tangent vector of the FL. As was noticed by Clem,9 in the
case of a left-handed spiral distortion of FL’s this force a
outwards~contrary to the right-hand case! against the line
tension and the Meissner-current-mediated force from
external field. If the transport current is large enough,
linear FL parallel to it becomes instable and transforms i
growing left-handed helical spiral. This process in thin film
was studied in Ref. 17 for the nucleation stage only when
radius of the helixr !d!l and L, wherel and L are the
magnetic field penetration depth and pitch length of the s
ral, respectively.

What happens, then, when the spiral diameter 2r first at-
tains the thickness of the filmd? The circular cross sectio
of the spiral FL should be first distorted due to the attract
to mirror images in the upper and lower film surfaces a
then the vortex would cross the surface of the film as
shown in Fig. 1~a!. It is likely from energy reasons18,19 that,
at low fields, a spiral-like structure which follows from th
crossing process may hardly be formed by long~on the scale
of d) strongly tilted vortices@shown by a dashed line in Fig
1~b!# but rather by well-separated 2D vortices tilted wi
respect to a normal to the surface in a field direction@solid
lines in Fig. 1~b!#. The further development of this spiral-lik
structure formed by the two chains of vortices directed
and down, respectively, as is shown in Fig. 1~c!, proceeds as
a movement of the chains driven by the Lorentz force
opposite directions~outwards!. By this motion, the tilt angle
of the vortices may also change.

For symmetry reasons, the vortices in the left and ri
chains are equally tilted with respect to the external fi
~and current! direction that coincides with positivey axis
direction. To evaluate the energy of the structure and e
mate the dissipation rate during its expansion one should
d
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calculate the field of the arbitrary tilted vortex and the ene
of interaction between the tilted vortices.

B. Field of a tilted vortex

We continue now with a calculation of the magnetic fie
induced by an individual tilted vortex in a thin film. Thi
problem was considered before mostly as a problem o
tilted FLL in fields well aboveHc1 .18–21 On the other hand,
considering the straight tilted vortex crossing a thin film w
do not need in general the complicated expressions obta
in Ref. 19 for an arbitrary curved single vortex in a plate
arbitrary thickness. In what follows, we directly calculate t
magnetic field distribution in the London approach assum
the case of a strong type-II superconductor withl@j and
field rangeH!Hc2 , whereHc2 is the upper critical field of
the superconductor.

We consider a superconducting film of thicknessd and
width W satisfying the inequalitiesj!d!l and W@L
5l2/d@l where L is a transverse penetration depth f
films.22 The film occupies the regionuzu<d/2, uxu<W/2 and
is infinite along they axis. The magnetic field of the vorte
alone,h, obeys inside the superconductor the London eq
tion

l2curl curlh1h5F ~1!

and the Maxwell equation

div h50, ~2!

where the source function on the right-hand side~RHS! of
Eq. ~1! is given by23

FIG. 1. ~a! A cross section of a growing left-handed spiral: fir
round~helix!, then distorted by the attraction to a film surface,~b! a
spiral-like structure formed by strong tilted~dashed! or slightly
tilted ~solid! vortices, and~c! two vortex chains resulting from the
development of a helical spiral.
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11 640 PRB 58GENENKO, TROCHE, HOFFMANN, AND FREYHARDT
F5F0E dld~r2 l!. ~3!

F0 is the unit flux quantum,d~r ! the three-dimensional delt
function, l the position vector of the vortex singularity, an
dl the flux-line element. The integration goes along the fl
line ~vortex core!.

Outside the superconductor,h obeys the Maxwell equa
tions

curl h50, div h50 ~4!

and is continuous in all components at the film bounda
uzu5d/2 and vanishes asuxu, uyu or uzu→`.

Since the vortices in thin films are straight and sligh
tilted even for field directions close to the film surface,18,19,24

we consider further a straight vortex line tilted for simplici
only along they axis and parametrized by the coordinatez as

l x5Rx , l y5Ry1kz, l z5z. ~5!

Here the vectorR denotes the point of the vortex crossin
the symmetry plane of the film atz50. The two-dimensiona
vectork has the same direction as the projection of the v
tex line on the planez50 and is equal to tanb, whereb is
the tilt angle with respect to the perpendicular direction
the film @see Fig. 2~a!#. In this case, the line integration i
Eq. ~3! may be performed explicitly and gives the followin
expressions for the components of the vectorF:

Fx50, Fy5kF0d~x2Rx!d~y2Ry2kz!,

Fz5F0d~x2Rx!d~y2Ry2kz!. ~6!

It is convenient to solve Eqs.~1!, ~2!, and ~4! with the
help of a Fourier transformation

h5E d2q

~2p!2 hq~z!exp~ iq•s!

wheres5(x,y) denotes the two-dimensional position vecto
In these terms the functions~6! are reduced to

Fq
x50, Fq

y5kF0 exp~2 iq•R2 ik•qz!,
x

s

-

.

Fq
z5F0 exp~2 iq•R2 ik•qz! ~7!

and then Eqs.~1!, ~2!, and~4! to

S Q22
]2

]z2Dhq
j ~z!5l22Fq

j ~z!, uzu<d,

S q22
]2

]z2Dhq
j ~z!50, uzu>d, ~8!

with Q25q21l22. Making use of the boundary condition
and Eq.~2! inside the sample one finds for the field comp
nents inside the superconductor

FIG. 2. ~a! A tilted straight magnetic vortex crossing a film,~b!
parallel tilted vortices, and~c! vortices symmetrical with respect t
planez50 ~note that the sign of vectork is not connected to the
sign of the field!.
hq
z5A

q cosk•qd/22k•q sin k•qd/2

Q sinh Qd/21q coshQd/2
coshQz2 iA

q sin k•qd/21k•q cosk•qd/2

Q coshQd/21q sinh Qd/2
sinh Qz2Ae2 ik•qz,

hq
x5

iqx

q
AFQ cosk•qd/2 sinhQd/21k•q sin k•qd/2 coshQd/2

Q sinh Qd/21q coshQd/2

sinh Qz

sinh Qd/2

2 i
Q sin k•qd/2 coshQd/22k•q cosk•qd/2 sinhQd/2

Q coshQd/21q sinh Qd/2

coshQz

coshQd/2G ,

hq
y5

qy

qx
hq

x1kAF coshQz

coshQd/2
cosk•qd/22 i

sinh Qz

sinh Qd/2
sin k•qd/22e2 ik•qzG , ~9!
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whereA52F0e2 iq•R/l2@Q21(k•q)2#, and outside the su
perconductor

hq
i ~z!5hq

i ~6d/2!expFqS d

2
2uzu D G , 6z>d/2. ~10!

The expressions~9! and~10! are valid for a vortex located
far from the edges of the film relative to the transverse p
etration depthL, W/22uxu@L, and may be used for an
vortex orientation, not only tilted along they axis. In gen-
eral,hq

y andhq
x would mean the field components parallel a

transverse to the vectork, respectively. Since the conditio
d!l was used so far for justifying the assumption of
straight vortex@Eq. ~5!#, the expressions~9! and ~10! are
valid for a superconducting plate of any thickness. Parti
larly, in the casek50 one finds from Eq.~9! a field of the
vortex normal to the plate of finite thickness,25 and then, in
the limit d!l, the well-known Pearl solution for the vorte
in a thin film.22

Let us note that for the evaluation of the tilted vort
characteristics one cannot use the above Pearl approx
tion, where the film is considered as having a zero thickn
In the latter case, a current may flow only in thexy plane,
contributing, thus, only to the magnetic moment perpendi
lar to the film. For this Pearl vortex, the only essential ch
acteristic length in space isL. In the tilted vortex case, the
finite k means the appearance of a nonzero magnetic mom
component parallel to the film and a nonzero current den
componentj z normal to the surface whatever thin the film i
This leads to the space dependence of all the quantitie
the scale of the film thicknessd. We proceed now with a
calculation of the free energy of the tilted vortex and a p
of interacting tilted vortices.

C. Free energy of straight tilted vortices in a superconducting
plate of arbitrary thickness

The conventional expression for the free energy,26

F5
1

8p E
uzu<d/2

@h21l2~curl h!2#dV1
1

8p E
uzu>d/2

h2dV,

~11!

may be easily expressed in terms of the Fourier compon
by using Eqs.~8!:

F5
1

8p E
uzu<d/2

dzE d2q

~2p!2 h2qFq1
l2

8p E d2q

~2p!2

3 Fh2q
x

]hq
x

]z
1h2q

y
]hq

y

]z
2h2q

z
]hq

z

]z GU
z52d/2

z5d/2

. ~12!

The second~surface! term in Eq.~12! vanishes if the vor-
tex does not cross the plate surface even if the field it
does not vanish at the surface, as was shown in Ref.
Thanks to a linearity of the London approximation, t
above expression is valid for any number of vortices. In
last case, the superposition of the source functions@Eq. ~2!#
should be taken forF and the superposition of the solution
to Eqs. ~9! and ~10! corresponding to different vortice
should be taken forh in Eq. ~12!.
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We consider first the interaction energy of two equa
tilted vorticesU1(R). Then, one should use forh in Eq. ~12!
the fieldh5h11h2 generated by the two vortices located
positionsR1 and R2 @see Fig. 2~b!#. The only difference in
the field expressions~9! and ~10! for vortices 1 and 2 is, in
this case, determined by the position vectorsR1,2 of the mul-
tiplier A. For our purpose we also need to calculate the
teraction energyU2(R) of vortices symmetrical with respec
to the planez50. They have opposite signs of thez compo-
nent of the field and are equally tilted with respect to t
positive y direction as is shown in Figs. 1~b! and 2~c!. To
calculate the interaction energy in this case one should
h5h11h2 and use for one of the vortices the expressions~9!
with the changed signs of bothk andA.

Upon the substitution of the field expressions~9! in Eq.
~12! one finds

U6~R!5
«0d

2p E d2qu6~q!cosq•R, R5R12R2 ,

~13!

where«05(F0/4pl)2. Exact expressions for the function
u6(q) are calculated in the Appendix and are rather cumb
some. In the following, we will use approximate expressio
taking into account the inequalityd!l. The self-energy of
the tilted vortex may be found from Eq.~13! by taking R
50. It differs from the known expression19 by a nonessentia
coefficient of the order of unity. Now we are in a position
consider the vortex chain energy.

D. Gibbs free energy of the vortex chain and spiral instability
of a single FL parallel to the current

Let us consider a thin superconducting film describ
above in Sec. II B. An external magnetic field of magnitu
H slightly aboveHc1(d) is applied in the positivey direction
and a transport currentI flows the same direction. Flux line
of the external field are supposed to be located far eno
away from each other to neglect the interaction. At su
ciently high currents the straight FL’s become instable. A
result of the left-handed spiral development of the FL i
tially lying along they axis (x5z50) two chains of vortices
are formed as described in Sec. II A~see Fig. 1!: upward-
directed vortices are located at the positions (x,2nL) and
downward-directed ones are at the positions„2x,(2n
21)L…, where n is integer, and 2L and 2x are the pitch
length and width of the spiral-like chain configuration, r
spectively~Fig. 3!. All the vortices are inclined by the sam
angle with regard to the positive direction of they axis.

FIG. 3. The location of the upward- (Rn
1) and downward- (Rn

2)
directed vortices in a vortex chain.
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Energetically, all the vortex positions are equivalent. T
enables us to calculate the energy of the chain per unit le
along they axis as the energy of one of the vortices divid
by L as follows:

F5
1

L (
n

@U1~Rn
1!1U2~Rn

2!#, ~14!

whereRn
15(0,2nL) andRn

25„22x,(2n21)L… denote the
distances between the test vortex located at (x,0) and vorti-
ces of the same and opposite vorticity, respectively~see Fig.
3!. The summation extends over all integern including n
50, accounting for the test vortex self-energyU1(R0

1

50).
The space dependence enters the energy expres

U6(R) only through the circular functions@Eq. ~13!#: there-
fore the evaluation of the energy Eq.~14! may be simplified
by using the relations

(
n

cosq•Rn
15(

n
cos~qy2nL!5

p

L (
n

dS qy2
p

L
nD ,

(
n

cosq•Rn
25(

n
cos@qy~2n21!L22xqx#

→
p

L
cos~2xqx!(

n
~21!ndS qy2

p

L
nD ,

~15!

wheren is an integer. In the derivation of the last formula t
evenness of the integrand in Eqs.~13! and ~15! was used.

Let us assume that short pitch lengthsL are typical for
instability process andj!L,pd. Then uqyu5punu/L
.d21 for any nÞ1. Taking this into account one finds fo
functionsu6(q) the following approximations~see the Ap-
pendix!:

u1~q!5
11k2

Q21~k•q!2 1
u~12qd!

Q21~k•q!2 S 11l2~k•q!2

l2~q11/2L!2 2k2D ,

u2~q!52
12k2

Q21~k•q!2

sin k•qd

k•qd

2
u~12qd!

Q21~k•q!2 S 11l2~k•q!2

l2~q11/2L!2 1k2D , ~16!

whereu(x) is the Heaviside step function.
For simplicity the development of the chain is consider

in the regionx<d/2, which allows one to find an analyti
expression for the free energy:

F5
«0dA11k2

L Fg1 lnS L

pj D G1
«0d

L2 F2k2d1px~12k2!

1x2S 2pk2

l
22k2/d2

112 ln 2l/d

L D G . ~17!

In the above evaluation, the logarithmically divergent ser
(n21 was cut off at the numberN;L/pj, which corre-
s
th

ons

d

s

sponds to the usual momentum cutoffqy.1/j in the evalu-
ation of the vortex self-energy in the Londo
approximation.26

The instability first nucleates, presumably, as a smo
left-handed helical distortion of the linear FL and then brea
into a vortex chain. The pitch length of this structure is d
termined at the earlier stage of nucleation since after
vortex chain formation the vortices move perpendicular
the current. In our model, we treat the FL instability in
single description as if the vortex chains were formed fro
the very beginning of the process atx50. The optimum
parameters of the first instable mode and the critical curr
of this will be determined in a self-consistent manner a
then compared with the known conditions of the helical
stability. We keep in mind that the critical current found
such a manner may be underestimated because of the s
ened total length of FL’s but may also be overestima
thanks to the large energy of the strongly nonuniform ch
structure. For example, the initial energy of the vorte
antivortex chain atx50, k50 following from Eq.~17!, i.e.,

F5
«0d

L Fg1 lnS L

pj D G , ~18!

is larger than the initial FL’s energy per unit lengthF0
5«0 ln(d/2j) ~Ref. 14! at the lowest reasonable pitch leng
L5pj but is smaller thanF0 at L5pd.

The Gibbs free energy of the spiral-like chain structu
@Figs. 1~b!, 1~c!, and 3# ~Ref. 27!,

G~ I ,H !5F2DWH2DWI , ~19!

including the contribution of the external field,DWH , and
the work done by the source of the transport current,DWI ,
may be negative. The instability sets in whenG is not only
negative but also less than a Gibbs free energy of the in
linear FL,G0(H), which is also negative atH.Hc1(d). It is
clear that it should happen at some value of the current s
G0(H) is current independent.

The magnetic field contribution may be directly calc
lated using Eqs.~9! as

DWH5
1

4pL E HhdV5
kHF0d

4pL S 12
tanhd/2l

d/2l D U
d!l

→
«0d

L

2

3
kh ln

d

j
, ~20!

where the dimensionless fieldh5H/Hc1(d), Hc1(d)
5(2F0 /pd2)ln d/j.14

To calculate the transport current contributionDWI we
suppose the Meissner distribution of the current in
film:27,28

j ~x!5
I

pdA~W/2!22x2
. ~21!

Then the work done by the source of the transport curren
the vortex moves from a film center through a distancex in
a positivex axis direction is
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E
0

x j ~x!F0d

c
dx5

IF0

pc
arcsin

2x

W
. ~22!

Let us note that this value is independent of the vortex
angle, since thez projection of the vortex length perpendicu
lar to current remains constant and equal tod. Finally, one
gets

DWI5
«0d

L
hi lnS l

j D arcsin~2x/W!

d/W
.

«0d

L
hi lnS l

j D 2x

d
,

~23!

for x!W. Here the dimensionless current self-field is intr
duced ashi5HI /Hc1 whereHI54I /Wc is the magnitude of
the current self-field over the film center.

The vortex chain is supposed to nucleate initially atx
.d/2 @Fig. 1~a!# and then expand, driven by the Loren
force exerted upon the vortices by the transport current.
take for the criterium of the vortex chain nucleation the co
dition

DG~k,L !5G~ I ,H !ux5d/22G0~H !<0, ~24!

where

G0~H !5«0~12h!ln
d

2j
~25!

is the Gibbs energy of the initial linear FL lying parallel
external field inside the film.14

The numerical study of the functionDG(k,L) shows a
deep minimum of energy located at some valuesk,1 and
L.d in the field range 1,h,4, hi;1 ~see Fig. 4!. This is
in qualitative agreement with the results for the single
helical instability in thin films,17 Lc;d/hi , hi;Ah21,1,
and thin wires,32 Lc;d/Ah21, h@1. We need now to esti
mate the critical current of the chain instability and to co
pare it to that of a helical instability in thin films.17

E. Critical current of the chain instability of a single flux line

In this section we first simplify the expression~19! for the
energy of the chain structure by taking into account the
tual parameter region. Then we find values for the vortex
k0 and pitch lengthL0 , delivering a minimum ofG(I ,H).
The chain with these parametersk0 and L0 is the first to
nucleate when the conditionDG(k,L)50 is first satisfied at
some critical value of the transport current.

The Gibbs free energy~19! with account ofL;d, k,1,
2x5d is reduced to

G~k,L !5
«0dA11k2

L Fg1 lnS L

pj D G
1

«0d2

L2 Fp1k2S 32p1
pd

l D G
2

2«0dkh

3L
ln

d

2j
2

«0dhi

L
ln

l

j
, ~26!

whereg50.5772 . . . is theEuler constant.
The equations for the valuesk0 andL0 are given by the

conditions ]G/]k50 and ]G/]L50 and solved numeri-
lt

-

e
-

-

-
lt

cally. Thereafter, the resultingk0 and L0 depending on the
field and current should be substituted in Eq.~24! to deter-
mine the critical value ofhi corresponding to the critica
current of the chain instability. An analytical solution of th
above transcendental equations is impossible. For the foll
ing numerical study we need to define the parameters
volved. Let us consider a YBa2Cu3O thin film at temperature
T577 K having a penetration depthl5220 nm and j
53.6 nm.29 Let the thicknessd be of 100 nm,l and the
width W be of 50mm.

The results of the numerical solution are presented in F
5. At low fields the 2D vortices are far from each other a
their interaction with the external field dominates over t
mutual interaction. The linear growth of the tilt angle at lo
fields reproduces the behavior known for the isolated vor
crossing a film19 as well as for the tilted FLL~Refs. 18–21!
and is quite understandable. As an evaluation ofk in this
region, one can takeL5l and find by the variation of Eq
~26!

k.
2h ln~1/2j!

3@g1 ln~l/pj!#
. ~27!

This linear dependence is shown in Fig. 5~dashed line!
and describes well the low-field behavior ofk. With growing
field, the tilt angle grows while the intervortex distance d
creases. When the equalityk5L/d is reached and a saw
toothed structure is formed@Fig. 1~b!# the intervortex inter-
action becomes large enough to change the behavior of
tilt angle. Further growth ofk is impossible since vortex
structures withk.L/d are meaningless. Then, in the hig
field region, the minimum of energy is achieved at the li
k5L/d as is shown in Fig. 6.

The pitch lengthL decreases monotonously in the who
field region and agrees satisfactorily with the above ci
results for the helical instability. It is reasonable since t
saw-toothed structure of the instable mode@dashed line in
Fig. 1~b!# formed already in fieldsh.1.6 may be treated a
a discrete analog of the helical mode. Let us note thaL
remains less thanpd even at the lowest considered fie
value of H51.002Hc1(d), which supports the initial as
sumption in Sec. II D.

The reduced self-fieldhin proportional to the current o
instability j in may be well fitted in the region 1.5,h,3 by
the linear dependence

hin,chain51.0610.15~h21!. ~28!

For the thin film considered above, the self-field of the cr
cal current of the helical instability taken from Ref. 17
close to the above result in the same field region:

hin,helix5
d

2l
AHc1~d!

2Hc1
Ah2150.80Ah21. ~29!

We should make clear that it does not make much se
to consider a single flux-line instability in fields well abov
the Hc1(d) where a FLL is formed and one cannot negle
intervortex interaction. Nevertheless, it is clear from t
above consideration that short-wave instable modes are
vored in thin films and they may be described in the vor
chain model.
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FIG. 4. The relief of the Gibbs free energy of the vortex chainG over the plane (k,l ), wherek is the tangent of the vortex tilt angle with
respect to the normal to the film andl 5L/d is the vortex structure pitch length in units of the film thicknessd. In the minimum, the energy
surface first touches the plane which presents the energy of the initial FL.
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III. CHAIN INSTABILITY OF A ONE-DIMENSIONAL
FLUX-LINE LATTICE IN A THIN FILM

A. Qualitative picture of the instability
of a one-dimensional FLL

In this section we consider a more realistic case of a fl
line lattice parallel to a thin film surface. The on
dimensional FLL~one row of vortices! first enters the film as
the external field first attains the value ofHc1(d).14 The
energy of the FLL per unit volume is14

FIG. 5. Critical parameters of the chain instability of a sing
flux line. hin is the dimensionless self-field of the critical current
instability, l 5L/d is the pitch length of the most instable mode, a
k5tanb, whereb is the tilt angle of vortices in the vortex chain
The straight~dashed! line presents the field dependence of the
angle of an isolated tilted 2D vortex and approximates well
low-field behavior ofk.
-

G0~h,a!5
«0

ad F12h1
2

ln~d/j!

3 lnS 11exp~2pa/d!

12exp2pa/d D ln~d/2j!G , ~30!

wherea is the intervortex distance. By minimizingG0(h,a)
with respect toa one can find the latter as a function of th
field, a(h) ~see Fig. 7!, which is important for the following.

As follows from commensurability, at fieldsH5Hn
5()F0/2d2)n2 an n-row FLL is formed in thin films.30

The two-row FLL formation atH2.2Hc1(d) does not affect
much the creation of an instability. But at higher fieldsH
.H3 , a three-row FLL is formed and the instability can n
longer be treated in simple two-dimensional terms. In rec
precise simulations,31 Carneiro found values ofH2
.2.2Hc1(d) and H3.4.3Hc1(d). For further consideration
we restrict ourselves to the field regionH,3Hc1(d).

As is easily seen from Fig. 7, the intervortex distan
within the first row of vortices even slightly above th
Hc1(d) is of the order ofd,l. That means that, in fact
one cannot neglect the interaction of FL’s at any field.

We apply now the vortex chain model to the problem
the one-dimensional FLL instability. The latter may be re
ized as follows. If the neighboring spiral-like chain structur
are shifted against each other by a half period along thy
axis, as is shown in Fig. 8, the vortices of opposite vortic
become nearest neighbors. Then the attraction between
favors the instable spiral expansion. When the attracting v
tices meet, they cannot completely annihilate since both
tilted in the positive y direction. Thus, as a result o

e
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FIG. 6. The Gibbs free energyG of the vortex chain structure resulting from the instability of a one-dimensional FLL. The relief oG
is shown over the plane (k,l ) with regard to the physical restrictionk< l 5L/d, wherek is the tangent of the vortex tilt angle with respe
to the normal to the film andl 5L/d is the vortex structure pitch length in units of the film thicknessd. The conditional minimum is seen
to be reached at the boundary linek5 l where the energy first attains the plane which presents the energy of the initial FLL.
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z-component annihilation, the reconnection of vortices a
formation of straight FL’s parallel to the film happen, whic
lie in the middle between the former FL positions. Due to t
exit of the upward-directed chain of vortices through thex
5W/2 edge of the film and downward-directed chain of vo
tices through thex52W/2 edge of the film~see Fig. 8!, the
number of FL’s in the sample becomes less by 1. This s
is unstable against the entry of one more FL to restore
initial thermodynamic equilibrium state. After recovering th
initial state the instability may repeat. We shall call this sc
nario the antiphase mode of instability.

FIG. 7. Intervortex distance~lattice spacing! a in units of a film
thickness,d, within a one-dimensional flux-line lattice parallel to
thin film surface and to the external magnetic field vs the app
field h5H/Hc1(d).
d

e

-

te
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As is known from earlier works,10,11 the lowest current of
instability in bulk superconductors is achieved at a unifo
helical distortion of the FLL. In terms of vortex chains, th
means that every FL is deformed the same way as is sh
in Fig. 9. We shall call this scenario the uniform mode
instability. Let us determine now the critical currents trigge
ing the above modes of instability of the one-dimensio
FLL.

d

FIG. 8. Schematic projections of the chain instability of a on
dimensional flux-line lattice on thexy ~a! andxz ~b! planes for the
antiphase mode. The downward-directed 2D vortices are ma
with a cross.
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B. Critical current of a spiral-like chain distortion
of a one-dimensional FLL

Let the one-dimensional FLL be transformed into cha
of tilted 2D vortices as is shown in Fig. 8~antiphase mode!.
The upward- and downward-directed vortices both occu
two sorts of positions, respectively,

R1
15~2ma1x,2nL!, R2

15„~2m21!a1x,~2n21!L…,

R1
25„2ma2x,~2n21!L…, R2

25„~2m21!a2x,2nL…,
~31!

wherem andn are integers.
All the vortices are in equivalent positions and have

same energy. Since the transverse distance between
chains is defined by the initial field-dependent spacinga(h)
and the longitudinal spacing is the pitch lengthL ~Fig. 8!, the
energy of the system per unit volume, F, equals the ene
per one vortex divided byaLd. Let us choose the vorte
located atR1

15(x,0) as a test vortex. Then the distanc
from this vortex to the other upward- and downward-direc
ones are, respectively,

DR1
1~m,n!5~2ma,2nL!,

FIG. 9. Schematic projections of the chain instability of a on
dimensional flux-line lattice on thexy ~a! andxz ~b! planes for the
uniform mode. The downward-directed 2D vortices are mark
with a cross.
s

y

e
the

y

d

DR2
1~m,n!5„~2m21!a,~2n21!L…,

DR1
2~m,n!5„2ma22x,~2n21!L…,

DR2
2~m,n!5„~2m21!a22x,2nL…. ~32!

Now, the energyF reads as

F5
1

aLd (
m,n

@U1„DR1
1~m,n!…1U1„DR2

1~m,n!…

1U2„DR1
2~m,n!…1U2„DR2

2~m,n!…#. ~33!

Making use of the relations~15! one can transform Eq.~33!
into:

F5
p«0

2a2L2 (
m,n

Fu1~qm,n!@~21!m1n11#

1u2~qm,n!@~21!m1~21!n#cosS 2px

a
mD G , ~34!

whereqm,n5@(p/a)m,(p/L)n#.
The picture shown in Fig. 8 makes sense fork,L/d and

0,x,a/2. Since the initial vortex spacinga,pd at all
fields, but one very close toHc1(d), andL is supposed to be
less thanpd too, theqm,n.d21.l21 for any mÞ0 or n
Þ0. That allows one to use for the functionsu6(q) the fol-
lowing approximations~see the Appendix!:

u1~q!5
11k2

Q21~k•q!2 12
~k•q!22k2q2

qd@Q21~k•q!2#2 ,

u2~q!52
12k2

Q21~k•q!2

sin~k•qd!

~k•q!d
2

2

d@Q21~k•q!2#2

3F @~k•q!22k2q2#cos~k•qd!

q

1~k•q!~11k2!sin~k•qd!G , ~35!

if mÞ0 or nÞ0. For the casem5n50 one findsu6(q0,0)
564L2.

Substituting Eqs.~35! into Eq. ~34! and performing the
summation overm one finds

-

d

F5
«0p

L2 F1

6
k21~12k2!

x

a S 12
2x

a D G1
«0

aL
A11k2(

n51

`
cosh@~pan/L !A11k2#1~21!n

n sinh@~pan/L !A11k2#

2
«0~12k2!

pkadA11k2 (
n51

`
1

n2 sinS kpdn

L D Fcosh@~2pxn/L !A11k2#1~21!n coshS pan~122x/a!

L
A11k2D G

sinh@~pan/L !A11k2#

2
pk2

6a2~11k2! S 12
kd

L D S 122
kd

L D2
k2a

2p2L2dS 11cos
4px

a D . ~36!
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To account for the work done by the external sources
field and transport current one should add to Eq.~36! the
expressions~20! and ~23! normalized per unit volume an
obtain

G5F2
«0

aL

2

3
kh lnS d

2j D2hi

«0

dL
lnS l

j D 2x

a
. ~37!

In the above formula,hi5Hi /Hc1 , whereHi52p jd/c is a
local current self-field over the film andj is a local current
density. In what follows, we suppose that, in a resistive st
the current is distributed approximately uniformly over t
film cross section.

The above Gibbs energy of the system should be c
pared with the Gibbs energy of the initial linear FLL~30!.
The critical current of instability is achieved when the d
ferenceGmin2G0(h,a) first becomes negative.G is a com-
plicated function of three variablesk, L, andx and possesse
a rather nontrivial 3D relief. The summation in Eq.~36! can-
not be performed analytically. On the other hand, the tr
cation of the sums produces unphysical minima, complic
ing the numerical analysis. To avoid these problems a
simultaneously, to account for the barrier nature of the ins
bility nucleation we consider in what follows the energyg
averaged over the distance which vortices pass in the co
of the chain expansion:

g~k,l !5
2

a E
0

a/2

dxG~k,L,x!. ~38!

After this procedure the Gibbs energy reduces to

g5
«0A11k2

aL (
n51

`
1

nH cothS pan

L
A11k2D1~21!n

3FsinhS pan

L
A11k2D G21J 1

«0

L2 Fp~11k2!

12
2

k2a

2p2dG
2

«0p

12a2 S 12
kd

L D S 12
2kd

L D2
2«0kh

3aL
ln

d

2j

2
«0hi

2Ld
ln

l

j
. ~39!

Let us take for granted that the instability occurs at a sh
wavelengthL,pa, which will be justified later. Then, the
hyperbolic functions in Eq.~39! may be approximated with
good accuracy by exponents, which allows one to perfo
the summation analytically and to find finally

g5
«0A11k2

aL H g1 ln
L

j
22 lnF11expS 2

pa

L
A11k2D G J

1
«0

L2 Fp~11k2!

12
2

k2a

2p2dG2
p«0

12a2 S 12
kd

L D S 12
2kd

L D
2

2«0kh

3aL
ln

d

2j
2

«0hi

2Ld
ln

l

j
. ~40!

The instability onset is expected when the least poss
magnitude ofg first attains the magnitude of the Gibbs fre
energy of the initial FLL,G0(h,a) @Eq. ~30!#. The minimum
f

e,

-

-
t-
d,
-

se

rt

le

of g is achieved at some optimum values of pitch lengthL0
and tilt k0 defined by the equations

]g

]k
50,

]g

]L
50, ~41!

with account for the restrictionk<L/d. Then the value of
instability current j in at a given magnetic field is obtaine
from the equation

g~k0 ,L0!5G0~h,a!. ~42!

A numerical analysis of Eqs.~41! and ~42! shows that
solutionsk0<L0 exist only at very low fields 1,h,1.006
~Fig. 10!. At higher fields, the absolute minimum ofg shifts
to the unphysical regionk.L/d, and the physical minimum
is achieved atk5L/d as well as is shown in Fig. 6. The las
condition corresponds to the short-wave saw-toothed st
ture shown as a dashed line in Fig. 1~b!. In this case, Eqs.
~41! are no longer valid. The minimum is sought by mea
of the Lagrange method as the minimum of the functionw
5g2p(k2 l ) with respect to the variablesp,k,l , wherep is
some Lagrange multiplier. The parameters of the first
stable spiral disturbance of the FLL,k0 ,L0 are plotted in Fig.
10. The equalityk05L0 /d holds at almost all fields. Tha
means that the broken vortex chain structure@Fig. 1~b!# pre-
sents, in fact, a discrete model of spirals. The pitch len
L;d subsiding with the field confirms our hypothesis on t
short-wave nature of instability. The value of the critical cu
rent of the instability is given then by the formula

j in5 j dhin , ~43!

where the dimensionless current self-fieldhin is shown in
Fig. 10. The characteristic current of the film,j d
5cHc1/2pd, equals, for the parameters involved,j d52.15
3107 (A/cm2).

Comparing Figs. 10 and 7 one can see that the antiph
mode pitch lengthL0.0.6a(h) in the considered field re
gion. This result is similar to that for the one-FL mode of t

FIG. 10. Critical parameters of the chain instability of an on
dimensional flux-line lattice.hin is a dimensionless self-field of th
critical current of instability,l 5L/d is the pitch length of the mos
instable mode, andk5tanb whereb is the tilt angle of vortices in
vortex chain.k grows in a narrow low-field region close toh51,
then merges withl .
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dense FLL instability in bulk samples obtained by Brand11

j in;cHa(H)/l2, L0;2a(H), wherea(H);AF0 /H is the
2D-lattice spacing.

Let us consider now the uniform mode of the chain ins
bility of the FLL shown in Fig. 9. The upward- an
downward-directed vortices occupy the following position
respectively:

R15~ma1x,2nL!, R25„ma2x,~2n21!L…, ~44!

wherem andn are integer. The distances from the test vor
position atR15(x,0) to the other upward- and downward
directed ones are, respectively,

DR11~m,n!5~ma,2nL!,

DR12~m,n!5„ma22x,~2n21!L…. ~45!

The energy of this configuration reads

F5
1

aLd (
m,n

@U1„DR11~m,n!…1U2„DR12~m,n!…#

5
«0p

a2L2 (
m,n

Fu1S 2p

a
m,

p

L
nD

1u2S 2p

a
m,

p

L
nD ~21!n cosS 4px

a
mD G . ~46!

Averaging this energy over the distance (0,a/2) as was
done in Eq.~38! one obtains the Gibbs free energy of t
uniformly distorted FLL in the form

g52
2«0k2

9ad
1

«0A11k2

aL

3H g1 ln
L

j
22 lnF11expS 2

pa

L
A11k2D G J

1
«0

L2 Fp~11k2!

12
2

k2a

2p2dG2
p«0

6a2 S 12
k2d2

L2 D
2

2«0kh

3aL
ln

d

2j
2

«0hi

2Ld
ln

l

j
. ~47!

The critical values of pitch length, tilt angle, and curre
triggering the instability may be now found following th
same procedure as was used above for the antiphase m
Though the pictures of the antiphase and uniform mode
instability shown in Figs. 8 and 9 are different as well as
energy expressions~40! and ~47!, the numerical results fo
the instability parametersk0 , L0 , and hin turn out to be
almost identical in the considered field region@except for
fields very close toHc1(d)# thanks to the conditionk5L/d
at which the minima are reached.

A typical value of the critical current~43! proportional to
hin ~Fig. 10! is very high and exceeds, for example, a ch
acteristic current of a geometrical barrier33 ~or the edge de-
fect current34!, j b.(cHc1/2d)AL/W, by a factor ofAW/L.
It may partly follow from the overestimation of the barrie
effect for the vortex chain formation. Really, it is implied
Eqs.~33! and ~46! that the energy of the vortex structure
the beginning of the instability process (x50) is rather high.
-

,

x

t

de.
of
e

-

In fact, the formation of chains occurs not atx50, but at
somex,a/2 as is seen from Fig. 1~a!, which provides less
initial energy of the vortex structure. Another point whic
should be taken into account is the nonuniform distribut
of the transport current in a film. Let us suppose that, bef
instability sets in, the current exhibits a distribution given
Eq. ~21!. Then, the instability first reveals itself at the ed
of the film where the current density isAW/L larger than the
average one. That means that the instability sets in at
averaged current densityAW/L less than that of Eq.~43!,
e.g., at typical currents of the geometrical barr
mechanism.33 For the parameters of the film chosen in o
computations, that givesj in.105– 106 A/cm2. But anyway,
the critical current of instability in thin films under an exte
nal field of a fewHc1(d) is high, grows with the magnetic
field, and, thus, cannot be matched with the~zero! high-field
results obtained for bulk samples in Refs. 10 and 11.

We suppose that the basic reasons for this incompatib
consist in the strong effect of the surface in a thin-film ca
and in the validity of our straight-vortex model only in th
low-field region. Really, the origin of the zero critical curre
triggering a homogeneous helical instable mode in a b
case11 is caused by a very low energy of this mode which
compression free and shear free. In the case of a thin
with d!l, the interaction of the helically distorted FL’
with the film surfaces is equivalent to the interaction with
succession of FL reflections23 in two mirrors located atz
56d/2. This configuration is neither compression free n
shear free and possesses a large energy which results
large value of the critical current~43!. That explains also
why the critical currents and parameters of the antiphase
uniform modes of instability in the thin-film case turn out
be so close to each other and to the one-FL mode of F
instability in the bulk case.11

C. Dissipation cycle frequency and resistivity
due to spiral instability of the FLL

Let us estimate the frequency and dissipation rate du
the instability-mediated oscillations. Consider a thin film in
parallel field aboveHc1(d). Let the transport current be hig
enough for an instability to comprise the whole sample. I
reasonable to expect that, in a resistive steady state, the t
port current is distributed almost homogeneously over
film.12,13 Taking into account a threshold character of t
instability, the force exerted by the current upon one vor
and averaged over one act of instability may be presente

f 5
F0

c
~ j 2 j in!d. ~48!

On the contrary to the above Lorentz force, the viscous fo
resisting the motion of the vortex is proportional to its leng
and equals

f h5
hvd

cosb
, ~49!

whereb is the angle which the vortex makes with the norm
to the film @see Fig. 2~a!# and cosb5(11k2)21/2. Equating
the above two forces one can find an averaged velocity
vortices during the chain expansion:
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vex5
f

h
cosb5

crn~ j 2 j in!

Hc2
cosb, ~50!

where an empirical relation35 for the viscosity of vortex mo-
tion, h5F0Hc2 /c2rn , is used,rn being the resistivity in the
normal state.

The characteristic time of recovering a magnetic flux
the sample after the act of instability depends on where
magnetic flux enters. Since the instability current is expec
to be of the order or more than the characteristic curren
the edge geometrical barrier, it is reasonable to consider
flux entry through the film edges. Then, the downwa
directed 2D vortices of the current self-field~tilted in the
field direction! enter in the film through thex5d/2 edge and
the upward-directed ones enter through thex52d/2 edge
forming the right-handed spiral flux structure similar
right-handed spiral FL’s entering the superconduct
cylinder.2 To undergo the reconnection and transformat
into additional linear FL’s, the entering chains of 2D vortic
must pass through a distance;a(h) from the edge to the
center of the film. They move with an average velocity

ven5
crn~ j 2 j b!

Hc2
. ~51!

Thus, the typical time of the magnetic flux restoration
the same or less than that of flux exit due to the instabil
Then, the typical frequency of the shuttling is

v5
vex

a
5

rnc2

d2

ln k

4k2

hin

a/d S j

j in
21D cosb

52.831011 ~sec21!
hin~h!

A11k2~h!a~h!/d
S j

j in
21D

~52!

for the above considered film. The normal resistivityrn ,
equal to 100mV cm, was taken for the above estimatio
from Ref. 29. Let us note that this frequency is current
pendent and, thus, a nonuniform current distribution in a fi
may result in a voltage noise in a wide frequency range.

An averaged electric field in they direction generated by
the shuttling vortices is proportional to the vortex density
chains and equals

E5
F0v

cL
cosa5A

rnF0~ j 2 j in!

aLHc2A11k2
, ~53!

wherea is the angle between the magnetic field lines and
normal to the film. As was stressed in Ref. 18, the differen
between thea and the vortex tilt angleb may be drastic in
films. Making use of the field expressions~9! one can esti-
mate for the parameters involved an averaged value of ca
asA.1022. This small value means that the field lines a
only slightly deviated from the positions parallel to the film
though the vortices are well tilted to the film surface.

The resistivity during the instability reads

r in5
E

j
5rnS j

dD 2 A2pd2

aLA11k2

j 2 j in

j
;1023rn

j 2 j in

j
.

~54!
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e
e

Thus, the resistivity due to the instability in thin films ha
a substantial magnitude. Previous results for the dissipa
due to instability were obtained in Refs. 12 and 13 for bu
samples (d@l) in high fields (H@Hc1) and do not apply
directly to our case. Nevertheless, one may use it for
estimation of the resistivity in thin films. The pitch length o
the ~easiest! uniform mode of instability was found to b
infinite, e.g., practically of the length of the sample.10,11 The
resistivity in this regime was found to be12,13 r in
50.2rn(j/d)2. It is seen from Eq.~54! taken in the high-
current limit j @ j in that the short-wave chain instabilit
mechanism in films gives a resistivity one order more th
the above long-wave one. This difference is not large, tak
into account the model character of our calculations. A mu
more essential difference is the fact that, in the bulk case,
multiplier (j/d)2 becomes infinitesimally small12,13 while in
the thin-film case this multiplier allows a measurable mag
tude of resistivity~54!.

The typical current of the spiral instability in thin film
~43! is rather high, which makes an observation of the eff
difficult but not impossible. At least, the voltage measu
ments on microbridges and thin narrow films at one or
larger currents have been known since the early 199036

High-quality high-Tc wide thin films with clear-cut edges
seem to be appropriate for this experiment too. The hom
geneity of the films is important to allow coherent motion
the vortex chains. One possible experiment is a measurem
of the voltage at fixed transport currents in a parallel m
netic field near the lower critical field of the film,Hc1(d).
The set of the voltage-magnetic dependences for various
ues of the transport currentj may be presented in the formE
(V/cm)5@B/d2(nm)#w( j / j d,h) whereE is the electric field
strength, the constantB51.753103, and the function
w( j / j d ,h) is shown in Fig. 11. The voltage peak just abo
the field Hc1(d) is expected in measurements at transp
currentsj . j d . The decrease of the voltage may be, thou
difficult to observe since the large heat release after the o
of instability will most likely trigger a global irreversible
quench of the superconducting state.

Another possibility to reveal the indications of the spir
instability is given by local magnetic measurements. In
inner region of the film, thez components of the magneti
moments of the 2D vortices with opposite orientations co
pensate for each other and make no contribution in a fi
transverse to the film. But in the narrow strip of the wid
;d along the film edges, the chain instability induces t
oscillating transverse field of the amplitudeH

FIG. 11. The electric fieldE vs parallel magnetic fieldh
5H/Hc1(d) dependences are presented for fixed values of trans
current j / j d51.05,1.3,1.7,1.8.
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;(F0 /aL)cosa.1022T ~for the parameters chosen! and of
the frequency given in Eq.~52!. The detection of this field
component perpendicular to the film seems to be possibl
films with a clear-cut edge and would be a strong evidenc
favor of the suggested scenario of resistivity in a para
field.

IV. CONCLUSIONS

In this paper we have presented a discrete model o
resistive state in thin superconducting films carrying a tra
port current parallel to an external field direction.

A one-dimensional flux-line lattice existing in a field re
gion above the lower critical field is shown to be unsta
against certain regular distortions similar to the left-hand
spiral instability of force-free configurations in bulk supe
conductors. If the transport current density is high enou
every linear flux line transforms into a double chain of 2
vortices tilted in the field direction and forming a left-spira
like flux structure. These double chains expand, driven
the transport current, reconnect, and form a new o
dimensional flux-line lattice, allowing a part of flux to leav
the sample. Finally, the equilibrium flux magnitude in t
sample recovers due to the entry of additional flux lin
through the edges of the sample.

The critical current triggering the instability is of the o
der or above the characteristic current of the geometr
barrier. Thanks to the high current and a short pitch length
the instable flux structures, the typical frequency of t
above shuttle process is rather high~about 1011 sec21) and
strongly current dependent. If the transport current is dist
in
in
l

a
-

d

,

y
-

s

al
f

e

-

uted nonuniformly over the sample@to, say, after the law
~21!#, vortex shuttling may give rise to a voltage noise spe
trum in a rather wide frequency range of many decades
makes difficult an observation of a distinct oscillation effe
Nevertheless, the observation of the transverse compone
the magnetic field at the clear-cut film edge would be
evidence in favor of the proposed chain instability mech
nism of resistivity which gives a quite reasonable magnitu
of the dissipation rate.

ACKNOWLEDGMENTS

The authors are indebted to Dr. E. H. Brandt and Prof
sor J. R. Clem, Professor A. Campbell, and Professor V.
Vlasko-Vlasov for a useful discussion of the results. Yu.A.
would like to acknowledge the support of this work by th
Alexander von Humboldt Foundation and the kind hospit
ity at the Material Physics Institute of the University of Go¨t-
tingen.

APPENDIX: INTERACTION ENERGY
OF THE TILTED VORTICES

Substituting Eqs.~9! and ~10! into Eq. ~12! one obtains
Eq. ~13! with

u1~q!5
11k2

Q21~k•q!2 1
2

~Q21~k•q!2!2d
P1 , ~A1!

u2~q!52
12k2

Q21~k•q!2

sin~k•qd!

~k•qd!
1

2

~Q21~k•q!2!2d
P2 ,

~A2!

where
h

P6~q!5~k•q!~Q coshQd1q sinh Qd!F6
Q cosk•qd/2 sinhQd/21k•q sin k•qd/2 coshQd/2

~Q sinh Qd/21q coshQd/2!2 sinh Qd/2
sin k•qd/2

2
Q sin k•qd/2 coshQd/22k•q cosk•qd/2 sinhQd/2

~Q coshQd/21q sinh Qd/2!2 coshQd/2
cosk•qd/2G

1
Q sin k•qd/2 coshQd/22k•q cosk•qd/2 sinhQd/2

l2~Q coshQd/21q sinh Qd/2!2 sinh Qd/2 sin k•qd/2

6
Q cosk•qd/2 sinhQd/21k•q sin k•qd/2 coshQd/2

l2~Q sinh Qd/21q coshQd/2!2 coshQd/2 cosk•qd/2

2k2FQS sinh Qd/2

coshQd/2
cos2 k•qd/26

coshQd/2

sinh Qd/2
sin2 k•qd/2D1

~171!

2
~k•q!sin k•qdG . ~A3!

Equations~16! follow from the above expressions~A1!–~A3! in the limit uqyud5pnd/L@1. The second terms in bot
equations~16! make essential contributions only in the regionqd,1 and are cut off for convenience~at qd.1 they decrease
much faster!.

Equations~35! may be found from Eqs.~A1!–~A3! in the limit q5qm,n@d21 valid for any mÞ0 or nÞ0 sinceqm,n
5(pm/a,pn/L) anda,L,d. Then, the terms making the main contribution in sums~34! and ~46! are saved.
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15V. V. Shmidt, Zh. Éksp. Teor. Fiz.57, 2095 ~1969! @Sov. Phys.

JETP30, 1137~1969!#; 61, 398 ~1971! @34, 211 ~1972!#.
16A. I. Rusinov and G. S. Mkrtchyan, Zh. E´ ksp. Teor. Fiz.61, 773

~1971! @Sov. Phys. JETP34, 413 ~1972!#.
17Yu. A. Genenko, Phys. Rev. B53, 11 757~1996!.
18E. H. Brandt, Phys. Rev. B48, 6699~1993!.
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