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The developed stage of a spiral instability of the magnetic flux line in a thin film is studied. The instability
of a one-dimensionallD) flux-line lattice parallel to a thin superconducting film surface and to a transport
current is modeled as a transformation of initial linear flux lines into chains of 2D vortices crossing the film and
tilted in the field direction. The pitch length of the first instable spiral-like chain structure turns out to be of the
order of a film thickness at all fields, which leads to a dissipation rate comparable in magnitude with the
experimental ond.50163-18208)08941-3

I. INTRODUCTION characteristic current of instability, various types of dissipa-
tion cycles become possible!®

The resistive behavior of a current-carrying type-Il super- Following the pioneering work of ClethBrandt consid-
conductor subjected to a longitudinal magnetic field is stilléred a more realistic case of the helical instability of a flux-

poorly understood theoreticallyand far from being com- line lattice(FLL) (Ref. 10 in fieldsH>H.,, the field of the
pletely documented experimentally. In this configuration,first magnetic vortex penetration in the bulk sample. He
usually called “force-free 2 the fransport current exerts no found that a critical current of a homogeneous helical distor-
(Lorent force upon flux lineFL’s) parallel to its direc- tion of the FLL is equal to zero in the pin-free case: e.g., the

tion. Thus, the theoretical problem is to comprehend the re force-free configuration is absolutely instable in an ideal
- bulk superconductor, though, thanks to the very large typical

S?r? Sr f?/\: e;(;‘luxthmeotlrtr)lgcir;dng r::r%ﬁ/ ?éSSSI'SFt)SE'ton whtir::ﬁ (izssset,illl wavelength of this instabilityof the order of sample length
other worgs, Y, even a very weak pinning may stabilize the FtliLater on,

disputab!é - L . comprehensive models for a steady-state dissipation in a lon-
Experimentally, the longitudinal resistivity exhibits a i dinal field were advanced by Cléfrand Brand€ who

rather ;pecific behav_ior. Typical of.this are the enhanceme xplained the onset of a longitudinal paramagnetic moment
of a critical current in a parallel fiefdand the onset of a and gave reasonable values for the oscillation frequency of
considerable longitudinal magnetic momeudepending on  some shuttle process of the flux entry and exit. The problem
the current appliedin a small or even zero external field:®  which remained unsolved was an extremely low dissipation
An interesting feature of this state is the appearance of thgate proportional to £/R)?, where¢ is the superconducting
regulaP® or stochastit oscillations of the longitudinal mag- coherence length anR is a transverse size of a sample,
netic moment and voltage. which was many orders less than voltage oscillations ob-
Assuming a steady-state electric field in a current direcserved in experimerit.
tion requires a continuous flow of a transverse component of To study in detail the local mechanism triggering the spi-
a magnetic field in a sample. It was comprehended that suatal instability and look for regimes yielding a higher energy
a flow may be provided by the entry of inward-collapsing dissipation, the low-dimensional case of a thin superconduct-
right-handed spiral vortices following the pattern of a straying film carrying a transport current parallel to an external
field.2 But this process leads to a continuous buildup of amagnetic field may be considered. Theoretically, it is favor-
longitudinal magnetic flux in the sampfe. able because the process of FLL formation in the increasing
A principal solution to circumvent this dilemma was sug- magnetic field is well studied in films at all stages: from
gested by Clerhwho discovered in 1977 an instability of a well-separated single FL's to a one-dimensional FLL and
single flux line in a current-carrying superconductor againsthen to a few-layer FLIX-16
certain left-handed helical perturbations provided the current The nucleation of a left-handed instability in thin films
is sufficiently high. Thus, the longitudinal resistivity may be was considered in Ref. 17 where the characteristic current of
caused by a succession of right-handed helices entering amastability was found to be of the order of the critical currents
left-handed helices leaving the samboth events contrib- observed in thin films. The threshold characteristic field of
ute to the positive longitudinal electric figldAbove the the instability turned out to be close to the first critical field
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of FL penetration into the filmH¢(d),* whered is the
thickness of the film.

=)
)

To obtain the dissipation rate in thin films one should (@ Jj \.C g I ‘ <
consider the further development of the growing left-handed l \L | ‘
spiral and, for the realistic case of a field well above the BT

Hc1(d), take into account the interaction with the other FL's.
Finally, the steady-state dissipation cycle regime of the sort
of a “shuttle process” considered by Cléfrshould be ad-
vanced to explain the resistivity in the longitudinal geometry.
For these aims, a model of a spiral instability in films is
advanced in this paper, based on the idea of the transforma-
tion of the growing left-handed spiral into a chain of tilted
vortices crossing the film. Section Il contains a qualitative
description of the model and the calculation of a single flux-
line instability valid for an external field slightly above
Hq(d). In Sec. lll we consider the instability of a one-
dimensional(1D) FLL valid for a field well aboveH_;(d)
and estimate the resistivity following from the corresponding
“shuttle process.” The results are summarized in Sec. IV.

1. CHAIN INSTABILITY OF A SINGLE FLUX LINE FIG. 1._ (a A cros_s section of a growin_g Ieft-ha_nded spiral: first
round(helix), then distorted by the attraction to a film surfa@®,a

A. Qualitative description of the model spiral-like structure formed by strong tilte@ashed or slightly

A basic reason for the instability of a magnetic FL parallelt'lteoI (solid) vortices, ‘."mdc) two vortex chains resulting from the
development of a helical spiral.

to a transport current is the Lorentz force applied upon the
FL element and proportional to the vector prodyetn ] ) )
wherej is a local density of the transport current ani the cal_culate t_he field of the arbl_trary tllte_d vortex and the energy
tangent vector of the FL. As was noticed by Cl&rim the  Of interaction between the tilted vortices.

case of a left-handed spiral distortion of FL's this force acts

outwards(contrary to the right-hand casagainst the line B. Field of a tilted vortex

tension and the Meissner-current-mediated force from the _ i i L
external field. If the transport current is large enough, the VW& continue now with a calculation of the magnetic field
linear FL parallel to it becomes instable and transforms in dnduced by an individual tilted vortex in a thin film. This
growing left-handed helical spiral. This process in thin filmsProblem was considered before mostly as a problem of a

: P 18-21
was studied in Ref. 17 for the nucleation stage only when thd!t€d FLL in fields well aboveH,; . On the other hand,
radius of the helix <d<\ andL, wherex andL are the considering the straight tilted vortex crossing a thin film we

magnetic field penetration depth and pitch length of the spigo not need in general the complicated expressions obtained

ral, respectively. in Ref. 19 for an arbitrary curved single vortex in a plate of
What happens, then, when the spiral diametefitst at- arbnrary th.|ckne'ss..|n \{vhalt follows, we directly calculate the

tains the thickness of the filld? The circular cross section Magnetic field distribution in the London approach assuming

of the spiral FL should be first distorted due to the attractiorfn® €@s€ of a strong type-Il superconductor with ¢ and

to mirror images in the upper and lower film surfaces andi€!d rangeH<Hc,, whereH,; is the upper critical field of

then the vortex would cross the surface of the film as idh€ Superconductor. o _
shown in Fig. 1a). It is likely from energy reasoA&*°that, We consider a superconducting film of thicknessand

at low fields, a spiral-like structure which follows from this W'dtzh W satisfying the inequaliief<d<\ and W>A
crossing process may hardly be formed by I¢ag the scale é)\ /92>)\ W_hereA is a transverse penetration depth for
of d) strongly tilted vorticegshown by a dashed line in Fig. films.* The film occupies the regiojz|<d/2, |x|<W/2 and
1(b)] but rather by well-separated 2D vortices tilted with IS infinite along .the.y axis. The magnetic field of the vortex
respect to a normal to the surface in a field direcfisolid ~ @lone,h, obeys inside the superconductor the London equa-
lines in Fig. 1b)]. The further development of this spiral-like 10N
structure formed by the two chains of vortices directed up
and down, respectively, as is shown in Fi¢c)l proceeds as Necurl curlh+h=® (1)
a movement of the chains driven by the Lorentz force in
opposite d'irecti0n$outward3. By this motion, the tilt angle  5n4 the Maxwell equation
of the vortices may also change.

For symmetry reasons, the vortices in the left and right )
chains are equally tilted with respect to the external field div h=0, 2
(and current direction that coincides with positivg axis
direction. To evaluate the energy of the structure and estiwhere the source function on the right-hand sig¢S) of
mate the dissipation rate during its expansion one should firgtq. (1) is given by®
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<I>=<I>of dis(r—1). 3) ]

®, is the unit flux quantumg(r) the three-dimensional delta @) ‘ ‘ R,
function, | the position vector of the vortex singularity, and / k y
dl the flux-line element. The integration goes along the flux
line (vortex core.

Outside the superconductdr,obeys the Maxwell equa-

tions
curlh=0, divh=0 (4) / /
R, R, 1

and is continuous in all components at the film boundaries (D} n K

|z|=d/2 and vanishes ds|, |y| or |z] —c. /
Since the vortices in thin films are straight and slightly T

tilted even for field directions close to the film surfd€&?2*

we consider further a straight vortex line tilted for simplicity

only along they axis and parametrized by the coordinates z

I,=R,, l,=R,+kz I,=z (5) 9

. . Ry y
Here the vectoR denotes the point of the vortex crossing X « \
the symmetry plane of the film at=0. The two-dimensional
vectork has the same direction as the projection of the vor-

tex line on the plang=0 and is equal to taB, whereg is FIG. 2. (a) A tilted straight magnetic vortex crossing a filiin)
the tilt angle with respect to the perpendicular direction top, i) tilted vortices, anéc) vortices symmetrical with respect to

the film [see Fig. 2a)]. In this case, the line integration i planez=0 (note that the sign of vectd is not connected to the
Eq. (3) may be performed explicitly and gives the following sign of the field.
expressions for the components of the veckor

D=, exp—iq-R—ik-qz) (7)
®*=0, DPY=kdy6(x—R,)(y—R,—k2),
and then Eqs(1), (2), and(4) to

D?=d,5(x—Ry) s(y—R,—k2). (6)
2
It is convenient to solve Eqg1), (2), and (4) with the (Q )hg(z):xzcbg(z), |z|<d,

2
2
help of a Fourier transformation 9z

d2 (92 .
h=f ﬁhq(z)exp(iq-S) (qz—ﬁ>h{q(z)=0, |z=d, ®)

wheres= (x,y) denotes the two-dimensional position vector. .. Q2=qg%+\ 2. Making use of the boundary conditions

In these texrms the functior(§) are reduced to and Eq.(2) inside the sample one finds for the field compo-
®=0, ®y=kd,exp—iq-R-ik-qgz), nents inside the superconductor

B g cosk-qd/2—k-q sink-qd/2 ) _Aq sink-qd/2+k-q cosk-qd/2
coshQz=IA = oshQd2+ q sinh Qd/2

z

9~ 7" Q sinhQdi2+q coshQd/2

sinhQz—Ae k%,

hx—inA Q cosk-qd/2 sinhQd/2+k-q sink-qd/2 coshQd/2 sinhQz
aq Q sinhQd/2+q coshQd/2 sinh Qd/2
_Q sink-qd/2 coshQd/2—k-q cosk-qd/2 sinhQd/2 coshQz |
! Q coshQd/2+q sinh Qd/2 coshQdi2)’
Oy coshQz ~sinhQz ]
Y= _T KX < . g <= . _ a—ik-qgz
hy th+ kA coshQd/2 cosk-qd/2 'sinth/Z sink-qd/2—e K 9
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whereA= —® e '9R/\?[Q?+ (k-q)?], and outside the su-
perconductor
2L

. +z=di2. (10) o L /

) ) d
h'q(z)zh'q(idIZ)ex;{qG— |Z]

R +*
The expression®) and(10) are valid for a vortex located
far from the edges of the film relative to the transverse pen-
etration depthA, W/2—|x|>A, and may be used for any X
vortex orientation, not only tilted along the axis. In gen- '

eral,h} andhg would mean the field components parallel and ~ FIG. 3. The location of the upwardR{;) and downward-R,)
transverse to the vectdr, respectively. Since the condition directed vortices in a vortex chain.

d<<\ was used so far for justifying the assumption of a

straight vortex[Eq. (5)], the expressiong9) and (10) are We consider first the interaction energy of two equally
valid for a superconducting plate of any thickness. Particutilted vorticesU , (R). Then, one should use forin Eq. (12)
larly, in the cas&=0 one finds from Eq(9) a field of the the fieldh=h'+h? generated by the two vortices located in
vortex normal to the plate of finite thickneSsand then, in  positionsR; andR; [see Fig. 20)]. The only difference in
the limit d<\, the well-known Pearl solution for the vortex the field expressiong9) and (10) for vortices 1 and 2 is, in
in a thin film22 this case, determined by the position vectis of the mul-

Let us note that for the evaluation of the tilted vortex tiplier A. For our purpose we also need to calculate the in-
characteristics one cannot use the above Pearl approximtgraction energy _(R) of vortices symmetrical with respect
tion, where the film is considered as having a zero thicknesg0 the planez=0. They have opposite signs of taecompo-

In the latter case, a current may flow only in thg plane, nent of the field and are equally tilted with respect to the
contributing, thus, only to the magnetic moment perpendicupositivey direction as is shown in Figs.(d) and 2c). To

lar to the film. For this Pearl vortex, the only essential charcalculate the interaction energy in this case one should take
acteristic length in space i&. In the tilted vortex case, the h=h;+h, and use for one of the vortices the expressi@s
finite k means the appearance of a nonzero magnetic momewtth the changed signs of bothandA.

component parallel to the film and a nonzero current density Upon the substitution of the field expressidi® in Eq.
componeni, normal to the surface whatever thin the film is. (12) one finds

This leads to the space dependence of all the quantities on q

the scale of the film thickness. We proceed now with a _ &8¢ J 2 ) _p _

calculation of the free energy of the tilted vortex and a pair U+(R) 2w dqu-(g)cosg-R, - R=Ri~R,,

of interacting tilted vortices. 13

wheree o= (Po/47\)?. Exact expressions for the functions
C. Free energy of straight tilted vortices in a superconducting u.(q) are calculated in the Appendix and are rather cumber-
plate of arbitrary thickness some. In the following, we will use approximate expressions
The conventional expression for the free enéiyy, taking into account the inequalig<\. The self—engrgy of
the tilted vortex may be found from E¢13) by taking R
1 =0. It differs from the known expressibhby a nonessential
[h2+X\?(curl h)2]dV+ 8 f h2dv, coefficient of the order of unity. Now we are in a position to
T Jld=di2 consider the vortex chain energy.

1

87 Jiz=ar2

11
may be easily expressed in terms of the Fourier component®. Gibbs free energy of the vortex chain and spiral instability
by using Eqs(8): of a single FL parallel to the current
1 42 \2 42 Let us consider a thin superconducting film described
F=— dzf _qzh_qcpq+_ _q2 above in Sec. Il B. An external magnetic field of magnitude
87 Jiz<dr (27) 8w J (2m) H slightly aboveH ;(d) is applied in the positivg direction
e shy ohZ]|z=r2 and a transport curremtflows the same direction. Flux lines
wlp T,y 29 e T ' (12) of the external field are supposed to be located far enough
Yoz ez Yoz, away from each other to neglect the interaction. At suffi-

ciently high currents the straight FL's become instable. As a

The secondsurface term in Eq.(12) vanishes if the vor-  result of the left-handed spiral development of the FL ini-
tex does not cross the plate surface even if the field itseffially lying along they axis (x=2z=0) two chains of vortices
does not vanish at the surface, as was shown in Ref. 1Are formed as described in Sec. ll(8ee Fig. 1 upward-
Thanks to a linearity of the London approximation, thedirected vortices are located at the positioms2gL) and
above expression is valid for any number of vortices. In thedownward-directed ones are at the positiofsx,(2n
last case, the superposition of the source funct[é&tg (2)] —1)L), wheren is integer, and R and % are the pitch
should be taken fo® and the superposition of the solutions length and width of the spiral-like chain configuration, re-
to Egs. (9) and (10) corresponding to different vortices spectively(Fig. 3). All the vortices are inclined by the same
should be taken foh in Eq. (12). angle with regard to the positive direction of tlyeaxis.
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Energetically, all the vortex positions are equivalent. Thi

enables us to calculate the energy of the chain per unit lengtition
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ssponds to the usual momentum cutgff=1/¢ in the evalu-
of the vortex self-energy in the London

along they axis as the energy of one of the vortices dividedapproximatior?®

by L as follows:

1
F=1 2 [U.(RD+U_(Ry)], (14)

whereR; =(0,21L) andR,, =(—2x,(2n—1)L) denote the
distances between the test vortex locatedxzd)( and vorti-
ces of the same and opposite vorticity, respectivebe Fig.
3). The summation extends over all integerincluding n
=0, accounting for the test vortex self-enerdgy, (Rq
=0).

The space dependence enters the energy expressi
U.(R) only through the circular function€q. (13)]: there-
fore the evaluation of the energy E{.4) may be simplified
by using the relations

> cosq-Ri=> cosqunL)=%
n

n n

> cogq,(2n—1)L—2xq,]

n

; cosq-R, =

T v
-7 cos(2qu)§ (—1)“5( a,— En),

(19

wheren is an integer. In the derivation of the last formula the

evenness of the integrand in E¢$3) and (15) was used.

Let us assume that short pitch lengthsare typical for
instability process andé<L<wd. Then |qy|=|n|/L
>d ™! for any n#1. Taking this into account one finds for
functionsu-.(q) the following approximationgsee the Ap-
pendix:

1+ 0(1—qd) [ 1+A?%k-q)? 2)
DT ? T QP kg2 W R s )
B 1-k?® sink-qd
ST kg kad
6(1—qd) [ 1+A?(k-q)?
g ca e e ) 09

where 6(x) is the Heaviside step function.

For simplicity the development of the chain is considered_

in the regionx<d/2, which allows one to find an analytic
expression for the free energy:

dy1+k? L d
F=8°f )/-i—ln(w—g +8|_L2[2k2d+wx(1—k2)
2277|<2 ) 1+2In22/d
+X - k/ol—T . (17

The instability first nucleates, presumably, as a smooth
left-handed helical distortion of the linear FL and then breaks
into a vortex chain. The pitch length of this structure is de-
termined at the earlier stage of nucleation since after the
vortex chain formation the vortices move perpendicular to
the current. In our model, we treat the FL instability in a
single description as if the vortex chains were formed from
the very beginning of the process at0. The optimum
parameters of the first instable mode and the critical current
of this will be determined in a self-consistent manner and
then compared with the known conditions of the helical in-

Oﬁtg\bility. We keep in mind that the critical current found in
such a manner may be underestimated because of the short-
ened total length of FL's but may also be overestimated
thanks to the large energy of the strongly nonuniform chain
structure. For example, the initial energy of the vortex-
antivortex chain ak=0, k=0 following from Eq.(17), i.e.,

=l

is larger than the initial FL's energy per unit lengkhy
=¢gq In(d/2¢) (Ref. 19 at the lowest reasonable pitch length
L=¢ but is smaller thark at L= 7rd.

The Gibbs free energy of the spiral-like chain structure
[Figs. 1b), 1(c), and 3 (Ref. 29,

Sod L
F= T y—l—ln (18)

G(l,H)=F-AW,—AW,, (19
including the contribution of the external field W,,, and
the work done by the source of the transport currawy/, ,
may be negative. The instability sets in wh@nis not only
negative but also less than a Gibbs free energy of the initial
linear FL,Gy(H), which is also negative & >H_,(d). Itis
clear that it should happen at some value of the current since
Gg(H) is current independent.

The magnetic field contribution may be directly calcu-
lated using Eqs(9) as

AW 1 thdV kH®d (1 tanhd/Z)\)
L =— = _
4L 4L d/2n den
o skhng 0
where the dimensionless fielch=H/H.(d), Hg.(d)

(2do/wd?)In d/g2

To calculate the transport current contributidWv, we
suppose the Meissner distribution of the current in the
film:?7:28

md\(W/2)Z—x2

Then the work done by the source of the transport current as

)= (21)

In the above evaluation, the logarithmically divergent serieghe vortex moves from a film center through a distarda

>n~! was cut off at the numbeN~L/w¢, which corre-

a positivex axis direction is
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1Dy . 2X
X=——arcsin—.
TC W

X j(X)®od

;%

(22
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cally. Thereafter, the resulting, andL, depending on the
field and current should be substituted in E24) to deter-
mine the critical value ot; corresponding to the critical

Let us note that this value is independent of the vortex sijicurrent of the chain instability. An analytical solution of the

angle, since the projection of the vortex length perpendicu-
lar to current remains constant and equabtoFinally, one
FY

gets
hi |n(
(23)

for x<W. Here the dimensionless current self-field is intro-
duced as;=H,/H;; whereH,=41/Wc s the magnitude of
the current self-field over the film center.

The vortex chain is supposed to nucleate initiallyxat
=d/2 [Fig. 1(a@)] and then expand, driven by the Lorentz

A

3

N

g

3

Sod

L

god
AW|:%

arcsin2x/W)

hi In /W

above transcendental equations is impossible. For the follow-
ing numerical study we need to define the parameters in-
volved. Let us consider a YB&u;O thin film at temperature
T=77 K having a penetration depth=220 nm and ¢
=3.6 nm?° Let the thicknessl be of 100 nm<\ and the
width W be of 50 um.

The results of the numerical solution are presented in Fig.
5. At low fields the 2D vortices are far from each other and
their interaction with the external field dominates over the
mutual interaction. The linear growth of the tilt angle at low
fields reproduces the behavior known for the isolated vortex
crossing a film® as well as for the tilted FLI(Refs. 18—21
and is quite understandable. As an evaluatiork ah this

force exerted upon the vortices by the transport current. Weegion, one can take =\ and find by the variation of Eq.

take for the criterium of the vortex chain nucleation the con-
dition
AG(K,L)=G(I,H)|y=go—Go(H)<0, (24
where
Go(H)=¢eu(1—h)In = (25

2¢

is the Gibbs energy of the initial linear FL lying parallel to
external field inside the film?

The numerical study of the functioAG(k,L) shows a
deep minimum of energy located at some valkesl and
L=d in the field range ¥h<4, h;~1 (see Fig. 4 This is
in qualitative agreement with the results for the single FL
helical instability in thin fims}’ L,~d/h;, h;~vh—1<1,
and thin wires? L .~d/\h—1, h>1. We need now to esti-
mate the critical current of the chain instability and to com-
pare it to that of a helical instability in thin film.

E. Critical current of the chain instability of a single flux line

In this section we first simplify the expressi¢tp) for the
energy of the chain structure by taking into account the ac
tual parameter region. Then we find values for the vortex til
ko and pitch length_g, delivering a minimum ofG(I,H).
The chain with these parametekg and L, is the first to
nucleate when the conditiahG(k,L) =0 is first satisfied at
some critical value of the transport current.

The Gibbs free energ§l9) with account ofL~d, k<1,
2x=d is reduced to

dy1+k? L
G(k,L)ZSOf y+|n(ﬂ_—§”
god? el 3 md
+? T+ T+ T
2e0dkh d eodhy 26
3L f'lz—5 L ng, (26)

wherey=0.5772 . .. is theEuler constant.
The equations for the valudg andL, are given by the
conditions dG/dk=0 and 9G/JdL=0 and solved numeri-

t

(26)

2h In(1/2¢)

T 3[y+In(NwE)] @7

This linear dependence is shown in Fig(dashed ling
and describes well the low-field behaviorlafWith growing
field, the tilt angle grows while the intervortex distance de-
creases. When the equalike=L/d is reached and a saw-
toothed structure is formeldrig. 1(b)] the intervortex inter-
action becomes large enough to change the behavior of the
tilt angle. Further growth ok is impossible since vortex
structures withk>L/d are meaningless. Then, in the high-
field region, the minimum of energy is achieved at the line
k=L/d as is shown in Fig. 6.

The pitch lengthL decreases monotonously in the whole
field region and agrees satisfactorily with the above cited
results for the helical instability. It is reasonable since the
saw-toothed structure of the instable mddashed line in
Fig. 1(b)] formed already in fields>1.6 may be treated as
a discrete analog of the helical mode. Let us note that
remains less thamrd even at the lowest considered field
value of H=1.00H.,(d), which supports the initial as-
sumption in Sec. II D.

The reduced self-fieldh;, proportional to the current of
instability j;, may be well fitted in the region 1s5h<3 by
the linear dependence

hin,chain= 106+013h_l) (28)

For the thin film considered above, the self-field of the criti-
cal current of the helical instability taken from Ref. 17 is
close to the above result in the same field region:

d

Hei(d)
hin,helixzﬁ

2H ¢,

vh—1=0.80yh—1.

(29

We should make clear that it does not make much sense
to consider a single flux-line instability in fields well above
the H.,(d) where a FLL is formed and one cannot neglect
intervortex interaction. Nevertheless, it is clear from the
above consideration that short-wave instable modes are fa-
vored in thin films and they may be described in the vortex
chain model.
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FIG. 4. The relief of the Gibbs free energy of the vortex cHaiover the planek,l), wherek is the tangent of the vortex tilt angle with
respect to the normal to the film ahe L/d is the vortex structure pitch length in units of the film thickndssn the minimum, the energy
surface first touches the plane which presents the energy of the initial FL.

lIl. CHAIN INSTABILITY OF A ONE-DIMENSIONAL £0
FLUX-LINE LATTICE IN A THIN FILM Go(h,a)= 2d

I=h* @

1+exp(—mal/d)
: 1—-exp—mald

A. Qualitative picture of the instability
of a one-dimensional FLL

|n(d/2g)}, (30)

In this section we consider a more realistic case of a flux-
line lattice parallel to a thin film surface. The one- wherea is the intervortex distance. By minimizir@q(h,a)
dimensional FLL(one row of vorticesfirst enters the film as  with respect taa one can find the latter as a function of the
the external field first attains the value bf;;(d).* The field,a(h) (see Fig. 7, which is important for the following.
energy of the FLL per unit volume’$ As follows from commensurability, at field$i=H,
=(V3dy/2d®)n? an n-row FLL is formed in thin films°
The two-row FLL formation aH,=2H_;(d) does not affect
much the creation of an instability. But at higher fields
=Hj, a three-row FLL is formed and the instability can no
longer be treated in simple two-dimensional terms. In recent
precise simulationd Carneiro found values ofH,
=2.2H.,(d) andH3;=4.3H;,(d). For further consideration
we restrict ourselves to the field regieh<3H.,(d).

As is easily seen from Fig. 7, the intervortex distance
within the first row of vortices even slightly above the
H..(d) is of the order ofd<<A. That means that, in fact,
one cannot neglect the interaction of FL's at any field.

A , We apply now the vortex chain model to the problem of
Field h the one-dimensional FLL instability. The latter may be real-

FIG. 5. Critical parameters of the chain instability of a single ized as follows. _If the neighboring spiral-like Chain structures
flux line. hy, is the dimensionless self-field of the critical current of &€ shifted against each other by a half period alongythe
instability, | = L/d is the pitch length of the most instable mode, and @Xis, as is shown in Fig. 8, the vortices of opposite vorticity
k=tan 8, whereg is the tilt angle of vortices in the vortex chain. Pecome nearest neighbors. Then the attraction between them
The straight(dashedi line presents the field dependence of the tilt favors the instable spiral expansion. When the attracting vor-
angle of an isolated tilted 2D vortex and approximates well thetices meet, they cannot completely annihilate since both are
low-field behavior ofk. tited in the positivey direction. Thus, as a result of
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FIG. 6. The Gibbs free enerdy of the vortex chain structure resulting from the instability of a one-dimensional FLL. The reli@f of
is shown over the planek(l) with regard to the physical restrictidn<|=L/d, wherek is the tangent of the vortex tilt angle with respect
to the normal to the film anti=L/d is the vortex structure pitch length in units of the film thickndssThe conditional minimum is seen
to be reached at the boundary like:| where the energy first attains the plane which presents the energy of the initial FLL.

o . . . H H 0,11
z-component annihilation, the reconnection of vortices and As is known from earlier works) ~the lowest current of
formation of straight FL’s parallel to the film happen, which ms‘gablhty in bulk superconductors is achieved at a unlform
lie in the middle between the former FL positions. Due to thehehcal distortion of the FLL. In terms of vortex chains, this

exit of the upward-directed chain of vortices through the Means that every FL is deformed the same way as is shown

=W/2 edge of the film and downward-directed chain of vor-N Fig. 9. We shall call this scenario the uniform mode of

tices through thec= —W/2 edge of the filmsee Fig. 8 the instability. Let us determine now the critical currents trigger-

number of FL's in the sample becomes less by 1. This statmg the above modes of instability of the one-dimensional
is unstable against the entry of one more FL to restore the

initial thermodynamic equilibrium state. After recovering the Ty
initial state the instability may repeat. We shall call this sce- I
nario the antiphase mode of instability. NN
P
7/ N / N /7
16 / \ / Ayl /
141 \ / \ / \
(G) N 7 A e N\
12 |
o
S 10 |
8 / AN s \ /
% 08 - / \ / \ /
© a
L 08 L \ / \ / \
= N /| \ Ly \
=S ‘
3 04 D 1l iV
02 | a ‘ X X
0 - - . - (o) Fs a0
10 15 20 25 3.0 oAby e
Field h
FIG. 7. Intervortex distanc@attice spacinga in units of a film FIG. 8. Schematic projections of the chain instability of a one-

thicknessd, within a one-dimensional flux-line lattice parallel to a dimensional flux-line lattice on they (a) andxz (b) planes for the
thin film surface and to the external magnetic field vs the appliecantiphase mode. The downward-directed 2D vortices are marked
field h=H/H(d). with a cross.
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v AR (m,n)=((2m—1)a,(2n—1)L),
) 3t N
X
NN NN YT AR (m,n)=(2ma—2x,(2n—1)L),
/ y / / ’ / AR5 (m,n)=((2m—1)a—2x,2nL). (32
i i X i i Now, the energyF reads as
(G) N \ AY N N
- EISS , ,
F= [U, (AR (m,n))+U (AR5 (m,n))
7 s 7 / / aLd m,n
T : +U_(AR; (m,n))+U_(AR, (m,n))]. (33
L \ AY \ N l\ & \ N
ok k ‘ y Making use of the relation€l5) one can transform Eq33)
g X" ! © into:
h S * Iy X 4
() S e e

TEQ
F=o22 % Ui (Qmn)[(—1)™"+1]
FIG. 9. Schematic projections of the chain instability of a one- '

dimensional flux-line lattice on they (a) andxz (b) planes for the 27X
uniform mode. The downward-directed 2D vortices are marked FU_(Qma)[(—=1)M+(=1)"]co Tm , (34
with a cross.

whereqp, ,=[(7/a)m,(a/L)n].
The picture shown in Fig. 8 makes senseKerL/d and
0<x<a/2. Since the initial vortex spacing<<zd at all
Let the one-dimensional FLL be transformed into chainsfields, but one very close td.;(d), andL is supposed to be
of tilted 2D vortices as is shown in Fig. @ntiphase mode  less thanwd too, theqy, ,>d *>\"* for anym#0 or n
The upward- and downward-directed vortices both occupy# 0. That allows one to use for the functions(q) the fol-
two sorts of positions, respectively, lowing approximationgsee the Appendijx

B. Critical current of a spiral-like chain distortion
of a one-dimensional FLL

R =(2ma+x,2nL), R,y =((2m—-1)a+x,(2n—1)L), 1+ K2 (k-q)%—k2g?
1T @ e? TP et (kg

R; =(2ma—x,(2n—1)L), R, =((2m-1)a—x,2nL),
(31

A g - 0 (0 1-k?  sin(k-qd) 2
wherem andan are integers. - =" 32 2 - 2 292
All the vortices are ?n equivalent positions and have the Q™ (k-q)” (keqid  d[Q™+(k-q)7]
same energy. Since the transverse distance between the [(k-q)?—k?g?]cogk-qd)

chains is defined by the initial field-dependent spac(ky) X q

and the longitudinal spacing is the pitch lengtliFig. 8), the
energy of the system per unit volume, F, equals the energy o .
per one vortex divided byLd. Let us choose the vortex +(k-a)(1+k%)sin(k-qd) |, (35
located atR; =(x,0) as a test vortex. Then the distances

from this vortex to the other upward- and downward-directedf m#0 or n#0. For the casen=n=0 one findsu..(dg o

ones are, respectively, =+4A2,
N Substituting Egs(35) into Eq. (34) and performing the
ARy (m,n)=(2ma2nL), summation ovem one finds

“. cosh(man/L)J1+Kk3]+(—1)"
+ﬂ 1+k22 H(m ) J+(=1)
aL n=1 n sini (ran/L)y1+k?]

man(1—2x/a)

cosh (27xn/L) 1+ kz]+(—1)n cos}‘(f V1+ kzﬂ

go(1-K%) & 1 . (kwdn)
- ————= 2 sin :
mkady1+k? =1 N L sini (wan/L)V1+k?]
wk? LTI k?a . 477X) s
T a1+ k9 |\ T L)\t T 242\ TS ) (36)
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To account for the work done by the external sources of
field and transport current one should add to E&6) the
expressiong20) and (23) normalized per unit volume and
obtain

2X
E.

€p 2 d €p A
G=F~ > zkhin| 5| ~h; Zn| (37)

aL 3 2¢ &
In the above formulah;=H;/H.;, whereH;=2mjd/c is a
local current self-field over the film andis a local current
density. In what follows, we suppose that, in a resistive state,
the current is distributed approximately uniformly over the
film cross section.

The above Gibbs energy of the system should be com-
pared with the Gibbs energy of the initial linear FI(BO). FIG. 10. Critical parameters of the chain instability of an one-
The critical current of instability is achieved when the dif- dimensional flux-line latticeh;,, is a dimensionless self-field of the
ferenceG,in— Go(h,a) first becomes negativé is a com- _critical current of instability) =L/d is_ the pi_tch length of th_e mqst
plicated function of three variablés L, andx and possesses Stable mode, ané=tan where/ is the tilt angle of vortices in
a rather nontrivial 3D relief. The summation in E§6) can- vortex chain.k grows in a narrow low-field region close to=1,
not be performed analytically. On the other hand, the trynihen merges with.

cation of the sums produces unphysical minima, complicat-

ing the numerical analysis. To avoid these problems ancf 9 IS achieved at some optimum values of pitch leniggh

simultaneously, to account for the barrier nature of the insta@d tilt ko defined by the equations

bility nucleation we consider in what follows the energy
averaged over the distance which vortices pass in the course
of the chain expansion:

1.6

Field h

2.2

&g_
i

(?g_

0, &_L_O'

(41)

with account for the restrictiok<L/d. Then the value of
instability currentj;, at a given magnetic field is obtained
from the equation

2 [(ar2
g(k,l)za fo dxG(k,L,x). (38

After this procedure the Gibbs energy reduces to

- ko,Lg)=Gg(h,a). (42
eoV1+k2 > 1 t?’( man \/m)+( 1) 9tko.Lo olh-2)
aL n=1 N L A numerical analysis of Eqs41) and (42) shows that

solutionskg=<L exist only at very low fields ¥h<1.006

-1 2 2
% Sim.(Lan W) ]+ o |m(1+kY)  Ka (Fig. 10. At higher fields, the absolute minimum gfshifts
L L? 12 27°d to the unphysical regiok>L/d, and the physical minimum

enr kd okd! 2skh  d is achieved ak=L/d as well as is shown in Fig. 6. The last

— 0_2 (1_ _) ( 1— _) 2 = condition corresponds to the short-wave saw-toothed struc-
12a L L 3aL - 2¢ ture shown as a dashed line in Figb]l In this case, Egs.
eohi A (41) are no longer valid. The minimum is sought by means

- 2Ld| In 3 (39)  of the Lagrange method as the minimum of the function

Let us take for granted that the instability occurs at a shor

wavelengthL < ma, which will be justified later. Then, the
hyperbolic functions in Eq(39) may be approximated with
good accuracy by exponents, which allows one to perfor
the summation analytically and to find finally

80\/1+ k2
g:—

L
al {y+|n E—Z In

1+ex —WTa W)H

eo | m(1+K?)  k%a TEQ 1 kd 1 2kd
LZ| 12 2m2d| 1222 L L
280kh d 80hi )\

3aL "2¢ 2LdE (40

=g—p(k—1) with respect to the variablgs k,I, wherep is
gome Lagrange multiplier. The parameters of the first in-
stable spiral disturbance of the FLkg,L 4 are plotted in Fig.
10. The equalityko=Ly/d holds at almost all fields. That

pineans that the broken vortex chain structifig. 1(b)] pre-

sents, in fact, a discrete model of spirals. The pitch length
L ~d subsiding with the field confirms our hypothesis on the
short-wave nature of instability. The value of the critical cur-

rent of the instability is given then by the formula

Jin=1Idhin, (43)
where the dimensionless current self-fi¢lg, is shown in
Fig. 10. The characteristic current of the filmjg
=cH¢/27d, equals, for the parameters involvgd=2.15

X 10" (Alcm?).

The instability onset is expected when the least possible Comparing Figs. 10 and 7 one can see that the antiphase
magnitude ofg first attains the magnitude of the Gibbs free mode pitch lengthLy=0.6a(h) in the considered field re-
energy of the initial FLL.Gy(h,a) [Eq.(30)]. The minimum  gion. This result is similar to that for the one-FL mode of the
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dense FLL instability in bulk samples obtained by Bratidt, In fact, the formation of chains occurs not 0, but at
jin~cHa(H)/\?, Lo~2a(H), wherea(H)~\®,/H is the = somex<a/2 as is seen from Fig.(d), which provides less
2D-lattice spacing. initial energy of the vortex structure. Another point which
Let us consider now the uniform mode of the chain insta-should be taken into account is the nonuniform distribution
bility of the FLL shown in Fig. 9. The upward- and of the transport current in a film. Let us suppose that, before
downward-directed vortices occupy the following positions,instability sets in, the current exhibits a distribution given by
respectively: Eg. (21). Then, the instability first reveals itself at the edge
N B of the film where the current density {8\V/ A larger than the
R™=(matx,2nl), R™=(ma-x,(2n—1)L), (44  average one. That means that the instability sets in at the

wherem andn are integer. The distances from the test vortexaveraged current densityW/A less than that of Eq(43),
position atR* =(x,0) to the other upward- and downward- €.9.. at typical currents of the geometrical barrier

directed ones are, respectively, mechanisnt® For the parameters of the film chosen in our
computations, that giveg,=10°—10° A/cm?. But anyway,
ARTt(m,n)=(ma2nL), the critical current of instability in thin films under an exter-
nal field of a fewH,(d) is high, grows with the magnetic
AR"7(m,n)=(ma—2x,(2n-1)L). (45  field, and, thus, cannot be matched with thero high-field

results obtained for bulk samples in Refs. 10 and 11.

Th f thi fi ti
e energy of this configuration reads We suppose that the basic reasons for this incompatibility

1 consist in the strong effect of the surface in a thin-film case
F=1ld > [U.(AR**(m,n))+U_(AR"~(m,n))] and in the validity of our straight-vortex model only in the
mn low-field region. Really, the origin of the zero critical current
eoT 27 triggering a homogeneous helical instable mode in a bulk
= 717 Ue|—m, En) casélis caused by a very low energy of this mode which is
mn compression free and shear free. In the case of a thin film
o 4mX with d<\, the interaction of the helically distorted FL's
+u_(?m,rn (—" cos(Tm) . (46) with the film surfaces is equivalent to the interaction with a
succession of FL reflectiofiSin two mirrors located at
Averaging this energy over the distance/@) as was — +d/2. This configuration is neither compres_sion free nor
done in Eq.(38) one obtains the Gibbs free energy of the SNear free and possesses a large energy which results in a
uniformly distorted FLL in the form large valuga. of the critical currend3). That explalr)s also
why the critical currents and parameters of the antiphase and
2e0k?  eoy1+k2 uniform modes of instability in the thin-film case turn out to
g=- 9ad + al be so close to each other and to the one-FL mode of FLL

instability in the bulk casé!

a
1+ex;( _ V1+ kz)

L

X{ +1 L 21
n—— n
[

] C. Dissipation cycle frequency and resistivity
due to spiral instability of the FLL

2 2 242
+ S_g m(1+K7 - K ? - g — g) Let us estimate the frequency and dissipation rate during
L 12 27°d| 6a L the instability-mediated oscillations. Consider a thin film in a

2¢kh d echi A parallel field abovéH.,(d). Let the transport current be high
e == -, (47 enough for an instability to comprise the whole sample. It is
3aL "2¢ 2Ld ¢ reasonable to expect that, in a resistive steady state, the trans-

The critical valu f vitch lenath. tilt anal nd curr ntport current _is d.istributed almost homogeneously over the
e critical yarues ot prich ‘ength, tit angle, and curtety, 1213 1aying into account a threshold character of the

triggering the instability may be now found following the .

same procedure as was used above for the antiphase moc'ﬂes.‘tab'“ty’ the force exerted by the current upon one vortex

Though the pictures of the antiphase and uniform modes o"imd averaged over one act of instability may be presented as

instability shown in Figs. 8 and 9 are different as well as the ®
energy expression@0) and (47), the numerical results for f= —O(j —jin)d. (49
the instability parameterk,, Ly, and h;, turn out to be ¢

almost identical in the considered field regifexcept for o the contrary to the above Lorentz force, the viscous force

fields very close td.,(d)] thanks to the conditiok=L/d  yesisting the motion of the vortex is proportional to its length
at which the minima are reached. and equals

A typical value of the critical curren43) proportional to
hi, (Fig. 10 is very high and exceeds, for example, a char- nvd
acteristic current of a geometrical barfiefor the edge de- n=@,
fect current?), j,=(cH,/2d) VA/W, by a factor of yW/A.
It may partly follow from the overestimation of the barrier whereg is the angle which the vortex makes with the normal
effect for the vortex chain formation. Really, it is implied in to the film [see Fig. 2a)] and cos3=(1+k? Y2 Equating
Egs.(33) and (46) that the energy of the vortex structure at the above two forces one can find an averaged velocity of
the beginning of the instability process=0) is rather high. vortices during the chain expansion:

(49
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vex=i cosB= M cos B, (50
n Heo

where an empirical relatidhfor the viscosity of vortex mo-

tion, n=®H.,/c%p,, is usedp, being the resistivity in the

normal state.

The characteristic time of recovering a magnetic flux in
the sample after the act of instability depends on where the
magnetic flux enters. Since the instability current is expected
to be of the order or more than the characteristic current of
the edge geometrical barrier, it is reasonable to consider the FIG. 11. The electric fieldE vs parallel magnetic fielch
flux entry through the film edges. Then, the downward-=H/H(d) dependences are presented for fixed values of transport
directed 2D vortices of the current self-fie(tllted in the  currentj/j4=1.05,1.3,1.7,1.8.
field direction enter in the film through the=d/2 edge and

the upward-directed ones enter through te—d/2 edge Thus, the resistivity due to the instability in thin films has
forming the right-handed spiral flux structure similar to 3 substantial magnitude. Previous results for the dissipation
right-handed spiral FL's entering the superconductingdue to instability were obtained in Refs. 12 and 13 for bulk
cylinder? To undergo the reconnection and transformationsamp|es @>\) in high fields H>H.;) and do not apply
into additional linear FL's, the entering chains of 2D VortiCESdirecﬂy to our case. Neverthe|eSS, one may use it for the
must pass through a distaneea(h) from the edge to the estimation of the resistivity in thin films. The pitch length of
center of the film. They move with an average velocity  the (easiest uniform mode of instability was found to be
o infinite, e.g., practically of the length of the sampié! The
Uen:w_ (51) resistivity in this regime was found to b o,

Heo =0.2p,(£/d)?. It is seen from Eq(54) taken in the high-
current limit j>j;, that the short-wave chain instability
mechanism in films gives a resistivity one order more than
the above long-wave one. This difference is not large, taking
into account the model character of our calculations. A much

Electric field (arb.units)

1 1.6 2.2
Magnetic field h

Thus, the typical time of the magnetic flux restoration is
the same or less than that of flux exit due to the instability
Then, the typical frequency of the shuttling is

2 ) ; more essential difference is the fact that, in the bulk case, the
Vex  PnC”IN K hip [ ] - 2 e 13 ot s
0= T Al ad T 1l|cosp multiplier (¢/d)? becomes infinitesimally smaf*3while in
a e ald i the thin-film case this multiplier allows a measurable magni-
hin(h) j tude of resistivity(54).
=2.8x 10" (sec?) n (___ ) The typical current of the spiral instability in thin films
Vi+k*(h)a(h)/d Jin (43) is rather high, which makes an observation of the effect

(52) difficult but not impossible. At least, the voltage measure-
ments on microbridges and thin narrow films at one order
for the above considered film. The normal resistivity,  larger currents have been known since the early 1890s.
equal to 100u€) cm, was taken for the above estimation High-quality highT, wide thin films with clear-cut edges
from Ref. 29. Let us note that this fl’equency is current de'seem to be appropria‘[e for this experiment too. The homo-
pendent and, thus, a nonuniform current distribution in a filmgeneity of the films is important to allow coherent motion of
may result in a voltage noise in a wide frequency range. the vortex chains. One possible experiment is a measurement
An averaged electric field in the direction generated by of the voltage at fixed transport currents in a parallel mag-
the shuttling vortices is proportional to the vortex density inpetic field near the lower critical field of the filnt ¢, (d).

chains and equals The set of the voltage-magnetic dependences for various val-
o ues of the transport curreptmay be presented in the forin
g P00 A Pn®PoliZiin) (53  (Vem)=[B/d%(nm)]e(j/js,h) whereE is the electric field
cL aLH1+Kk?' strength, the constanB=1.75x10°, and the function

¢(j/jq4,h) is shown in Fig. 11. The voltage peak just above

wherea is the angle between the magnetic field lines and thqhe field H.,(d) is expected in measurements at transport
normal to the film. As was stressed in Ref. 18, the differencecurrentsj ~j,. The decrease of the voltage may be, though

fbletwetﬁ/ln tkhm and tr}e r:/ or]:[_e>|< dt'lt anglgg may be drastic in - igic it to observe since the large heat release after the onset
iims. Making use of the field expressiof) one can esti- ¢ jnsanility will most likely trigger a global irreversible
mate for the parameters involved an averaged value ofcos quench of the superconducting state.

— 72 . . .
asA=10"*. This small value means that the field lines are * Another possibility to reveal the indications of the spiral
only slightly deviated from the positions parallel to the film, instability is given by local magnetic measurements. In the

thour?h thg vpr.tic%s are V\;]e” .t"tedb'.fl(.) the fi(ljm surface. inner region of the film, the components of the magnetic
The resistivity during the instability reads moments of the 2D vortices with opposite orientations com-
pensate for each other and make no contribution in a field

2 2 i P
o :E:p (§ A2md” ] _]i“ ~103p ) _Ji“_ transverse to the film. But in the narrow strip of the width
o "d) aLy1+k? i " ~d along the film edges, the chain instability induces the

(549 oscillating transverse field of the amplitudeH
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~(®y/aL)cosa=10"2T (for the parameters choseand of  uted nonuniformly over the samplfgo, say, after the law
the frequency given in Eq52). The detection of this field (21)], vortex shuttling may give rise to a voltage noise spec-
component perpendicular to the film seems to be possible ifum in a rather wide frequency range of many decades that

films with a clear-cut edge and would be a strong evidence iffakes difficult an observation of a distinct oscillation effect.
favor of the suggested scenario of resistivity in a para||e|NevertheIess, the observation of the transverse component of

field the magnetic field at the clear-cut film edge would be an
' evidence in favor of the proposed chain instability mecha-
nism of resistivity which gives a quite reasonable magnitude

IV. CONCLUSIONS of the dissipation rate.

In this paper we have presented a discrete model of a ACKNOWLEDGMENTS
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spiral instability of force-free configurations in bulk super- ity at the Material Physics Institute of the University of 6o
conductors. If the transport current density is high e”OUthingen.

every linear flux line transforms into a double chain of 2D
vortices tilted in the field direction and forming a left-spiral- APPENDIX: INTERACTION ENERGY

like flux structure. These double chains expand, driven by OF THE TILTED VORTICES

the transport current, reconnect, and form a new one-

dimensional flux-line lattice, allowing a part of flux to leave  Substituting Egs(9) and (10) into Eg. (12) one obtains
the sample. Finally, the equilibrium flux magnitude in the EQ. (13) with

sample recovers due to the entry of additional flux lines 14 K2

2
through the edges of the sample. u.(q)= + m,, (A1)
The critical current triggering the instability is of the or- ' Q*+(k-@)?  (Q*+(k-a)H)d "
der or above the characteristic current of the geometrical 1-k2  sin(k-qd) >
barrier. Thanks to the high current and a short pitch length ofy_(q)= - — > q . s I1_,
the instable flux structures, the typical frequency of the Q°+(k-a)° (k-qd)  (Q°+(k-q))d
above shuttle process is rather higibout 18! sec'!) and (A2)
strongly current dependent. If the transport current is distribwhere
n — (K hod+a sinhod +Q cosk-qd/2 sinhQd/2+k-q sink-qd/2 coshQd/2 K- adi2
=(@=(k-a)(Q coshQd+ g sinh Q)| = "G 532+ q coshQd2)? sinh Qd/2 sink-q
Q sink-qgd/2 coshQd/2—k-q cosk-qd/2 sinhQd/2
- - 5 cosk-qd/2
(Q coshQd/2+q sinhQd/2)° coshQd/2
Q sink-qd/2 coshQd/2—k-q cosk-qd/2 sinhQd/2 )
\%(Q coshQd/2+ q sinh Qd/2)2 sinhQd/2 sink- qd/2
Q cosk-qd/2 sinhQd/2+k-q sink-qd/2 coshQd/2
* \%(Q sinh Qd/2+ q coshQd/2)? coshQa/2 cosk-qd/2
sinh Qd/2 coshQd/2 (1¥1) .
Kol =< ) < - . . .
(costh/Z cos k-qd/2= snhQd2 sir? k-qd/2| + > (k-q)sink-qd|. (A3)

Equations(16) follow from the above expressiori&\1)—(A3) in the limit |qy|d=wnd/L>1. The second terms in both
equationg16) make essential contributions only in the regipi<1 and are cut off for conveniencat qd>1 they decrease
much faster.

Equations(35) may be found from Eqs(A1)—(A3) in the limit =g, ,>d " * valid for anym#0 or n#0 sinceq,,
=(mm/a,7n/L) anda,L<d. Then, the terms making the main contribution in su®% and(46) are saved.
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