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Renormalized couplings and scaling correction amplitudes in theN-vector spin models
on the sc and the bcc lattices

P. Butera* and M. Comi†

Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica, Universita` di Milano, 16 Via Celoria, 20133 Milano, Italy
~Received 22 May 1998!

For the classicalN-vector model, with arbitraryN, we have computed through orderb17 the high-
temperature expansions of the second field derivative of the susceptibilityx4(N,b) on the simple cubic and on
the body centered cubic lattices.@The N-vector model is also known as theO(N) symmetric classical spin
Heisenberg model or, in quantum field theory, as the latticeO(N) nonlinears model.# By analyzing the
expansion ofx4(N,b) on the two lattices, and by carefully allowing for the corrections to scaling, we obtain
updated estimates of the critical parameters and more accurate tests of the hyperscaling relationdn(N)
1g(N)22D4(N)50 for a range of values of the spin dimensionalityN, including N50 ~the self-avoiding
walk model!, N51 ~the Ising spin 1/2 model!, N52 ~theXY model!, N53 ~the classical Heisenberg model!.
Using the recently extended series for the susceptibility and for the second correlation moment, we also
compute the dimensionless renormalized four point coupling constants and some universal ratios of scaling
correction amplitudes in fair agreement with recent renormalization group estimates.@S0163-1829~98!04941-8#
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I. INTRODUCTION

We have recently extended the computation of hig
temperature~HT! series for theN-vector model1 with arbi-
trary spin dimensionalityN on the d-dimensional bipartite
lattices, namely, on the simple cubic~sc! lattice, on the body
centered cubic~bcc! lattice, and on theird-dimensional gen-
eralizations. In previous papers we have tabulated thro
orderb21 the series for the zero field susceptibilityx(N,b)
and for the second moment of the correlation funct
m2(N,b) and we have analyzed their critical behavior in t
d52 case2 and in thed53 case.3 Here we present a study o
the second field derivative of the susceptibilityx4(N,b)
whose HT expansion on the sc and the bcc lattices we h
extended through orderb17. A study of x4(N,b) in the d
52 case had been discussed in Ref. 2. It is interesting
point out that in all analyses presented below, the bcc lat
series appear to be better converged than the sc lattice s
and lead to estimates of critical parameters which are lik
to be more accurate. In other words, the bcc series seem
always ‘‘effectively longer’’4 and therefore give estimates o
greater value than the sc series.

The list of the expansions ofx4(N,b) in d53 published
up to now is a short one. A decade ago Lu¨scher and Weisz5

~see also Ref. 6! derived HT expansions ofx4(N,b) through
b14, for anyN, on the sc lattice ind52, 3, and 4 dimensions
by using a linked cluster expansion~LCE! technique.5,7–12In
the N51 case,@corresponding to the Ising spin 1/2 mode#
the series for the sc lattice published before our work alre
extended throughb17 ~Refs. 13,14! and has been analyzed b
various authors.14–16Finally in the Ising model case, a serie
to orderb13 on the bcc lattice and a series to orderb10 on the
face centered cubic~fcc! lattice13,15,17have long been avail
able.

In our calculation we have also used the~vertex renormal-
ized! LCE technique and have developed algorithms wh
are equally efficient in a wide range of space dimension
PRB 580163-1829/98/58~17!/11552~18!/$15.00
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ties. So far other expansion methods have given compet
~or sometimes superior! performance only for discrete sit
variables and for very simple interactions, on tw
dimensional or low coordination number lattices. By t
LCE method we have produced tables of series expan
coefficients given as explicit functions of the spin dime
sionality N, with an extension independent of the structu
and dimensionality of the lattice. Thus we have succeede
efficiently condensing a large body of information conce
ing infinitely many universality classes. We consider the
coefficient tables to be the main result of our work and,
spite of their considerable extent, we have reported them
the Appendixes in order to make each step of our work v
fiable and reproducible. The size of our computation h
been unusually vast: approximately 33106 topologically in-
equivalent graphs have been listed and evaluated. Neve
less, we are confident that our series have been corre
computed, not only because our codes have been thorou
tested, but also becauseN andd enter in the whole compu
tational procedure as parameters. As a consequence, at
simple partial checks are available by observing that our
pansion coefficients, when specialized toN51 agree with
the seriesO(b17) already available in 3~as well as in 2!
dimensions and, forN→`, agree with the spherica
model18,19 series which can be readily calculated in any
mension. More comments on the comparison of our res
with the existing series, can be found in our paper2 devoted
to the two-dimensionalN-vector model.

A valuable justification of our work is that an increasing
accurate study of the critical behavior ofx4(N,b) can offer,
for all values ofN, a sharper test of the hyperscaling exp
nent relationdn(N)1g(N)22D4(N)50. Here g(N) and
n(N) characterize the critical singularities inx(N,b) and
j(N,b), respectively, whileD4(N) is the gap exponent as
sociated with the critical behavior of the higher field deriv
tives of the free energy. It is also of great interest to meas
accurately the critical amplitude ofx4(N,b), which together
11 552 ©1998 The American Physical Society
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PRB 58 11 553RENORMALIZED COUPLINGS AND SCALING . . .
with the amplitudes ofx(N,b) andj(N,b), enters into the
definition of the universal dimensionless renormalized fo
point coupling constantgr(N). Indeed the uncertainties
probably still of the order of 1%, in the value of this quanti
might be the main residual source of error20,21 in the present
computation of the critical exponents within the renormaliz
tion group ~RG! approach by the Parisi22 fixed dimension
~FD! coupling constant expansion.23–27Murray and Nickel20

have recently pushed to seven loop order these calcula
and the impact of the additional terms on the estimates of
critical exponents and of some universal amplitude comb
tions has been critically assessed by Guida and Zinn-Just21

As has been stressed many times in the past
decades28–38 and, more recently, also in Ref. 3, in order
improve the precision of the estimates obtainable from
expansions not only longer series should be computed,
also more careful allowance should be made for the sing
corrections to scaling. Their presence is expected39 and, un-
surprisingly, they turn out to be important in various cas
Therefore in this analysis we have also studied their role
have estimated their amplitudes in the case ofgr(N), both on
the sc and the bcc lattice. Moreover, it is of some interes
compute the ratios of these correction amplitudes with
analogous quantities forx and j, which define interesting
universal quantities, still subject to significant uncertain
and so far not much studied by HT series methods. We re
that most existing results on the universal combinations
the critical and the correction amplitudes are reviewed
thoroughly discussed in Refs. 21, 25, 40.

The paper is organized as follows. In Sec. II we pres
our notation and define the quantities we shall study. In S
III we briefly discuss the simplified doubly biased differe
tial approximants which we have used for our estimates
side more traditional numerical tools. Our analysis of t
series is presented in Sec. IV along with a comparison
earlier series work, to measures performed in stocha
simulations and to RG estimates, both by the FD perturba
technique and by the Fisher-Wilson41 e-expansion
approach.24–26,42,43Let us mention that very recently, thee
expansion ofgr(N) has been extended by Pelissetto a
Vicari44 from ordere2 ~Ref. 45! to ordere4, so that we are
able to compare our HT results also with their estimates

Our conclusions are briefly summarized in Sec. V. In
Appendixes we have reported the HT series coefficients
x4(N,b) expressed in closed form as functions of the s
dimensionalityN. For convenience of the reader, we ha
also reported their evaluation forN50 ~the SAW model46!,
N51 ~the Ising spin 1/2 model!, N52 ~the XY model!, and
N53 ~the classical Heisenberg model!. The present tabula
tion supersedes and extends the one to orderb14 in Ref. 6
which, unfortunately, contains a few misprints.

II. DEFINITIONS AND NOTATION

We list here our definitions and notation. As the Ham
tonianH of the N-vector model we take

H$v%52
1

2 (
^xW ,xW8&

v~xW !•v~xW8!, ~1!
r

-

ns
e
-

.
o

T
ut
ar

.
d

o
e

all
f
d

t
c.

e-
e
to
tic
e

d

e
of
n

wherev(xW ) is aN-component classical spin of unit length
the lattice site with position vectorxW , and the sum extends t
all nearest-neighbor pairs of sites. The susceptibility is
fined by

x~N,b!5(
xW

^v~0!•v~xW !&c , ~2!

where ^v(0)•v(xW )&c is the connected correlation functio
between the spin at the origin and the spin at the sitexW .

If we introduce the reduced inverse temperaturet#(N)
512b/bc

#(N) ~here and in what follows # stands for eith
sc or bcc, as appropriate!, thenx(N,b) is expected to behave
as

x#~N,b!.Cx
#~N!@t#~N!#2g~N!$11ax

#~N!@t#~N!#u~N!1•••

1ex
#~N!t#~N!1•••% ~3!

when t#(N)↓0. Cx
#(N) is the critical amplitude of the sus

ceptibility, ax
#(N) is the amplitude of the leading singula

correction to scaling,u(N) is the exponent of this correctio
~also called confluent singularity exponent!, andex

#(N) is the
amplitude of the leading regular correction. The ellipses r
resent higher order singular or analytic correction terms. T
confluent terms result from the irrelevant variables.39 Let us
recall that not only the critical exponentg(N), but also the
leading confluent correction exponentu(N) is universal~for
each N). On the other hand, the critical amplitude
Cx

#(N), ax
#(N), ex

#(N), etc., are expected to depend on t
parameters of the Hamiltonian and on the lattice structu
i.e., they are nonuniversal. Similar considerations also ap
to the other thermodynamic quantities listed below, wh
have different critical exponents and different critical amp
tudes, but the same leading confluent exponentu(N). It is
known thatu(N).0.5 for small values ofN ~Ref. 25! and, in
the context of the largeN-expansion,47 one can also infer tha
u(N)511O(1/N).

Since we have clearly stated which quantities are univ
sal, from now on we shall generally omit the superscript #
order to keep the formulas more legible. Notice also th
since there is no chance of confusion, we have systematic
omitted the superscript1 usually adopted for the amplitude
which characterize the high-temperature side of the crit
point.

The second moment of the correlation function is defin
by

m2~N,b!5(
xW

xW2^v~0!•v~xW !&c . ~4!

In the vicinity of the critical pointm2 is expected to behave
as

m2~N,b!.Cm~N!t2g~N!22n~N!@11am~N!tu~N!1•••

1em~N!t1•••# ~5!

ast↓0.
In terms of x and m2 , the second moment correlatio

lengthj is defined48 by
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11 554 PRB 58P. BUTERA AND M. COMI
j2~N,b!5
m2~N,b!

6x~N,b!
. ~6!

In the vicinity of the critical pointj is expected to behav
as

j~N,b!.Cj~N!t2n~N!@11aj~N!tu~N!1•••1ej~N!t

1•••# ~7!

ast↓0.
The second field derivative of the susceptibility is defin

by

x4~N,b!5
3N

N12 (
x,y,z

^v~0!•v~x!v~y!•v~z!&c

5
3N

N12S 2
2

N
1(

r 51

`

dr~N!b r D . ~8!

Notice that this definition differs by a factor 1/N2 from that
used in Ref. 5.

It is well known18,19 that, for N→` at fixed b̃[b/N,
x(N,b) has a finite nontrivial limitx̃(b̃). On the other hand
as expected, in the same limit we havex4(N,b)5O(1/N). It
is the quantityNx4(N,b) that has a finite limitx̃4(b̃) simply
expressed as

x̃4~ b̃ !526x̃2~ b̃ !S x̃~ b̃ !1b̃
dx̃~ b̃ !

db̃
D . ~9!

Also theN→0 limit, at fixed b̃, exists46 and the quantity

x̂4~ b̃ !5 lim
N→0

x4~N,b!523 (
N1 ,N2

cN1N2
b̃N11N2 ~10!

has the following interpretation:49,50 cN1N2
is the number of

pairs (v (1),v (2)) of self-avoiding walks such thatv (1) is a
N1-step walk starting at the origin andv (2) is aN2-step walk
starting anywhere and crossingv (1).

In the vicinity of the critical pointx4(N,b) is expected to
behave as

x4~N,b!.C4~N!t2g~N!22D4~N!@11a4~N!tu~N!1•••

1e4~N!t1•••# ~11!

ast↓0.
In terms ofx, j andx4 the ‘‘dimensionless renormalize

four point coupling constant’’gr(N) is defined as the value
of

g~N,b![2
v f ~N!x4~N,b!

j3~N,b!x2~N,b!
~12!

at the critical pointbc(N). Here f (N)5(N18)/48p is a
normalization factor chosen in order to match the usual fi
theoretic definition ofgr(N) ~Ref. 25! and v denotes the
volume per lattice site (v51 for the sc lattice andv
54/3A3 for the bcc lattice!.

In the vicinity of the critical pointg(N,b) is expected to
behave as
d

g~N,b!.gr~N!tg~N!13n~N!22D4~N!@11ag~N!tu~N!1•••

1eg~N!t1•••# ~13!

ast↓0, with

gr~N!52
v f ~N!C4~N!

Cj
3~N!Cx

2~N!
. ~14!

The Gunton-Buckingam51–53 inequality

3n~N!1g~N!22D4~N!>0 ~15!

together with the Lebowitz54 inequalityx4(N,b)<0, implies
thatg(N,b) is a bounded non-negative quantity ast↓0. The
vanishing ofg(N,bc) is a sufficient condition for Gaussia
behavior at criticality or, in lattice field theory language, f
‘‘triviality’’ 49 of the continuum field theory defined by th
N-vector lattice model in the critical limit. Ifx4(N,b) is
nonvanishing and the above inequality holds as an equa
~the hyperscaling relation!

3n~N!1g~N!22D4~N!50 ~16!

then

g~N,b!.gr~N!@11ag~N!tu~N!1•••1eg~N!t1•••#,
~17!

namely,g(N,b) tends to the nonzero limiting valuegr(N) as
t↓0.

For checking purposes it is useful to recall here the la
N limits of the critical amplitudes. They have bee
computed19 long ago:

Cx
sc~`!5

1

16p2@b̃c
sc~`!#3

50.39228768 . . . , ~18!

with b̃c
sc(`)50.2527310098 . . . and

Cx
bcc~`!5

1

64p2@b̃c
bcc~`!#3

50.29974101 . . . , ~19!

with b̃c
bcc(`)50.1741504912 . . . .

Moreover, we recall that, since in the largeN limit

m̃25qb̃x̃2, ~20!

whereq is the lattice coordination number, we haveCj
#(`)

5@qb̃c
#(`)Cx

#(`)/6#1/2. On the other hand, if we denote b

C̃4
#(`) the largeN limit of NC4

#(N), by Eq. ~9! we have

C̃4
#(`)5212@Cx

#(`)#3 and therefore it follows thatgr
#(`)

51.

III. ANALYSIS OF THE SERIES

As mentioned in the Introduction, a variety of caref
analyses28–38 of the Ising model HT expansions as well a
our study of the recently extendedN-vector model series,3

suggest that the nonanalytic confluent corrections to the le
ing critical behavior of the thermodynamic quantities, ind
cated in the asymptotic formulas~3!, ~5!, ~7!, etc., exist and
should not in general be neglected in computing numer



ion.
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TABLE I. Values foru used in our biased evaluations and determined by FD perturbative expans

N 0 1 2 3 4 6 8 10

u 0.478~10! 0.504~8! 0.529~8! 0.553~12! 0.573~20! 0.626~10! 0.670~10! 0.707~10!
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estimates of the critical parameters. It has long be
observed28–37,55 that these corrections reveal themselves
small apparent violations of both universality and hypersc
ing in a naive pure power law analysis of the critical beha
ior. However, it is also well known31,32that, unless very long
HT series are available, extracting simultaneously estim
for bc , the exponents and the amplitudes of the criticaland
of the subleading singularity is a difficult and unstable n
merical problem. For this task the inhomogeneous D
method56 of series analysis is generally believed to be m
effective than the traditional and simpler Pade´ approximant
~PA! method, because, at least in principle, it might be fle
ible enough to represent functions behaving asf1(x)(x
2x0)2v1f2(x) near a singular pointx0 , wheref1(x) is a
regular function ofx and f2(x) may contain a~confluent!
singularity of strength smaller thanv. Unfortunately, in
practice, this is not completely true: very long series
needed anyway and/or the procedure should be biase
choosing very carefully the structure of the approxima
and by giving proper inputs. We have followed here the l
ter approach. As in some of our previous studies,3,57 in ad-
dition to more standard procedures of analysis, we have
ployed a doubly biased prescription which assumes that
confluent exponentu and the inverse critical temperaturebc
are accurately known. This procedure seems to perform
sonably well, even with not very long series. We have tak
the values ofu(N) as estimated by the FD renormalizatio
group method. More precisely, forN<4, we have used the
values suggested by Guida and Zinn-Justin,21 and forN.4,
we have used the six loop estimates recently obtained
Sokolov58 and kindly communicated to us before public
tion. These values are reported in Table I. We also h
assumed that the critical temperaturesbc

#(N) have been de-
termined accurately enough in our previous study of
susceptibility.3

Let us now recall in some detail the features of the s
plified DA method. We wish to approximate some functio
given as a series expansion aroundb50 and expected, when
b↑bc , to have the form

f ~b!5 (
n50

f nbn.b~b!1c~b!~12b/bc!
u

1o@~12b/bc!
u#. ~21!

We assume thatbc and the real positive exponentu are
accurately known, and thatb(b) and c(b) are analytic at
b5bc . We setb(bc)5b0 andc(bc)5c0 .

We shall estimate the functionf (b) and therefore the
constantsb0 andc0 by the particular class of first order in
homogeneous differential approximantsF(b) defined as the
solutions of the equations

Qm~b!F ~12b/bc!
dF~b!

db
1

u

bc
F~b!G1Rn~b!50

~22!
n
s
l-
-

es

-

e

-

e
by
s
-

-
e

a-
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e

e

-
,

with the initial conditionF(0)5 f 0 . Qm(b) and Rn(b) are
polynomials of degreesm andn, respectively, whose coeffi
cients are calculated, as usual, by imposing that the se
expansion ofF(b) agrees with that off (b) at least through
the orderbm1n11. In addition the normalization condition
Qm(0)51 is imposed. Assuming for simplicity 0,u
,1, f (bc)5b0 is estimated as

b0
~n,m!5

2bcRn~bc!

uQm~bc!
~23!

and the amplitudec0 of the subleading term in Eq.~21! is
estimated by the formula

c0
~n,m!5 f 02b0

~n,m!2E
0

bc D ~n,m!~ t !dt

~12t/bc!
11u

, ~24!

where

D ~n,m!~ t !5
Rn~ t !

Qm~ t !
2

Rn~bc!

Qm~bc!
. ~25!

We shall consider only the ‘‘almost diagonal’’ approximan
with um2nu<4.

The approximants defined by Eq.~22! are just a small
subclass of the general first order inhomogeneous DA’s:

~12b/bc!Qm~b!
dF~b!

db
1Pl~b!F1Rn~b!50 ~26!

biased withbc and with u by imposing Pl(bc)/Qm(bc)
5u/bc . Still assuming 0,u,1, we can estimateb0 andc0
from Eq. ~26! as follows:

b0
~m;n,l !52

Rn~bc!

Pl~bc!
52

bcRn~bc!

uQm~bc!
, ~27!

c0
~m;n,l !52b0

~m;n,l !1g~m;n,l !~bc!

3F f 02E
0

bc D ~m;n,l !~ t !

g~m;n,l !~ t !~12t/bc!
11u

1
u

bc
b0

~m;n,l !E
0

bcS 1

g~m;n,l !~ t !

2
1

g~m;n,l !~bc!
D dt

~12t/bc!
11uG , ~28!

where

g~m;n,l !~b!5expF2E
0

bS Pl~ t !

Qm~ t !
2

Pl~bc!

Qm~bc!
D dt

~12t/bc!
G
~29!

and D (m;n,l )(t) has the same form as Eq.~25!. The simple
formulas ~23! and ~24! are recovered from the general fo
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11 556 PRB 58P. BUTERA AND M. COMI
mulas~27! and~28! by subjectingPl(b) to the further strong
constraintPl(b)[(u/bc)Qm(b). This prescription, which,
for short, we will refer to as simplified differential approx
mants~SDA’s! might also be viewed as a simple DA-lik
generalization of the biased PA method introduced in R
59–61.

We have carried out many numerical experiments
simple model series having the analytic structure~21!. They
show that the SDA’s, when biased with the exact values
bc andu, are able to produce very accurate estimates ob0
and fairly accurate estimates of the confluent amplitudec0 .
In practice, however, we do not have strict control on
series: only approximate values ofbc andu are available for
biasing the SDA’s and we do not know the strength of
subleading correction terms and of the smooth backgrou
Therefore it is important to understand how sensitive are
estimates ofb0 andc0 to the errors in the biased inputs an
how they depend on the structure of the singularity. It tu
out that the estimates ofb0 are rather stable when the bias
value forbc and foru are varied away from their true value
in a range comparable to the typical estimated uncertain
in the realistic cases. On the other hand,c0 appears to be
much more sensitive to errors in the biased values. Le
consider, to be definite, the case of the very simple test se

f ~b!5c0S 12
b

bc
D u

1c1S 12
b

bc
D 2u

1b0expS 12
b

bc
D

.b01c0S 12
b

bc
D u

1o@~bc2b!u# ~30!

which we have examined for various values ofu. If the size
of the subleading correction to scaling is much smaller th
the size of the leading one, namely, ifuc1u!uc0u and we bias
the calculation with the exact values of the parametersu and
bc , we are able to determineb0 by Eq. ~23! to within less
than 1022% and c0 by Eq. ~24! to within less than 1%.
However, if the SDA’s are biased with a value ofu which is
off the right value by 5%, then the relative error ofc0 can
become as large as 15%, while the error ofb0 increases to
some 0.1%. The precision ofb0 remains essentially un
changed, but the sensitivity ofc0 to variations in the biased
values and, as a consequence, the accuracy of its estim
somewhat worsened in the slightly more complicated,
sometimes realistic case in whichuc1u'uc0u. Unsurprisingly,
the worst situation occurs when the leading confluent am
tude is much smaller than the subleading one, since the
certainty in the numerical estimate ofc0 may then become
very large. In conclusion, taking a conservative attitude,
can safely expect that, for the HT series we are going
study, the relative error on the value off (b) at bc can be
much smaller than 1%, while the uncertainty of the corr
tion amplitude can be as large as 20%, unless the ampli
is very small: in this case, due to a higher sensitivity to
biased values and/or to the neglect of possibly import
subleading corrections, our estimates are likely to be m
more inaccurate. In order to better understand these re
let us also observe that, if we tried to estimateb0 in Eq. ~30!
by simple PA’s biased withbc , the relative error would be
substantially larger and increasing with the size of the c
rection amplitude. Finally, we remark that in all comput
s.
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tions presented below, the error estimates are always so
what subjective. They include effects both from the scatte
the approximant values, possible residual trends in seque
of estimates, as well as uncertainties of the bias inputs.

We have applied the SDA approximation procedure
only to the quantityg(N,b) in order to compute the conflu
ent amplitudeag(N), but also to the ‘‘effective exponent’’ of
x4

g4~N,b![@bc~N!2b#
d ln x4~N,b!

db
5g~N!12D4~N!

2a4~N!u~N!tu~N!1o~tu~N!! ~31!

in order to compute the critical exponent and the conflu
amplitudea4(N). Moreover we have examined the anal
gous quantities

g~N,b![@bc~N!2b#
d ln x~N,b!

db

5g~N!2ax~N!u~N!tu~N!1o~tu~N!! ~32!

in order to compute the confluent amplitudeax(N), and

n~b,N![
1

2
@bc~N!2b#

d ln @j2~N,b!/b#

db

5n~N!2aj~N!u~N!tu~N!1o~tu~N!! ~33!

in order to computeaj(N). Notice that the estimates thu
obtained for the confluent amplitudesax , aj , and a4 are
biased solely withbc andu. However, due to their definition
as residua, the sensitivity of the results to the biased va
for bc is higher than in the case ofgr .

The estimates of the critical amplitudes have been
tained by examining quantities such as

tg~N!x~N,b!.Cx~N!@11ax~N!tu~N!1•••1ex~N!t

1•••# ~34!

or the analogous expressions forx4 andj2. This procedure
also yields the correction amplitudes, but since it requi
biasing also with the critical exponentg(N) @or n(N), etc.#,
we expect that the corresponding results will be subject t
larger uncertainty.

In conclusion, whenever sizable confluent corrections
present, the doubly biased SDA procedure will produce v
ues ofgr(N) which are slightly, but definitely different from
estimates by generic DA’s not directly constrained to rep
duce the confluent singularity and,a fortiori, from the simple
PA estimates. Indeed, sinceu,1, the functiong(N,b) will
approach with a divergent slope its value atbc(N), from
above if the correction amplitude is positive or, otherwis
from below. As a consequence, too smooth extrapolation
g(N,b) to the critical pointbc would overestimate the cor
rect result in the former case and underestimate it in
latter. Analogous problems will occur in the study of th
exponents and of the correction amplitudes forx,m2 ,x4 , the
only difference being that, since in the formulas for the
fective exponents~31!–~33! the correction amplitudes appea
with a negative sign, the critical exponents will be overes
mated if the amplitudes are negative and they will be und
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estimated otherwise. Let us add finally that throughout
work we have not relied solely on the above numerical te
nique, but we also have always considered various other
proximations obtained by more conventional methods in
der to understand, or at least to be aware of any differen
in the estimates.

IV. RESULTS AND COMMENTS

Since our analysis is aimed at exposing the role of
nonanalytic corrections to scaling, it is desirable first to t
whether the values of the confluent exponents taken from
FD perturbative computations are also generally consis
with the estimates, unfortunately not yet as precise, wh
can be extracted directly from the HT series. Indeed, as
have mentioned above, the amplitudes of these correct
are not universal and therefore they might be negligi
small. One might even suspect that our analysis is some
artificially forcing on the series a behavior, which, due
their insufficient length, they are not yet able to exhibit. O
the other hand, it has been argued that the uncertainties
ally quoted for the FD values of the renormalized couplin
and of the confluent exponents might be unrealistica
small.31,44,50,62In fact, one should recall that in the context
the three-dimensionall(fW 2)2 field theory, the confluent ex
ponent is computed in terms of the slope of theb function at
the fixed pointgr(N). As indicated in Refs. 21,31,44, th
presence of nonanalytic terms, with sufficiently large amp
tudes, in the expansion of theb function at gr(N), might
spoil the convergence of the estimates both of the renorm
ized couplings and of the confluent exponents. The ensu
uncertainties would reflect on the accuracy of the estima
of the critical exponents. Moreover theg expansion of the
critical exponents would itself be directly affected by simil
nonanalytic contributions. The pragmatic point of vie
adopted in Ref. 21 is that if these singular terms exist, t
do not seem to have visible effects.

Let us then show that the values ofu(N) reported in
Table I are approximately consistent with the actual beha
of the series. Assuming knowledge only ofbc

#(N), we have
computed the Baker-Hunter transforms63 of the x and m2
series and, by reconstructing the locations and the residu
their singularities, we have estimated exponents and am
tudes of the critical singularity and of the leading correcti
to scaling. Unfortunately this procedure fails to detect n
row and clear signals of the scaling corrections forN,4,
probably due to the small size of their amplitudes. Howev
the situation is completely different forN>4. In this range
of values ofN, the Baker-Hunter method leads to values
u(N) fairly consistent with those reported in Table I. Als
the values of the correction amplitudes, are compatible w
those emerging from the SDA analysis to be discussed
low. Moreover, the results are rather stable in a relativ
wide range of biased values forbc . We regard this as con
vincing evidence that the confluent corrections cannot b
by-product of our double biased analysis and as a confir
tion that their amplitudes are not small forN>4. Unfortu-
nately, the uncertainties which affect this method for estim
ing the confluent exponents and the correction amplitu
are still rather large. For instance, using the bcc lattice se
for x, the Hunter-Baker procedure suggests
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u~4!50.64~4!, u~6!50.63~4!,

u~8!50.66~4!, u~10!50.69~4!. ~35!

A second consistency test can also be performed. On b
lattices and for each value ofN, we have studied how ou
SDA estimates ofgr(N) depend on the biased value used f
the confluent exponent by varying it in a 20–30% ran
around the central valueu(N) indicated in Table I. For all
values ofN such that the confluent amplitudes are not t
small, it has been quite interesting to observe that, altho
the estimates ofgr(N) obtained from the sc and the bc
series are in general somewhat different for a generic va
of u, they tend to become equal, or at least very close, w
u.u(N). These two tests give us further confidence that
main lines of this analysis and the specific biased values ou
used as inputs are reasonable.

A. Hyperscaling tests

We shall now proceed to examine directlyx4(N,b) in
order to estimate its critical exponentg(N)12D4(N) and to
compare it with the value 2g(N)13n(N) it should take if
the hyperscaling relation~16! holds true. On each lattice, th
analysis has been performed by first-order SDA’s of the
fective exponent~31! doubly biased withu(N) and with the
value ofbc

#(N) obtained in our previous~biased! analysis3 of
the susceptibility.

We have reported in Table II our estimates for the critic
exponents ofx4(N,b) obtained by this procedure togeth
with the biased values ofbc

#(N) and the values of 2g(N)
13n(N) obtained by the analogous biasing procedure in
previous analysis3 of x and j2. No significant violation of
universality and hyperscaling is observed. Notice that
such extensive test of hyperscaling exists so far in the lite
ture.

Let us quote a few earlier studies of this issue for parti
lar values ofN. In theN50 case, a study ofx4 based on Eq.
~10! has been performed by a Monte Carlo simulation in R
64. The authors have measured the exponents 2D42g
51.731760.007460.0074 and n50.574560.0087

TABLE II. Verification of hyperscaling for various values ofN.

N Lattice bc ~Ref. 3! g12D 2g13n ~Ref. 3!

0 sc 0.213493~3! 4.10~2! 4.0822~34!

bcc 0.153128~3! 4.081~8! 4.0801~34!

1 sc 0.2216544~3! ~Ref. 80! 4.361~8! 4.3721~44!

bcc 0.157373~2! ~Ref. 36! 4.366~6! 4.3692~27!

2 sc 0.45419~3! 4.665~20! 4.675~12!

bcc 0.320427~3! 4.663~15! 4.666~12!

3 sc 0.69305~4! 4.953~20! 4.960~12!

bcc 0.486820~4! 4.948~15! 4.946~12!

4 sc 0.93600~4! 5.24~2! 5.259~17!

bcc 0.65542~3! 5.22~2! 5.236~17!

6 sc 1.42895~6! 5.67~2! 5.691~19!

bcc 0.99644~4! 5.65~2! 5.673~17!
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TABLE III. The renormalized coupling constantgr(N) for a range of values ofN on the sc and the bcc
lattice as obtained by various methods.

N HT sc HT bcc e exp. FD exp. Monte Carlo

0 1.388~5! 1.387~5! 1.390~17! ~Ref. 44! 1.413~6! ~Ref. 21!
0 1.39~Ref. 20!
1 1.408~7! 1.407~6! 1.397~8! ~Ref. 44! 1.411~4! ~Ref. 21! 1.391~30! ~Ref. 68!
1 1.459~9! ~Ref. 72! 1.40 ~Ref. 20! 1.462~12! ~Ref. 69!
2 1.411~8! 1.411~6! 1.413~13! ~Ref. 44! 1.403~3! ~Ref. 21!
2 1.40~Ref. 20!
3 1.409~10! 1.406~8! 1.387~7! ~Ref. 44! 1.391~4! ~Ref. 21!
3 1.39~Ref. 20!
4 1.392~10! 1.394~10! 1.366~15! ~Ref. 44! 1.377~5! ~Ref. 21!
4 1.3745~Ref. 58!
6 1.355(210)

(15) 1.360(210)
(15) 1.3385~Ref. 58!

8 1.320(215)
(18) 1.326(215)

(18) 1.295~7! ~Ref. 44! 1.3045~Ref. 58!

10 1.290(215)
(18) 1.294(215)

(18) 1.2745~Ref. 58!
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60.0056. The final result is expressed as 3n1g22D4
520.008260.002760.018, the first error being systemat
and the second statistical.

In the N51 case, the tests of the hyperscaling relat
~16! are numerous and have a long history.35,65 The validity
of Eq. ~16! for the three-dimensional~3D! Ising model had
been questioned by Baker9,66 on the basis of an analysis o
10–12 term series for the sc, bcc, and fcc lattices. A f
years later, when Nickel computedO(b21) series on the bcc
lattice forx andm2 in the spinS Ising model, it became clea
that rather long series were necessary to allow for the sca
corrections and thus to obtain more satisfactory estimate
g and n.31–33,36On the other hand accurate analyses of
critical behavior of thex4(1,b) series to orderb17 on the sc
lattice14,15,57,67had yielded reliable values also forD4(1). On
the basis of these results, as well as of various recent M
Carlo results68–70a common consensus was reached that,
N51, if any violation of Eq.~16! occurs, it should be much
smaller than was initially suspected. Our contribution to t
issue also consists in providing an extension from orderb13

to orderb17 of the Ising bcc series forx4 , and therefore in
further improving the accuracy of the HT test of hypersc
ing and universality even for the widely studiedN51 case.

B. Renormalized couplings

Let us first mention that, sincej25O(b) in the vicinity
of b50, from the series forx, j2, andx4 we can form two
distinct auxiliary functionsw(N,b) andu(N,b), analytic at
b50, both of which, when extrapolated atbc yield g(N,bc)
and thereforegr(N), if we assume the validity of the hyper
scaling relation. More precisely we shall consider

u~N,b![2
j2~N,b!x4/3~N,b!

@v f ~N!x4~N,b!#2/3
~36!

whose value atbc(N) is gr(N)22/3 and

w~N,b![2
v f ~N!x4~N,b!

bc
3/2@j2~N,b!/b#3/2x2~N,b!

~37!
n

g
of
e

te
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whose value atbc(N) is gr(N).
It is interesting to form approximants both ofu(b) and of

w(b) because for various values ofN, at the presently avail-
able order of expansion, they still show slightly differe
convergence properties. This may be seen as an indica
that thex4 series are still not very long. Indeed, as we ha
argued in Ref. 57, at orderbs the dominant contributions to
the HT expansion ofx4 come from correlation functions o
spins whose average distance is's/4. Therefore the pres
ently available expansions withsmax517 still describe only a
rather small system. Table III contains our estimates of
universal renormalized couplinggr(N).

For N<4 we have evaluatedgr(N) by forming SDA’s of
the auxiliary functionw(N,b), which has been chosen be
cause it yields sequences of estimates showing little or
residual trends when an increasing number of series co
cients is used. On the other hand, forN.4, we have used
u(N,b) because the estimates obtained from it show
slowest~generally decreasing! residual trends. Whenever re
evant, we have indicated this fact by reporting asymme
error bars.

In the N50 case, allowance for the correction to scali
yields a value ofgr(0) approximately 2% smaller than th
one recently obtained within the FD expansion,21 but very
close to the value suggested44 by thee expansion. Our value
is also close to that indicated in Ref. 20 and produces, via
seven loop FD perturbation series, central values ofg(0) and
n(0) '0.2% lower than those quoted in Ref. 21, but with
their error bars. It is also worth recalling that also our earl
HT analysis3 of x(0,b) andj2(0,b) had supported those low
exponent estimates in good agreement with very recent h
precision measures by stochastic methods on the sc latti71

For N51, on the sc lattice, we have reported here a c
tral estimate ofgr(1) slightly lower than, though consisten
with the estimategr(1)51.411 obtained from our previou
analysis57 based on SDA’s ofu(1,b), rather than ofw(1,b).
A small sample of the most recent estimates ofgr(1) by
various methods has also been included in the table. Al
them appear to be mutually consistent, if we consider h
difficult it has been to achieve very accurate Monte Ca
measures ofgr

sc(1) ~Refs. 68–70! and we recall that, even in
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TABLE IV. Critical amplitudes on the sc lattice for various values ofN.

N bc(N) g(N) n(N) Cx
sc(N) Cj

sc(N)

0 0.213493~3! 1.1594~8! 0.5878~6! 1.115~1! 0.5101~3!

1 0.2216544~3! 1.2388~10! 0.6315~8! 1.111~1! 0.5027~3!

2 0.45419~3! 1.325~3! 0.675~2! 1.014~1! 0.4814~3!

3 0.69305~4! 1.406~3! 0.716~2! 0.9030~8! 0.4541~2!

4 0.93600~4! 1.491~4! 0.759~3! 0.7571~8! 0.4155~2!

6 1.42895~6! 1.614~5! 0.821~3! 0.6054~8! 0.3708~2!

` 2.0 1.0 0.392287 . . . ~Ref. 19! 0.314870 . . . ~Ref. 19!
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the Ising case, the previous HT series estimates72 of the
renormalized coupling were based on expansions sho
than those presented here. Indeed, althoughx4(1,b) on the
sc lattice has long been known through orderb17, the corre-
sponding expansion for the renormalized coupling was
available before our recent work,3,57 because j2(1,b)
reached16 only order b15. On the other hand thex4(1,b)
series for the bcc lattice was known to orderb13 only. To our
knowledge, no Monte Carlo results are yet available forN
.1.

For N>3 our estimates are systematically slightly high
than the FD values of Refs. 21, 58, and perhaps the resi
decreasing trend in our estimates might not be sufficien
reconcile them. This difference is related to our allowance
the scaling corrections by doubly biased SDA’s and is c
sistent with the higher values ofg and n that we had ob-
tained in our biased analysis3 of x andj. As we have stated
above in discussing the general features of the SDA’s,
nificantly larger estimates forN,4 and somewhat lower es
timates forN>4 would be obtained, if the renormalized co
plings were evaluated by simple PA’s. This fact
completely consistent with the observed behavior of the c
rection amplitudes as functions ofN to be discussed in the
next subsection. A similar observation has been made als
Ref. 44 where, on the basis of the old sc latticeO(b14)
series,5,6 the gr(N) have been evaluated by ordinary DA’
either directly or after performing a change of variable59–61

designed to regularize the leading correction to scaling
numerically similar to our SDA’s. Therefore the final H
estimates of Ref. 44 essentially agree with ours.

We have included in Table III some estimates ofgr(N)
based on thee expansion to ordere4 recently presented in
Ref. 44. They are compatible with ours forN,3, while, for
N>3, the central values are'2% lower.
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C. Critical and correction amplitudes

In Tables IV and V we have reported our estimates of
~nonuniversal! critical amplitudes Cx

sc(N), Cj
sc(N) and

Cx
bcc(N), Cj

bcc(N), based on the values ofbc
#(N), g#(N),

andn#(N) obtained in the biased analysis of Ref. 3. Earl
determinations of the critical amplitudes either from the e
trapolation of~generally shorter! HT series or from stochas
tic simulations are also available forN51 in Refs. 72, 73,
for N52 in Ref. 74, and forN53 in Ref. 75. However,
comparisons with the results of Tables IV and V, which
general are close to the earlier ones, are not very illumin
ing, since the estimates depend sensitively on the nume
procedures, on the biased values used forbc

#(N) and on the
relevant critical exponents, which are slightly different in t
various studies.

For example in theN51 case37,72 ~on the basis of shorte
sc lattice series, but the same bcc series!, the following esti-
mates are proposed:Cx

sc(1)51.0928(10) and Cj
sc(1)

50.4984(50)
(10) ; Cx

bcc(1)51.0216(8) andCj
bcc(1)50.4608(2)

assuming bc
sc(1)50.221630(12), bc

bcc(1)50.157368(7),
g(1)51.2395, andn(1)50.632.

For N52, in Ref. 74 the estimatesCx
sc(2)51.058(7) and

Cj
sc(2)50.498(2) have been obtained from a fit to Mon

Carlo data, assumingg(2)51.3160(25),n(2)50.669(2),
allowing for confluent corrections with exponentu(2)
50.522. This fit also yieldsbc

sc(2)50.454162(9) from the
analysis ofx, andbc

sc(2)50.454167(10), from the analysi
of j.

For N53, in Ref. 75, the estimatesCx
sc(3)50.955(6) and

Cj
sc(3)50.484(2) have been obtained from a fit to Mon

Carlo data~with no allowance for confluent corrections! also
yielding bc

sc(3)50.69294(3), g(3)51.391(3) from the
analysis of x and bc

sc(3)50.69281(4), n(3)50.698(2),
from the analysis ofj.
TABLE V. Critical amplitudes on the bcc lattice for various values ofN.

N bc(N) g(N) n(N) Cx
bcc(N) Cj

bcc(N)

0 0.153128~3! 1.1582~8! 0.5879~6! 1.087~1! 0.4846~2!

1 0.157373~2! 1.2384~6! 0.6308~5! 1.034~1! 0.4659~2!

2 0.320427~3! 1.322~3! 0.674~2! 0.918~1! 0.4371~2!

3 0.486820~4! 1.402~3! 0.714~2! 0.794~1! 0.4072~2!

4 0.65542~3! 1.484~4! 0.756~3! 0.6580~8! 0.3691~2!

6 0.99644~4! 1.608~4! 0.819~3! 0.5020~6! 0.3231~2!

` 2.0 1.0 0.299741 . . . ~Ref. 19! 0.263818 . . . ~Ref. 19!



11 560 PRB 58P. BUTERA AND M. COMI
TABLE VI. Correction amplitudes on the sc and the bcc lattices for various values ofN.

N ax
sc(N) ax

bcc(N) aj
sc(N) aj

bcc(N) ag
sc(N) ag

bcc(N)

0 20.022~10! 20.05~3! 20.11~3! 20.1 1.5~3! 1.9~4!

1 20.10~3! 20.08~3! 20.12~3! 20.08~3! 1.0~2! 1.0~2!

2 20.04~2! 0.01~2! 20.07~3! 20.005~9! 0.39~8! 0.14~3!

3 0.06~3! 0.17~3! 0.003~6! 0.09~3! 0.05~10! 20.29~6!

4 0.30~6! 0.5~1! 0.14~3! 0.28~6! 20.12~3! 20.55~10!

6 0.73~15! 1.1~2! 0.37~8! 0.60~15! 20.35~8! 20.77~20!

8 1.1~2! 1.8~3! 0.53~10! 0.92~20! 20.43~10! 21.0~2!
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As has been stressed in general in Ref. 38 and as we
anticipated in our considerations of Sec. III on the numeri
properties of SDA’s, the discussion of the estimates of
scaling correction amplitudes is much more delicate. Let
first comment on some qualitative features of the estima
of these amplitudes for the sc and the bcc lattices which
denoted asax

sc(N), ax
bcc(N), aj

sc(N), aj
bcc(N), ag

sc(N),
ag

bcc(N), and reported in Table VI.
Both correction amplitudesax

#(N) andaj
#(N) are negative

for N&2, whereas they are positive and increasing forN
.2. @Actually we have reported a positive value forax

bcc(2),
but with a large uncertainty.# Therefore the ratioaj /ax is
very likely to be positive for all values ofN. The correction
amplitudesax

#(N) and aj
#(N) turn out to be small, but no

negligible forN<1 and rather large forN>4, both in the sc
and in the bcc lattice case. On the contrary, forN52 and
N53 they are very small. Thus the overall behavior of t
correction amplitudes forx andj as functions ofN appears
to be smooth and completely consistent with the size and
sign of the differences3 between our unbiased estimates
the critical exponentsg and n and the corresponding est
mates biased with bothbc andu. More precisely, we recal
that the nonanalytic corrections to scaling lead to~slightly!
higher effective exponents forN,2 and to ~significantly!
lower effective exponents forN>4. On the other hand, th
ag

#(N)’s are positive forN&2, while they are negative an
decreasing forN.2, so that the ratioag /ax is negative for
any N. @Actually we have reported a positive value f
ag

sc(3), but with a large uncertainty.# The ag
#(N)’s are gen-

erally not small, except forN53 in the sc case and forN
52 in the bcc case.

It is appropriate now to quote some earlier evaluations
ax andaj by HT series or Monte Carlo simulations. In th
ve
l
e
s
s

re

e
f

f

N51 case, it had been established35,36,38,76long ago that the
sign ofax(1) and ofaj(1) is negative on the sc, bcc, and fc
lattices. In Ref. 36, for the spin 1/2 Ising model on the b
lattice, the estimatesax

bcc(1)'20.13 andaj
bcc(1)'20.11

have been indicated, together with the central valuesg(1)
51.237, n(1)50.630, andu(1)50.52, on the basis of a
second order DA analysis. ForN52, the above cited Monte
Carlo simulation of Ref. 74, yielded the estimatesax

sc(2)
520.15(6) andaj

sc(2)520.20(4). Clearly, in both cases
the critical parameters are slightly different from ours a
this is sufficient to explain the somewhat different estima
for the correction amplitudes.

In the spin 1/2 Ising case, it has been argued long ag31

that ag
bcc(1) should be large. Recently,44 it also has been

observed that, if the sc lattice Monte Carlo data of Ref.
are simply fitted by the functiongr(b)5g* (11agt1/2), the
value ag

sc(1)'1.13 is obtained in fair agreement with ou
own estimate.

In Tables VII and VIII we have listed some earlier es
mates of the universal ratiosaj(N)/ax(N) andag(N)/ax(N)
of correction amplitudes obtained by variou
methods.20,25,36,67,77–79We believe that, forN,4, it is not
very meaningful to quote the ratios of our central estima
of aj , ax , andag . Indeed, as we have already pointed o
for these values ofN, the amplitudesaj , ax are small and
very sensitive to the biased inputs. As a consequence, t
parameters must be finely tuned, which cannot be justi
until longer series will be computed. We shall indicate belo
a possible alternative way out of this difficulty. However, t
caseN51 deserves further comment. In this case, on the
lattice, a very accurate80 determination ofbc

sc(1) is available,
and also the value ofbc

bcc(1) ~Ref. 36! appears to be suffi-
TABLE VII. The universal ratios of correction amplitudesaj(N)/ax(N) for various values ofN.

N HT sc HT bcc e exp. FD exp.

0 0.885~50! ~Ref. 20!
1 @1.2~4!# @1.0(4)# 0.65 ~Ref. 77! 0.762~30! ~Ref. 20!
1 0.70~3! ~Ref. 76!; 0.85~5! ~Ref. 36! 0.56~15! ~Ref. 25! 0.65~5! ~Ref. 79!
2 0.61~8! 0.63 ~Ref. 77! 0.687~10! ~Ref. 20!
2 0.615~5! ~Ref. 79!
3 0.637~5! ~Ref. 20!
3 0.60 ~Ref. 79!
4 0.49~15! 0.55~15!

6 0.51~15! 0.55~15!

8 0.49~15! 0.54~15!



th
e

T

in

os

in
e
t

r
to

s
s
e
H

at
o
b

he

H
on
lie
sia

l-

iv

sen-

s,
of

ved
h, it
ore
ls in
at

able
ar-

gh

nts
in-
aly-

the

ge
the

mi-
u-

ys
to
ver,
er-

ieve
stan-
are
is
ffi-

e
rst
ng
er-

s

PRB 58 11 561RENORMALIZED COUPLINGS AND SCALING . . .
ciently safe, so that the ratios of our central estimates of
amplitudes are more trustworthy and we have reported th
in parentheses.

It is interesting to recall also that, forN51, suggestions
that ag /ax should be large came both from earlier H
estimates76 on the fcc lattice@ag

fcc(1)/ax
fcc(1)'3.9# and from

the RG estimates reported in Table VIII. This is a further h
that the corrections to scaling should not be neglected
computinggr(1).

Unfortunately, thee expansions of these universal rati
presently only extend to second order,77,78 so that again we
have to point out that the uncertainty of the correspond
estimates might be larger than indicated. As we have m
tioned above, even the estimates of these ratios from
much longer FD expansions20,79 might have problems. Fo
N,4, as already observed, all series including ours are
short to accurately extract the correction amplitudes. Thi
particularly the case forx4 . Moreover, when longer serie
become available, our approximation procedures might n
some improvement. Nevertheless these first results from
series on an extended range of values ofN seem to be quali-
tatively very reasonable.

As an indication of work in progress, we wish to add th
even within the present order of expansion, somewhat m
accurate estimates of the critical parameters are likely to
obtained by proceeding systematically in the spirit of t
Chen, Fisher, Nickel, and Rehr approach.35,36 In the N51
case on the bcc lattice, these authors have examined
series for families of models specified by an appropriate c
tinuous auxiliary parameter. The members of these fami
interpolate between the spin 1/2 Ising and the Gaus
model and all of them are good candidates for belonging
the same universality class.~This approach easily genera
izes, in various ways, to other values ofN and it is a virtue of
the LCE method that the corresponding series can be der

TABLE VIII. The universal ratios of correction amplitude
ag(N)/ax(N) for various values ofN.

N HT sc HT bcc e exp. FD exp.

0
1 @23.0(5)# @23.5(5)# 22.2~5! ~Ref. 67! 22.85~6! ~Ref. 79!
2 22.08~5! ~Ref. 79!
3 21.65~4! ~Ref. 79!
4
6 21.2~4! 20.7~2!

8 21.1~4! 0.8~3!
e
m

t
in

g
n-
he

o
is

ed
T

,
re
e

T
-
s
n

to

ed

essentially with no further computational effort.! By varying
the auxiliary parameter, these authors have selected repre
tative models such that the leading correction amplitudesaj ,
ax ~and ag) vanish. It is clear that, under these condition
even by employing ordinary unbiased DA’s, the accuracy
the estimates of the universal quantities can be impro
dramatically. On the other hand, within the same approac
is probable that also the correction amplitudes will be m
accurately measured by focusing on representative mode
which they are sufficiently large, provided, of course, th
the subleading terms are not even larger. Thus more reli
estimates might be achieved for their universal ratios, in p
ticular in the rangeN,4.

V. CONCLUSIONS

The main result of this paper is the extension throu
O(b17) of the series forx4(N,b), for arbitraryN, on the sc
and on the bcc lattices. Both sets of expansion coefficie
have been tabulated in the Appendixes in order to make
dependent checks of their correctness and alternative an
ses conveniently feasible.

A second interesting result is the numerical analysis of
critical behavior ofx4(N,b) which confirms fairly well the
validity of universality and hyperscaling over a wide ran
of values ofN. We have also presented an estimate of
size of the scaling corrections forx, j2, andx4 and, allow-
ing for them, we have improved the accuracy in the deter
nation of the critical amplitudes and of the renormalized co
plings.

The agreement between our estimates ofgr(N) and those
from the RG approaches is generally fair, but not alwa
perfect. At this level of approximation, it is premature
emphasize such minor discrepancies. We believe, howe
that longer HT series for all quantities studied here and p
haps improved analyses are still of some interest to ach
more reliable estimates and to reduce the error bars sub
tially. Considering the performance of our codes, these
presently quite realistic objectives and, therefore, work
presently in progress to compute further expansion coe
cients.
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APPENDIX A: THE SECOND FIELD DERIVATIVE OF THE SUSCEPTIBILITY ON THE sc LATTICE

The HT expansion coefficients of the second field derivative of the susceptibilityx4(N,b)5(3N/N
12)(x,y,z^v(0)•v(x)v(y)•v(z)&c5(3N/N12)(22/N1( r 51

` dr(N)b r) on the sc lattice are

d1~N!5248/N2,

d2~N!5
212482660N

N3 ~21N!
,

d3~N!5
21248026912N

N4 ~21N!
,
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d4~N!5
285171221128192N2474000N2261236N3

N5 ~21N!2 ~41N!
,

d5~N!5
2657331228786880N23725856N22483840N3

N6 ~21N!2 ~41N!
,

d6~N!5
256590848021137490944N2877991616N22321566208N3255124016N423514968N5

N7 ~21N!3 ~41N! ~61N!
.

For the coefficients which follow it is typographically more convenient to setdr(N)5Pr(N)/Qr(N) and to tabulate separatel
the numerator polynomialPr(N) and the denominator polynomialQr(N);

P7~N!52384974438427739114496N25976661248N222190260352N32375495552N4223938560N5,

Q7~N!5N8 ~21N!3 ~41N! ~61N!,

P8~N!52160736182272024630934495232N25658731108352N223815032300032N321545703906176N4

2383951922240N5256942341632N624600824312N72154867284N8,

Q8~N!5N9 ~21N!4 ~41N!2 ~61N! ~81N!,

,

P9~N!5210146634334208229145299066880N235515117682688N2223883563143680N329654774400512N4

22393329321728N52354292592640N6228580124768N72960719616N8,

Q9~N!5N10~21N!4 ~41N!2 ~61N! ~81N!,

P10~N!524986778413957120218502905604472832N230434129019666432N2229229711376023552N3

218173047179460608N427663189901412864N522231748901824768N62448039233434880N7

260661040264064N825267106682272N92263609235360N1025754914568N11,

Q10~N!5N11~21N!5 ~41N!3 ~61N! ~81N! ~101N!,

P11~N!52299572922312294402110697821461807104N2181359443339575296N22173526582721855488N3,

2107505154356572160N4245183600633858048N5213119088167641088N622626537796155392N7

2354741723247872N8230735239578752N921535369868288N10233465664512N11,

Q11~N!5N12~21N!5 ~41N!3 ~61N! ~81N! ~101N!,

P12~N!52254249637754857062402112568160566969892864N2226122593284806672384N2

2272739288108751650816N32220335024310830366720N42125926002861175824384N5

252429589825842464768N6216133360608103531520N723682631735427354624N8

2619886922488017920N9275677317494258048N1026492816409650048N11

2369850295426784N12212514445149200N132189708636600N14,

Q12~N!5N13~21N!6 ~41N!3 ~61N!2 ~81N! ~101N! ~121N!,

P13~N!521474362552208903372802649808498848293715968N21299512129528339103744N2

21560658843095801004032N321255571803469692796928N42714760376636548620288N5

2296490805364682670080N6290920656735938183168N7220688048472922093568N8

23472336842523894272N92422813491673485824N10236192084771724800N11
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22057419542670080N12269492377025984N1321051829121024N14,

Q13~N!5N14~21N!6 ~41N!3 ~61N!2 ~81N! ~101N! ~121N!,

P14~N!5256646358786236865314816023043875242905724409348096N27576777562322913437155328N2

211598723404301679271608320N3212226130280460910006894592N429415725334597698602139648N5

25486072371880331913592832N622470783134534602565992448N72871335330057590064906240N8

2242243678099334349271040N9253184931154543324258304N1029193953185463740998656N11

21241394935192535991296N122129075746454058556160N13210102244514482628864N14

2573981185124034560N15222283021804865984N162527221923353952N1725719330613520N18,

Q14~N!5N15~21N!7 ~41N!4 ~61N!3 ~81N! ~101N! ~121N! ~141N!,

P15~N!523199047998804219563868160217113814040741606825394176N242413540836361700246552576N2

264650199580585358413266944N3267863921600679932441133056N4252054127611661734870253568N5

230212418901698609794777088N6213556920252810313722822656N724764324172851484585525248N8

21320233119260810969808896N92288978328415607033544704N10249814490389339231121408N11

26708703760313406396416N122695898456216849782784N13254348379646212915200N14

23081948095561442816N152119439454925014272N1622821599683684352N17230566943406080N18,

Q15~N!5N16~21N!7 ~41N!4 ~61N!3 ~81N! ~101N! ~121N! ~141N!,

P16~N!52182990023282342212072269414402114585264379209072949397028864N

2336677952680726802363970486272N22617145013898356017378109685760N3

2791521185299488842160294330368N42755125087023410853999229796352N5

2556163233950005337533492232192N62323972815609871396650371514368N7

2151693834060073149464108859392N8257712428469432137886012145664N9

217963030647495383412208861184N1024590796640925368216011948032N11

2964233613788142396008136704N122166150396381094082218360832N13

223381941196613066788198400N1422666695999548097875723264N15

2243616432556930571577344N16217525072840959462713984N17

2968152139098787129664N18239538186077707686464N19

21121781497993998176N20219697772998733576N212160868281485204N22,

Q16~N!5N17~21N!8 ~41N!5 ~61N!3 ~81N!2 ~101N! ~121N! ~141N! ~161N!,

P17~N!521012359587884626732531056640002631215419419149274713371443200N

21846824461720939657841963171840N223371230360792179922631399571456N3

24306156546428529311715461955584N424091812122737075444969361113088N5

23002060652157587317256634761216N621742224189122069022527046287360N7

2812841546356917149508011294720N82308190677384300600694770368512N9

295612813294752704503595663360N10224360624222950336197451317248N11

25101833629477951341726236672N122876738435402445320757764096N13
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2123070791802592404991434752N14214003418390237375888211968N15

21276532972320935406141440N16291648782429013822778880N17

25053887369689137387008N182206055475899900727296N19

25837513893110173568N202102365100472039776N212834986039880960N22,

Q16~N!5N18~21N!8 ~41N!5 ~61N!3 ~81N!2 ~101N! ~121N! ~141N! ~161N!.

In particular forN50 we have~in terms of the variableb̃5b/N)

x̂4~ b̃ !523272b̃2936b̃229360b̃3279848b̃42616248b̃524421160b̃6230076128b̃72196211160b̃8

21238602824b̃927609219992b̃10245711200304b̃112269412610536b̃1221562290776792b̃13

28932238341992b̃14250443946980992b̃152281783630311272b̃1621558917555928200b̃17.

For N51 ~the spin 1/2 Ising model!, we have

x4~1,b!522248b2636b226464b3255892b422174432/5b5247009464/15b622239468288/105b7

214570710772/105b82823130010272/945b9225080975789304/4725b1021640401398782848/51975b11

228654566671774104/155925b1222130434175575247424/2027025b13283969257269976828688/14189175b14

26995762565293277161216/212837625b15238389375874347206695732/212837625b16

2272537955948789968719904/278326125b17 . . . .

For N52 ~the XY model! we have

x4~2,b!523/2218b2963/8b221233/2b32171687/64b42167661/16b5238749413/1024b6232973957/256b7

22142639141/5120b8213411622379/10240b923907085119879/983040b102240713424017/20480b11

21247905418479081/36700160b122166057186013983/1720320b132407002859073704999/1509949440b14

21960425200264079271/2642411520b1523835682132124206551811/1902536294400b16

2245360122597207497559/45298483200b17 . . . .

For N53 ~the Heisenberg classical model!, we have

x4~3,b!526/5248/5b21076/25b2211072/75b32677044/1575b42981856/875b52958584296/354375b6

2261075968/42525b72362572843588/27286875b829268612328224/334884375b9

23647348945492264/65302453125b1021655707479102099328/15084866671875b11

23670221101428789064/17405615390625b12253935317813474946624/135763800046875b13

299068754350666844524336/134632435046484375b14

24880947680478330092600064/3635075746255078125b15

2192879202499123356385626829692/79771737251567689453125b16

238137398242459901685390609504/8863526361285298828125b17 . . . .

APPENDIX B: THE SECOND FIELD DERIVATIVE OF THE SUSCEPTIBILITY ON THE bcc LATTICE

The HT expansion coefficients of the second field derivative of the susceptibility on the bcc lattice are

d1~N!5
264

N2 ,

d2~N!5
2230421200N

N3 ~21N!
,
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d3~N!5
232256217408N

N4 ~21N!
,

d4~N!5
2308684824038528N21679424N22215600N3

N5 ~21N!2 ~41N!
,

d5~N!5
233383424244140288N218541952N222396160N3

N6 ~21N!2 ~41N!
,

d6~N!5
2402576998428048769024N26183804416N222256738944N32386061056N4224592512N5

N7 ~21N!3 ~41N! ~61N!
.

For the coefficients which follow it is typographically more convenient to setdr(N)5Pr(N)/Qr(N) and to tabulate separatel
the numerator polynomialPr(N) and the denominator polynomialQr(N):

P7~N!5238338166784276883050496N259262616576N2221695712768N323720514560N42237404160N5,

Q7~N!5N8 ~21N!3~41N! ~61N!,

P8~N!5222398548705280264579066675200N278988001214464N2253316161983488N3

221632718536704N425382539503872N52799715671040N6264733334688N722182679664N8,

Q8~N!5N9 ~21N!4 ~41N!2 ~61N! ~81N!,

P9~N!521977606710231042570072979439616N2697267355156480N22470715808290816N3

2191030743859200N4247540867562496N527064458432512N62571883674496N7219283466240N8,

Q9~N!5N10~21N!4 ~41N!2 ~61N! ~81N!,

P10~N!521358936486707200002506812733453762560N2837961375615287296N2

2808982617436258304N32505548566324297728N42214244480842262528N5

262694667322504192N6212643889177861632N721719173758968320N8

2149853167848320N927525864311296N102164795456384N11,

Q10~N!5N11~21N!5 ~41N!3 ~61N! ~81N! ~101N!,

P11~N!52114104491271258112024249040663391240192N27015555079356284928N2

26764393828229578752N324222404584768831488N421787577880615559168N5

2522623903804669952N62105313027917844480N7214308686372335616N8

21246403878745600N9262559888474112N1021369193398272N11,

Q11~N!5N12~21N!5 ~41N!3 ~61N! ~81N! ~101N!,

P12~N!52135322451982654898176026043648174007450075136N212246178519860941684736N2

214898334498567895384064N3212137516326724153901056N426993670039948027871232N5

22934699277523969310720N62909774043355138494464N72209115782694899085312N8

235427294974940029952N924350609416485181440N102375257673683951872N11

221477632431608320N122729782591023616N13211103491816320N14,

Q12~N!5N13~21N!6 ~41N!3 ~61N!2 ~81N! ~101N! ~121N!,
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P13~N!5210962814317012556185600248855640313305403228160N298790788652478570168320N2

2119949033747113622634496N3297539319548016125280256N4256104431660229407899648N5

223504510497602793209856N627275637584279889346560N721670046301220816199680N8

2282577439283542464512N9234662501972894392320N1022986763073027756032N11

2170792230703923200N1225798723600550656N13288165648564224N14,

Q13~N!5N14~21N!6 ~41N!3 ~61N!2 ~81N! ~101N! ~121N!,

P14~N!52588321995538113576828928002319656261223016276133150720N

2804506884372627522672656384N221245051701802465742955741184N3

21326506792510663276202295296N421032281846527637618727845888N5

2607550530706546656156057600N62276285749123163236534124544N7

298336895868270792502870016N8227578892092469750017228800N9

26104887252432902432088064N1021063450425127326143963136N11

2144612518832699900119040N12215134717223692504156160N13

21191613756119982431744N14268071027536755782912N15

22655538734547345536N16263104921069570176N172687220401024000N18,

Q14~N!5N15~21N!7 ~41N!4 ~61N!3 ~81N! ~101N! ~121N! ~141N!,

P15~N!5246399627157743686723305472022515152883396655909638766592N26315643027876160842940547072N2

29752398559014235653061738496N3210368212405864877478064947200N4

28051953080310134001281007616N524729721489677266022278627328N6

22146872892026044965004247040N72762790924816930341473615872N8

2213577145756373531731427328N9247205533784466451589431296N10

28211418569550233134678016N1121115168266958340559364096N12

2116570698649671407411200N1329168049245864669396992N14

2523207897673566349312N15220392833008810153984N16

2484218500284702720N1725269451094097920N18,

Q15~N!5N16~21N!7 ~41N!4 ~61N!3 ~81N! ~101N! ~121N! ~141N!,

P16~N!523706032155932253013818065551360223511532957902177899390315790336N

269984745734719724031602453381120N22129942518358149653545095685734400N3

2168777163612514463301490677121024N42163020601132834974169821018587136N5

2121523005151702351276069798019072N6271619975067826655255089882595328N7

233913954817349955356957471670272N8213042529099485925377885106077696N9

24101432698345456358253122813952N1021058465798499513773553711382528N11

2224369655134353441277932077056N12238996967102960612063728975872N13

25532347732173533521822597120N142635702582117166696141393920N15

258478148624089490157039616N1624233637928944288589514240N17
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2235251240860669046267648N1829658642370970465608960N19

2275363031292904868480N2024856360702431679584N21239817256443223280N22,

Q16~N!5N17~21N!8 ~41N!5 ~61N!3 ~81N!2 ~101N! ~121N! ~141N! ~161N!,

P17~N!52286251708093176226392737579008002181166520457100717483475767132160N

2537991814958099333262399103827968N22996597299051903297408062545985536N3

21291524895757272450924715899355136N421244744825531489741899730562056192N5

2925926421634294684791564008423424N62544586262055545477273422842036224N7

2257372711584126360801923714514944N8298795363631395088253841625841664N9

231012859792452238511372108300288N1027990178234700265757218112274432N11

21691062951010009264622059913216N122293484614468719284469043789824N13

241578182122239994876120399872N1424771486216282518354479939584N15

2438407834252226343769522176N16231704698511771193169897472N17

21759972842290831947573248N18272192427708156325499904N19

22056451245211192506368N20236240554109317191808N212296932880108021760N22,

Q17~N!5N18~21N!8 ~41N!5 ~61N!3 ~81N!2 ~101N! ~121N! ~141N! ~161N!.

In particular forN50, we have~in terms of the variableb̃5b/N)

x̂4~ b̃ !523296b̃21728b̃2224192b̃32289392b̃423129696b̃5231451328b̃62299516928b̃722734197840b̃8

224140706912b̃92207357252000b̃1021741096363392b̃11214339282987664b̃122116166160551840b̃13

2927691099407360b̃1427316490196952064b̃15257068641022992368b̃162440794771444139040b̃17.

For N51 ~the spin 1/2 Ising model!, we have

x4~1,b!522264b21168b2249664/3b32601360/3b4232820608/15b52996463616/45b6266712488448/315b7

2122056132496/63b8248489867797888/2835b922078558044733696/14175b10

2191285725186144768/155925b112188087379936809600/18711b12

2492034524872707515136/6081075b13

227296494302637993572352/42567525b1423201197677867739316248576/638512875b15

24945781553886665074906384/127702575b1623212941768987291424807915648/10854718875b17.

For N52 ~the XY model!, we have

x4~2,b!523/2224b2441/2b221572b32153175/16b42104981/2b5268238647/256b6

240884131/32b721404217891/240b8266125311269/2560b9216313466298147/147456b10

285154694896333/184320b11251968444431571323/27525120b12

2156353752523792639/20643840b13

2236982809408746803649/7927234560b142400259785750849937/3440640b15
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2637876955227851294690449/1426902220800b16

248476858619011264835409/28538044416b17 . . . .

For N53 ~the Heisenberg classical model!, we have

x4~3,b!526/5264/5b21968/25b225632/15b3236138448/23625b42132459392/23625b521348186624/70875b6

2194131778048/3189375b72228357648983536/1227909375b822016513048715136/3683728125b9

23366834959446902016/2154980953125b1021872724144398680576/430996190625b11

22674610910995288182912/226273000078125b122367131807235133274368/11636897146875b13

2100350171877191930199645952/1211691915418359375b14

2778819344453674012213276672/3635075746255078125b15

2130937251648404408278387043967856/239315211754703068359375b16

222035313880683966424477522278528/15954347450313537890625b17.
.

n
d

s.

.

a

s,
s.
s,

-
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