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For the classicalN-vector model, with arbitraryN, we have computed through ord@'’ the high-
temperature expansions of the second field derivative of the susceptihilit}; 3) on the simple cubic and on
the body centered cubic latticgS-he N-vector model is also known as th@(N) symmetric classical spin
Heisenberg model or, in quantum field theory, as the latfi¢&l) nonlinearc model] By analyzing the
expansion ofy,(N,B) on the two lattices, and by carefully allowing for the corrections to scaling, we obtain
updated estimates of the critical parameters and more accurate tests of the hyperscaling de(&tpon
+y(N)—2A,4(N)=0 for a range of values of the spin dimensionaMy includingN=0 (the self-avoiding
walk mode), N=1 (the Ising spin 1/2 modgIN=2 (the XY mode), N=3 (the classical Heisenberg moglel
Using the recently extended series for the susceptibility and for the second correlation moment, we also
compute the dimensionless renormalized four point coupling constants and some universal ratios of scaling
correction amplitudes in fair agreement with recent renormalization group estifizi463-182008)04941-§

I. INTRODUCTION ties. So far other expansion methods have given competitive
(or sometimes superipiperformance only for discrete site
We have recently extended the computation of high-variables and for very simple interactions, on two-
temperaturgHT) series for theN-vector model with arbi-  dimensional or low coordination number lattices. By the
trary spin dimensionalityN on the d-dimensional bipartite LCE method we have produced tables of series expansion
lattices, namely, on the simple cul{io) lattice, on the body coefficients given as explicit functions of the spin dimen-
centered cubicbco lattice, and on theid-dimensional gen-  sionality N, with an extension independent of the structure
eralizations. In previous papers we have tabulated throughnd dimensionality of the lattice. Thus we have succeeded in
order 82! the series for the zero field susceptibiliggN, 3) efficiently condensing a large body of information concern-
and for the second moment of the correlation functioning infinitely many universality classes. We consider these
m2(N,B) and we have analyzed their critical behavior in thecoefficient tables to be the main result of our work and, in
d=2 caséand in thed=3 case’ Here we present a study of spite of their considerable extent, we have reported them in
the second field derivative of the susceptibilipy(N,8)  the Appendixes in order to make each step of our work veri-
whose HT expansion on the sc and the bcc lattices we havigable and reproducible. The size of our computation has
extended through ordes!’. A study of x,(N,B) in the d been unusually vast: approximately3a(® topologically in-
=2 case had been discussed in Ref. 2. It is interesting tequivalent graphs have been listed and evaluated. Neverthe-
point out that in all analyses presented below, the bcc latticéess, we are confident that our series have been correctly
series appear to be better converged than the sc lattice seriesmputed, not only because our codes have been thoroughly
and lead to estimates of critical parameters which are likelyested, but also becaudeandd enter in the whole compu-
to be more accurate. In other words, the bcc series seem to lational procedure as parameters. As a consequence, at least
always “effectively longer* and therefore give estimates of simple partial checks are available by observing that our ex-
greater value than the sc series. pansion coefficients, when specializedNe=1 agree with
The list of the expansions of,(N,3) in d=3 published the seriesO(3") already available in 3as well as in 2
up to now is a short one. A decade agcsther and Weisz ~ dimensions and, forN—«, agree with the spherical
(see also Ref.)derived HT expansions of,(N,3) through  model®° series which can be readily calculated in any di-
B for anyN, on the sc lattice iml=2, 3, and 4 dimensions mension. More comments on the comparison of our results
by using a linked cluster expansi¢bCE) technique>’~*2In  with the existing series, can be found in our p&pevoted
the N=1 case/corresponding to the Ising spin 1/2 moHel to the two-dimensionaN-vector model.
the series for the sc lattice published before our work already A valuable justification of our work is that an increasingly
extended througg'’ (Refs. 13,1%4and has been analyzed by accurate study of the critical behavior pf(N,3) can offer,
various authord*~*®Finally in the Ising model case, a series for all values ofN, a sharper test of the hyperscaling expo-
to orderB* on the bcc lattice and a series to or@2f on the  nent relationdv(N) + y(N) —2A4(N)=0. Here y(N) and
face centered cubitfcc) lattice'>*>1”have long been avail- »(N) characterize the critical singularities j(N,3) and
able. &(N,B), respectively, whileA,(N) is the gap exponent as-
In our calculation we have also used fvertex renormal-  sociated with the critical behavior of the higher field deriva-
ized LCE technique and have developed algorithms whichtives of the free energy. It is also of great interest to measure
are equally efficient in a wide range of space dimensionaliaccurately the critical amplitude gf4(N, ), which together
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with the amplitudes of¢(N,8) and§(N,B), enters into the \herey(x) is aN-component classical spin of unit length at

definition of the universal dimensionless renormalized four,[he lattice site with position vecto}, and the sum extends to

point coupling constang,(N). Indeed the uncertainties, o hearest-neighbor pairs of sites. The susceptibility is de-
probably still of the order of 1%, in the value of this quantity g.q4 by

might be the main residual source of effgttin the present
computation of the critical exponents within the renormaliza- R
tion group (RG) approach by the Parféifixed dimension X(N,,B):E (v(0)-v(X))¢, (2)
(FD) coupling constant expansiSf.2’ Murray and Nicket® X

have recently pushed to seven loop order these calculation Sy . .
and the impact of the additional terms on the estimates of thﬁhere <v(0)'v().()>° IS the.c.onnected cor.relatlon Eqnctlon
critical exponents and of some universal amplitude combinabetween the spin at the origin and the spin at the:site
tions has been critically assessed by Guida and Zinn-Jtlstin.  |f we introduce the reduced inverse temperatuféN)

As has been stressed many times in the past twe1—B/BE(N) (here and in what follows # stands for either
decade® 38 and, more recently, also in Ref. 3, in order to SC Or bcc, as approprigteheny (N, 3) is expected to behave
improve the precision of the estimates obtainable from HTas
expansions not only longer series should be computed, but
also more careful allowance should be made;gtr the singulax*(N,8)=CH(N)[7#(N)] " NM{1+af(N)[#(N)]"V+ . ..
corrections to scaling. Their presence is expettadd, un-
surprisingly, they turn out to be important in various cases. +e§(N)T#(N)+ o} 3
Therefore in this analysis we have also studied their role ang, ., #(N) 0. Cf((N) is the critical amplitude of the sus-

have estimated their amplitudes in the casg,¢N), both on . “ . ; . )
the sc and the bcc lattice. Moreover, it is of some interest tocept|bll|ty, aX(N) is the amplitude of the leading singular

compute the ratios of these correction amplitudes with thecorrection to scalinga(N) s th? exponent of thf correction
analogous quantities foy and £, which define interesting (also called confluent singularity expongréinde, (N) is the

universal quantities, still subject to significant uncertainty@MPlitude of the leading regular correction. The ellipses rep-

and so far not much studied by HT series methods. We recalfsent higher order singular or gnalytic corregtion terms. The
that most existing results on the universal combinations of©nfluént terms result from the irrelevant variabieset us
the critical and the correction amplitudes are reviewed andéc@ll that not only the critical exponem(N), but also the
thoroughly discussed in Refs. 21, 25, 40. eading confluent correction exponef(tN) is universal(for

The paper is organized as follows. In Sec. Il we presenF%Ch N)'# On tpe other hand, the critical amplitudes
our notation and define the quantities we shall study. In SeCx(N), @,(N), &(N), etc., are expected to depend on the
Il we briefly discuss the simplified doubly biased differen- Parameters of the Hamiltonian and on the lattice structure,
tial approximants which we have used for our estimates bek-€., they are nonuniversal. Similar considerations also apply
side more traditional numerical tools. Our analysis of thet® the other thermodynamic quantities listed below, which
series is presented in Sec. IV along with a comparison tdrave different critical exponents and different critical ampli-
earlier series work, to measures performed in stochastit/des, but the same leading confluent exportiN). It is
simulations and to RG estimates, both by the FD perturbativ&nown thatg(N) =0.5 for small values ol (Ref. 25 and, in
technique and by the Fisher-WilsBn e-expansion the context of the larghl-expansiorf, one can also infer that
approachf*-264243 et us mention that very recently, the ~ 0(N)=1+O(1NN). _ N _
expansion ofg,(N) has been extended by Pelissetto and Since we have clearly stated which quantities are univer-
Vicari* from ordere? (Ref. 45 to ordere?, so that we are sal, from now on we shall generally omit the superscript # in
able to compare our HT results also with their estimates. order to keep the formulas more legible. Notice also that,

Our conclusions are briefly summarized in Sec. V. In thesince there is no chance of confusion, we have systematically
Appendixes we have reported the HT series coefficients ofMitted the superscript usually adopted for the amplitudes
dimensionalityN. For convenience of the reader, we havePOINt. _ o _
also reported their evaluation fot=0 (the SAW modéf®), The second moment of the correlation function is defined
N=1 (the Ising spin 1/2 modgIN=2 (the XY mode), and  BY
N=23 (the classical Heisenberg mogeThe present tabula-
tion supersedes and exten_ds the one to qﬁivénn Ref. 6 #2(N,,3)=Z )22<U(0)_v(§)>c_ )
which, unfortunately, contains a few misprints. x

In the vicinity of the critical pointu, is expected to behave

Il. DEFINITIONS AND NOTATION as
We list here our definitions and notation. As the Hamil-  u,(N,B)=C,(N)7 "N ~2"N[14+a (N)7/N+. ..
tonianH of the N-vector model we take
+e,(N)7+---] (5)
1 ast]0.
H{U}:_E E v(X)-v(X'), (1) In terms of y and u,, the second moment correlation
&

xx') length ¢ is defined® by
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Iu’Z(NvB)
6x(N,B)

In the vicinity of the critical point is expected to behave
as

E(N,B)= (6)

EN,B)=C«(N)7 "V 1+a(N) 7N +

_——

- t+edN) T
(7)

ast|0.

The second field derivative of the susceptibility is defined

by
Xa(N, )= N+22 (v(0)-v(x)v(y)-v(D)e

3N

2 [}
N2l TN A (NB . t)

Notice that this definition differs by a factorN? from that
used in Ref. 5.

It is well known'®!° that, for N—o at fixed B=gIN,
x(N, 8) has a finite nontrivial limity(8). On the other hand,
as expected, in the same limit we hagygN, 8) =O(1/N). It

is the quantityNy,4(N, 8) that has a finite limit,(3) simply
expressed as

}4@):—6}2(73)( XB)+B X(Bﬁ )) )

Also theN—O0 limit, at fixed B, existé® and the quantity

Xa(B)=lim x4(N,8)=—3 2 cyn, BNz (10)

N—O
has the following interpretatiof:> cy_y, is the number of
pairs (1), »®) of self-avoiding walks such thab!) is a
N;-step walk starting at the origin anre®) is aN,-step walk
starting anywhere and crossiag®).
In the vicinity of the critical pointy4(N, 8) is expected to
behave as

Xa(N,B)=C4(N) 7~ "N 728N 1+ 3, (N) 7N +
+es(N) 7+ -+ -] 11

ast|0.

In terms ofy, ¢ andy, the “dimensionless renormalized
four point coupling constant’y,(N) is defined as the value
of

vf(N)x4a(N,B)
E(N,B)x*(N,B)
at the critical pointB.(N). Here f(N)=(N+8)/48x is a

N,B)=~— 12

a(
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G(N,B) = gr(N) 77N+ M =234N 1 (N 70N .

+ey(N) 7+ -] (13)
as 7|0, with
vf(N)C4(N)
(N)= = ———— 14
9:(N) CNICAN) (14
The Gunton-Buckingari—>%inequality
30(N) + y(N) = 2A,(N)=0 (15)

together with the Lebowif? inequality y,(N, 3) <0, implies
thatg(N, B) is a bounded non-negative quantitya9. The
vanishing ofg(N, B;) is a sufficient condition for Gaussian
behavior at criticality or, in lattice field theory language, for
“triviality” “*° of the continuum field theory defined by the
N-vector lattice model in the critical limit. Ify,(N,B) is
nonvanishing and the above inequality holds as an equality
(the hyperscaling relation

3u(N)+ y(N)—2A,(N)=0 (16)

then
g(N,B)=g,(N)[1+ag(N) 7N+ ... +e,(N) 7+ - - -],
(17)

namely,g(N, 8) tends to the nonzero limiting valug(N) as
7/0.

For checking purposes it is useful to recall here the large
N limits of the critical amplitudes. They have been
computed® long ago:

C3(e)= ———=——=0.3922878..., (1§
A () 1677 Be(>)]°
with B59()=0.252731008 ... and
CY) -t =0.299741Q..., (19
6417 Z[Bbcc( ) 3 !
with B2°Y(0)=0.174150492 . . . .
Moreover, we recall that, since in the larbyelimit
u2=09Bx>, (20)

whereq is the lattice coordination number, we ha@é(oc)
=[qBs()Ci()/6]¥2 On the other hand, if we denote by
Ci() the largeN limit of NCi(N), by Eq. (9) we have

Ci()=—12C¥()1% and therefore it follows thag; (=)
=1.

Ill. ANALYSIS OF THE SERIES

As mentioned in the Introduction, a variety of careful

normalization factor chosen in order to match the usual fieldanalyse®-38 of the Ising model HT expansions as well as

theoretic definition ofg,(N) (Ref. 25 and v denotes the
volume per lattice site (=1 for the sc lattice andv
=4/3/3 for the bcce lattick

In the vicinity of the critical pointg(N, 8) is expected to
behave as

our study of the recently extendédvector model series,
suggest that the nonanalytic confluent corrections to the lead-
ing critical behavior of the thermodynamic quantities, indi-
cated in the asymptotic formuld8), (5), (7), etc., exist and
should not in general be neglected in computing numerical
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TABLE I. Values for § used in our biased evaluations and determined by FD perturbative expansion.

N 0 1 2 3 4 6 8 10

9 0.47810) 0.5048) 0.5298) 0.55312) 0.57320) 0.62410) 0.67010) 0.70710)

estimates of the critical parameters. It has long beenvith the initial conditionF(0)=f,. Q,,(8) andR,(B) are
observe@®~3"*°that these corrections reveal themselves agpolynomials of degreem andn, respectively, whose coeffi-
small apparent violations of both universality and hyperscalcients are calculated, as usual, by imposing that the series
ing in a naive pure power law analysis of the critical behav-expansion ofF (8) agrees with that of (8) at least through

ior. However, it is also well knowt*?that, unless very long the orderg™*"*1. In addition the normalization condition
HT series are available, extracting simultaneously estimate®,,(0)=1 is imposed. Assuming for simplicity 06

for 8., the exponents and the amplitudes of the critmadl <1, f(8.)=b, is estimated as

of the subleading singularity is a difficult and unstable nu-

merical problem. For this task the inhomogeneous DA — BcRn(Be)
6Qm(Bc)

method® of series analysis is generally believed to be more

effective than the traditional and simpler Paajgproximant ) ) ) )
(PA) method, because, at least in principle, it might be flex-2nd the amplitude, of the subleading term in Ed21) is
ible enough to represent functions behaving ¢gx)(x ~ ©stimated by the formula

—Xg) ~“+ ¢2(X) near a singular pointy, where¢q(x) is a

b = (23)

regular function ofx and ¢,(x) may contain aconflueny cnm _ ¢ —b(”'m)—fﬁc D™ (t)dt (24)
singularity of strength smaller tham. Unfortunately, in 0 o o 0 (1—t/,6’c)1+9’

practice, this is not completely true: very long series are

needed anyway and/or the procedure should be biased Byere

choosing very carefully the structure of the approximants R Ry(By)

and by giving proper inputs. We have followed here the lat- DM ()= T (25)
ter approach. As in some of our previous studigsin ad- Qm(t)  Qm(Be)

dition to more standard procedures of analysis, we have eMye shall consider only the “almost diagonal” approximants
ployed a doubly biased prescription which assumes that thgip, |m—n|<a4.
confluent exponeng and the inverse critical temperatyge The approximants defined by E2) are just a small

are accurately known. This procedure seems to perform reaypclass of the general first order inhomogeneous DA's:
sonably well, even with not very long series. We have taken

the values ofg(N) as estimated by the FD renormalization dF(B)

group method. More precisely, fdi=<4, we have used the (1_ﬂ/:8c)Qm(:8)W+ PI(B)F+Ru(B)=0 (26
values suggested by Guida and Zinn-Justiand forN>4,

we have used the six loop estimates recently obtained bpiased with 3. and with ¢ by imposing P(8:)/Qm(Bc)
Sokolov® and kindly communicated to us before publica- =6/, . Still assuming 6 6<1, we can estimatb, andc,
tion. These values are reported in Table |. We also havéom Eq.(26) as follows:

assumed that the critical temperatu;(%N) have been de-

termined accurately enough in our previous study of the pmnb— _ Rn(5c) - BcRn(Bc) (27)
susceptibility? 0 Pi(Be) 0Qm(Be)

Let us now recall in some detail the features of the sim-
plified DA method. We wish to approximate some function, e = —pgmrl 4+ gmnD(g)

given as a series expansion aroy#w 0 and expected, when

B71 B¢, to have the form o ¢

_fﬁc DM (t)
? o gy (1-t/ o)t

0 Be 1
n,l
+ —bgm™n )f (

f(ﬁ)=n§0 f,8"=h(B)+c(B)(1-BIB)"

+o[(1-BIBo) ). (21) Be o \gmni(t)
We assume thapB. and the real positive exponemt are 1 dt
accurately known, and thdt(8) andc(B) are analytic at - M Be) | (1—t/ o) ) (28
B=pB:. We setb(B;)=by andc(B;)=cg. 9 ¢ ¢

We shall estimate the functiof(8) and therefore the \yhere
constantd, andc, by the particular class of first order in-
homogeneous differential approximam§g) defined as the (mni g) F{ fﬁ( Pi(t) Py(Be) ) dt }
g'mn =expg —

solutions of the equations 0\ Q1) Qn(Bo) | (1—1/8y)
dF(B) . 6 ~ 29
Qm(B)| (1=BIBe) dg +B_CF('B) TRa(8)=0 and D(M™(t) has the same form as E(R5). The simple

(22 formulas(23) and (24) are recovered from the general for-
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mulas(27) and(28) by subjectingP,(8) to the further strong tions presented below, the error estimates are always some-
constraintP,(B)=(0/8.)Qm(B). This prescription, which, what subjective. They include effects both from the scatter of
for short, we will refer to as simplified differential approxi- the approximant values, possible residual trends in sequences
mants (SDA’s) might also be viewed as a simple DA-like of estimates, as well as uncertainties of the bias inputs.
generalization of the biased PA method introduced in Refs. We have applied the SDA approximation procedure not
59-61. only to the quantityg(N,B) in order to compute the conflu-
We have carried out many numerical experiments orent amplitudeag(N), but also to the “effective exponent” of
simple model series having the analytic struct(@®. They x4
show that the SDA’s, when biased with the exact values of
B: and 6, are able to produce very accurate estimatels,of _
and fairly accurate estimates of the confluent amplitogle 74N, B)=[B:(N) ~ ] dg =7(N)+244(N)
In practice, however, we do not have strict control on the 8Ny 8N
series: only approximate values 8f and 6 are available for —a4(N)o(N) 7%+ o(7™) 3D

biasing the SDA's and we do not know the strength of thein order to compute the critical exponent and the confluent

subleading correction terms and of the smooth backgroundympjitude a,(N). Moreover we have examined the analo-
Therefore it is important to understand how sensitive are thgoys quantities

estimates oby andc, to the errors in the biased inputs and

d In X4(N!B) _

how they depend on the structure of the singularity. It turns dinx(N,B)

out that the estimates i, are rather stable when the biased V(Nyﬂ)z[ﬁc(N)—B]T

value for 8. and for ¢ are varied away from their true values

in a range comparable to the typical estimated uncertainties =y(N)—a,(N)(N) "N +o(7*N) (32

in the realistic cases. On the other hang,appears to be
much more sensitive to errors in the biased values. Let u
consider, to be definite, the case of the very simple test series

i0 order to compute the confluent amplitudg(N), and

1 dIn[£(N,B)/
V(E’N)EE[BC(N)—ﬁ]M

B\° 20 dg
f(B)=co| 1— ] +cCy|1——] +beexp1l——
(A 0( Bo) THT B T° "( Bc) =v(N)=a(N)o(N) 7N +o(rN) (33
B\’ p in order to computea,(N). Notice that the estimates thus
=bo+Co| 1~ B. +ol(B.—B)] (30 obtained for the confluent amplitudes,, a,, anda, are

biased solely with3. and . However, due to their definition
which we have examined for various valuestoflf the size  as residua, the sensitivity of the results to the biased value
of the subleading correction to scaling is much smaller tharfor 8. is higher than in the case of .
the size of the leading one, namely|df| <|cy| and we bias The estimates of the critical amplitudes have been ob-
the calculation with the exact values of the paramefeasnd  tained by examining quantities such as
B, we are able to determing, by Eq. (23) to within less
than 102% andc, by Eq. (24) to within less than 1%. MNx(N,B)=C (N)[1+a,(N) 7N +... +e (N)7
However, if the SDA’s are biased with a value @fvhich is +o] (34)
off the right value by 5%, then the relative error @f can
become as large as 15%), while the errombgfincreases to  or the analogous expressions fpr and £€2. This procedure
some 0.1%. The precision di, remains essentially un- also yields the correction amplitudes, but since it requires
changed, but the sensitivity @f, to variations in the biased biasing also with the critical exponem{N) [or v(N), etc],
values and, as a consequence, the accuracy of its estimatews expect that the corresponding results will be subject to a
somewhat worsened in the slightly more complicated, butarger uncertainty.
sometimes realistic case in whifty|~|co|. Unsurprisingly, In conclusion, whenever sizable confluent corrections are
the worst situation occurs when the leading confluent amplipresent, the doubly biased SDA procedure will produce val-
tude is much smaller than the subleading one, since the umes ofg,(N) which are slightly, but definitely different from
certainty in the numerical estimate of may then become estimates by generic DA’s not directly constrained to repro-
very large. In conclusion, taking a conservative attitude, weduce the confluent singularity aralfortiori, from the simple
can safely expect that, for the HT series we are going tdA estimates. Indeed, siné&< 1, the functiong(N, ) will
study, the relative error on the value ©f3) at 8. can be approach with a divergent slope its value &f(N), from
much smaller than 1%, while the uncertainty of the correc-above if the correction amplitude is positive or, otherwise,
tion amplitude can be as large as 20%, unless the amplitudeom below. As a consequence, too smooth extrapolations of
is very small: in this case, due to a higher sensitivity to theg(N,8) to the critical point3. would overestimate the cor-
biased values and/or to the neglect of possibly importantect result in the former case and underestimate it in the
subleading corrections, our estimates are likely to be muchatter. Analogous problems will occur in the study of the
more inaccurate. In order to better understand these resulésxponents and of the correction amplitudesot,, x4, the
let us also observe that, if we tried to estimbggin Eq. (30) only difference being that, since in the formulas for the ef-
by simple PA’s biased witl8., the relative error would be fective exponent§31)—(33) the correction amplitudes appear
substantially larger and increasing with the size of the corwith a negative sign, the critical exponents will be overesti-
rection amplitude. Finally, we remark that in all computa- mated if the amplitudes are negative and they will be under-
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estimated otherwise. Let us add finally that throughout our TABLE II. Verification of hyperscaling for various values bf.
work we have not relied solely on the above numerical tech :
nigue, but we also have always considered various other afl Lattice Be (Ref. 3 y+2A  2y+3v (Ref. 3
o to Understand. o at least © be aware of any diferencdy  °°  0214® 4102 4082234

' y bce 0.1531263) 4.0818) 4.080134)

in the estimates. 1 sc  02216548) (Ref. 80 4.3618)  4.372144)
bec  0.15737@) (Ref. 36 4.3686)  4.369227)

IV. RESULTS AND COMMENTS 2 sc 0.4541) 4.66520) 4.67512)

Since our analysis is aimed at exposing the role of the ~ Pcc 0.32042() 4.66315  4.66412)
nonanalytic corrections to scaling, it is desirable first to tes®  SC 0.693084) 4953200  4.96012)
whether the values of the confluent exponents taken from the ~ bcc 0.48682(4) 494815  4.94612
FD perturbative computations are also generally consistert ~ scC 0.93600%) 5.242) 5.25917)
with the estimates, unfortunately not yet as precise, which ~ bcc 0.655423) 5.222) 5.23417)
can be extracted directly from the HT series. Indeed, as wé  sc 1.42896) 5.672) 5.69119
have mentioned above, the amplitudes of these corrections bcc 0.996444) 5.652) 5.67317)

are not universal and therefore they might be negligibly
small. One might even suspect that our analysis is somehow

artific.ially f'o'rcing on the series a behavior, which, _dpe to 0(4)=0.644), 6(6)=0.634),

their insufficient length, they are not yet able to exhibit. On

the other hand, it has been argued that the uncertainties usu-

ally quoted for the FD values of the renormalized couplings 6(8)=0.664), 6(10)=0.694). (35)

and of the confluent exponents might be unrealistically

small31445083n fact, one should recall that in the context of .

the three-dimensional(<$2)2 field theory, the confluent ex- A second consistency test can also be perf_ormed. On both
ponent is computed in terms of the slope of féunction at ~ lattices and for each value &, we have studied how our
the fixed pointg,(N). As indicated in Refs. 21,31,44, the SDA estimates o (N) depend on the biased value used for
presence of nonanalytic terms, with sufficiently large ampli-th€ confluent exponent by varying it in a 20-30% range
tudes, in the expansion of the function atg, (N), might around the central valué(N) indicated in .Table I. For all
spoil the convergence of the estimates both of the renormal@lués ofN such that the confluent amplitudes are not too
ized couplings and of the confluent exponents. The ensuingMall, it has been quite interesting to observe that, although
uncertainties would reflect on the accuracy of the estimate§'€_estimates of,(N) obtained from the sc and the bcc
of the critical exponents. Moreover thgexpansion of the S€ries are in general somewhat different for a generic value
critical exponents would itself be directly affected by similar Of ¢, théy tend to become equal, or at least very close, when
nonanalytic contributions. The pragmatic point of view ¢=¢(N). These two tests give us further confidence that the
adopted in Ref. 21 is that if these singular terms exist, theynain lines of this analysis and the specific biased value of
do not seem to have visible effects. used as inputs are reasonable.

Let us then show that the values 6{N) reported in
Table | are approximately consistent with the actual behavior
of the series. Assuming knowledge onIy,@f(N), we have _ . .
computed the Baker-Hunter transfoffh®f the xy and u, We shall now proceed to examine directi4(N,5) in
series and, by reconstructing the locations and the residua @fder to estimate its critical exponepfN) +2A,(N) and to
their singularities, we have estimated exponents and amplFompare it with the value 2(N)+3»(N) it should take if
tudes of the critical singularity and of the leading correctionthe hyperscaling relatio(i6) holds true. On each lattice, the
to scaling. Unfortunately this procedure fails to detect nar2nalysis has been performed by first-order SDA’s of the ef-
row and clear signals of the scaling corrections for4,  fective exponent31) doubly biased withg(N) and with the
probably due to the small size of their amplitudes. Howevervalue of 35(N) obtained in our previougviased analysis of
the situation is completely different fdé=4. In this range the susceptibility.
of values ofN, the Baker-Hunter method leads to values of We have reported in Table Il our estimates for the critical
6(N) fairly consistent with those reported in Table I. Also exponents ofy,(N,3) obtained by this procedure together
the values of the correction amplitudes, are compatible wittwith the biased values g8(N) and the values of 2(N)
those emerging from the SDA analysis to be discussed be+ 3v(N) obtained by the analogous biasing procedure in our
low. Moreover, the results are rather stable in a relativelyprevious analysisof y and &2. No significant violation of
wide range of biased values f@,. We regard this as con- universality and hyperscaling is observed. Notice that no
vincing evidence that the confluent corrections cannot be auch extensive test of hyperscaling exists so far in the litera-
by-product of our double biased analysis and as a confirmaure.
tion that their amplitudes are not small fdi=4. Unfortu- Let us quote a few earlier studies of this issue for particu-
nately, the uncertainties which affect this method for estimatiar values ofN. In theN=0 case, a study of, based on Eq.
ing the confluent exponents and the correction amplitude§l0) has been performed by a Monte Carlo simulation in Ref.
are still rather large. For instance, using the bcc lattice serie4. The authors have measured the exponerg—2y
for x, the Hunter-Baker procedure suggests =1.73170.0074£0.0074 and »=0.5745:0.0087

A. Hyperscaling tests
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TABLE IIl. The renormalized coupling constagt(N) for a range of values dfl on the sc and the bcc
lattice as obtained by various methods.

N HT sc HT bcc € exp. FD exp. Monte Carlo
0 1.3885) 1.3875)  1.39017) (Ref. 49 1.4136) (Ref. 21)

0 1.39(Ref. 20

1 1.4087) 1.4076)  1.3978) (Ref. 49  1.4114) (Ref. 21 1.39130) (Ref. 68
1 1.4599) (Ref. 72 1.40(Ref. 20  1.46212) (Ref. 69
2 1.4118) 1.4116)  1.41313) (Ref. 49  1.4033) (Ref. 21

2 1.40(Ref. 20

3 1.40910) 1.4068)  1.3877) (Ref. 49  1.3914) (Ref. 21)

3 1.39(Ref. 20

4 1.39210) 1.39410) 1.36615) (Ref. 49 1.3775) (Ref. 21)

4 1.3745(Ref. 58

6 1.358°9) 1.364°3) 1.3385(Ref. 58

8 1.32Q"9) 13248 1.2957) (Ref. 49  1.3045(Ref. 58

10 1.29Q°9)) 12949 1.2745(Ref. 58

+0.0056. The final result is expressed as+3y—2A,  whose value aB.(N) is g,(N).
= —0.0082+0.0027 0.018, the first error being systematic It is interesting to form approximants both of3) and of
and the second statistical. w(B) because for various values Nf at the presently avail-

In the N=1 case, the tests of the hyperscaling relationable order of expansion, they still show slightly different
(16) are numerous and have a long histdty® The validity — convergence properties. This may be seen as an indication
of Eq. (16) for the three-dimensiondBD) Ising model had that they, series are still not very long. Indeed, as we have
been questioned by BaKeéf on the basis of an analysis of argued in Ref. 57, at ordgs® the dominant contributions to
10-12 term series for the sc, bce, and fcc lattices. A fewthe HT expansion of, come from correlation functions of
years later, when Nickel computé( 3% series on the bcc spins whose average distance~is/4. Therefore the pres-
lattice for y andu, in the spinSising model, it became clear ently available expansions with,,,=17 still describe only a
that rather long series were necessary to allow for the scalingather small system. Table Il contains our estimates of the
corrections and thus to obtain more satisfactory estimates afniversal renormalized coupling(N).

y and ».373%3%0n the other hand accurate analyses of the ForN<4 we have evaluateg,(N) by forming SDA’s of
critical behavior of they,(1,8) series to ordep*’ on the sc  the auxiliary functionw(N, 8), which has been chosen be-
lattice'*>>"®"had yielded reliable values also fa(1). On  cause it yields sequences of estimates showing little or no
the basis of these results, as well as of various recent Mont@sidual trends when an increasing number of series coeffi-
Carlo result€-"°a common consensus was reached that, foeients is used. On the other hand, fér-4, we have used
N=1, if any violation of Eq.(16) occurs, it should be much u(N,8) because the estimates obtained from it show the
smaller than was initially suspected. Our contribution to thisslowest(generally decreasingesidual trends. Whenever rel-
issue also consists in providing an extension from og@fér  evant, we have indicated this fact by reporting asymmetric
to order 8’ of the Ising bcc series foy,, and therefore in  error bars.
further improving the accuracy of the HT test of hyperscal- In the N=0 case, allowance for the correction to scaling
ing and universality even for the widely studidb=1 case. yields a value ofy,(0) approximately 2% smaller than the
one recently obtained within the FD expansforhut very
B. Renormalized couplings close to the value suggesfédy the e expansion. Our value

. ) . . L is also close to that indicated in Ref. 20 and produces, via the

Let us first mention that, S|r21c¢2:O(ﬂ) in the vicinity  geyen 10op FD perturbation series, central valueg(6f) and
of =0, from the series fok, &%, andy, we can form two 9y <294 lower than those quoted in Ref. 21, but within
distinct auxiliary functionsv(N, 8) andu(N, 8), analytic at  heir error bars. It is also worth recalling that also our earlier
B=0, both of which, when extrapolated 8¢ yield g(N,Bc) 1T analysig of y(0,8) and£2(0,8) had supported those low
and therefore,(N), if we assume the validity of the hyper- gy onent estimates in good agreement with very recent high
scaling relation. More precisely we shall consider precision measures by stochastic methods on the sc I4ttice.

ForN=1, on the sc lattice, we have reported here a cen-
tral estimate ofg,(1) slightly lower than, though consistent

_ ENBXYAN,B)

u(N,g)= [0f(N)ya(N,B)]2? (36) with the estimateg,(1)=1.411 obtained from our previous
an analysis’ based on SDA'’s ofi(1,8), rather than ofv(1,3).
whose value aB.(N) is g,(N) ~?? and A small sample of the most recent estimatesgpfl) by
various methods has also been included in the table. All of
v F(N) xa(N, ) them appear to be mutually consistent, if we consider how

(37)  difficult it has been to achieve very accurate Monte Carlo

W(N,B)=—
BITE(N,B)IBI**(N,B) measures of°°(1) (Refs. 68—7Pand we recall that, even in
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TABLE IV. Critical amplitudes on the sc lattice for various valueshof

N Bc(N) ¥(N) v(N) CY(N) CF(N)

0 0.2134983) 1.15948) 0.58786) 1.1171) 0.51013)

1 0.22165443) 1.238810) 0.6315%8) 1.1112) 0.50273)

2 0.454193) 1.3253) 0.6752) 1.0141) 0.48143)

3 0.6930%4) 1.4063) 0.7162) 0.903@8) 0.45412)

4 0.9360Q4) 1.4914) 0.7593) 0.75718) 0.415%2)

6 1.42895%6) 1.6145) 0.821(3) 0.60548) 0.37082)

oo 2.0 1.0 0.39228... (Ref. 19 0.3148D... (Ref. 19

the Ising case, the previous HT series estinfates the C. Critical and correction amplitudes

renormalized coupling were based on expansions shorter |n Taples IV and V we have reported our estimates of the
than those presented here. Indeed, althougi,5) on the  (nonuniversal critical amplitudes CS{N), C${(N) and
sc lattice has long been known through org@éf, the corre- CP(N), C2Y(N), based on the values g(N), v*(N),
sponding expansion for the renormalized coupling was noand »*(N) obtained in the biased analysis of Ref. 3. Earlier
available before our recent wofk/ because £2(1,8)  determinations of the critical amplitudes either from the ex-
reached® only order 8%°. On the other hand thg,(1,8) trapolation of(generally shortgrHT series or from stochas-
series for the bec lattice was known to org#f only. To our  tic simulations are also available fot=1 in Refs. 72, 73,
knowledge, no Monte Carlo results are yet availableNor for N=2 in Ref. 74, and folN=3 in Ref. 75. However,
>1. comparisons with the results of Tables IV and V, which in
For N=3 our estimates are systematically slightly higherdeneral are close to the earlier ones, are not very illuminat-
than the FD values of Refs. 21, 58, and perhaps the residull9, Since the estlma'Fes depend sensitively on the numerical
decreasing trend in our estimates might not be sufficient trocedures, on the biased values useddfiN) and on the

reconcile them. This difference is related to our allowance of €/€vant critical exponents, which are slightly different in the

the scaling corrections by doubly biased SDA's and is con-Various studies.
J y y For example in th&=1 casé”’?(on the basis of shorter

sistent with the higher values of and » that we had ob- latti fies. but th me bee seritre followin i
tained in our biased analysisf y and&. As we have stated s¢ ta ce series, bu d%ifl(le_ 1C((:)§2é 10 oflo d é]scl(ai )
above in discussing the general features of the SDA'’s, sigr-‘na es alg)a. proposedcC, (1)=1. (10) and C;(1)

nificantly larger estimates fdd<<4 and somewhat lower es- :0'49_8450)'SCI;CC(1):1'0216(8) anlJcCC?°°(1)=0.4608(2)
timates forN=4 would be obtained, if the renormalized cou- 25SUMing B¢(1)=0.221630(12), B:*(1)=0.1573687),
plings were evaluated by simple PA's. This fact is ¥(1)=1.2395, and(1)=0.632. .
completely consistent with the observed behavior of the cor- SFor N=2, in Ref. 74 the estlmat§!3X°(2)= 1.058(7) and
rection amplitudes as functions df to be discussed in the Ci(2)=0.498(2) have been obtained from a fit to Monte
next subsection. A similar observation has been made also fraro data, assuming(2)=1.3160(25), »(2)=0.6692),
Ref. 44 where, on the basis of the old sc lattioés) allowing for c.onfluent. corrfctlons with exponer#(2)
serie® the g,(N) have been evaluated by ordinary DA’s, =0.52?. This fit also yieldg:(2)=0.454162(9) from thg
either directly or after performing a change of varigté!  analysis ofy, and53{2)=0.454167(10), from the analysis
designed to regularize the leading correction to scaling andf &
numerically similar to our SDA’s. Therefore the final HT ~ FOrN=3, in Ref. 75, the estimate3}(3)=0.955(6) and
estimates of Ref. 44 essentially agree with ours. C§{3)=0.484(2) have been obtained from a fit to Monte
We have included in Table Il some estimatesgp(N)  Carlo data(with no allowance for confluent correctiorsiso
based on the expansion to ordee* recently presented in yielding B:(3)=0.692943), y(3)=1.391(3) from the
Ref. 44. They are compatible with ours fr<3, while, for  analysis of y and B:{(3)=0.692814), »(3)=0.6942),
N=3, the central values are 2% lower. from the analysis of.

TABLE V. Critical amplitudes on the bcc lattice for various valuesh\bf

N Be(N) ¥(N) v(N) C2YN) CY9N)
0 0.1531283) 1.15828) 0.58796) 1.08711) 0.48442)
1 0.1573782) 1.23846) 0.63085) 1.0341) 0.46592)
2 0.3204273) 1.3243) 0.6742) 0.9181) 0.43712)
3 0.4868204) 1.40233) 0.7142) 0.7941) 0.40722)
4 0.655423) 1.4844) 0.7563) 0.658@8) 0.36912)
6 0.996444) 1.6084) 0.8193) 0.502@6) 0.32312)
oo 2.0 1.0 0.29974 ... (Ref. 19 0.2638B ... (Ref. 19
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TABLE VI. Correction amplitudes on the sc and the bcc lattices for various valubk of

N al(N) a?(N) a¥(N) a(N) a(N) ag™(N)
0 -0.02210) -0.053) -0.11(3) -0.1 1.53) 1.94)

1 -0.103) -0.083) -0.123) -0.083) 1.02) 1.02)

2 -0.042) 0.01(2) -0.073) —0.0059) 0.398) 0.143)
3 0.063) 0.173) 0.0036) 0.093) 0.0510) -0.296)
4 0.306) 0.5(1) 0.143) 0.286) -0.123) —0.5510)
6 0.7315) 1.1(2) 0.378) 0.60(15) -0.358) —0.7720)
8 1.12) 1.8(3) 0.5310) 0.9220) ~0.4310) -1.02)

As has been stressed in general in Ref. 38 and as we hae=1 case, it had been establisfietf3®%ong ago that the

anticipated in our considerations of Sec. Il on the numerica

kign ofa, (1) and ofa,(1) is negative on the sc, bcc, and fcc

properties of SDA's, the discussion of the estimates of theattices. In Ref. 36, for the spin 1/2 Ising model on the bcc
scaling correction amplitudes is much more delicate. Let Usattice, the estimatea?(°°(1)~—0.13 anda?cc(l)~—0.ll

first comment on some qualitative features of the estimategaye peen indicated together with the central valygk)

of these amplitudes for the sc and the bcc lattices which ar
dgcnoted asal(N), a;CC(N), af(N), a*{N), ag(N),
ay"(N), and reported in Table VI.

Both correction amplitudes’(N) andaf(N) are negative
for N<2, whereas they are positive and increasing Nor
>2.[Actually we have reported a positive value hﬂ“(Z),
but with a large uncertainty.Therefore the ratia,/a, is
very likely to be positive for all values dfl. The correction
amplitudesa’(N) and a}(N) turn out to be small, but not
negligible forN=<1 and rather large fdl=4, both in the sc
and in the bcc lattice case. On the contrary, for2 and
N=3 they are very small. Thus the overall behavior of the
correction amplitudes fox and ¢ as functions olN appears
to be smooth and completely consistent with the size and th
sign of the differenceésbetween our unbiased estimates of
the critical exponentg and v and the corresponding esti-
mates biased with botf3; and §. More precisely, we recall
that the nonanalytic corrections to scaling leadgtightly)
higher effective exponents fdl<2 and to (significantly
lower effective exponents fdl=4. On the other hand, the
ag(N)’s are positive forN=<2, while they are negative and
decreasing foN>2, so that the rati@y/a, is negative for
any N. [Actually we have reported a positive value for
ag(3), butwith a large uncertainty.The ag(N)’s are gen-
erally not small, except foN=3 in the sc case and fay
=2 in the bcc case.

€1.237, »(1)=0.630, and#(1)=0.52, on the basis of a
second order DA analysis. Fdf= 2, the above cited Monte
Carlo simulation of Ref. 74, yielded the estimal:ﬂ%(Z)
=—0.15(6) anda;(2)=—0.2014). Clearly, in both cases
the critical parameters are slightly different from ours and
this is sufficient to explain the somewhat different estimates
for the correction amplitudes.

In the spin 1/2 Ising case, it has been argued long’ago
that ag“(l) should be large. Recentlf},it also has been
observed that, if the sc lattice Monte Carlo data of Ref. 70
are simply fitted by the functiog,(8)=g* (1+ay7?, the
value ag{1)~1.13 is obtained in fair agreement with our
gwn estimate.

In Tables VII and VIII we have listed some earlier esti-
mates of the universal rati@g(N)/a, (N) andag(N)/a,(N)
of correction amplitudes obtained by various
methods?2253867.77=7"4je pelieve that, folN<4, it is not
very meaningful to quote the ratios of our central estimates
of a;, a,, anday. Indeed, as we have already pointed out,
for these values o, the amplitudes,, a, are small and
very sensitive to the biased inputs. As a consequence, these
parameters must be finely tuned, which cannot be justified
until longer series will be computed. We shall indicate below
a possible alternative way out of this difficulty. However, the
caseN=1 deserves further comment. In this case, on the sc

It is appropriate now to quote some earlier evaluations ofattice, a very accuraedetermination of33(1) is available,

a, anda; by HT series or Monte Carlo simulations. In the

TABLE VII. The universal ratios of correction

and also the value o82°(1) (Ref. 36 appears to be suffi-

amplitudeg(N)/a,(N) for various values oN.

N HT sc HT bcc € exp. FD exp.

0 0.88550) (Ref. 20
1 [1.2(4)] [1.0(4)] 0.65 (Ref. 77 0.76230) (Ref. 20
1 0.703) (Ref. 76;0.855) (Ref. 36 0.5615) (Ref. 25 0.655) (Ref. 79

2 0.618) 0.63(Ref. 77 0.687110) (Ref. 20
2 0.6155) (Ref. 79
3 0.6315) (Ref. 20
3 0.60 (Ref. 79

4 0.4915) 0.5515)

6 0.5115) 0.5515)

8 0.4915) 0.5415)
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TABLE VIII. The universal ratios of correction amplitudes essentially with no further computational efforBy varying

ag(N)/a,(N) for various values oN. the auxiliary parameter, these authors have selected represen-
tative models such that the leading correction amplitiles
N HTsc  HTbcc € exp. FD exp. a, (andag) vanish. It is clear that, under these conditions,
0 even by employing ordinary unbiased DA's, the accuracy of
_ _ _ _ the estimates of the universal quantities can be improved
; [=3.005)) [~35(5)] —2.25) (Ref. 67 72352 Eg;{: ;g dramatically. On the other hand, within the same approach, it
3 _1.654) (Ref. 79 is probable that also the correction amplitudes WI|| be more
4 ’ ' accurately measured by focusing on representative models in
which they are sufficiently large, provided, of course, that
6 -1A4  -070) the subleading terms are not even larger. Thus more reliable
8 -1149 0.83) estimates might be achieved for their universal ratios, in par-

ticular in the rangeN<4.

ciently safe, so that the ratios of our central estimates of the
amplitudes are more trustworthy and we have reported them V. CONCLUSIONS
in parentheses.

It is interesting to recall also that, f&i=1, suggestions The main result of this paper is the extension through

. O(B") of the series fory,(N,3), for arbitraryN, on the sc
tha_t ag/agg should be '."’“gefcf amefctc)mh from earlier HT and on the bcc lattices. Both sets of expansion coefficients
estimate on the fec Iatt|ce[_ag (1)/a, (1)%_3‘,9] and from . _have been tabulated in the Appendixes in order to make in-
the RG estimates reported In Table VIl This is a further h'n_tdependent checks of their correctness and alternative analy-
that thg corrections to scaling should not be neglected iR, conveniently feasible.
computingg,(1). _ _ _ A second interesting result is the numerical analysis of the
Unfortunately, thee expansions of thsese unlversa_l ratios .ritical behavior ofy.4(N, 8) which confirms fairly well the
presently only extend to second ordéf? so that again we validity of universality and hyperscaling over a wide range

ha\(e to point out that the uncertaipty of the correspondinq)f values ofN. We have also presented an estimate of the
estimates might be larger than indicated. As we have mens

. : X Size of the scaling corrections far, £2, and y, and, allow-
tioned above, even the estimates of these ratios from thﬁlg for them, we have improved the accuracy in the determi-

much longer FD expansioffs’ might have problems. For iiqn of the critical amplitudes and of the renormalized cou-
N<4, as already observed, all series including ours are to lings.
short to accurately extract the correction amplitudes. This is 1 4 agreement between our estimateg,¢N) and those
particularly the case fokx,. Moreover, when longer series ¢, the RG approaches is generally fairr but not always
become available, our approximation procedures might neelofact At this level of approximation, it is premature to
some improvement. Nevertheless these first results from H mphasize such minor discrepancies. We believe, however,
series on an extended range of valuesiaieem to be quali- 4t |onger HT series for all quantities studied here and per-
tatively V?W.fe?so”ab'e- . ) haps improved analyses are still of some interest to achieve
As an |_nd|cat|on of work in progress, we wish to add that’more reliable estimates and to reduce the error bars substan-
even within the present order of expansion, somewhat mor: ally. Considering the performance of our codes, these are
accurate estimates of the critical parameters are likely to bﬁresently quite realistic objectives and, thereforé, work is

obtained by proceeding systematically in the spirit of the resentlv in proaress to compute further expansion coeffi-
Chen, Fisher, Nickel, and Rehr approdefi® In the N=1 (F:)ients. y in prog P P

case on the bcc lattice, these authors have examined HT

series for famllles of models specified by an appropriate con- ACKNOWLEDGMENTS
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APPENDIX A: THE SECOND FIELD DERIVATIVE OF THE SUSCEPTIBILITY ON THE sc LATTICE

The HT expansion coefficients of the second field derivative of the susceptibilityN,B)=(3N/N
+2)2,y Av(0)-v(X)v(y) - v(2))c=(3N/N+2)(—2/N+Z2_,d,(N)B") on the sc lattice are

d;(N)=—48N?,
. (N)_-—1248—660N
2 N3 (2+N)
— 12480~ 6912N
d3(N)=

N4 (2+N)
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du(N) = —851712-1128192N —474000N%— 61236N°
4 N5 (2+N)2 (4+N) ’

_ —6573312-8786880N - 3725856\2— 483840N°
N®(2+N)2(4+N)

ds(N

—565908480- 1137490944 — 8779916182 — 3215662083 — 55124016N* — 351496a\°
N7 (24+N)3(4+N) (6+N) '

de(N) =
For the coefficients which follow it is typographically more convenient tads@il) = P, (N)/Q,(N) and to tabulate separately
the numerator polynomidP,(N) and the denominator polynomi&l,(N);

P,(N)= — 3849744384 7739114496\ — 5976661248I°— 219026035N3>— 37549555 N* — 2393856(N°,
Q/(N)=N8(2+N)*(4+N) (6+N),
Pg(N)=— 1607361822726 463093449523 — 565873110835RI%>— 381503230003 /13— 1545703906176
—3839519222401°— 5694234163A°— 460082431 N’ — 1548672848,

Qg(N)=N°(2+N)*(4+N)2(6+N) (8+N),

Po(N)=—10146634334208 2914529906688 — 3551511768268R2— 23883563143688°— 965477440051R
—2393329321728I°—3542925926401°— 28580124768!" — 9607196 16\8,

Qo(N)=N(2+N)*(4+N)?(6+N) (8+N),
P,o(N)=—498677841395712018502905604472832 — 30434129019666432%— 29229711376023592°

—18173047179460608* — 766318990141286M°—2231748901824768°— 44803923343488R"
—6066104026406M8—526710668227R°— 2636092353606!1°— 57549145681,

Q1o(N)=N1(2+N)°(4+N)3(6+N) (8+N) (10+N),

P, (N)=—299572922312294401106978214618071(04— 18135944333957529¢° — 173526582721855488°,
—1075051543565721680* — 45183600633858048° — 13119088167641088° — 26265377961553947
—3547417232478788 — 3073523957875R° — 1535369868288110— 334656645111,

Q1(N)=N*2(2+N)°(4+N)3(6+N) (8+N) (10+N),

P1o(N) = —2542496377548570624011256816056696989286¢— 22612259328480667238¢
—2727392881087516508 16 — 220335024310830366 720 — 12592600286117582438¢
—52429589825842464768 — 161333606081035315M — 3682631735427354624°
—619886922488017920° — 75677317494258048°— 6492816409650048*
—36985029542678M°— 12514445149208 3~ 189708636600.*4,

Q1(N)=NB(2+N)8(4+N)3(6+N)?(8+N) (10+N) (12+N),

P.a(N) = —14743625522089033728049808498848293715968- 12995121295283391037 44
—156065884309580100408F — 12555718034696927969RE — 714760376636548620288
—296490805364682670080 — 90920656735938183168 — 20688048472922093508
—34723368425238942T° — 4228134916734858 40— 36192084771724809"!
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—2057419542670088%— 6949237702598K13— 1051829121024,
Q13(N)=N¥(2+N)8(4+N)3(6+N)?(8+N) (10+N) (12+N),

P14(N)=—566463587862368653148163043875242905724409348086- 7576777562322913437155388
—115987234043016792716083%8— 12226130280460910006894592— 94157253345976986021396M8
—5486072371880331913592889— 24707831345346025659924M8— 8713353300575900649062M8

—2422436780993343492710K3— 53184931154543324258304°— 9193953185463740998655
—1241394935192535991288°%— 129075746454058556160°— 101022445144826288M*
—573981185124034580'°— 2228302180486598416— 52722192335395R 17— 5719330613528118,

QuAN)=N®(2+N)" (4+N)*(6+N)3(8+N) (10+N) (12+N) (14+N),

P.5(N)=—319904799880421956386816071138140407416068253941M6- 424135408363617002465525%6
—64650199580585358413266943— 67863921600679932441133086— 52054127611661734870253568
—30212418901698609794777088— 13556920252810313722822686— 47643241728514845855252M8
—1320233119260810969808888— 2889783284156070335447RA4%— 49814490389339231121408"
—67087037603134063964MN3%— 69589845621684978278¢°— 54348379646212915200
—3081948095561442816'°— 1194394549250142721°— 282159968368435% '— 30566943406080 18,

Q5(N)=N¥(2+N)" (4+N)*(6+N)3(8+N) (10+N) (12+N) (14+N),

P1g(N) = —1829900232823422120722694144014585264379209072949397028864
—336677952680726802363970486F2- 617145013898356017378109685 160
—791521185299488842160294330368- 755125087023410853999229796352
—5561632339500053375334922322- 323972815609871396650371514368
—1516938340600731494641088593¢2- 5771242846943213788601214566%4
—17963030647495383412208861 M4 — 459079664092536821601194808%
—964233613788142396008136 M%¥— 166150396381094082218360985
—23381941196613066788198488'— 2666695999548097875723264°
—2436164325569305715773M4°%°— 17525072840959462713984'
—968152139098787129664— 395381860777076864M:°
—11217814979939981 M2°— 19697772998733576%1— 16086828148520M %,

Que(N)=NY(2+N)8(4+N)%(6+N)3(8+N)?(10+N) (12+N) (14+N) (16+N),

P1AN)=—10123595878846267325310566400681215419419149274713371443200
—1846824461720939657841963171840- 337123036079217992263139957 1456
—4306156546428529311715461955584- 4091812122737075444969361113088
—3002060652157587317256634 7616 1742224189122069022527046287360
—812841546356917149508011294 K0~ 308190677384300600694770368 2
—95612813294752704503595663361— 2436062422295033619745131 7248
—5101833629477951341726236892— 876738435402445320757764098°
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—12307079180259240499143478% — 1400341839023737588821196%
—12765329723209354061414Mb°— 916487824290138227788B137
—5053887369689137387008°— 206055475899900727296°
—5837513893110173568°— 1023651004720397 76°1— 8349860398809687,
Qe(N)=N¥8(2+N)8(4+N)%(6+N)3(8+N)?(10+N) (12+N) (14+N) (16+N).
In particular forN=0 we have(in terms of the variablgg= B/N)
xa(B)=—3—T72B—93632—936(03% — 798483* — 6162483°— 442116(B° — 30076128 — 19621116{°
—1238602828°— 7609219998°— 45711200308 — 269412610538°— 1562290776 793*°
— 8932238341993 50443946980992"°— 281783630311272'°— 15589175559282()".
For N=1 (the spin 1/2 Ising modglwe have
x4(1,8)=—2— 488 — 63682 — 64643°— 55898% — 2174432/B°— 47009464/18°— 2239468288/108’
—14570710772/108%— 823130010272/948°— 25080975789304/47 28°— 1640401398782848/519B%"
—28654566671774104/15598%— 2130434175575247424/2027(@5— 83969257269976828688/14189 54
—6995762565293277161216/21283782%5- 38389375874347206695732/2128378%5
—272537955948789968719904/2783268%5 . . .
For N=2 (the XY mode) we have
x4(2,8)=—3/2—183—963/83°— 1233/28%— 171687/68*— 167661/18°— 38749413/1028°%— 32973957/25B"
—2142639141/5128° — 13411622379/10248° — 3907085119879/983043°— 240713424017/204%F*
—1247905418479081/36700185— 166057186013983/1720388— 407002859073704999/15099494840
—1960425200264079271/2642411520- 3835682132124206551811/19025362948150
— 245360122597207497559/45298483880. . . .
For N=3 (the Heisenberg classical mofleve have
x4(3,8) = —6/5—48/53— 1076/258%— 11072/78B°— 677044/157B*— 981856/87B° — 958584296/35437%°
—261075968/42528" — 362572843588/272868B5— 9268612328224/334884335
— 3647348945492264/653024531#8— 1655707479102099328/150848666718%5
—3670221101428789064/174056153908%5- 53935317813474946624/135763800046875
—99068754350666844524336/134632435046488%75
— 4880947680478330092600064/3635075746255078F25
—192879202499123356385626829692/7977173725156768945%125
—38137398242459901685390609504/88635263612852988R8725. .

APPENDIX B: THE SECOND FIELD DERIVATIVE OF THE SUSCEPTIBILITY ON THE bcc LATTICE

The HT expansion coefficients of the second field derivative of the susceptibility on the bcc lattice are

—64
dl(N):Wz—,

—2304—-1200N

d =
2(N) N3 (2+N)
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Gy = = 32256- 17408N
S N* (2+N)
— 3086848 4038526\ — 1679424N2— 215600N3
d4( N)= 5 > )
NS (2+N)2 (4+N)
Gy =~ 33383424 44140288\ — 1854195N2— 239616(N3
5 = )

N®(2+N)2(4+N)

N 4025769984 8048769024 — 61838044162 — 22567389443 — 386061056\ — 2459251 N>
° N7 (2+N)3 (4+N) (6+N) '

For the coefficients which follow it is typographically more convenient tads@i) =P, (N)/Q,(N) and to tabulate separately
the numerator polynomidP,(N) and the denominator polynomigl,(N):

P,(N)=—38338166784 76883050496\ — 5926261657612 — 2169571276813 — 372051456IN*— 237404160N°,
Q,(N)=N8&(2+N)3(4+N) (6+N),
Pg(N)=—22398548705280 64579066675208 — 7898800121446MK°— 5331616198348R°
—2163271853670M*—538253950387R1°— 7997156710401 — 6473333468817 — 21826796648,
Qg(N)=N°(2+N)*(4+N)2(6+N) (8+N),
Po(N)=—197760671023104570072979439618 — 697267355156488%— 47071580829081K°
—191030743859200* — 47540867562498°— 706445843251R1°— 5718836744961" — 1928346624MN8,
Qo(N)=N(2+N)*(4+N)?(6+N) (8+N),

P.o(N) = —135893648670720000506812733453762560— 83796137561528729¢°
—808982617436258304° — 505548566324297728" — 214244480842262526°
—62694667322504192° — 12643889177861632" — 1719173758968320°
—14985316784832R°— 7525864311296I'°— 1647954563841,

Q1o(N)=N1(2+N)%(4+N)3(6+N) (8+N) (10+N),

P11(N)=—11410449127125811204249040663391240192— 701555507935628492¢°
—676439382822957875° — 4222404584768831438"' — 1787577880615559168°
—522623903804669953%° — 105313027917844480" — 143086863723356 16°
—1246403878745608°— 6255988847411R1°— 1369193398271,

Q(N)=N*¥2(2+N)%(4+N)3(6+N) (8+N) (10+N),

P1o(N) = —135322451982654898176®043648174007450075186- 12246178519860941684 785
—14898334498567895384084 — 12137516326724153901088 — 699367003994802787128F
—29346992775239693107R( — 90977404335513849446¢ — 2091157826948990853 NP
—354272949749400299%% — 4350609416485181440'°— 375257673683951872*!
—21477632431608320%°— 729782591023618°— 111034918163284,

Q1(N)=N¥(2+N)8(4+N)3(6+N)?(8+N) (10+N) (12+N),
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P.13(N)=—1096281431701255618560@8855640313305403228180- 987907886524785701683RG
—119949033747113622634486— 97539319548016125280256 — 561044316602294078996H8
—235045104976027932098565 — 7275637584279889346560 — 167004630122081619968(F
—2825774392835424645N° — 346625019728943923 N0/ °— 298676307302775603¢*
—170792230703923200'2— 57987236005506538 %~ 8816564856422K 14,

Q13(N)=N¥(2+N)8(4+N)3(6+N)?(8+N) (10+N) (12+N),
P.4(N)=—5883219955381135768289280819656261223016276133150720
—804506884372627522672656384— 124505170180246574295574118%
—1326506792510663276202295296- 1032281846527637618727845388
—607550530706546656156057@08— 276285749123163236534124544
—98336895868270792502870048— 27578892092469750017228840
—6104887252432902432088084°— 1063450425127326143963 196
—1446125188326999001190M4°— 15134717223692504156160°
—11916137561199824317444— 680710275367557829N"°
— 2655538734547345536°— 631049210695701 76— 68722040102400018,
QuAN)=N®(2+N)" (4+N)*(6+N)3(8+N) (10+N) (12+N) (14+N),
P.1(N)=—463996271577436867233054722515152883396655909638766392 6315643027876160842940547(N2
—97523985590142356530617384%6— 1036821240586487747806494720D
—80519530803101340012810076M6- 4729721489677266022278627328
— 2146872892026044965004247040- 762790924816930341473615842
—213577145756373531731427328— 47205533784466451589431 298
—82114185695502331346780Mb!— 1115168266958340559364086°
—116570698649671407411284°— 916804924586466939699¢*
—5232078976735663493N*°— 2039283300881015398°
—484218500284702720'— 526945109409792918,

Q15(N)=N¥*(2+N)" (4+N)*(6+N)3(8+N) (10+N) (12+N) (14+N),
P.e(N) = —370603215593225301381806555136tB5115329579021778993903157908B6
—69984745734719724031602453381 NP0 129942518358149653545095685734KG30
—16877716361251446330149067712104 163020601132834974169821018587N36
—1215230051517023512760697980190IP2 7161997506782665525508988259588
—33913954817349955356957471670RF2- 13042529099485925377885106077656
—4101432698345456358253122813989— 10584657984995137735537113825748
—224369655134353441277932077086— 38996967102960612063728975875
—5532347732173533521822597 18— 635702582117166696141393928

—58478148624089490157039648°— 42336379289442885895142M6"
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—2352512408606690462676M4%— 9658642370970465608960°
—27536303129290486848(7°— 485636070243167958 1 — 39817256443223280%2,
Qg(N)=N(2+N)8(4+N)®(6+N)*(8+N)2(10+N) (12+N) (14+N) (16+N),
P1AN)=—2862517080931762263927375790080B1166520457100717483475767132M60
—537991814958099333262399103827868 9965972990519032974080625459855(36
—1291524895757272450924715899355M36- 1244744825531489741899730562056M92
—925926421634294684791564008423804 544586262055545477273422842036R74
—2573727115841263608019237145148#4- 98795363631395088253841625841664
—31012859792452238511372108300R88— 7990178234700265757218112274482
—1691062951010009264622059913NI6— 2934846144687192844690437898P4
—4157818212223999487612039987% — 477148621628251835447993956%
—438407834252226343769522IN8— 317046985117711931698974M%
—17599728422908319475732M%°— 72192427708156325499904°
—2056451245211192506368°— 362405541093171918081— 2969328801080217607,
Q1AN)=N¥8(2+N)8(4+N)%(6+N)3(8+N)2(10+N) (12+N) (14+N) (16+N).
In particular forN=0, we have(in terms of the variablegg= B/N)
xa(B)=—3—96B—17283%— 24198%— 289393 — 3129696° — 3145132%° — 2995169287 — 273419784B°
—2414070691B°— 207357252000~ 1741096363392~ 14339282987664'%— 116166160551848'3
—927691099407368— 7316490196952068F°— 570686410229923@8 °— 440794771444139043".

For N=1 (the spin 1/2 Ising modglwe have
x4(1,8)=—2—648—11683°— 49664/3°— 601360/3*— 32820608/1B°— 996463616/4B° — 66712488448/318’

—122056132496/63°— 48489867797888/2835 — 2078558044733696/1418%°

—191285725186144768/155925— 188087379936809600/1873
—492034524872707515136/6081 (3

—27296494302637993572352/42567B%5- 3201197677867739316248576/6385128'5
—4945781553886665074906384/1277028%5 3212941768987291424807915648/10854718375
For N=2 (the XY mode), we have
x4(2,8)=—3/2— 248— 441/28%— 15728°— 153175/1@*— 104981/3°— 6823864 7/258°

—40884131/3B7— 1404217891/248°%— 66125311269/2568° — 16313466298147/1474B8°

—85154694896333/1843B4'— 51968444431571323/2752512%
—156353752523792639/20643%46

—236982809408746803649/7927234B6H- 400259785750849937/3440628
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—637876955227851294690449/142690222¢860
—48476858619011264835409/28538044446 . . .

For N=3 (the Heisenberg classical moglelve have

Ya(3,8)= — 6/5— 64/58— 1968/253%— 5632/153%— 36138448/23628° — 132459392/23625° — 1348186624/708 75

—194131778048/318938 — 228357648983536/122790939%5- 2016513048715136/3683728125

—3366834959446902016/21549809538%5- 1872724144398680576/430996190825

—2674610910995288182912/22627300007 @25 367131807235133274368/11636897146875

—100350171877191930199645952/1211691915418358/375
—778819344453674012213276672/3635075746255078%25

—130937251648404408278387043967856/239315211754703068359375

—22035313880683966424477522278528/15954347450313537990625

*Electronic address: butera@mi.infn.it
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