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Thermodynamics of the two-dimensional Heisenberg classical honeycomb lattice
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In this article we adapt a previous work concerning the two-dimensional~2D! Heisenberg classical square
lattice @Physica B245, 263 ~1998!# to the case of a honeycomb lattice. Closed-form expressions of the main
thermodynamic functions of interest are derived in the zero-field limit. Notably, near absolute zero~i.e., the
critical temperature!, we derive the values of the critical exponentsa50, h521, g53, andn51, as for the
square lattice, thus proving their universal character. A very simple model allows one to give a good descrip-
tion of the low-temperature behaviors of the productxT. For a 2D-compensated antiferromagnet, we derive
simple relations between the characteristics of the maximum of the susceptibility curveT(xmax) andxmax and
the involved exchange energies. Therefore, owing to the knowledge ofT(xmax) and xmax, one can directly
obtain the respective values of these energies. Finally, we show that the theoretical model allows one to fit
correctly experimental susceptibility data of the recently synthetized compound Mn2~bpm!~ox!2•6H2O charac-
terized by a 2D classical honeycomb lattice~where ‘‘bpm’’ and ‘‘ox’’ are the abbreviations for the ligands
bipyrimidine and oxalate, respectively!. @S0163-1829~98!04434-8#
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I. INTRODUCTION

For three decades low-dimensional~low-d! physics has
known important advances and, more particularly, the s
branch of low-d magnetism.1 The reasons for such a stron
interest have multiple origins. In a first step, a lot of theor
ical works have been published for interpreting the static
dynamic properties of one-dimensional~1D! and two-
dimensional~2D! magnetic materials and, more general
the critical phenomena appearing in such systems. The m
mum effort was attained in the 1970s, but this level h
remained about constant since then, notably due to the re
progresses in molecular chemistry with respect to the syn
sis of new 1D and 2D compounds. In a second step, from
middle of the 1980s, the discovery of layered copper ox
compounds showing a high-Tc superconductivity as well as
2D antiferromagnetic behavior has still accentuated the
tial interest.2

The prototype of 2D lattices is the well-known K2NiF4
compound.3 Let us recall that its structure can be conside
as being derived from the cubic~perovskite! KNiF3 structure
by the addition of an extra layer of KF between the Ni2
sheets so that, by this simple fact, a 3D antiferromagn
lattice is transformed into a magnetic layer structure cha
terized by a square unit cell. Of course, a lot of compou
showing a different unit cell structure have been syntheti
and studied.1 In particular, among these specimens, MnTi3
has been early investigated.4 This compound is characterize
by an ilmenite structure in which the Mn21 and Ti41 ions
occupy alternated hexagonal layers and Mn21 layers are
separated from each other by two oxygene and one T41

sheets. From a magnetic point of view, it has been sho
that the Mn21 spins are directed antiparallel~in the ground
PRB 580163-1829/98/58~17!/11465~19!/$15.00
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state! within each layer perpendicular to the hexagonac
axis.5 Magnetic susceptibility measured by Akimitsuet al.6

on a single crystal as well as that on a powder sample
Stickleret al.7 shows no anomaly at the Ne´el temperatureTN
determined from neutron diffraction measurement6 and a 2D
Heisenberg antiferromagnetic behavior aboveTN . Unfortu-
nately, more recently, Yamauchiet al.8 have pointed out tha
this behavior is strongly perturbated by the presence of m
netic dipole interactions between the Mn21 ions, thus leading
in fact to a global magnetic anisotropy. The aim of t
present article is to examine a new class of 2D honeyco
lattices in which organic ligands are inserted between
magnetic ions so that, by distancing them, it allows to con
a highly 2D magnetic behavior.

In recent works it has been shown how the polymerizat
through bis-chelating ligands such as 2,28-bipyrimidine
~bpm! and oxalate~ox! using suitable precursors as buildin
blocks provides a new strategy to design novel honeyco
layered materials.9,10 For example compounds of formul
@M2~bpm!~ox!2#•nH2O, with M5Mn~II ! (n56) and Cu~II !
(n55) exhibiting local spins of associated quantum numb
5/2 and 1/2, respectively, show magnetic isolated sheet
structures~the shortest interlayer metal-metal separation
ing larger than 6.5 Å! in which the spin carriers are bridge
by bis-chelating bpm and ox groups forming ring-shap
hexamers~Fig. 1!. Given that both bpm and ox have a r
markable efficiency to mediate a relatively strong antifer
magnetic coupling between metal ions separated by m
than 5 Å,10–14 alternating antiferromagnetic interactions a
expected to occur in these compounds. In addition, due to
presence of the magnetic ions Mn~II ! and Cu~II !, one may
expect that the magnetic behaviors of these alternating m
netic planes will be correctly described by that of an alt
11 465 ©1998 The American Physical Society
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nating magnetic honeycomb-layered lattice through a
Heisenberg model. More particularly, if the lattice is com
posed of ions Mn~II !, the associated spin moments can
assimilated to classical ones and the formalism used v
recently for a classical square lattice can be emplo
through an adequate adaptation.15,16

In the first version of this theoretical work,15 each host
site among the (2N11)2 sites~i,j! of the square lattice car
ries a classical spin moment and the isotropic exchange
plings between nearest neighbors are characterized by
associated exchange energiesJ1 and J2 for the horizontal
and vertical lines, respectively. More recently, a compl
study has detailed the case of finite or infinite Heisenb
classical square lattices characterized by two types of
change energies per line and row.16 In a first part,16~a! the
closed-form expression of the zero-field partition function
the thermodynamic limit has been rigorously establish
Moreover, it has been shown that absolute zero plays
important role of critical temperature so that the critical d
main is quasi-infinite. In other words, for nonzero tempe
tures, there is no long-range order and the quantum fluc
tions play a major role, thus favoring the short-range ord
at T50 K, rigorously, a stable long-range order appears
to the fact that quantum fluctuations become negligible. I
second part,16~b! the specific heat, the spin-spin correlation
the static susceptibility as well as the correlation length
an infinite lattice have been derived. Notably, owing to t
low-temperature study of their respective closed-form
pressions, it has allowed one to calculate the value of
critical exponents, i.e.,a50, h521, g53, andn51. In the
present article, by transforming the square unit cell into
hexagonal one, we are going to show that it is possible
adapt the previous theoretical results to the case of a ho
comb lattice; in particular, that will permit one to derive th
same analytical values fora, h, g, and n, thus confirming
their universal character whatever the unit cell structu
More particularly, we shall recall that the resultn51 allows
one to underline the major role played by the quantum fl
tuations in the critical domain.

Thus, in the present work, we shall mainly focus on t

FIG. 1. Crystal structure of complexM2~bpm!~ox!2•6H2O: view
of a sheet perpendicular to thexy plane~hydrogen atoms and wate
molecules have been omitted for clarity!.
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behavior of the static susceptibilityx for three fundamenta
reasons.~i! The low-temperature study ofx gives a good
idea of the mechanisms which are involved in the constr
tion of the 2D arrangement; notably, we shall show tha
very simple model can allow one to describe the vario
behaviors of the productxT. ~ii ! For 2D-compensated anti
ferromagnets, we shall point out that, from the study of
characteristic maximum of the susceptibility curve, one c
directly derive the respective values of the involved e
change energies.~iii ! The possibility of interpreting experi
mental susceptibility data obtained on 2D Heisenberg cla
cal honeycomb lattices recently synthetized9,10 offers a very
important opportunity for testing the validity of the theore
ical model. In particular, we shall focus on the compou
Mn2~bpm!~ox!2•6H2O where the involved quantum spin
(S55/2) are assimilated to classical ones. Therefore, un
these conditions and owing to the preceding remarks c
cerning the deep nature of the involved exchange coupli
in such materials, we shall show that it allows one to
correctly the experimental susceptibility curves in a wi
range of temperature.

II. THEORETICAL MODEL

A. General considerations

The previous theoretical works concerning 2D Heisenb
classical square lattices15,16 can be easily extended to th
case where each horizontal line~respectively, vertical row! is
described by a sequence of alternating exchange energieJ0

andJ08 ~respectively,J andJ1), with one of the four energies
J0 , J08 , J, or J1 showing a vanishing value. Then, und
these conditions, the lattice is composed of hexagonal
cells @see Figs. 2~a! and 2~b!#. Therefore, if each moment i
submitted to an external magnetic fieldB applied along thez
axis of quantization, the corresponding Hamiltonian may
written in the most general case:

H5 (
i 52N

N21

(
j 52N

N21

Hi , j
ex1 (

i 52N

N

(
j 52N

N

Hi , j
mag, ~1!

with

Hi , j
ex5@J08Si , j 211J0Si , j 111JSi 11,j1J1Si 21,j #•Si , j ,

Hi , j
mag52Gi , jSi , j

z B, ~2!

where

Gi , j5G if i 1 j even, Gi , j5G8 if i 1 j odd. ~3!

Si , j
z is the z component of the classical vector operatorSi , j

associated with the site labeled~i,j! ~the spin quantum num
ber Si , j is large enough for@Si , j

x ,Si , j
y # to be negligible com-

pared toSi , j
x Si , j

y , the classical spin approximation!. G andG8
are the associated Lande´ factors and characterize the ma
netic ions of the unit cell. In addition, in our writing,J.0
denotes an antiferromagnetic coupling.

The partition functionZN(B) of the spin lattice may be
directly written as
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FIG. 2. ~a! Structure of a 2D lattice composed of classical spins and characterized by a square unit cell and~b! transformation of the
square unit cell into a hexagonal one~honeycomb lattice!.
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ZN~B!5E dS2N,2N¯E dSi , j¯E dSN,N

3expS 2bF (
i 52N

N21

(
j 52N

N21

~Hi , j
ex1Hi , j

mag!1HN,N
magG D ,

~4!

whereb51/kBT is the Boltzmann factor~not to be confused
with the critical exponentbc). At this step it must be noticed
that the calculation of the field-dependent partition funct
ZN(B) is plainly more complicated because of the prese
of the further termHi , j

mag in the exponential argument, fo
each site~i,j!. This aspect will not be examined in the prese
article.

B. Evaluation of the zero-field partition function
of an infinite honeycomb lattice

If we consider Eq.~4! in the zero-field limit, the Hamil-
tonian involved in the exponential argument is thus redu
to the exchange oneHi , j

ex ; because of the presence of clas
cal spin moments, all the operatorsHi , j

ex commute and we
have

expS 2b (
i 52N

N21

(
j 52N

N21

Hi , j
exD 5 )

i 52N

N21

)
j 52N

N21

exp~2bHi , j
ex!.

~5!

Moreover, the particular nature ofHi , j
ex allows one to separat

the contributions corresponding to the exchange coupling
e

t

d
-

-

volving classical spins belonging to a same linei of the layer
~i.e., Si , j 21 , Si , j 11 , and Si , j ) or to a same rowj ~i.e.,
Si 21,j , Si 11,j , andSi , j ). In fact, for each of the four contri-
butions ~one per bond connected to spinSi , j ), we have to
expand a factor such as exp(2AS1•S2) where A is
bJ08 , bJ0 , bJ, or bJ1 (S1 and S2 are considered as un
vectors!. If we call Q1,2 the angle between vectorsS1 and
S2 , respectively, characterized by the couples of angu
variables (u1 ,f1) and (u2 ,f2), it is possible to expand
exp(2A cosQ1,2) on the infinite basis of spherical harmon
ics:

exp~2A cosQ1,2!54p(
l 50

1` S p

2AD 1/2

I l 11/2~2A!

3 (
m52 l

1 l

Yl ,m* ~S1!Yl ,m~S2!, ~6!

where theI l 11/2(2A)’s are modified Bessel functions of th
first kind and whereS1 and S2 symbolically represent the
couples (u1 ,f1) and (u2 ,f2). Let l l be the radial factor
@note that if j is the corresponding exchange energ
l l(2b j ) is the modified Bessel function of the first kind
I l 11/2(2b j ) multiplied by the factor (p/2b j )1/2]. Subse-
quently, one can note that each local operator exp(2bHi,j

ex) is
finally expanded on a basis of eigenfunctions~the spherical
harmonics!, whereas thel l ’s are nothing more than the as
sociated eigenvalues. Under these conditions and for the
eral lattice described by Fig. 2~a!, the zero-field partition
function ZN(0) directly appears as a characteristic polyn
mial and may be written as
ZN~0!5~4p!4N~2N11! (
l N,2N

l l N,2N
~2bJ0! (

l N,2N8
l l

N,2N8 ~2bJ!3¯3 (
l 2N,N21

l l 2N,N21
~2bJ08!

3•••3 (
mN,2N52 l N,2N

1 l N,2N

(
mN,2N8 52 l N,2N8

1 l N,2N8

3•••3 (
m2N,N2152 l 2N,N21

1 l 2N,N21

)
k152N

N

)
k252N

N E dSk1 ,k2
Yl

k111,k2
8 ,m

k111,k2
8 ~Sk1 ,k2

!

3Yl k1 ,k221 ,mk1 ,k221
~Sk1 ,k2

!Yl k1 ,k2
,mk1 ,k2

* ~Sk1 ,k2
!Yl

k1 ,k2
8 ,m

k1 ,k2
8

* ~Sk1 ,k2
!. ~7!
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FIG. 3. ~a! Description of the lattice sites and~b! and ~c! examples of correlation paths for a honeycomb lattice composed of clas
spins isotropically coupled.
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Therefore, in a second step, a global work of integrat
must be achieved over all the angular variables characte
ing all the states of the classical spins belonging to the wh
lattice. Thus, by expanding all thel summations in Eq.~7!,
ZN(0) can be considered as al l-polynomial expansion in
which each term is composed of a product of radial fact
l l and angular onesFK,K8 characterizing each lattice sit
(K,K8) whereFK,K8 is the current integral. Note that, in th
formal writing of Eq.~7!, the number of spherical harmonic
represents the total number of bonds characterizing each
In other words, for the honeycomb lattice, one or two sph
cal harmonics must be replaced by unity according
whether the corresponding site (K,K8) has three or two
bonds with its nearest neighbors~in-site or edge site!. Con-
sequently, from now, we take into account the hexago
character of the unit cell by assumingJ15J andJ0850 @see
Figs. 2~a! and 2~b!#.

For expressing the beginning of the characteristic poly
mial given by Eq.~7!, we use a numerical argument whic
has been previously employed for the classical squ
lattice:15,16~a! For nonzero temperatures and for a same ar
mentbu j u, the functionsl l(bu j u) defined above rapidly de
crease whenl increases. Consequently, this is the radial f
tor involving the product of functionsl l which is
preponderant and allows a classification of each term in
l l-polynomial expansion ofZN(0). Theangular factor com-
posed of a product of integralsFK,K8 only intervenes in this
expansion by the bias of a numerical coefficient which d
not play a major role. Therefore, in this framework, when t
total radial factor is known for each term of the characteris
polynomial, i.e., when the current integersl K,K8 and l K,K8

8
have been chosen for the whole lattice, the global integra
process concerning all the imbricated integralsFK,K8 leads to
the determination of integersmK,K8 andmK,K8

8 which exclu-
n
iz-
le

rs
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i-
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sively characterize the angular factor.
Due to the fact that the construction of the polynom

structure ofZN(0) is quite analogous to that one previous
detailed for the 2D Heisenberg classical square lattice,15,16~a!

we have recalled it in a separate appendix. More particula
we briefly show that, for a finite honeycomb lattice, the ze
field partition functionZN(0) does not have a unique expre
sion so that the analytical problem is unsolvable. Howev
from a physical point of view, the most interesting situati
occurs when the lattice becomes infinite, i.e., in the therm
dynamic limit. Therefore, using the numerical argument c
cerning the classification of the various eigenvaluesl l , we
have established the beginning of the polynomial expan
of ZN(0) @see Eq.~A3!#. At this step, due to the hexagon
structure of the unit cell, the work of integration over t
angular variables differs and must be thoroughly detailed
course, it is plainly influenced by the new structure of t
unit cell. Thus the lattice can be considered as the juxta
sition of rectangles linked horizontally with the neare
neighbor rectangles by the middle of their vertical sides@see
Fig. 3~a!#. Therefore, the horizontal edges as well as all
other horizontal in-lines are made of square zigzags, whe
the vertical ones are continuous lines. Under these co
tions, the main difference with the square-lattice struct
appears for the treatment of the horizontal lines, which
be then considered as the particular junction of two conse
tive horizontal lines of the previous square lattice.

At the beginning of the integration work, one can start
the four infinite lattice edges simultaneously. Indeed,
these sites, the integersl and l 8 concerning the horizonta
zigzag edges~respectively,l 8 for the vertical ones! can be
chosen independently with respect to thel 8’s ~respectively,
l’s! characterizing the in-bonds linked with the correspo
ing edge because they are exclusively shared between
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secutive edge sites. Then, after having achieved this cho
the work of integration concerns the other infinite i
horizontal zigzags and in-vertical rows which are closer a
closer to the lattice heart. In this respect one must note
each new horizontal zigzag or vertical row behaves itself l
an edge. For illustrating this property let us consider the t
types of sites appearing in the hexagonal structure. If the
(K,K8) belonging to the horizontal zigzagK shows a left
horizontal bond, the integersl K,K821 and l K11,K8

8 are shared
by two consecutive sites belonging to the same zigzag
can be chosen independently from the third onel K,K8

8 which
characterizes the vertical bond connected with the sim
following horizontal zigzagK22. If the site (K,K8) shows a
right horizontal bond, for example, the integerl K11,K8

8 is al-
ready determined by the integration over the preceding h
zontal zigzagK12; the remaining integersl K,K8 and l K,K8

8
are shared by two consecutive sites belonging to the s
zigzagK and can be chosen independently froml K11,K8

8 @see
Fig. 3~a!#. Note that for the vertical rows each site is alwa
characterized by two vertical bonds and a single horizo
one; in all cases, the integersl K11,K8

8 andl K,K8
8 can be chosen

independently froml K,K821 ~if the site shows a left horizon
tal bond! or l K,K8 ~if the site shows a right horizontal bond!.
l
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Consequently, using the preceding remark concerning
numerical property of functionsl l andl l 8 , the contribution
to the higher-degree term of thel l-polynomial expansion of
ZN(0) is obtained when all the integersl and l 8 are equal to
a common positive~or null! value; notably, its upper value i
derived for l 5 l 850 (m5m850). For the highest value o
the second-rank term, one also considers that all the in-bo
are characterized by vanishing coefficientsl in and l in8 ~and
subsequentlymin andmin8 ). In that case, among all the edg
integrals those containing three spherical harmonics are
duced to a product of two spherical ones due to the fact
the spherical harmonics characterizing the corresponding
bond reduces to unity@see Fig. 3~a!#. Thus we derive that,
inside each edge, after integrating over the angular varia
involved in each current integralFK,K8 , the edge integersl
and l 8 ~respectively,m and m8) are equal to a common
value. Moreover, due to the fact that, at the four lattice c
ners, the current integral only contains two spherical h
monics characterizing two consecutive edges, we glob
show that all the edge coefficientsl and l 8 ~respectively,m
and m8) are equal to a common positive valuel ed ~respec-
tively, med). Consequently, in the thermodynamic limi
ZN(0) may be written as
ZN~0!;~4p!3N~2N11!F H L0

~4p!3J N~2N11!

1(
l 52

1`

~L l !
N~2N11! (

$m52 l %

$m51 l %

)
k152N

1N

)
k252N

1N

Fk1 ,k2
~m!

1H L0
in

~4p!3J N~2N23!

(
l ed51

1`

~2l ed11!H L l ed

ed

~4p!3J 4N

1¯G as N→1`, ~8!
c

erm

na-
er
n

f the
f
dge

r
r-
where 1/4p and F(m) are the current values of integra
FK,K8 @for m50 and for each current value ofm belonging
to the set$m% in the leader term; note that this symbolic
notation concerns the 3N(2N11)22 summations over co
efficientsmi , j and mi , j8 ]. The factor 2l ed11, which appears
in the second-rank term, is due to the summation overmed
achieved for each edge site and characterizes the degen
of the corresponding eigenvaluel l ed

. The factorsL0, L l ,

L0
in , and L l ed

ed represent the productl l(2bJ0)l l(2bJ)2,

with l 50 for L0 and L0
in , l>2 ~and even! for L l , l ed>1

for L l ed

ed . As for the terms represented by the ellipsis they

constituted by a product of functionsl l(2b j ) ~with j 5J0
or J! in which most of these functions describing the i
bonds are characterized by different coefficientsl>1. In ad-
dition, one must note that these terms do not have a un
analytical expression~because of the undetermination of c
efficientsm andm8 which characterize the final angular fa
tor; see the Appendix!.

If one factorizes the termL0 in Eq. ~8!, ratios appear,
such as L l /L0 and L l ed

ed/L0 @in fact, ratios such as

l l(bu j u)/l0(bu j u)], which are always lower than unity~in
absolute value! due to the fact that, for the same argume
acy

e

ue

t

bu j u, the function l l(bu j u) rapidly decreases whenl in-
creases. WhenN tends to infinity, i.e., in the thermodynami
limit, the quantities (L l /L0)N(2N11) and (L l ed

ed/L0)4N rap-

idly vanish so that the second part of the higher-degree t
and the upper limit of the second-rank term in Eq.~8! be-
come negligible with respect to unity as well as the nona
lytical terms represented by the ellipsis, which are of low
rank. Therefore,ZN(0) finally has an analytical expressio
and may be written

ZN~0!;@l0~2bJ0!l0~2bJ!2#N~2N11! as N→1`.
~9!

One can note that this result appears to be independent o
choice of edge coefficientsl and l 8 used at the beginning o
the integration process, thus confirming the fact that e
effects are negligible in the thermodynamic limit.16~a!

Finally, it has been shown16~a! that, even atT50 K, the pre-
ceding reasoning prevails: For infinite arguments all thel l
functions have the same asymptotic behavior whatevel
>1, i.e., exp(buju)/buju, so that all the terms of the characte
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istic polynomial given by Eq.~7! become equivalent to th
corresponding higher-degree term obtained for vanishingl’s
and l 8’s, i.e., @l0(2bJ0)l0(2bJ)2#N(2N11). In other
words, when the square unit cell is transformed into a h
agonal one, at 0 K,ZN(0) is directly proportional to
@l0(2bJ0)l0(2bJ)2#N(2N11). Of course, this particula
aspect also prevails for all the thermodynamic functions
rived from ZN(0). Indeed, these functions are characteriz
by a fraction the denominator of which is preciselyZN(0)
and the numerator a derivative ofZN(0) with respect to the
parameterb51/kBT ~specific heat! or to the external applied
field B, expressed in the vanishing-B limit ~spin-spin corre-
lation, susceptibility!. Therefore, they are independent of t
factor of proportionality appearing inZN(0). Thus this very
particular case will not be considered in the present art
because its mathematical treatment is similar to that used
nonvanishing temperatures, in the thermodynamic limit.

Finally, one must notice that the result given by Eq.~9! is
very close to that obtained by Fisher17 for an open classica
spin chain. By assumingJ050, one finds again Fisher’s re
sult, whereas ifJ50, one retrieves the zero-field partitio
function ofN(2N11) dimers, as expected. Moreover, as f
the 2D Heisenberg classical square lattice,16~a! ZN(0) appears
as the product of the zero-field partition functions, resp
tively, associated with the horizontal lines~dimers! and the
vertical rows~spin chains! which compose the lattice~theo-
rem 1!. Note thatZN(0) can be also seen as the product
the zero-field partition functions of horizontal square zigz
chains and vertical dimers, respectively.This result has been
previously justified16(a) by the fact that we mainly deal wit
classical moments isotropically coupled, which constitute
generalization of the corresponding theorem 1 obtained fo
square unit cell.16~a!
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C. Evaluation of the specific heat of an infinite
honeycomb lattice

At this step one can note that, owing to the exact kno
edge of the zero-field partition functionZN(0) in the thermo-
dynamic limit and the correlative definition of the specifi
heatCN ,

CN5kBb2
]2 ln ZN~0!

]b2
, ~10!

one can directly derive the specific heat per site~i,j!, C, in
terms of hyperbolic functions:

C5kBF3

2
2

1

2 S bJ0

sinh~2bJ0! D
2

2S bJ

sinh~2bJ! D
2G

as N→1`. ~11!

The study of this quantity will not be detailed in the prese
article, but in the next subsection, Sec. III A, we shall det
mine the associated critical exponenta in the general discus
sion concerning the low-temperature behaviors, i.e., near
critical point.

D. Evaluation of the spin-spin correlation for an infinite
honeycomb lattice

Due to the isotropic aspect of couplings, the three sp
spin correlations ^Si , j

x Si 1k, j 1k8
x &, ^Si , j

y Si 1k, j 1k8
y &, and

^Si , j
z Si 1k, j 1k8

z & are equal; for simplifying the various calcu
lations, we are exclusively going to focus on theZ-Z spin-
spin correlation, which may be defined as
^Si , j
z Si 1k, j 1k8

z &5
~4p!3N~2N11!

ZN~0! (
l N,2N

l l N,2N
~2bJ0! (

l N,2N8
l l

N,2N8 ~2bJ!3•••3 (
l 2N,N21

l l 2N,N21
~2bJ08!

3•••3 (
mN,2N52 l N,2N

1 l N,2N

(
mN,2N8 52 l N,2N8

1 l N,2N8

3•••3 (
m2N,N2152 l 2N,N21

1 l 2N,N21

)
k152N

N

)
k252N

N

3E dSk1 ,k2
Xk1 ,k2

Yl
k111,k2
8 ,m

k111,k2
8 ~Sk1 ,k2

!Yl k1 ,k221 ,mk1 ,k221
~Sk1 ,k2

!Yl k1 ,k2
,mk1 ,k2

* ~Sk1 ,k2
!Yl

k1 ,k2
8 ,m

k1 ,k2
8

* ~Sk1 ,k2
!,

~12!

with

Xk1 ,k2
5cosuk1 ,k2

@~k1 ,k2!5~ i , j !, ~k1 ,k2!5~ i 1k, j 1k8!#,

51 @~k1 ,k2!Þ~ i , j !, ~k1 ,k2!Þ~ i 1k, j 1k8!#, ~13!
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and whereZN(0) is the zero-field partition function given b
Eq. ~9!. As for the formal integral expression ofZN(0) @cf.
Eq. ~7!#, note that, in the analogous writing of the spin-sp
correlation, the spherical harmonics characterizing the n
existing bonds must be replaced by unity.

In a preceding article16~b! we have detailed the calculus o
the spin-spin correlations for a 2D Heisenberg class
square lattice. Notably, due to the great similarity betwe
the respective polynomial expressions ofZN(0) and
^Si , j

z Si 1k, j 1k8
z & @here given by Eqs.~7! and ~13!#, we have

derived that thel l-polynomial expansion of theZ-Z spin-
spin correlation can be evaluated owing to the same me
which has led to the closed-form expression of the zero-fi
partition functionZN(0), in thethermodynamic limit. How-
ever, we have noted that, because of the presence of
terms cosuK,K8 at sites (K,K8)5( i , j ) and (i 1k, j 1k8), it is
necessary to distinguish the sites belonging to the ‘‘corre
tion rectangle’’ constructed between sites~i,j!, (i , j 1k8), (i
1k, j 1k8), and (i 1k, j ) and those belonging to the remai
ing part of lattice called the ‘‘wing domain.’’ Therefore, th
results derived for a square unit cell can be easily transpo
to the case of the hexagonal one.

1. Wing contribution to the spin-spin correlation for an infinite
honeycomb lattice

For all the sites belonging to the wing domain and as
ZN(0), thework of integration begins at the infinite lattic
edges. At this step it is necessary to choose integersl and l 8
for the edge bonds, independently of the current onesl in and
l in8 characterizing the in-bonds. After that, one may consi
the other infinite in-horizontal zigzags and in-vertical rows
the direction of the correlation rectangle. Due to the prec
ing work of integration, they behave themselves as edge
zags or vertical lines as has been explained above during
calculation ofZN(0). In thethermodynamic limit, the uppe
‘‘wing contribution’’ to the l l-polynomial expansion appea
ing in the numerator of theZ-Z spin-spin correlation is also
obtained when all the coefficientsl in are equal to a common
value l in50. Consequently, the edge integrals reduce to
product of two spherical harmonics and it allows one to
rive that all the current edge coefficientsl ed are equal to a
common positive~or null! value. In this respect, one must b
precise about an important point which is a direct con
quence of the imbricated character of integralsFK,K8 de-
scribing all the spin statements: All the bonds belonging
the wing domain and connected with the edges of the co
lation rectangle are characterized by vanishing coefficie
l in and l in8 . This result is obtained without achieving the i
tegration work over all the infinite zigzags and rows whi
cross themselves inside the correlation rectangle. As for
upper value of the second-rank term, there is a slight dif
ence with respect to the corresponding one obtained
ZN(0) and characterized by all thel’s and thel 8’s equal to a
common valuel .0. As seen in the Appendix, the curre
integral FK,K8 does not vanish ifl is even. But at sites~i,j!
and (i 1k, j 1k8), FK,K8 contains the extra term cosuK,K8
and vanishes if all thel’s are even. In other words, the on
nonvanishing contribution of the second-rank terms is ch
acterized by a mixture of coefficientsl and l 8 showing dif-
n-
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ferent values and has no analytical contribution, as the c
responding one of the polynomial expansion ofZN(0) ~see
Appendix!. However, in the thermodynamic limit, thes
terms become negligible with respect to the higher-deg
one.

Therefore, several conclusions may be derived:(i) In the
thermodynamic limit, only the higher-degree term of t
polynomial expansion of the Z-Z spin-spin correlation nu-
merator (characterized by vanishing coefficients l and l8) is
selected so that̂Si , j

z Si 1k, j 1k8
z & appears to be independent o

the choice of edge coefficients led, as expected; (ii) the cor-
relations between sites (i,j) and( i 1k, j 1k8) are exclusively
achieved owing to paths constructed by means of bonds
longing to the correlation rectangle and independently of t
rectangle size~theorem 2 or the confinement theorem!.

2. Contribution of the ‘‘correlation’’ domain to the spin-spin
correlation for an infinite honeycomb lattice

As expected, the heart of the reasoning~concerning the
in-sites belonging to the correlation rectangle! mainly de-
pends on the lattice unit cell structure. At this step one c
recall that, as the wing domain, the correlation rectangle
composed of horizontal square zigzags and vertical cont
ous rows. Subsequently, it becomes necessary to detai
specific work of integration for a honeycomb lattice, insi
the correlation rectangle. In the most general case@see Fig.
3~a!#, at site (i 1k, j 1k8) @respectively, at site~i,j!#, there are
three bonds and the corresponding integralFK,K8—which
contains the extra term cosuK,K8 , i.e., 2(p/3)1/2

Y1,0(SK,K8)—is composed of four spherical harmonics. How
ever, if one uses the decomposition law of the prod
cosuK,K8YLK,K8 ,MK,K8

(SK,K8) versusYLK,K811,MK,K8
(SK,K8) and

YLK,K821,MK,K8
(SK,K8), whereYLK,K8 ,MK,K8

(SK,K8) is one of

the three spherical harmonics involved inFK,K8 , FK,K8 is
finally made of two terms, each of them showing a prod
of three spherical harmonics. However, due to the ‘‘wing
contribution ~evaluated in the thermodynamic limit! which
imposes a vanishing coefficientl or l 8 for the bonds linked
with the edges of the correlation rectangle,FK,K8 reduces to
two spherical harmonics. In fact and as expected, the ch
of the remaining coefficientsl and l 8 is mainly conditioned
by the position of site (i 1k, j 1k8) @respectively, site~i,j!# in
the hexagonal unit cell considered as a rectangular one@see
Fig. 3~a!#. For simplifying the discussion let us consider s
( i 1k, j 1k8). If this site is characterized by a vanishing le
bond (J0850), one has automaticallyl i 1k, j 1k82150 and
l i 1k, j 1k850 due to the infinite wing contribution so that on
has to determinel i 1k11,j 1k8

8 andl i 1k, j 1k8
8 . As for the square

unit cell, there are two possible choices:l i 1k11,j 1k8
8 51,

l i 1k, j 1k8
8 50 or l i 1k11,j 1k8

8 50, li1k,j1k8
8 51, due to the cumu-

lative product of functionsl l(2bJ0) andl l 8(2bJ) charac-
terizing the infinite horizontal zigzagi 1k. If there is a left
bond (J0Þ0), one hasl i 1k, j 1k850 ~no right bond! and
l i 1k11,j 1k8
8 50 due to the infinite wing contribution. Tha

time one has to determinel i 1k, j 1k821 and l i 1k, j 1k8
8 ; for the

same reasons just evoked above, there are two pos
choices l i 1k, j 1k82151, li1k,j1k8

8 50 or l i 1k, j 1k82150,
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l i 1k, j 1k8
8 51. In other words, there are two possible beg

nings for the correlation paths, as for the infinite squ
lattice;15,16~b! consequently, it becomes necessary to detail
general process of integration.

At this step one must notice that, due to the lattice sy
metries and as observed forZN(0), thework of integration
inside the correlation rectangle can be achieved accordin
two equivalent processes, i.e., starting from site (i 1k, j
1k8) for going to site~i,j! ~and reciprocally! or starting si-
multaneously from sites~i,j! and (i 1k, j 1k8) in the direc-
tion of the lattice heart. Before beginning this work let
recall an important point. In the wing domain, it has be
observed that, due to the work of integration on the prec
ing horizontal zigzags and vertical rows, each new zigzag
row behaves itself like an edge. This aspect also prevails
the zigzags and rows crossing inside the correlation recta
and not yet taken into account by the integration work ins
the wing domain.

For simplifying the discussion without losing its gener
character, let us suppose that integration starts at siti
1k, j 1k8), with i>0, j>0, k.0, andk8.0; note that, from
now, the position of site (i 1k, j 1k8) characterized by the
presence or the absence of a left bond has no importanc
the following reasoning. As shown for the square lattice,16~b!

there are two possibilities:~i! The vertical rowj 1k8 is fixed,
and integration concerns infinite horizontal zigzags betw
sites (i 1k, j 1k8) and ~i,j!. At this step one can notice tha
one must consider horizontal zigzags, the structure of wh
is imposed by that one of the starting edge containing
( i 1k, j 1k8), due to the fact that one must respect the h
agonal unit cell structure. ~ii ! The horizontal zigzagi 1k is
fixed, and integration concerns infinite vertical rowsK8 such
as j <K8< j 1k8. Of course, we are going to show that bo
methods lead to the same result.

In a first step let us consider that rowj 1k8 is fixed. Each
new infinite horizontal zigzagK showing the same geometr
cal structure as that of the starting edgei 1k behaves like an
edge; the cumulative product of eigenvaluesl l(2bJ0) and
l l 8(2bJ) imposes vanishing coefficientsl and l 8 character-
izing all the bonds of zigzagK, except for the coefficients
l K, j 1k8
8 , which are equal to unity. When one arrives at t

lowest edge of the correlation rectangle to which site~i,j!
belongs, all the vertical in-bonds are characterized by v
ishing coefficientsl 8 ~except at rowj 1k8), whereas all the
vertical out-bonds are also characterized by vanishing c
ficients l 8 ~due to the wing contribution!. At site ~i,j! and for
the lattice configuration described by Fig. 3~b!, the integral
Fi , j is reduced to the product cosui,j Yl i , j ,mi , j

* (Si , j ), whereas

at site (i 21,j 1k8), i.e., at the right lower corner of th
correlation rectangle,Fi 21,j 1k8 contains a similar produc
Y1,0(Si 21,j 1k8)Yl i 21,j 1k821 ,mi 21,j 1k821

(Si 21,j 1k8) due to the
preceding work of integration. For the other edge sites e
current integralFK,K8 reduces to the product of two spheric
harmonics characterizing consecutive vertical and horizo
bonds. Consequently, these integrals do not vanish if all
edge coefficients are such asl ed51, med50. In other words,
the correlation path is nothing more than the respective r
and lower edges of the correlation rectangle@see Fig. 3~b!,
case I#.
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Of course, a similar reasoning may be done if one cons
ers that the upper horizontal edge@to which site (i 1k, j
1k8) belongs# is fixed. Under these conditions the correl
tion path appears to be constructed by means of the res
tive upper and left edges of the correlation rectangle@see Fig.
3~b!, case II#. Moreover, to not complicate the present d
cussion, we have not considered a third possibility: mixi
both preceding methods@see Fig. 3~c!, case III#. Finally, one
can note that, as for the square lattice,16~b! if one or both
site~s! belong~s! to the lattice edge~s!, the preceding reason
ing prevails too so that it keeps a general character.

In conclusion, one can say that, due to the fact that
correlation rectangle is always swept in the same direct
the integration process leads to the determination of coe
cientsl and l 8 characterizing horizontal zigzags and vertic
rows closer and closer to the lattice heart so that one ca
go backwards, thus forbidding the possibility of findin
closed paths of correlation~i.e., loops!. All the preceding
results constitutetheorem 3. Due to the infinite wing contri-
bution, (i) all the paths are equivalent inside the correlatio
domain; i.e., they show the same length (which is the shor
one for going from one site to another one) and involve
same number of similar bonds whatever the chosen path;
the number of these bonds can be simply measured along
horizontal and vertical sides of the correlation rectangle, f
the honeycomb lattice structure described by Fig. 3(a).This
result constitutes a generalization of a similar theorem
rived for the 2D Heisenberg classical square lattice.16~b!

Finally, in the infinite-lattice limit, theZ-Z spin-spin cor-
relation may be written as

^Si , j
z Si 1k, j 1k8

z &;
1

3
~uv ! uk8uv uku,

uku even or odd, uk8u even,

^Si , j
z Si 1k, j 1k8

z &;
1

3

1

v
~uv ! uk8uv uku,

uku even or odd,k8 odd ~k8.0!,

^Si , j
z Si 1k, j 1k8

z &;
1

3
v~uv ! uk8uv uku,

uku even or odd,k8 odd ~k8,0!, as N→1`,
~14!

whereu andv are given by

u5L~2bJ0!, v5L~2bJ!, ~15!

and whereL(2b j ) is the well-known Langevin function.

E. Evaluation of the static susceptibility for an infinite
honeycomb lattice

Due to the isotropic aspect of couplings, the static susc
tibilities xxx , xyy , andxzz are equal and labeledx; conse-
quently, the static susceptibility per site can be defined o
ing to theZ-Z spin-spin correlations, i.e.,
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x5b (
k52N

N

(
k852N

N

Gi , jGi 1k, j 1k8^Si , j
z Si 1k, j 1k8

z &; ~16!

note that the dynamic susceptibilityx(q) can be simply de-
rived from Eq.~16! by means of a Fourier transform—i.e
by adding the factor exp@2i(qyk1qxk8)#, whereqx andqy are
the components of the wave vectorq. Therefore, exact
knowledge of the spin-spin correlations allows one to eva
ate the susceptibility. Reporting the relevantZ-Z correlation
given by Eq.~14! in Eq. ~16!, we can define a susceptibilit
x per two consecutive unit cell sites:

x5
b

6

~G21G82!W112GG8W2

~12u2v2!~12v2!
as N→1`, ~17!

with

W15~11uv !2~11v2!,

W252v~11uv !21u~12v2!2. ~18!

At this step, one can note that, in the particular case of
chain limit (J050, i.e., u50), one finds again Fisher’
result;17 in addition, if J50, i.e., v50, one retrieves the
well-known dimer susceptibility. As previously explaine
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we are mainly going to focus on the behaviors of the prod
xT. For practical purposes its value will be considered n
malized to the infinite-temperature value~the Curie constant!
so thatxT will be labeled (xT)n . Similarly, we shall intro-
duce the ratio of magnetic moments,r 5G8/G ~note that
because of the classical character of the involved spin
mentsr is always equal to or lower than unity!.

F. Evaluation of the correlation length for an infinite
honeycomb lattice

The correlation lengthj also appears as a very useful a
significant quantity from a physical point of view, notab
near the critical point; it may be defined as

j5S (k52`
1` (k852`

1`
~k21k82!u^S0,0

z Sk,k8
z &u

(k52`
1` (k852`

1` u^S0,0
z Sk,k8

z &u D 1/2

. ~19!

Similarly, equivalent correlation lengthsj1 and j2 can be
defined for the horizontal zigzag (k50) and the vertical
lines (k850) of the lattice, respectively, characterized by t
exchange energies (J0 ,J) and J. Using the closed-form ex-
pression of the spin-spin correlation given by Eq.~14!, we
have
j15F8u2v2~11u2v2!1u2uvu~11v2!@~11u2v2!214u2v2#

@11uuu~11v2!1u2v2#~12u2v2!2 G 1/2

,

j25F8v2~11v2!12uvu@~11v2!214v2#

~11uvu!2~12v2!2 G 1/2

, j5A~j1!21~j2!2. ~20!
ent
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III. THEORETICAL DISCUSSION

A. Determination of the critical exponents

In the low-temperature range the Langevin functionsu
5L(2bJ0) and v5L(2bJ) tend to unity ~in absolute
value!. Therefore, the correlation lengthsj1 and j2 defined
above by Eq.~20! behave as (12u2v2)21 and (12v2)21,
respectively, i.e.,

j1;b
uJuuJ0u

uJu1uJ0u
, j2;buJu as T→0. ~21!

Thus, as for the 2D Heisenberg classical square latticej1
and j2 ~and subsequentlyj! diverge when the temperatur
tends to 0 K. In that case too, absolute zero plays the
ticular role of critical temperature. At this step one can n
that, as for the 2D classical square lattice,16~a! this result can
be directly obtained from the minimum value of the fr
energy 2kBT ln ZN(0), whereZN(0) is given by Eq.~9!.
Consequently, the critical domain is quasi-infinite: T
short-range order remains important, whereas the long-ra
one is absent, except at 0 K where it becomes prepondera
and stable due to the fact that the quantum fluctuations
r-
e

ge

re

negligible. Subsequently, the corresponding critical expon
n is such asn51 andj behaves asT21.

This result is strictly similar to the corresponding one th
we have exactly derived for the 2D Heisenberg class
square lattice,15,16~b! thus proving its universal characte
whatever the unit cell structure. At this step one can rec
that, by using the renormalization group technique within
one-loop approximation, Chakravartyet al.18 have obtained
the resultn51 for a 2D Heisenberg quantum square latti
so that this value also appears to be independent of the q
tum or classical nature of the spin moment. In addition,
the low-temperature domain, these authors have pointed
the coexistence of three regimes for the correlation length
the critical domain: The quantum disordered regimen
50), the quantum critical regime (n51), and the ‘‘renor-
malized’’ classical one (n→1`). However, atT50 K, a
single regime prevails: The quantum critical one (n51).

This situation corresponds to the present case upon w
we have focused in this article and, as for the classical squ
lattice,16~b! a similar interpretation may be given. Thus th
result gives an argument for validating the presence of qu
tum fluctuations nearTc50 K ~i.e., the true nature of thej
behavior is exclusively conditioned by these fluctuation!.
Indeed, these fluctuations can be clearly explained by
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fact that the classical moments are characterized by an a
able energy-level density larger than for quantum spins~i.e.,
of quantum spin number such asS,3/2),19 so that they can
easily evolve between very close energy levels. In ot
words, due to these fluctuations, for a finite but low tempe
ture, one can say that the lattice state is described by
moments which are less than fully aligned. By approachin
K, it tends to a state characterized by more and more alig
spin moments and it appears more and more stable bec
these fluctuations are smaller and smaller: There is no lo
range order for it is precisely destroyed by quantum fluct
tions on behalf of the short-range order. But whenT reaches
0 K exactly, a transition occurs: The ground state is th
constituted by fully aligned spin moments and long-ran
order is preponderant. Therefore, from experiments car
out at finite temperatures as close as possible to abso
zero, it becomes possible to determine the nature of
ground state atTc50 K.

In the zero-temperature limit and for noncompensa
spin sublattices (GÞG8), the examination of Eq.~17! giving
the static susceptibilityx allows one to say thatx diverges as
bj1j2 , i.e., according to ab3 law. Thus, as for the 2D
Heisenberg classical square lattice,15,16~b! the associated criti-
cal exponent isg53. In addition,x appears as the vanishin
q limit of the dynamic susceptibilityx(q) ~which is the Fou-
rier transform ofx!. Near the critical temperatureTc50 K,
x~0! ~i.e.,x! behaves asb22h, which permits us to derive the
critical exponenth521 ~as for the square lattice!.15,16~b!

Consequently, Fisher’s scaling lawg5n(22h) is fulfilled.
This value can be also obtained from the low-temperat
behavior of the spin-spin correlation@cf. Eq.~14!# on the one
hand and owing to the corresponding one of the correla
lengthsj1 andj2 on the other hand@cf. Eq. ~21!#:

u^S0,0
z Sk,k8

z &u→
1

3 F12
uk8u
j1

2
uku
j2

G ,
uku even or odd, uk8u even,

u^S0,0
z Sk,k8

z &u→
1

3 F12
uk8u
j1

2
uku21

j2
G ,

uku even or odd,k8 odd ~k8.0!,

u^S0,0
z Sk,k8

z &u→
1

3 F12
uk8u
j1

2
uku11

j2
G ,

uku even or odd,k8 odd ~k8,0!, as T→0. ~22!

The distance between sites~0,0! and (k,k8) can be repre-
sented by the length of a vector the components of which
uk8u and uku ~respectively,uku21 or uku11) along the hori-
zontal and vertical axes of the lattice. In the low-temperat
range ~i.e., near the critical point! we always haveuk8u
!j1 , uku!j2 : Thus this is the deviation between unity an
the ratiosuk8u/j1 anduku/j2 which is relevant. Consequently
for a fixed temperature near 0 K, the spin-spin correlat
does globally decrease with distance~in absolute value!;
moreover, for a fixed distance~i.e., for fixed k and k8), it
decreases according to aT law whenT increases. In othe
words, the general power lawr 2(D221h) which describes the
il-
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decay of the critical correlation is fulfilled whenh521 and
D52, but this result must be handled with care becaus
rough interpretation could naively lead one to think that t
spin-spin correlation increases with distance according tor
law, as for the classical square lattice.16~b!

It must be noted that a similar paradox occurs with op
classical spin chains (D51) showing Heisenberg-type cou
plings between nearest neighbors~the corresponding critica
exponents aren51, g52, andh50, respectively!. This as-
pect has been clearly detailed in a preceding article16~b! and is
notably due to the classical aspect of the involved mome
and the isotropic character of couplings.

Finally, near absolute zero~i.e., the critical temperature!,
the specific heat per siteC behaves as

C;kBF3

2
22~bJ0!2 exp~22buJ0u!24~bJ!2

3exp~22buJu!G as T→0. ~23!

ThusC/kB tends to 3/2 when the temperature tends to 0
the corresponding critical exponent is such asa50, as for
the 2D Heisenberg classical square lattice.16~b! Therefore, Jo-
sephson’s scaling lawa522nD, whereD is the layer di-
mensionality, is fulfilled.

B. Construction of the 2D spin arrangement

In a first step and for simplifying the discussion, we e
clusively consider thatuJu@uJ0u. In other words, the physica
study can be summarized to that of vertical classical s
chains characterized by the same exchange energyJ and
weakly coupled to each other by means ofJ0 , thus leading
to a 2D arrangement@see Fig. 3~a!#. At a very high tempera-
ture, i.e., at a temperature such askBT@uJu, the chain be-
havior is dominant. IfuJu is weak enough, one can reach th
low-temperature domain. In that case the quasi-isolated
tical chains are made of quasirigid quasi-independent blo
of length j2 @where j2 behaves asbuJu near 0 K; cf. Eq.
~21!#. This chain behavior is maintained down to the te
perature at which the interchain exchange energyJ0 of such
blocks of lengthj2 becomes similar tokBT. This crossover
temperatureTCO then appears to be the solution of the fo
lowing equation:

kBTCO;j2uJ0u; ~24!

by means of Eq.~21!, which also gives the low-temperatur
behavior ofj2 , one derives

kBTCO;AuJJ0u. ~25!

In the intermediate case, i.e., for closer values ofJ0 and J,
when uJ0u<uJu or uJ0u>uJu, at high temperature, the lattic
can be considered as an assembly of horizontal zigzag ch
~characterized by the regular alternation of exchange e
gies J0 and J! coupled to each other by means of bon
involving the exchange energyJ. This aspect is enhanced a
soon as the temperature obeys Eq.~24! in which j1 is sub-
stituted forj2 andJ for J0 . In that case Eq.~25! giving the
crossover temperature must be replaced by



PRB 58 11 475THERMODYNAMICS OF THE TWO-DIMENSIONAL . . .
FIG. 4. Thermal behaviors of the product (xT)n for a honeycomb lattice composed of classical spins isotropically coupled~caseJ0J
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kBTCO;uJuA uJ0u
uJu1uJ0u

. ~26!

In a second step, if we consider thatuJu!uJ0u, we deal
with horizontal dimers which are weakly coupled at tempe
tures such askBT@uJ0u. When the temperature is coolin
down, the intercouplings become effective if the interdim
exchange energy becomes similar tokBT. In the present case
the corresponding correlation lengthj1 ~expressed in lattice
step units! reduces to unity@which can be directly obtained
in Eq. ~19! by assumingk50, k851]. Therefore, the new
crossover temperatureTCO8 is given by the solution of the
equation

kBTCO8 ;j1uJu, ~27!

i.e.,

kBTCO8 ;uJu. ~28!

In both cases, as soon as the temperature decreases
TCO, the 2D arrangement becomes dominant. One must
that, for regular honeycomb lattices such asJ05J, 2D or-
dering already exists at high temperature and is more
more enhanced when the temperature is cooling down,
as soon askBT reachesuJu.

Finally, if the respective values taken byuJ0u and uJu do
not allow one to classifyTCO or TCO8 in the low-temperature
range, the problem is plainly more complicated. We alwa
have to compare the interchain exchange energy of block
lengthj1 or j2 to kBT ~wherej i , with i 51,2, is the corre-
lation length corresponding to the ‘‘dominant’’ chain, i.e
the chain characterized by the strongest exchange energ!.
In other words, one has an equation similar to Eq.~24! or
~27!, but, now,j2 ~respectively,j1) must be replaced by its
temperature-dependent expression given by Eq.~20!. There-
fore, in that case, a numerical resolution is unavoidable.

C. Study of the low-temperature behaviors
of the static susceptibility

Let M be the temperature-dependent magnitude of
magnetic moment per unit cell~note thatM mainly depends
-

r

rom
te

d
.,

s
of

s

e

on the sign of the exchange energiesJ0 and J!. When the
temperature reaches absolute zero~i.e., the critical point! and
if one considers the expression of the static susceptibility@cf.
Eq. ~17!#, it is easily shown that the low-temperature beha
ior of xT is essentially ruled by that ofj1j2M2, whereM
has been just defined above and wherej1 and j2 are the
correlation lengths associated with the horizontal and vert
lines of the lattice, respectively@cf. Eq. ~21!#. Thus, in the
low-temperature range, the lattice can be considered a
assembly of quasi-independent quasirigid rectangular blo
each one being characterized by sides of respective len
j1 and j2 , and momentM. Subsequently, the value of th
productxT is mainly related to that ofM: If M is finite
~noncompensated sublattices,GÞG8), xT diverges asj1j2 ,
i.e., according to ab2 law; if M vanishes in the ground stat
~compensated sublattices!, the behavior ofxT appears as a
competition between the divergence ofj1j2 and the evanes
cence ofM.

Due to the unit cell structure involving two types of e
change energiesJ0 andJ, two cases of interest must be e
amined: If J0J.0, the couplingsJ0 and J have the same
sign; i.e., they are both ferromagnetic (J0,0, J,0) or anti-
ferromagnetic (J0.0, J.0); if J0J,0, J0 andJ have oppo-
site signs, so that ifJ0 is ferromagnetic (J0,0), J is anti-
ferromagnetic (J.0) and reciprocally.

In a first step, let us consider a ferromagnetic or an a
ferromagnetic lattice~characterized by noncompensated su
lattices, GÞG8, rÞ1). In other words, we haveJ0J.0.
Using the low-temperature behaviors of the Langevin fu
tions u and v @defined by Eq.~15!# in the definition of the
static susceptibility@cf. Eq. ~17!#, one derives

GÞG8 ~rÞ1! xT;
b2

3

uJu2uJ0u
uJu1uJ0u S G2

J

uJu
G8D 2

as T→0. ~29!

Thus, as expected,xT diverges according to ab2 law due to
the fact that the magnetic momentM, i.e., G6G8, is finite
in the ground state. In addition, the divergence is accentu
for ferromagnetic couplings (J0,0, J,0) due to the fact that
the magnitude ofM is more important than in the antiferro
magnetic case (J0.0, J.0). These behaviors are reported
Fig. 4~a! (uJ0u/kB50.50 K, uJu/kB51.00 K); under these
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conditions, the crossover temperatureTCO @given by Eq.
~26!# is such asTCO50.577 K. In this respect one can no
that the divergence ofxT is plainly accentuated for ferro
magnetic or antiferromagnetic lattices whenTCO is reached
due to the fact that the 2D ordering becomes effective, t
characterizing the fact that the lattice moment is more
portant. For compensated sublattices (J0.0, J.0, G5G8,
r 51), the factorG2G8 in Eq. ~29! vanishes near the criti
cal point ~i.e., 0 K! and theT expansion must be examine
up to the following term; one has

J0.0, J.0, G5G8 ~r 51!,

xT→
G2

12J0J

2J01J

J01J
~kBT!2 as T→0. ~30!

In the present case, asJ0,J, we deal with vertical compen
sated chains at temperatures such askBT.uJu; whenTCO is
reached ~i.e., 0.577 K!, a change of slope is duly ob
served: The productxT vanishes according to aT2 law
instead of aT one, for similar isolated vertical chains@see
Fig. 4~b!#. As xT behaves asj1j2M2, i.e., asb2M2 in the
low-temperature range, one derives thatM vanishes accord
ing to aT2 law.

If J0J,0, the horizontal and vertical bonds of the latti
are characterized by exchange energies showing opp
signs. By assuming a similar work that in the caseJ0J.0,
we derive, in the low-temperature range,

xT→
1

12 FaH 21a

11a
1

~a21!~a212a12!

2uJu~11a!2 kBTJ
3S G2

J

uJu
G8D 2

1H 1

11a
2

a21

2uJu~11a!2 kBTJ
3S G1

J

uJu
G8D 2G ,

a5U J

J0
U ~aÞ1!, as T→0, ~31!

xT→
1

12 F H 3

2
2

29

8J2 ~kBT!2J S G2
J

uJu
G8D 2

1H 1

2
2

17

8J2 ~kBT!2J S G1
J

uJu
G8D 2G ,

a51, as T→0. ~32!

In all cases the infinite lattice shows a vanishing mom
in the ground state. In other words, asxT always tends to a
constant limit near the critical point, that means that the m
netic momentM vanishes according to aT law. If the hori-
zontal couplings are antiferromagnetic (J0.0) and the ver-
tical ones ferromagnetic (J,0), the horizontal zigzags ar
made of antiferromagnetic pairs of spins ferromagnetica
coupled~case I!. If uJ0u,uJu, at low temperature, the dom
nant vertical rows are made of ferromagnetic chains (J,0)
antiferromagnetically coupled (J0.0), whereas if uJ0u
.uJu, one deals with dominant alternated horizontal zigza
ferromagnetically coupled (J,0). Subsequently, the rati
s
-

ite

t

-

y

s

r 5G8/G loses its specific character with respect to the pr
lem of compensation between consecutive sites of the s
unit cell. In other words, ifuJ0u,uJu, the vertical ferromag-
netic chains carry a stronger moment than in the caseuJ0u
.uJu. Therefore, the corresponding value ofxT is always
greater@see Figs. 5~a! and 5~b!#. When TCO is reached the
2D ordering becomes effective. A change of behavior is d
observed and is more accentuated ifuJ0u,uJu due to the fact
that we deal with a phenomenon of compensation betw
consecutive ferromagnetic vertical chains. In these two ca
and whatever the value ofr 5G8/G, xT tends to a constan
limit according to aT law with a positive (uJ0u,uJu) or a
negative (uJ0u.uJu) slope. This character can be simply d
rived in Eq. ~31! by assumingJ/uJu521 and G5G8 (r
51). If GÞG8 (rÞ1), a numerical study is necessary, b
from a physical point of view, as the ratior 5G8/G has lost
its specific influence, one can predict that the behavior ofxT
is not drastically changed. This aspect is confirmed by
comparison of the corresponding curves of Figs. 5~a! and
5~b!. In the particular caseJ052J, the low-temperature ex
pansion ofxT given by Eq.~31! must be replaced by tha
given by Eq.~32!. Near 0 K, xT also tends to a constan
limit, but now with aT2 law. This is due to the fact that we
deal with the double compensation between consecutive
tical ferromagnetic chains on the one hand and horizo
antiferromagnetic spin pairs on the other hand.

If the horizontal couplings are ferromagnetic (J0,0) and
the vertical ones antiferromagnetic (J.0), the horizontal
zigzags are made of ferromagnetic pairs of spins antife
magnetically coupled. In other words, ifuJ0u,uJu, we deal
with dominant vertical antiferromagnetic chains (J.0) fer-
romagnetically coupled (J0,0), whereas ifuJ0u.uJu, we
still have dominant alternated horizontal zigzags antifer
magnetically coupled to each other. Therefore, in all cas
the global magnetic moment involved in the caseJ0,0, J
.0 ~case II! is always lower than the corresponding one
the caseJ0.0, J,0 ~case I!. Thus one can predict two con
sequences:~i! For a given ratioa5uJ/J0u, xT is always
lower in case II than in case I;~ii ! xT decreases whena
increases in case II, whereas it increases witha in case I.
These phenomena can be easily observed in Figs. 5~c! and
5~d! on the one hand and by comparing Figs. 5~a! and 5~c! as
well as Figs. 5~b! and 5~d! on the other hand. Subsequent
the interpretation of thexT curves in case II is very simila
to that one given above in case I. However, a slight diff
ence occurs in the present case II: Due to the fact thatxT
shows smaller values than in case I, the ratior 5G8/G has a
smaller influence over thexT slope near 0 K.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

A. General considerations

In a preceding article concerning the 2D Heisenberg c
sical square lattice,16~c! we have recalled the general cond
tions which must be fulfilled by the magnetic ions and t
various ligands involved for obtaining a quasi-2D latti
characterized by isotropic couplings. Notably, we have
ticed that the ion Mn21 is an excellent candidate. Thus, fo
Heisenberg-type couplings, the three static susceptibilit
respectively, measured along the three axesa, b, andc of the
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FIG. 5. Thermal behaviors of the product (xT)n for a honeycomb lattice composed of classical spins isotropically coupled~caseJ0J
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crystal, i.e.,xa , xb , andxc , are equal to a common valuex.
More particularly, for compensated antiferromagnetic co
pounds, the susceptibility curve shows a maximum wh
appears as a characteristic signature of such a kind of m
netic behavior. When the temperature is still cooling downx
vanishes according to aT law @cf. Eq. ~30!# if one deals with
a purely 2D lattice. But as often occurs, if the lattice is no
purely 2D one, the three-dimensional magnetic ordering
pears at the Ne´el temperatureTN .

AboveTN , by coming from the high-temperature doma
xa , xb , andxc remain equal tox and gradually increase u
to a characteristic maximum before decreasing. WhenTN is
reached, generallyxa and xb remain equal~otherwise, one
deals with an anisotropic compound! and are labeledx i ~par-
allel susceptibility!; then, belowTN , x i rapidly decreases
with temperature before vanishing at 0 K, as expected fo
antiferromagnet. As for the out-plane contributionxc ~or per-
pendicular susceptibilityx'), it passes through a minimum
value atTN and slightly increases before tending to a co
stant value at 0 K. At this step, one can give an estimate
TN . In the low-temperature range, as previously seen in S
III B, the lattice is made of quasi-independent quasirig
blocks, the sides of which have the respective lengthsj1 and
j2 , i.e., the correlation lengths associated with the horizo
zigzags and the vertical lines of the lattice. IfJ8 is the inter-
layer exchange energy, the 3D magnetic ordering app
when the interlayer energy of blocks of surfacej1j2 be-
comes similar tokBT, i.e.,

kBT;j1j2uJ8u. ~33!
-
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Using the low-temperature expression ofj1 and j2 @cf. Eq.
~21!#, one derives

kBT;uJuS ~ uJ8/Ju!~ uJ0 /Ju!
11uJ0 /Ju D 1/3

. ~34!

Note thatTN vanishes withJ8, i.e., when the arrangement
a purely 2D one; of course, from a practical point of vie
one must not forget that the superexchange mechanism
well as the unavoidable interlayer dipolar interactions of
give a further contribution to the interlayer exchange ene
J8.

B. Study of the maximum of the susceptibility curve

As noted above, the study of this maximum is fundame
tal and we are going to show that it allows one to charac
ize the 2D Heisenberg magnetic behavior. In this resp
one can easily guess that this characterization will be ex
lent if the Néel temperatureTN and the temperature of th
maximumT(xmax) are well separated. By replacingJ0 andJ
with their respective renormalized expressionsj 05J0S(S
11) and j 5JS(S11) ~with S55/2) and by derivating the
susceptibilityx @given by Eqs.~17! and~18!# with respect to
the temperature, one has to solve the following equation

u8A1v8B2C50, ~35!

with

u85b j 0~12coth2~b j 0!!1
1

b j 0
,
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v85b j @12coth2~b j !#1
1

b j
,

A5$@11v2~112u!#~12u2v2!12uv2~11uv2!~11u!%

3~12v2!,

B5$@11uv~213v !#~12u2v2!~12v !1@11u2v~223v !#

3~11uv2!~11v !%~11u!,

C5~11uv2!~12u2v2!~11u!~12v2!, ~36!

where u and v are the respective Langevin function
L(2bJ0) andL(2bJ).

Of course, Eq.~35! can only be solved numerically and
for given j 0 /kB and j /kB , one may derive the temperatu
T(xmax) of the maximum of the susceptibility curve. Fo
simplifying the discussion, in a first step, we exclusive
consider thatJ05J. We have found

kBT~xmax!51.0648j , j 5JS~S11!, S55/2. ~37!

This study has been previously achieved for a 2D Heisenb
classical square lattice,16~c! and we have derived that the co
responding coefficient is 1.2625, which is very close to
value published by Lines20 and later by De Jongh an
Miedema1,21 after having fitted experimental susceptibilitie
owing to refined high-temperature~HT! series expansions. In
other words, such a kind of coefficient appears as a unive
constant characterizing the nature of the unit cell. Th
knowledge ofT(xmax) allows one to derive the exchang
energyJ.

But from a practical point of view and as remarked by D
Jongh and Miedema,1,21 the susceptibility curves often sho
a broad maximum so that the corresponding tempera
T(xmax) is known with a poor accuracy. Therefore, it is mo
interesting to study the inverse of the value of the susce
bility. Under these conditions, we have derived

G2

xmax
58.5117j , j 5JS~S11!, S55/2. ~38!

For the 2D Heisenberg classical square lattice,16~c! we have
found 10.6838. Another quantity which often appears in
literature is the ratioxmaxT(xmax)/C, whereC is the Curie
constant~i.e., G2/3kB in our case if one considers the su
ceptibility per atom!. We have obtained

xmaxT~xmax!

C
50.3753. ~39!

In that case too, this coefficient exclusively characterizes
hexagonal unit cell and thus shows a universal character~for
the 2D Heisenberg classical square lattice, we have der
the value 0.3545, which is also very close to that one
tained by De Jongh and Miedema owing to H
expansions!.1,21 Finally, note that all the coefficients appea
ing in Eqs.~37!–~39! have been calculated with an accura
plainly lower than 0.01%.

In a second step, one may focus on a more general c
i.e., that one concerning 2D lattices characterized by
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exchange energiesJ0 and J. A similar numerical study has
allowed one to find the following equations:

kBT~xmax!5a j01bAj 0 j 1c j , j 05J0S~S11!,

j 5JS~S11!, S55/2,

a50.2559, b50.3780, c50.4309, ~40!

G2

xmax
5a8 j 01b8Aj 0 j 1c8 j ,

a852.9845, b850.6161, c854.9111, ~41!

xmaxT~xmax!

C
53

a j01bAj 0 j 1c j

a8 j 01b8Aj 0 j 1c8 j
. ~42!

Of course, one can note that, whenj 05 j , one retrieves the
respective results of Eqs.~37!–~39!. Consequently, we have
plotted T(xmax), G2/xmax, and xmaxT(xmax)/C versus j 0 /kB
and j /kB ; they are, respectively, illustrated by Figs. 6~a!,
6~b!, and 6~c!. The linear behaviors ofT(xmax) andG2/xmax
have been also reported whenJ05J. Thus, under these con
ditions, one may derive the respective values ofJ0 and J.
Using Eq.~42! and setting

a5
J

J0
, t5

xmaxT~xmax!

C
, ~43!

one has to solve

~c2c8t!a1~b2b8t!Aa1~a2a8t!50, ~44!

wherea, a8, b, b8, c, andc8 are given by Eqs.~40! and~41!.
A numerical study has allowed one to show that the con
nient root is

Aa5
2~b2b8t!2A~b2b8t!224~a2a8t!~c2c8t!

2~c2c8t!
,

~45!

so that

J0

kB
5

G2/xmax

a81b8Aa1c8a
,

J

kB
5

aG2/xmax

a81b8Aa1c8a
. ~46!

Note that similar expressions can be derived from knowle
of T(xmax) owing to Eq. ~40!. A further numerical study
concerning the comparison between the initially impos
values of J0 and J leading to the numerical results o
T(xmax), G2/xmax, andxmaxT(xmax)/C and the corresponding
values derived from Eq.~46! has been achieved. IfJ.J0 or
J slightly lower thanJ0 , J is obtained with an accurac
lower than 1%;a and J0 are given with a precision lowe
than 5% ifa is such as 0.8<a<12.5 ~respectively, 6.4% if
a<14, 8% if a<16, and 10% ifa<18.5). Thus,a poste-
riori , we can justify the choice of Eq.~42! for finding a by
the fact according to which its expression given by the r
of Eq. ~44! limits the cumulative products of coefficientsa,
a8, b, b8, c, andc8 and plainly improves the accuracy wit
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FIG. 6. ~a! Variation of the temperature of the maximum of the susceptibility curveT(xmax) versus the exchange energiesj 0 /kB and
j /kB , for a compensated 2D Heisenberg classical hexagonal lattice antiferromagnet@with j 05J0S(S11), j 5JS(S11), S55/2], ~b!
variation ofG2/xmax, and~c! variation ofxmaxT(xmax)/C whereC is the Curie constantG2/3kB .
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which J0 andJ are found. In this respect, by combining Eq
~40! and ~41!, we have verified that the ratioa is obtained
with a very poor accuracy.

In summary, the experimental determination ofT(xmax)
andG2/xmax allows one to derive directly the exchange e
ergiesJ0 and J. If xmaxT(xmax)/C50.3753, where the Curie
constantC can be obtained from the HT experimental lim
of the productxT, the 2D Heisenberg classical hexagon
.

-

l

lattice is characterized by a single exchange energyJ05J,
which can be found owing to Eq.~37! or ~38!. On the con-
trary, if xmaxT(xmax)/CÞ0.3753, the theoretical treatment o
the maximum of the susceptibility curve just detailed abo
permits one to assert that the hexagonal lattice is chara
ized by two exchange energiesJ0 andJ, which can be then
found owing to Eqs.~45! and ~46!. Thus, before testing al
the experimental data with the theoretical expression of



11 480 PRB 58JACQUES CURE´ LY, FRANCESC LLORET, AND MIGUEL JULVE
FIG. 7. ~a! Fit of the experimental thermal variations of the productxT for a powder of the antiferromagnet Mn2~bpm!~ox!2 characterized
by a 2D Heisenberg classical hexagonal lattice~‘‘bpm’’ and ‘‘ox’’ are the ligands bipyrimidine and oxalate! and~b! fit of the experimental
thermal variations of the susceptibilityx.
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susceptibility given by Eqs.~17! and ~18!, one may have a
good estimate of the exchange energiesJ0 andJ. However,
from an experimental point of view, one must suppose t
there exist enough experimental points around the maxim
of the susceptibility curve for obtainingT(xmax) with a cor-
rect accuracy.

C. Interpretation of the experimental data obtained
for the antiferromagnet Mn 2„bpm…„ox…2–6H2O

The variable-temperature magnetic susceptibility d
~per manganese atom! have been obtained between 2 a
300 K for a powder of the complex Mn2~bpm!~ox!2•6H2O
~‘‘bpm’’ and ‘‘ox’’ refer to the bipyrimidine and oxalate
ligands, respectively!. Note that these data have been c
rected for the presence of a small amount~i.e., about 1%! of
paramagnetic impurities and the experimental uncerta
has been estimated to 0.1%. At first sight, the global sha
of both xT andx curves, respectively depicted in Figs. 7~a!
and 7~b!, allow one to derive several important conclusion

~i! In the high-temperature limit, thexT curve shows a
plateau and the corresponding constant value at room
perature is 4.06 cm3 K mol21, as expected for a single io
characterized by a sextuplet. In other words, that means
we deal with a spin such asS55/2 so that it can be consid
ered as a classical one; the corresponding Lande´ factor
is G52mB /\, and the Curie constant isC54.06
cm3 K mol21.

~ii ! In the low-temperature range, near absolute zerox
andxT vanish with temperature. This property is charact
istic of the occurrence of antiferromagnetic couplings. As
magnetic data have been obtained on a powder samp
means that the Ne´el temperatureTN is very close to 0 K;
thus, one can consider that there is no three-dimensi
magnetic perturbation. Otherwise, as explained in Sec. IV
below TN , the perpendicular contribution to the susceptib
ity, i.e., x' , tends to a constant limit at 0 K sothat, globally,
the total susceptibility does not vanish too. Therefore, o
can immediately derive that the antiferromagnetic couplin
t
m
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are isotropic forT>2 K. At this step, one can recall that, fo
open compensated Heisenberg classical spin chains,x tends
to a constant limit at 0 K, whereasxT vanishes according to
a T law.17 For a 2D-compensated Heisenberg classical h
eycomb lattice, we have shown thatx vanishes according to
a T law, while xT vanishes according to aT2 law @cf. Eq.
~30!#. In the present experimental case,x and xT vanish
simultaneously, notably with aT law for the total suscepti-
bility x. Thus, starting from the crystallographic structu
depicted by Fig. 1, all the information given in points~i! and
~ii ! allows one to conclude that, from a magnetic point
view, the compound Mn2~bpm!~ox!2•6H2O is well described
by a 2D Heisenberg classical honeycomb lattice, thus ju
fying the arguments detailed in the Introduction of t
present article.

~iii ! In order to be definitively sure, let us examine th
characteristic maximum of the susceptibility curve illustrat
by Fig. 7~b!. More refined measurements~i.e., more experi-
mental points obtained around the maximum! give a good
determination ofxmax and T(xmax). Note that this work is
facilitated by the fact that the susceptibility curve maximu
is not too broad. Under these conditions, we have exa
found xmax56.69731022 cm3 mol21 and T(xmax)520.5 K.
We immediately derive thatxmaxT(xmax)/C50.3381, whereC
has been given above. Consequently, asxmaxT(xmax)/C
Þ0.3753, this experimental result confirms that the 2D cl
sical honeycomb structure is characterized by two differ
exchange energiesJ0 andJ. Comparing with the structure o
the compound Mn2~bpm!~ox!2•6H2O depicted by Fig. 1 on
the one hand and the theoretical convention used for des
ing the unit cell on the other hand, one can setJbpm5J0 and
Jox5J. At this step, one must recall that the comparis
between the experimental molar susceptibility per atom
manganese~II ! and the theoretical expression of the susc
tibility derived from our model@cf. Eq. ~17! in which one
considers equal Lande´ factorsG andG8] imposes to renor-
malize the theoretical susceptibility by the factorNmB

2S(S
11)/kB whereN is the Avogadro constant,mB the Bohr
magneton, andkB the Boltzmann constant@the factorS(S
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11), with hereS55/2, comes from the renormalization o
the Lande´ factor#. Under these conditions, if the experime
tal susceptibility is expressed in cm3 mol21, one has
NmB

2S(S11)/kB53.2841. Then, owing to Eqs.~45! and
~46!, which directly give the value of the exchange energ
J0 /kB and J/kB characterizing the 2D classical honeycom
lattice whenT(xmax) and xmax are known, one may derive
Jbmp/kB50.32 K and Jox /kB54.22 K if one imposesG
52mB /\. In this respect, it now becomes easy to verify th
as noticed in Sec. IV B, the experimental determination
T(xmax) with a good accuracy is fundamental and plain
conditions the quality of the results concerningJbmp andJox .
For example, if T(xmax)520.0 K, Jbmp/kB50.23 K and
Jox /kB54.30 K, whereas if T(xmax)521.0 K, Jbmp/kB
50.44 K andJox /kB54.13 K. However, these results sho
that, in all cases,Jox@Jbpm, which is in agreement with the
fact that the oxalato bridge has a greater ability to trans
electronic effects. Indeed, one can recall that, for bp
bridged manganese~II ! complexes characterized by a cha
structure, it has been previously found thatJbmp/kB
51.44 K,10,14~c!,14~d! whereas for ox-bridged manganese~II !
compounds,Jox /kB53.45 K.14~a!,14~b!

Finally, owing to a refined least-squares method wh
allows one to optimize the parametersG, Jbmp, andJox , one
can derive the best fit of the experimental points through
theoretical expression of the susceptibilityx given by Eqs.
~17! and~18! and the productxT. Let us recall thatG, Jbmp,
and Jox ~i.e., J0 and J! are renormalized by the facto
S(S11), with S55/2. These fits are reported in Fig. 7~a! for
xT and in Fig. 7~b! for x ~solid lines!. One can easily ob-
serve that all the experimental points between 2 and 30
belong to the theoretical curve, and we have obtainedG
5(1.99260.002)mB /\, Jbmp/kB5(0.340060.0003) K,
andJox /kB5(4.20060.004) K. Within the experimental un
certainty range, theG value derived from the fit is in perfec
agreement with the corresponding theoretical one,
2mB /\. In addition, the values of the exchange energ
Jbmp/kB andJox /kB are also very close to the correspondi
ones calculated from Eqs.~45! and ~46!, i.e., Jbmp/kB
50.32 K andJox /kB54.22 K. Therefore, one can say th
the theoretical expression giving the susceptibility of the
Heisenberg classical honeycomb lattice allows an excel
characterization of the magnetic behavior of the compo
Mn2~bpm!~ox!2•6H2O. At this step, one can notice that, b
comparing these values with the corresponding ones m
sured for similar ligands involved in chain structures,10,14one
can observe that the strongest exchange energy, i.e.,Jox , is
enhanced, whereas the smallest one, i.e.,Jbpm, is weakened.
This phenomenon can be simply explained by the fact
the two-dimensional character of the lattice favors the e
tronic exchanges between nearest neighbors of the sam
tice row showing the strongest exchange~characterized by
the ox ligands! to the detriment of the lateral bonds showin
the weakest one~characterized by the bpm ligands!.

V. CONCLUSION

In this paper we have generalized a theoretical model
viously published15,16 in which we have set on general met
ods for establishing closed-form expressions of the zero-fi
s
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partition functionZN(0), thespecific heat, the spin-spin cor
relations, the static susceptibilityx, and the correlation
length of a 2D Heisenberg classical square lattice. In
present case we have adapted these methods for derivin
respective expressions of the same thermodynamic functi
for a similar 2D lattice showing a hexagonal unit cell conv
niently described by two different exchange energies. Th
we have achieved a theoretical study of the low-tempera
behaviors: It has allowed us to verify that absolute ze
plays the important role of critical temperature as it occ
each time that the involved spin couplings characterizing
2D lattice are of Heisenberg type.

Near 0 K wehave notably derived the critical exponen
a50, h521, g53, and n51 as for the 2D Heisenberg
square lattice, thus confirming their universal value, indep
dently of the nature of the involved unit cell. Similarly, in th
low-temperature range, we have shown that the productxT
behaves asj1j2M2 where j1 and j2 are the correlation
lengths associated with the infinite horizontal and verti
lattice lines andM the temperature-dependent magnitude
the magnetic moment per unit cell. In other words, in t
low-temperature range, the lattice is composed of qu
independent quasirigid rectangular blocks of lengthsj1 and
j2 and momentM. For noncompensated sublattices,xT be-
haves asj1j2 , i.e., asb2; for compensated sublattices, th
xT behavior appears as a competition between the di
gence ofj1j2 and the evanescence ofM according to a
T-polynomial law which has been derived in each relev
case.

From a practical purpose, as there exit compensated
Heisenberg antiferromagnets, we have studied the maxim
of the susceptibility curve because it gives a nonambigu
characterization of the corresponding magnetic behavior
T(xmax) andxmax are the respective coordinates of the ma
mum of the susceptibility curve andC the Curie constant, we
have shown that the ratioxmaxT(xmax)/C immediately allows
one to say if the 2D Heisenberg classical honeycomb lat
is characterized by a single exchange energyJ or by two
onesJ0 andJ @cf. Eq. ~39!#. If a single exchange energyJ is
involved, we have shown that there is a linear variation
tweenJ/kB andT(xmax) on the one hand as well as betwe
J andG2/xmax on the other hand@cf. Eqs.~37! and ~38!#. If
there are two exchange energiesJ0 andJ, we have obtained
more complicated relations@cf. Eqs. ~40! and ~41!#. But in
both cases, knowledge ofT(xmax) and xmax allows one to
derive the value of the involved exchange energies so
one can simultaneously characterize~i! the isotropic aspec
of couplings and~ii ! the hexagonal nature of the unit cell.

For illustrating this theoretical work we have analyzed t
magnetic behavior of the Heisenberg-compensated antife
magnet Mn2~bpm!~ox!2•6H2O, the structure of which is a 2D
classical honeycomb lattice~cf. Fig. 1!. This new class of 2D
compound is characterized by organic ligands so that t
presence allows one to distance the magnetic ions within
layer itself as well as the layers along thec axis, thus con-
ferring on them a quasi-2D structure characterized by a N´el
temperature very close to absolute zero. We have shown
by fitting the experimental data, the curve obtained from
theoretical expression of the static susceptibility joins all
experimental points in a very broad range of temperatu
whereas so far numerous models have only given appr
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mated descriptions.10 In addition, from the theoretical stud
of the characteristic maximum of the susceptibility curve,
have verified that it is possible to obtain the value of t
corresponding exchange energies. In addition there are
close to the values derived by fitting all the experimen
points. By comparing these values with those measured
similar ligands involved in chain structures, we have o
served that the strongest exchange energy is enhan
whereas the smallest one is weakened. As has been
plained, this phenomenon results from the two-dimensio
character of the lattice. Finally, because of the absenc
experimental data in the very low-temperature domain,
have not been able to derive the critical exponentg. How-
ever, for compensated 2D lattices, if it is possible to obt
these data, one can hope that the fit of the thermal variat
of the static susceptibility will give an excellent method f
deriving the experimental value of the critical exponentg
with a good accuracy.
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APPENDIX

We start from the characteristic polynomial of the ze
field partition functionZN(0) given by Eq.~7!. In the main
text we have evoked a numerical property of the functio
l l , i.e., (p/2b j )1/2I l 11/2(2b j ), which decrease whenl in-
creases, for the same nonvanishing argumentb j . Therefore,
the term of higher degree is obtained when all thel i , j ’s and
all the l i , j8 ’s are equal to a common positive~or null! valuel,
for the whole lattice. Thus all thel and l 8 summations in-
volved in Eq.~7! ~and within which there exist imbricate
integrals over the various spherical harmonics! reduce
to a single one so that the corresponding term
@l l(2bJ0)l l(2bJ)2#N(2N11)l l(2bJ)22. Note that the to-
tal superscript of the latter factor~as well as for each curren
term of the characteristic polynomial! represents the tota
number of bonds composing the honeycomb lattice,
3N(2N11)22.

Now we examine second-rank terms of the characteri
polynomial; notably, the main problem concerns the de
mination of the upper term among all these terms of low
degree. Subsequently, we are led to distinguish the 4N
21) edge bonds characterized by the set$ l ed% of the various
coefficientsl i , j and l i , j8 and the 3N(2N23)12 inside bonds
characterized by thesamecoefficientsl i , j andl i , j8 labeledl in .
The edge contribution is labeledL$ l ed%

ed , and it involves the

product of 4(3N21) functionsl l(2b j ), i.e., 4N functions
l l(2bJ0) and 4(2N21) functions l l(2bJ); the
in-contribution is (L l in

in )N(2N23)l l in
(2bJ)2 with L l in

in

5l l in
(2bJ0)l l in

(2bJ)2. In this respect, note that the ter
of higher degree can be also expressed as the pro
e

ry
l
or
-
ed,
ex-
al
of
e

n
ns

-

s

s

.,

ic
r-
r

uct

(L l
ed)4N(L l

in)N(2N23)l l(2bJ)22, with L l
ed5L l

in5L l in
in , for

l ed5 l in5 l .
At this step one can note that the even or odd characte

the index l characterizing the higher-degree term may
directly derived from the study of the current integralFk1 ,k2

intervening inside the angular subfactor of each term of
characteristic polynomial:

Fk1 ,k2
5E dSk1 ,k2

Yl 1 ,m1
~Sk1 ,k2

!Yl 2 ,m2
~Sk1 ,k2

!

3Yl 3 ,m3
~Sk1 ,k2

!, ~A1!

with, for instance,l 15 l k111,k2
8 , l 25 l k121,k2

, or l k1 ,k2
and

l 35 l k1 ,k2
8 . For the four lattice corners,Fk1 ,k2

reduces to two

spherical harmonics so that there are only four selection r
between the coefficientsl i , j and l i , j8 on the one hand and th
coefficientsmi , j andmi , j8 on the other hand. But more gen
erally, for the in-sites of the lattice,Fk1 ,k2

is given by Eq.

~A1! and can be expressed by means of Clebsch-Gor
~CG! coefficients, i.e., @(2l 111)(2l 211)/4p(2l 3

11)#1/2Cl 1 0 l 2 0
l 3 0 Cl 1 m1 l 2 m2

l 3 m3 . Under these conditions the firs

CG coefficient does not vanish ifl 11 l 21 l 3 is even~or null!
and the second one if

m11m25m3 . ~A2!

Therefore, for the in-sites, there are no more selection ru
over the coefficientsl i , j ,l i , j8 ~which only obey triangular in-
equalities! and themi , j ’s and themi , j8 ’s, respectively. Note
that all these results can be also derived by studying
parity of the associated Legendre polynomials which can
written from the corresponding spherical harmonics@cf. Eq.
~A1!#.

Thus, if l 15 l 25 l 35 l , that implies thatl is even~or null!
for the higher-degree term. In addition, there exist (2N
11)222 equations such as Eq.~A2! for 3N(2N11)22
unknowns mi , j , and mi , j8 so that there are@3N(2N11)
22]2@(2N11)222#, i.e., (2N11)(N21) independent
over Z solutions (. . . ,mi , j ,mi , j8 , . . . ). In other words, in
the most general case, ifl i , jÞ0 and l i , j8 Þ0, the mi , j ’s and
mi , j8 ’s are not necessarily equal to zero~which is the trivial
solution! and, for a finite lattice~i.e., for a finiteN!, there is
no analytical expression for all the terms of the characteri
polynomial showing nonvanishingl values. Finally,ZN(0)
does not show a unique closed-form expression, excep
the thermodynamic limit.

Consequently, in this limit~i.e., for an infinite lattice!, the
zero-field partition function may be written under the gene
form



Z ~0!5~4p!3N~2N11!

1`

~Led!4N~L in!N~2N23!

$m51 l %

1 Led
1`

~L in !N~2N23!

$med51 l ed% $min51 l in%

1•••

PRB 58 11 483THERMODYNAMICS OF THE TWO-DIMENSIONAL . . .
N F(l 50
l l (

$m52 l %
(

$ l ed.0%
$ l ed% (

l in50
l in¹$ l ed%

l in (
$med52 l ed%

(
$min52 l in% G

3 )
k152N

1N

)
k252N

1N

Fk1k2
as N→1`, ~A3!
tio

e
ol

t

nk
an

o-
where the extra factors of argumentbJ characterized by
a superscript independent ofN ~tending to infinity! have
been dropped. In the leader term, the symbolical nota
$m% refers to the 3N(2N11)22 summations over the
mi , j ’s and mi , j8 ’s ~thus recalling that they belong to th
set labeled$m%!. Similarly, for the second term, the symb
$ l ed% or $med% concerns the 4(3N21) summations over
coefficientsl ed or med ~respectively,l ed8 or med8 ) characteriz-
ing the edge bonds~and belonging to the set labeled$ l ed%
or $med%), whereas the symbol$min% refers to the
3N(2N23)12 summations over the coefficientsmi , j and
mi , j8 characterizing the inside bonds~and elements of the se
s
l

e

n

labeled$min%). The ellipsis~representing the terms of lower
degree! is made of a product of 3N(2N23)22 functions
l l(2b j ), j 5J0 , or J, with different coefficientsl. If the l’s
are equal for a given argumentb j , the highest value of the
corresponding superscript is at most equal toN(2N11) if
j 5J0 @respectively, 2N(2N11)22 if j 5J]. If that case
occurs, the other contribution of argumentbJ ~respectively,
bJ0) giving the higher-degree term of these second-ra
factors is characterized by a superscript lower th
2N(2N11)22 @respectively,N(2N11)], theother factors
of similar argument being characterized by a mixture of c
efficientsl.
-
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16~a! J. Curély, Physica B245, 263 ~1998!, and references therein;

~b! Physica B~to be published!; ~c! J. Curély and J. Rouch,
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