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Chirality tunneling in mesoscopic antiferromagnetic domain walls
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We consider a domain wall in the mesoscopic quasi-one-dimensional sample~wire or stripe! of weakly
anisotropic two-sublattice antiferromagnet, and estimate the probability of tunneling between two domain wall
states with different chirality, in the limits of weak and strong rhombicity. Topological effects forbid tunneling
for the systems with half-integer spinS of magnetic atoms which consist of an odd number of chainsn' .
External magnetic field yields an additional contribution to the Berry phase, resulting in oscillating field
dependence of the tunneling rate with the period proportional toAJK/n' , whereJ andK are exchange and
anisotropy constants, respectively, and in the appearance oftwo different tunnel splittings in any setup involv-
ing a mixture of odd and evenn' . @S0163-1829~98!06242-0#
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I. INTRODUCTION

In recent years, there has been much interest in the p
lem of quantum spin coherence in mesoscopic magnetic
tems, mainly in nanoparticles1 and high-spin molecula
clusters.2 Another possible way, proposed in Refs. 3 and 4
to usetopologically nontrivialmagnetic structures: domai
walls in quasi-one-dimensional~1D! systems~wires, stripes!,
vortices in 2D systems, etc. Such objects have mesosc
scale, e.g., in materials with magnetic ions ins states the
domain wall thickness is usually about 100 lattice consta
and since their shape is determined by the material cons
they are to a high extent identical.

Classically, magnetic domain wall~DW! has certain
‘‘chirality,’’ an internal degree of freedom characterizing th
way of rotation of magnetization inside a DW. Two stat
with opposite chirality are equivalent in energy~we will not
consider magnets without inversion center where this is
true!. In the quantum case there is generally a nonzero t
sition amplitude mixing the two states and lifting th
degeneracy;3–5 under favorable circumstances this tunn
splitting can be detected with a resonant technique of so
kind. In antiferromagnets~AF! tunneling is more favorable
than in ferromagnets, both in the case of fine particles6 and
domain walls.4

In this paper we show that in the simplest model of m
soscopic AF with half-integer spinS of magnetic ions topo-
logical effects forbid chirality tunneling for a DW with a
odd numbern' of spins in its cross section. We further sho
that in the presence of even weak external magnetic field
strict ‘‘selection rule’’ is relaxed, which leads to the appea
ance of two different values of tunnel splitting in any ha
integerS sample with weakly fluctuatingn' . For anyS, the
tunneling amplitude is shown to be an oscillating function
PRB 580163-1829/98/58~17!/11514~5!/$15.00
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the field with the perioddH}AJK/n' , whereJ andK are,
respectively, the exchange and anisotropy constants.

II. MODEL

Consider a thin quasi-one-dimensional stripe of tw
sublattice weakly anisotropic antiferromagnet, which we
the sake of simplicity treat as a system ofn' AF chains of
spin-S magnetic atoms, coupled with the same exchan
constantJ.0 for any neighboring spins. We assume th
magnetic atoms form a perfect crystal structure on a bipa
lattice, as shown in Fig. 1; note thatn' can be odd or even
without introducing any frustration. We assume a rhom
anisotropy of the form

FIG. 1. ~a! a schematic picture of the cross section of antifer
magnetic mesoscopic stripe;~b! two domain walls with opposite
chiralities.
11 514 ©1998 The American Physical Society
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@K1~Si
Z!21K2~Si

Y!2#, ~1!

where i labels lattice sites andK1,2!J are the anisotropy
constants,K1.K2.0, so thatZ is the hard axis andX is the
easy axis in the easy planeXY.

Due to the quasi-1D structure, one can assume that
sublattice magnetization depends only on the space coo
natex along the wire~note thatX andx axes do not need to
coincide!. Using the standard technique,7 one can obtain the
effective Euclidean action of AF in continuum approxim
tion, which has the form of a well-knownO(3) nonlinears
model

AE5
1

4
n'\SW1 i2pn'S\~Q1QH8 !, ~2!

W@ l#5E d2xH ~]al!~]al!1
1

D2
@~11r!l Z

21 l Y
2 #1w̃aJ ,

Q5
1

4pE d2xl•~]1l3]2l!,

QH8 5
g

4pcE d2xH•~ l3]2l!.

Herel is the unit Néel vector, (x1 ,x2)5(x,ct) is the Euclid-
ean plane,c5JSaZc /\ is the limiting velocity of spin
waves,Zc is the lattice coordination number,a is the lattice
constant, D5a(JZc/4K2)1/2@a is the characteristic DW
thickness,r5K1 /K221 is the rhombicity parameter,g
5gmB /\ is the gyromagnetic ratio,g denotes the Lande´

factor, andmB is the Bohr magneton. The quantityw̃a( l)
5(g/c)2(H• l)2 describes effective renormalization of th
anisotropy induced by the field. In Eq.~2!, the term propor-
tional toQ is the so-called topological term originating fro
the sum of Berry phases8 of individual spins,Q being the
homotopical~Pontryagin! index of mapping of the (x1 ,x2)
plane onto the spherel251, andQH8 is the contribution from
magnetic field.

A static DW solutionl0(x) corresponds to the rotation o
vector l in the easy planeXY:

l 0X5s8tanh~x/D!, l 0Y5s/cosh~x/D!, l 0Z50, ~3!

where s,s8561. The quantity s8 is the ‘‘topological
charge’’ of the DW, and the chiralitys determines the sign
of l projection onto the ‘‘intermediate’’ axisY. Two states
with s561 are equivalent in energy; change ofs describes
reorientation of the macroscopic number of spinsNDW
;D/a@1, typically NDW;70–100.

III. CHIRALITY TUNNELING IN ABSENCE
OF MAGNETIC FIELD

Let us consider first the caseH50. Tunneling between
the DW states with opposite chiralities can be studied us
the instanton formalism. Since the tunneling here occurs
tween twoinhomogeneousstates, the corresponding insta
tons are non-one-dimensional~space and time!. The structure
of instanton solutionl inst(x,t) is shown in Fig. 2; it has the
he
di-

g
e-

following asymptotic behavior:

l X→6s8, x→6`, l Y→7s, x50, t→6`,

l Z→p561, x→0, t→0, ~4!

note the appearance of another topological chargep561.
Along any closed path in the Euclidean plane going arou
~but far from! the instanton center vectorl rotates by the
angle 2pn in the easy planeXY, wheren5ss8561. Thus,
the instanton configuration has the properties of anout-of-
plane magnetic vortex~i.e., with l Z5” 0 in the center! and is
characterized by two topological charges:9 vorticity n and
polarizationp. The instanton solution satisfies the equatio

“

2u1sinu cosu@~r1cos2w!/D22~“w!2#50,

“•~sin2u“w!2~1/D2!sin2u sinw cosw50, ~5!

where we have introduced angular variables asl X1 i l Y
5sinueiw, lZ5cosu, and“5(]1 ,]2) denotes the Euclidean
gradient.

We are not able to find the exact solution of Eqs.~5!, but
the tunneling amplitude can be estimated from approxim
arguments. One can observe that, in contrast to the s
problem for ferromagnet,10 Eqs. ~5!, as well as their solu-
tions, arereal. Thus in the absence of magnetic field the re
part ofAE is given byn'SW/4, and the imaginary part is
determined solely by the topological term~note thatQ is a
total derivative and does not contribute to the equations
motion!. Then constructing the instanton solution can
viewed as minimization ofW; it should be remarked thatW
formally coincides with the energy of a vertical Bloch line
a 2D DW, which is rather well studied.11

Another observation is that in AF in the absence of ma
netic field the translational DW motion in real space and
internal degree of freedom~chirality! are uncoupled, in con-

FIG. 2. The structure of instanton connecting two DW sta
with opposite chiralities. Arrows denote projections of vectorl on
the easy plane; on the thin solid line vectorl forms an angle of
about 45° with the easy axis.
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trast to ferromagnets;4 for H5” 0 this coupling appears bu
becomes important only in strong fieldsH;Hc
5(4ZcS

2JK1)1/2/g.12 Thus for weak fields one can consid
the tunneling assuming a fixed position of the DW in the r
space. For uniform boundary conditions at infinity the qua
tity Q determining ImAE can take only integer values, but i
our caseQ52pn/256 1

2 is half-integer, which is typical
for out-of-plane vortices.9 For the givens8 there are two
instanton solutions with the same vorticityn and opposite
polarizationsp which equally contribute to ReAE but have
different signs of ImAE . Using the standard instanto
technique,13 one obtains for the tunnel splitting

G5C\v l~n'W̃S/4!1/2e2n'W̃S/4ucosFu, ~6!

whereW̃5W@ l inst(x,t)#2W@ l0(x)# is the difference of the
real part of Euclidean action calculated on the instanton
lution and on a static DW without instanton,v l5(c/D)Ar is
the frequency of the out-of-plane magnon localized at
DW ~‘‘attempt frequency’’!, the square root in the preexpo
nent comes from the zero mode of the istanton motion al
the imaginary time axis~recall that the position in real spac
is fixed!, C is a numerical constant accumulating the effect
fluctuations around the instanton~except the zero mode!,
and, finally,F is the phase determined by thep-dependent
part of ImAE . In the simplest model withH50 considered
so farF5pn'S due to the presense of the topological ter
and thusthe tunneling amplitude vanishes when S is ha
integer and n' is odd,the effect which was missed in Ref.
as well as in our earlier work.3 Thus the tunneling is forbid-
den for roughly one-half of DW’s in half-integerS AF,
somewhat similarly to the case of half-integerS nanopar-
ticles with uncompensated total spin.14 In the present case
however, the effect is more subtle: we consider the sys
consisting of anevennumber of spins, and the total spin
not necessarily half-integer whenS is half-integer; thus the
effect cannot be explained on the basis of the Kramers th
rem without using additional assumptions~e.g., one may
speculate17 that a domain wall in the spin-S chain has an
‘‘internal’’ spin which is justS).

Below we will see that in presence of magnetic field t
situation is different: both integer and half-integern' con-
tribute, but with different tunneling rates. To calculate t

real part of the Euclidean actionW̃, one can observe that th
problem has three different length scales: the DW thickn
D, the vortex core size in spatial directionDvx , and the
characteristic size of the core in the imaginary time direct
Dvt . For strong easy-plane-type anisotropy,r@1, the vortex
core is nearly axially symmetric: up to distancesr !D the
anisotropy in the easy plane can be neglected, and the
tion in the core reduces to the well-known case of a us
vortex in an easy-plane magnet,15 with u5u0(j), w
5nx, n561,

d2u0 /dj21~12n2/j2!sinu0cosu050. ~7!

Here (r ,x) are the polar coordinates in (x1 ,x2) plane, r
5(x1

21x2
2)1/2, x5arctan(x2 /x1), and j5rAr/D. Thus Dvx

5Dvt5D/Ar!D, i.e., the core is isotropic and muc
smaller than the DW thickness. In the opposite ‘‘almo
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easy-axis’’ caser!1 the core is strongly asymmetric: it
spatial size Dvx5D, but the imaginary time sizeDvt

5D/Ar is much larger.16

On the other hand, forr @Dvx ,Dvt , i.e., far outside the
core, one can putu.p/2, which reduces the system~5! to
the 2D elliptic sine-Gordon equation,

“

2w5~1/2D2!sin 2w. ~8!

In the large rhombicity limitr@1 within a wide range of
r ~for D/Ar!r !D) the solutions~7! and ~8! can be re-

garded as coinciding, and the integrand inW̃ is proportional
to 1/r 2. Then, one may divide the integration domain in
two parts:r ,R and r .R, whereR is an arbitrary point in
betweenD/Ar and D. For r ,R the solution~7! may be

used, yielding15 W̃r ,R52p ln(zRAr/D) with the numerical
factor z.4.2. Forr .R, one can use a trial function whic
has correct asymptotic behavior and approximately satis
Eq. ~8!:

tanw5tanh@~x2Ar!/~Dvx
21D2!#/sinh~x1 /D!,

cosu5@cosh~x1 /Dvx!cosh~x2Ar/D!#21, ~9!

and evaluateW̃ numerically, which forr@1 ~in this case

Dvx5D/Ar) gives W̃r .R52p ln(z8D/R) with z8.0.525.
Summing up the two contributions, we obtain

W̃.2p ln~2.2Ar!, r@1. ~10!

In the weak rhombicity limitr!1 the trial function~9!,
with Dvx5D, can be used for the entire (x1 ,x2) plane, yield-
ing the result

W̃.8r1/2, r!1, ~11!

which coincides with one obtained earlier in the effecti
Lagrangian approach.3,17,4Thus, our approach works both i
weak and strong rhombicity limits, and can be used for va
tional calculation in the whole range ofr ~this study will be
reported elsewhere!. Only for extremely small rhombicities
r!4/(n'S)2, i.e., very close to the easy-axis regime, E
~11! breaks down; the low-energy spectrum coincides w
that of the free rotator, which yields the tunnel splittingG
;(\c/2Dn'S).17

Comparing the results for tunneling in the AF doma
wall with those for ferromagnets,4,5 one can see that for a
ferromagnetic DW the tunneling exponent contains an ad

tional large factorD/a; also, for ferromagnetW̃}Ar at large

r while for AF W̃(r) grows much slower.

IV. EFFECT OF MAGNETIC FIELD

Consider now the behavior of the imaginary part of t
Euclidean action when a weak external magnetic fieldH is
applied to the system~we ignore here the field-induced an
isotropy w̃a because its effect is rather trivial!. One can see
that the mixed product inQH8 significantly differs from zero
only in the vortex core, and thus for large rhombicityr@1
the isotropic vortex solution~7! may be used to estimate i
After integration we obtain



d
th
sy

,
e

he

r-

in

,

al
n

a

in
b

rk
er
fir

1,

tu-
ple
on-

,
in

ton

-
to

is
n

s

f
n
n-
s,
re-

s-

s,
was
ch-

PRB 58 11 517CHIRALITY TUNNELING IN MESOSCOPIC . . .
QH8 'pl~HX /Hc!, ~12!

whereHc5(4ZcS
2JK1)1/2/g denotes the magnitude of fiel

for which the field-induced anisotropy becomes equal to
easy-plane one,HX is the field component along the ea

axis,l5*0
`dj$ 1

2 sin 2u01j(du0 /dj)% is a numerical constant
l'3.83. This results in the following expression for th
phase factorF in Eq. ~6!:

F°FH5pn'S@11~lHX/2Hc!#. ~13!

Thus the tunneling amplitude oscillates as a function of t
field with the orientation-dependent period

dH5~2Hc /n'Sl!. ~14!

This period can be rather small: assumingS5 5
2 and a typical

Hc;100 kOe, one gets dH;2 kOe–20 Oe for n'

510–103. A similar oscillating behavior was predicted ea
lier for tunneling in small ferromagnetic18 and
antiferromagnetic19,20 particles, with the difference that in
the AF case instead of the fieldHc}AJK1 in Eq. ~14! a
much stronger exchange fieldHe}J would be present; thus
the period of oscillations is much smaller in DW’s than
fine particles.For half-integerS magnetic field lifts the de-
generacy of two odd-n' DW states with opposite chirality
allowing tunneling between them.

Another consequence of the above result is that for h
integerS in the presence of the field there are two differe
values of the tunnel splitting for even and oddn' , which
means that in any mesoscopic sample with weakly fluctu
ing cross section there should betwo different resonance
peaks which exchange their positions in a quickly oscillat
manner when the field increases, with the period given
Eq. (14!; this beautifulexperimentally observableeffect was
overlooked in previous studies. It is worthwhile to rema
that the same effect should be also present in half-integS
AF nanoparticles with uncompensated spins considered
by Loss and co-workers14 and also studied later in Refs. 2
provided that there is some weak interaction~magnetic field
ter
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or the Dzyaloshinskii-Moriya interaction22! contributing to
the phase factorF and shifting it from a multiple ofp/2.

We would like to finish with a word of caution: in the
presence of field the problem of chirality tunneling is ac
ally more complicated then one can guess from the sim
arguments presented above. The point is that the field c
tribution QH8 , unlike Q, is not a total derivative and thus
yields animaginaryperturbation to the equations of motion
causing nontrivial changes in the instanton structure and
the spectrum of fluctuations in the presence of the instan
which eventually contributes to the phaseF.20 However,
using the perturbation theory inH, one can show that cor
rections from the change of instanton structure contribute

W̃ as (H/Hc)
2 and toF asn'(H/Hc)

3. Indeed, the Euclid-
ean action has the formA E

(H)@ l#5A E
(0)@ l#1 i (H•F@ l#), so

that the instanton solution in the presence of the field
l inst(H)5 l inst(0)1D l, where the real part of the correctio
D l contains onlyevenpowers ofh[H/Hc , while ImD l con-
tains onlyoddpowers ofh ~one can show thatHc is the only
scale arising in the problem23!. Thus, the instanton action i
A E

(H)@ l inst(H)#5A E
(H)@ l inst(0)#1DAE , where DAE5 iH

•(dF/d l i)D l i1(d2A E
(H)/d l id l j )D l iD l j1 . . . , and thelead-

ing terms in ReDAE and in ImDAE are of the second and o
the third order inh, respectively. There is also a contributio
to F from the fluctuation determinant which does not co
tain n' ~cf. Ref. 20!. One can see that all those correction
though quantitatively important, cannot change our main
sult ~14! for the period of oscillations, as far asn'@1 ~in
practicen'*10 is sufficient!.

ACKNOWLEDGMENTS

This work was supported in part by the Ukrainian Mini
try of Science~Grant No. 2.4/27! and was finished during the
stay of B.I. at Hannover Institute for Theoretical Physic
supported by Deutsche Forschungsgemeinschaft. A.K.
supported by the German Ministry for Research and Te
nology ~BMBF! under Contract No. 03MI4HAN8.
ary

-
ri-
-

li-

s.

lar
1See for a review,Quantum Tunneling of Magnetization,edited by
L. Gunther and B. Barbara, Vol. 301 ofNATO ASI Series E
~Kluwer, Dordrecht, 1995!.

2D. Gatteschi, A. Caneschi, L. Pardi, and R. Sessoli, Science265,
1054 ~1994!.

3B. A. Ivanov and A. K. Kolezhuk, JETP Lett.60, 805 ~1994!; E.
G. Galkina and B. A. Ivanov,ibid. 61, 511 ~1995!.

4H.-B. Braun and D. Loss, Phys. Rev. B53, 3237 ~1996!; Int. J.
Mod. Phys. B10, 219 ~1996!.

5S. Takagi and G. Tatara, Phys. Rev. B54, 9920~1996!.
6B. Barbara and E. M. Chudnovsky, Phys. Lett. A145, 205

~1990!; I. Krive and O. B. Zaslavskii, J. Phys.: Condens. Mat
2, 9457~1990!.

7E. Fradkin,Field Theories of Condensed Matter Systems, Vol. 82
of Frontiers in Physics~Addison-Wesley, Reading, MA, 1991!.

8M. V. Berry, Proc. R. Soc. London, Ser. A232, 45 ~1984!.
9I. Affleck, J. Phys.: Condens. Matter1, 3047~1989!.

10In ferromagnet cosu andw are conjugate variables; thus the equ
 -

tions of motion contain first-order time derivatives, andu,w in
the instanton solution become complex, with real and imagin
parts being of the same order of magnitude.

11V. G. Bar’yakhtar, M. V. Chetkin, B. A. Ivanov, and S. N. Ga
detskii, in Dynamics of Topological Magnetic Solitons. Expe
ment and Theory,Vol. 129 of Springer Tracts in Modern Phys
ics ~Springer-Verlag, Berlin, 1994!.

12B.A. Ivanov and A.K. Kolezhuk, Phys. Rev. B56, 8886~1997!.
13R. Rajaraman,Solitons and Instantons: An Introduction to So

tons and Instantons in Quantum Field Theory~North-Holland,
Amsterdam, 1982!.

14D. Loss, D. P. DiVincenzo, and G. Grinstein, Phys. Rev. Lett.69,
3232 ~1992!; J. von Delft and C. L. Henley,ibid. 69, 3236
~1992!.

15A. M. Kosevich, V. P. Voronov, and I. V. Manzhos, Sov. Phy
JETP57, 86 ~1983!.

16It is most convenient to see that with a different choice of angu
variables, l X5cosQ, l Y1 i l Z5sinQ cosF, the characteristic



.

t.

11 518 PRB 58B. A. IVANOV, A. K. KOLEZHUK, AND V. E. KIREEV
scale ofF variation D/Ar is much larger than the scale ofQ
variation which is justD.

17B. A. Ivanov and A. K. Kolezhuk, JETP83, 1202~1996!; Phys.
Rev. Lett.74, 1859~1995!.

18E. N. Bogachek and I. V. Krive, Phys. Rev. B46, 14 559~1992!.
19V. Yu. Golyshev and A. F. Popkov, Europhys. Lett.29, 327

~1995!.
20A. Chiolero and D. Loss, Phys. Rev. Lett.80, 169 ~1998!.
21E. M. Chudnovsky, J. Magn. Magn. Mater.140-144, 1821
~1995!; J. M. Duan and A. Garg, J. Phys.: Condens. Matter7,
2171 ~1995!; A. Chiolero and D. Loss, Phys. Rev. B56, 738
~1997!.

22B. A. Ivanov and A. K. Kolezhuk, inFrontiers in Magnetism of
Reduced Dimension Systems, edited by V. G. Bar’yakhtar, P. E
Wigen, and N. A. Lesnik, Vol. 49 ofNATO ASI Series 3. High
Technology~Kluwer, Dordrecht, 1998!, p. 279.

23B. A. Ivanov, A. K. Kolezhuk, and G. K. Oksyuk, Europhys. Let
14, 151 ~1991!.


