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Chirality tunneling in mesoscopic antiferromagnetic domain walls
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We consider a domain wall in the mesoscopic quasi-one-dimensional s&wipdeor stripg of weakly
anisotropic two-sublattice antiferromagnet, and estimate the probability of tunneling between two domain wall
states with different chirality, in the limits of weak and strong rhombicity. Topological effects forbid tunneling
for the systems with half-integer spiof magnetic atoms which consist of an odd number of chains
External magnetic field yields an additional contribution to the Berry phase, resulting in oscillating field
dependence of the tunneling rate with the period proportiona,%/m , whereJ andK are exchange and
anisotropy constants, respectively, and in the appearanweodifferent tunnel splittings in any setup involv-
ing a mixture of odd and evem, . [S0163-182@8)06242-0

. INTRODUCTION the field with the periodsH«=\JK/n, , whereJ andK are,
respectively, the exchange and anisotropy constants.
In recent years, there has been much interest in the prob-
lem of quantum spin coherence in mesoscopic magnetic sys-
tems, mainly in nanoparticlésand high-spin molecular
clusters> Another possible way, proposed in Refs. 3and 4,is Consider a thin quasi-one-dimensional stripe of two-
to usetopologically nontrivialmagnetic structures: domain sublattice weakly anisotropic antiferromagnet, which we for
walls in quasi-one-dimensionélD) systemgwires, stripe the sake of simplicity treat as a systemmf AF chains of
vortices in 2D systems, etc. Such objects have mesoscopgpin-S magnetic atoms, coupled with the same exchange
scale, e.g., in materials with magnetic ionsdrstates the constantJ>0 for any neighboring spins. We assume that
domain wall thickness is usually about 100 lattice constantgnagnetic atoms form a perfect crystal structure on a bipartite
and since their shape is determined by the material constanigttice, as shown in Fig. 1; note that can be odd or even
they are to a high extent identical. without introducing any frustration. We assume a rhombic
Classically, magnetic domain wallDW) has certain anisotropy of the form
“chirality,” an internal degree of freedom characterizing the
way of rotation of magnetization inside a DW. Two states
with opposite chirality are equivalent in energye will not
consider magnets without inversion center where this is not ¥
true). In the quantum case there is generally a nonzero tran-
sition amplitude mixing the two states and lifting the | # | # | #
y d
4

1. MODEL

(a)

degeneracy;® under favorable circumstances this tunnel
splitting can be detected with a resonant technique of some) a4
kind. In antiferromagnet$AF) tunneling is more favorable 7| x
than in ferromagnets, both in the case of fine partfcirs
domain walls*

In this paper we show that in the simplest model of me- B ~_ 4 g
soscopic AF with half-integer spi8 of magnetic ions topo- R o
logical effects forbid chirality tunneling for a DW with an (b)
odd numben, of spins in its cross section. We further show
that in the presence of even weak external magnetic field this D e < T
strict “selection rule” is relaxed, which leads to the appear-
ance of two different values of tunnel splitting in any half-  F|G. 1. (a) a schematic picture of the cross section of antiferro-
integerS sample with weakly fluctuating, . For anyS the  magnetic mesoscopic stripéy) two domain walls with opposite
tunneling amplitude is shown to be an oscillating function ofchiralities.
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wa= 20 [Ky(S1)7+Ko(§)7], (1)
wherei labels lattice sites an&,,<J are the anisotropy
constantsK ;>K,>0, so thatZ is the hard axis an¥ is the
easy axis in the easy planey.

Due to the quasi-1D structure, one can assume that the <—
sublattice magnetization depends only on the space coordi-

natex along the wire(note thatX andx axes do not need to
coincide. Using the standard technig@i@ne can obtain the

effective Euclidean action of AF in continuum approxima-

tion, which has the form of a well-know®(3) nonlinears
model

1
Ag=7 N ASW+i2mn, Sh(Q+QYy), 2)

vv[l]=f dzx[ (3)(31)+ é[(ﬂp)léﬂé]w‘va :

1
Q= EJ A2+ (11X 75)),

r__ Y 2 X
QH——47TCfd XH - (IX ,l).

Herel is the unit Nel vector, &, ,X,) = (x,c7) is the Euclid-
ean plane,c=JSaZ/# is the limiting velocity of spin
waves,Z. is the lattice coordination numbea,is the lattice
constant, A=a(JZ/4K,)Y?>>a is the characteristic DW
thickness, p=K;/K,—1 is the rhombicity parametery

=gug/h is the gyromagnetic ratiog denotes the Lande

factor, andug is the Bohr magneton. The quantity,(l)
=(vylc)?(H-1)? describes effective renormalization of the
anisotropy induced by the field. In E), the term propor-
tional to Q is the so-called topological term originating from
the sum of Berry phaskof individual spins,Q being the
homotopical(Pontryagin index of mapping of the X;,x,)
plane onto the spheté=1, andQ/, is the contribution from
magnetic field.

A static DW solutionly(x) corresponds to the rotation of
vectorl in the easy plan&XY:

lox=o'tanh(x/A),

IOY:U'/COSKX/A), IOZZO, (3)

where o,0'=*1. The quantitys’ is the “topological
charge” of the DW, and the chiralityg- determines the sign
of | projection onto the “intermediate” axi¥. Two states
with o= *1 are equivalent in energy; changemflescribes
reorientation of the macroscopic number of spiNg
~A/a>1, typically Npy~ 70—100.

lll. CHIRALITY TUNNELING IN ABSENCE
OF MAGNETIC FIELD

Let us consider first the cade¢=0. Tunneling between
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FIG. 2. The structure of instanton connecting two DW states
with opposite chiralities. Arrows denote projections of vedton
the easy plane; on the thin solid line vectoforms an angle of
about 45° with the easy axis.

following asymptotic behavior:

ly—=*0o', Xxo>*xw, |ly—>Fo, x=0, 7>+,

4)

note the appearance of another topological charget 1.
Along any closed path in the Euclidean plane going around
(but far from the instanton center vectdrrotates by the
angle 27v in the easy planXY, wherev=coo' =+ 1. Thus,

the instanton configuration has the properties ofoatof-
plane magnetic vortefi.e., with1,#0 in the centerand is
characterized by two topological chargesorticity » and
polarizationp. The instanton solution satisfies the equations

l;—p==*=1, x—0, 7—0,

V26+sin6 coso[(p+coSe)/A%—(V ¢)?]=0,

V- (sif8V ¢) — (1/A?)sirf 6 sing cose=0, (5)

where we have introduced angular variables Igs-ily
=sin6e*?, 1,=cosh, andV=(4,,d,) denotes the Euclidean
gradient.

We are not able to find the exact solution of E(®, but
the tunneling amplitude can be estimated from approximate
arguments. One can observe that, in contrast to the same
problem for ferromagnéf Egs. (5), as well as their solu-
tions, arereal. Thus in the absence of magnetic field the real
part of Ag is given byn, SW4, and the imaginary part is
determined solely by the topological termote thatQ is a
total derivative and does not contribute to the equations of
motion). Then constructing the instanton solution can be
viewed as minimization oV, it should be remarked thav/

the DW states with opposite chiralities can be studied usindgormally coincides with the energy of a vertical Bloch line in
the instanton formalism. Since the tunneling here occurs bea 2D DW, which is rather well studiet.

tween twoinhomogeneoustates, the corresponding instan-

tons are non-one-dimensior(@pace and time The structure
of instanton solutior;,s(X,7) is shown in Fig. 2; it has the

Another observation is that in AF in the absence of mag-
netic field the translational DW motion in real space and its
internal degree of freedoffchirality) are uncoupled, in con-
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trast to ferromagnet§for H#0 this coupling appears but €asy-axis” casep<1 the core is strongly asymmetric: its
becomes important only in strong fieldsH~H, spatial sizeA,=A, but the imaginary time sized,,

= (4Z.S2IK,) Y% .12 Thus for weak fields one can consider =A/+\p is much larger®

the tunneling assuming a fixed position of the DW in the real On the other hand, for>A ,,A,,, i.e., far outside the
space. For uniform boundary conditions at infinity the quan-core, one can puf= /2, which reduces the syste(B) to
tity Q determining ImAg can take only integer values, but in the 2D elliptic sine-Gordon equation,

our caseQ=—pv/2==*3 is half-integer, which is typical 5 o .

for out-of-plane vortices. For the giveno' there are two VZp=(1/2A%)sin 2¢. ®)
instanton solutions with the same vorticity and opposite e - .
polarizationsp which equally contribute to Rdg but have ;n trf/?—rf sztf['ﬁ'ty “T"I’.Dl ;N'thmdaSW'de ragge of
different signs of Im4g. Using the standard instanton ' (for A/\p = ') e solu '9”5( ) an~'(. ) can e re-
technique’® one obtains for the tunnel splitting garded as coinciding, and the integrandfhis proportional

to 1/2. Then, one may divide the integration domain into
two parts:r<R andr>R, whereR is an arbitrary point in

betweenA/\/E and A. For r<R the solution(7) may be

WhereW:W[lmst(X,T)]_W[lo(x)] is the difference of the Used, y|e|d|né5 \7Vr<R:2’7T|n(§R\/[—)/A) with the numerical
factor {=4.2. Forr>R, one can use a trial function which

real part of Euclidean action calculated on the instanton soh i behavi d ; I isfi
lution and on a static DW without instantan, = (c/A) Vp is as correct asymptotic behavior and approximately satisfies

the frequency of the out-of-plane magnon localized at thézq' (8):

DW (“attempt frequency’), the square root in the preexpo- _ — 1A\ e

nent comes from the zero mode of the istanton motion along tane tanl[(xz\/E)/(Aux ADYsinhx, /4),
the imaginary time axigrecall that the position in real space _ 1
is fixed), C is a numerical constant accumulating the effect of c0s6=[coshXy/A,x)costixz\p/A)] ©)

fluctuations around the instantqiexcept the zero modie  gnq evaluatev numerically, which forp>1 (in this case
and, finally,® is the phase determined by tpedependent . . ~ , . L

part of ImAg . In the simplest model witld=0 considered éa’;{rﬁ{]‘/’? gt]rl1vee?w\(/)vrc>o$1;ri2b75tlirc])(r1§sA\//\|?e) ovl\:l)ltt:ing =0.525.
so far® = 7n, S due to the presense of the topological term, g up '
and thusthe tunneling amplitude vanishes when S is half- s s
integer and n is odd,the effect which was missed in Ref. 4 W=2m In(2.2\/5), p>1. (10
as well as in our earlier workThus the tunneling is forbid- In the weak rhombicity limito<1 the trial function(9)

den for roughly one-half of DW's in half-intege® AF, i A=A can be used for the entire{,x,) plane, yield-
somewhat similarly to the case of half-integg@manopar- ing the result

ticles with uncompensated total sgthin the present case,
however, the effect is more subtle: we consider the system W=8pl2 <1, (11)
consisting of arevennumber of spins, and the total spin is
not necessarily half-integer whedis half-integer; thus the which coincides with one obtained earlier in the effective
effect cannot be explained on the basis of the Kramers thed-agrangian approach:"“Thus, our approach works both in
rem without using additional assumptioiis.g., one may weak and strong rhombicity limits, and can be used for varia-
speculat®’ that a domain wall in the spiB-chain has an tional calculation in the whole range pf(this study will be
“internal” spin which is justS). reported elsewhefeOnly for extremely small rhombicities
Below we will see that in presence of magnetic field thep<4/(n, S)?, i.e., very close to the easy-axis regime, Eq.
situation is different: both integer and half-integer con-  (11) breaks down; the low-energy spectrum coincides with
tribute, but with different tunneling rates. To calculate thethat of the free rotator, which yields the tunnel splittiig

o~ 17
real part of the Euclidean actio¥, one can observe that the ~(hc/2An, §).

problem has three different length scales: the DW thickness Comparing the results for tunneling in the AF domain
A, the vortex core size in spatial directiak,,, and the wall with those for ferromagnets> one can see that for a

characteristic size of the core in the imaginary time directiorf€fromagnetic DW the tunneling exponent contains an addi-
A, .. For strong easy-plane-type anisotrop; 1, the vortex  tional large factorA/a; also, for ferromagnetve Jp at large

core is nearly axially symmetric: up to distanaesA the  , while for AF W(p) grows much slower.
anisotropy in the easy plane can be neglected, and the solu-

I'=Chay(n, WS/4)Y2%e " WS4 cosd|, 6)

tion in the core reduces to the weII—kn.own case of a usual IV. EFEECT OF MAGNETIC EIELD
vortex in an easy-plane magrét,with 6= 6,(£), ¢
=vy, v==1, Consider now the behavior of the imaginary part of the
Euclidean action when a weak external magnetic fielis
d20,/dE2+ (1— v2/ £2)sin Bycos,=0. (7)  applied to the systerfwe ignore here the field-induced an-

isotropyw, because its effect is rather trivialOne can see
Here (r,x) are the polar coordinates irx{,x;) plane,r  that the mixed product i}, significantly differs from zero
=(X2+x3)Y2 x=arctanky/x), and é=r\p/A. ThusA,,  only in the vortex core, and thus for large rhombicits> 1
=A,,= Al\Jp<A, i.e., the core is isotropic and much the isotropic vortex solutiofi7) may be used to estimate it.
smaller than the DW thickness. In the opposite “almostAfter integration we obtain
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QL~pA(Hy/H,), (120  or the Dzyaloshinskii-Moriya interactidf) contributing to
5 2 ] _ the phase facto® and shifting it from a multiple ofr/2.
whereH = (4Z.S"JK,) "y denotes the magnitude of field e would like to finish with a word of caution: in the

for which the field-induced anisotropy becomes equal to thgyresence of field the problem of chirality tunneling is actu-
easy-plane onefiy is the field component along the easy a)ly more complicated then one can guess from the simple
axis, \ = [5dé&] 3sin 20,+ &dh,/dé)} is a numerical constant, arguments presented above. The point is that the field con-
A~3.83. This results in the following expression for the tribution Q/,, unlike Q, is not a total derivative and thus

phase factorb in Eq. (6): yields animaginary perturbation to the equations of motion,
causing nontrivial changes in the instanton structure and in
P—>Py=7n, 1+ (AHx/2H)]. (13 the spectrum of fluctuations in the presence of the instanton
. . : . ; i 20
Thusthe tunneling amplitude oscillates as a function of thewhich eventually contributes to the phade® However,
field with the orientation-dependent period using the perturbation theory iH, one can show that cor-
rections from the change of instanton structure contribute to
SH=(2H¢/n, S\). (14 Was H/H.)? and tod asn, (H/H.)3. Indeed, the Euclid-

This period can be rather small: assumBig$ and a typical ~ €an action has the formt {[1]1=AL[I]+i(H-F[I]), so
H.~100 kOe, one getsSH~2 kOe—200e for n, that the instanton solution in the presence of the field is

=10-16. A similar oscillating behavior was predicted ear- lins{H) =lins{(0) + Al, where the real part of the correction
lier for tunneling in small ferromagnefit and Al contains onlyevenpowers ofh=H/H., while InAl con-
antiferromagneti®?° particles, with the difference that in tains onlyodd powers ofh (one can show thdd is the only
the AF case instead of the field.x\JK; in Eq. (14) a scale arising in the problef¥. Thus, the instanton action is
much stronger exchange fiekl,<J would be present; thus A& [lins(H) 1= A& [1105(0)]+AAe,  where AAg=iH
the period of oscillations is much smaller in DW's than in - (8F/8l) Al +(82A 81,61 )ALL AL+ . .., and thelead-
fine particles.For half-integerS magnetic field lifts the de- ing terms in R\ Ag and in ImA Ag are of the second and of
generacy of two oddy, DW states with opposite chirality, the third order irh, respectively. There is also a contribution
allowing tunneling between them. to ® from the fluctuation determinant which does not con-
Another consequence of the above result is that for halftain n, (cf. Ref. 20. One can see that all those corrections,
integerSin the presence of the field there are two differentthough quantitatively important, cannot change our main re-
values of the tunnel splitting for even and odd, which  sult (14) for the period of oscillations, as far aa, >1 (in
means that in any mesoscopic sample with weakly fluctuatpracticen, =10 is sufficient.
ing cross section there should be&o different resonance
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