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Thermodynamics of the two-dimensional Heisenberg classical honeycomb lattice
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In this article we adapt a previous work concerning the two-dimensi@i)l Heisenberg classical square
lattice [Physica B245 263 (1998] to the case of a honeycomb lattice. Closed-form expressions of the main
thermodynamic functions of interest are derived in the zero-field limit. Notably, near absoluté.eerthe
critical temperaturg we derive the values of the critical exponents 0, »=—1, y=3, andv=1, as for the
square lattice, thus proving their universal character. A very simple model allows one to give a good descrip-
tion of the low-temperature behaviors of the prodydt For a 2D-compensated antiferromagnet, we derive
simple relations between the characteristics of the maximum of the susceptibility Tiryg) and xmax and
the involved exchange energies. Therefore, owing to the knowleddé af.,) and xmax, One can directly
obtain the respective values of these energies. Finally, we show that the theoretical model allows one to fit
correctly experimental susceptibility data of the recently synthetized compougfn (ox),-6H,O charac-
terized by a 2D classical honeycomb latticghere “bpm” and “ox” are the abbreviations for the ligands
bipyrimidine and oxalate, respectivelyS0163-182¢08)04434-§

I. INTRODUCTION statg within each layer perpendicular to the hexagonal
axis® Magnetic susceptibility measured by Akimitsa al®
For three decades low-dimension@w-d) physics has on a single crystal as well as that on a powder sample by
known important advances and, more particularly, the subStickleret al.” shows no anomaly at the Nletemperaturd
branch of lowd magnetisnt. The reasons for such a strong determined from neutron diffraction measurenfiemtd a 2D
interest have multiple origins. In a first step, a lot of theoret-Heisenberg antiferromagnetic behavior abdyg Unfortu-
ical works have been published for interpreting the static anchately, more recently, Yamaucki al® have pointed out that
dynamic properties of one-dimension&lD) and two- this behavior is strongly perturbated by the presence of mag-
dimensional(2D) magnetic materials and, more generally, netic dipole interactions between the #rions, thus leading
the critical phenomena appearing in such systems. The maxia fact to a global magnetic anisotropy. The aim of the
mum effort was attained in the 1970s, but this level hagresent article is to examine a new class of 2D honeycomb
remained about constant since then, notably due to the recelatttices in which organic ligands are inserted between the
progresses in molecular chemistry with respect to the synthenagnetic ions so that, by distancing them, it allows to confer
sis of new 1D and 2D compounds. In a second step, from tha highly 2D magnetic behavior.
middle of the 1980s, the discovery of layered copper oxide In recent works it has been shown how the polymerization
compounds showing a highs superconductivity as well as a through bis-chelating ligands such as '2ifpyrimidine
2D antiferromagnetic behavior has still accentuated the ini{bpm) and oxalatgox) using suitable precursors as building
tial interest? blocks provides a new strategy to design novel honeycomb-
The prototype of 2D lattices is the well-known,iF,  layered material$l°® For example compounds of formula
compound Let us recall that its structure can be considered M,(bpm)(ox),]- nH,0, with M=Mn(ll) (n=6) and Cull)
as being derived from the cubfperovskitg¢ KNiF; structure  (n=5) exhibiting local spins of associated quantum numbers
by the addition of an extra layer of KF between the NiF 5/2 and 1/2, respectively, show magnetic isolated sheetlike
sheets so that, by this simple fact, a 3D antiferromagnetistructures(the shortest interlayer metal-metal separation be-
lattice is transformed into a magnetic layer structure characing larger than 6.5 Ain which the spin carriers are bridged
terized by a square unit cell. Of course, a lot of compounddby bis-chelating bpm and ox groups forming ring-shaped
showing a different unit cell structure have been synthetizethexamerg(Fig. 1). Given that both bpm and ox have a re-
and studied. In particular, among these specimens, MnJiO markable efficiency to mediate a relatively strong antiferro-
has been early investigatdhis compound is characterized magnetic coupling between metal ions separated by more
by an ilmenite structure in which the Mh and Tf" ions  than 5 A% alternating antiferromagnetic interactions are
occupy alternated hexagonal layers and?Mnayers are expected to occur in these compounds. In addition, due to the
separated from each other by two oxygene and orfé Ti presence of the magnetic ions MIn and Cull), one may
sheets. From a magnetic point of view, it has been showexpect that the magnetic behaviors of these alternating mag-
that the Mrf™ spins are directed antiparalléh the ground netic planes will be correctly described by that of an alter-
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behavior of the static susceptibility for three fundamental
reasons.i) The low-temperature study of gives a good
idea of the mechanisms which are involved in the construc-
tion of the 2D arrangement; notably, we shall show that a
very simple model can allow one to describe the various
behaviors of the producgtT. (i) For 2D-compensated anti-
ferromagnets, we shall point out that, from the study of the
characteristic maximum of the susceptibility curve, one can
directly derive the respective values of the involved ex-
change energiegiii) The possibility of interpreting experi-
mental susceptibility data obtained on 2D Heisenberg classi-
cal honeycomb lattices recently synthetiZ&boffers a very
important opportunity for testing the validity of the theoret-
ical model. In particular, we shall focus on the compound
Mn,(bpm)(ox),-6H,O where the involved quantum spins
(S=5/2) are assimilated to classical ones. Therefore, under
these conditions and owing to the preceding remarks con-
cerning the deep nature of the involved exchange couplings
in such materials, we shall show that it allows one to fit
correctly the experimental susceptibility curves in a wide
range of temperature.

nating magnetic honeycomb-layered lattice through a 2D

Heisenberg model. More particularly, if the lattice is com- Il. THEORETICAL MODEL

posed of ions M(l), the associated spin moments can be ) _

assimilated to classical ones and the formalism used very A. General considerations

recently for a classical square lattice can be employed The previous theoretical works concerning 2D Heisenberg

through an adequate adaptatiori® classical square latticEs'® can be easily extended to the
In the first version of this theoretical wofR,each host case where each horizontal litrespectively, vertical ronis

site among the (R+1)? sites(i,j) of the square lattice car- described by a sequence of alternating exchange enelgies

ries a classical spin moment and the isotropic exchange codmdJ;, (respectively,) andJ;), with one of the four energies

plings between nearest neighbors are characterized by the J5, J, or J; showing a vanishing value. Then, under

associated exchange energizsand J, for the horizontal these conditions, the lattice is composed of hexagonal unit

and vertical lines, respectively. More recently, a completeg|is[see Figs. @) and 2b)]. Therefore, if each moment is

study has detailed the case of finite or infinite Heisenbergymitted to an external magnetic fi@dapplied along the

classical square lattices characterized by two types of eX5xis of quantization, the corresponding Hamiltonian may be
change energies per line and rdwin a first par;®® the  \yritten in the most general case:

closed-form expression of the zero-field partition function in

® M = Mn(II), Cu(IT)

FIG. 1. Crystal structure of compléd,(bpm)(0x),-6H,O: view
of a sheet perpendicular to tlg plane(hydrogen atoms and water
molecules have been omitted for clajity

the thermodynamic limit has been rigorously established. N—1 N—1 N N
Moreover, it has bgen shown that absolute zero_plays the H= D 2 H?,)j”r_ s 2 Hir?jag’ 1)
important role of critical temperature so that the critical do- i=—N j=—N iZ—N j=—N

main is quasi-infinite. In other words, for nonzero tempera-

tures, there is no long-range order and the quantum fluctuawith

tions play a major role, thus favoring the short-range order;

at T=0 K, rigorously, a stable Io_ng-range order appears due Hie,)j(:[Jési,j—1+303,j+1+33|+1,j+313|—1,j] ‘S

to the fact that quantum fluctuations become negligible. In a

second part®® the specific heat, the spin-spin correlations,

the static susceptibility as well as the correlation length for

an infinite lattice have been derived. Notably, owing to the

low-temperature study of their respective closed-form exwhere

pressions, it has allowed one to calculate the value of the

critical exponents, i.eq¢=0, 7=—1, y=3, andv=1. In the Gj;=G if i+j even, G;;=G’' if i+]j odd. (3)

present article, by transforming the square unit cell into a , )

hexagonal one, we are going to show that it is possible to,; IS thez component of the classical vector operay

adapt the previous theoretical results to the case of a honefssociated with the site labeléd) (the spin quantum num-

comb lattice; in particular, that will permit one to derive the berS; ; is large enough fof S¢; ,S!;] to be negligible com-

same analytical values fax, 7, y, and v, thus confirming pared toSfij{j , the classical spin approximatipiG andG'’

their universal character whatever the unit cell structureare the associated Landactors and characterize the mag-

More particularly, we shall recall that the resuk= 1 allows  netic ions of the unit cell. In addition, in our writing>0

one to underline the major role played by the quantum flucdenotes an antiferromagnetic coupling.

tuations in the critical domain. The patrtition functionZy(B) of the spin lattice may be
Thus, in the present work, we shall mainly focus on thedirectly written as

HM%= -G, |S7B, )
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FIG. 2. (a) Structure of a 2D lattice composed of classical spins and characterized by a square unit ¢ellteartsformation of the
square unit cell into a hexagonal offeoneycomb lattice

volving classical spins belonging to a same lirgf the layer
ZN(B):J dst,fN"'J’ dSi,j"'f dSu,n (e, Sj-1, Sj+1, and §;) or to a same rowj (i.e.,
S-1j, S+1j, andS ). In fact, for each of the four contri-
butions (one per bond connected to sp;), we have to
expand a factor such as exphS;-S,) where A is
B4, Blo, BI, or BI; (S, and S, are considered as unit
(4 vectors. If we call ©,, the angle between vecto& and
w_here,Bz;/_kBT is the Boltzmann _facto(’npt to be confu_sed \%,riarglseze(gl\ﬂf)’ (;rr\]zra(gf:lbz;)ad i? %Stgisi?;gliz fosgr?(;j lar
with the critical exponenB,). At this step it must be noticed xp(—A cos®, ,) on the infinite basis of spherical harmon-
that the calculation of the field-dependent partition function
Z\(B) is plainly more complicated because of the presence
of the further termH{"" in the exponential argument, for

T 1/2
S?[::Ck;esne(u) This aspect will not be examined in the present exp — A 0051,2)=47TE (ﬂ) ey —A)
=0

N—-1 N-1
><exp( [2 2 (H‘9X+Hmag)+Hmag

+ o0

B. Evaluation of the zero-field partition function
X
of an infinite honeycomb lattice 2 Y m(sl)Y' m(S2), ©)

If we consider Eq(4) in the zero-field limit, the Hamil-  where thel|, ,,,(—A)’s are modified Bessel functions of the
tonian involved in the exponential argument is thus reducedirst kind and whereS; and S, symbolically represent the
to the exchange oride’; because of the presence of classi-couples (91,¢1) and (6,,¢,). Let \| be the radial factor
cal spin moments, all the operatorl’ commute and we [note that if j is the corresponding exchange energy,
have Ni(—Bj) is the modified Bessel function of the first kind,

l1+12(— Bj) multiplied by the factor ¢/28j)Y3. Subse-
quently, one can note that each local operator eﬁbﬂf}‘) is
N1 ONTL ~tontd finally expanded on a basis of eigenfunctiditse spherical
ex —/3’__2_ ,E_N HE | = H ,HN exp(— BH{). harmonic$, whereas the\,'s are nothing more than the as-
o = (5) sociated eigenvalues. Under these conditions and for the gen-
eral lattice described by Fig.(&®, the zero-field partition
Moreover, the particular nature bl‘eX allows one to separate function Zy(0) directly appears as a characteristic polyno-
the contributions corresponding to the exchange coupling inmial and may be written as

Zy(0)= <4w>4N<2N+1>E Ny o (— ﬁ%)E INTENG-NESIR D) M7 B%)

N I-NN-
+IN,—N +|l,\l,—N FloNN-1
XX > XX > H H Jd& kY ek, M Hlk(& k)
MmN, -N=~IN,—N my =T MonN-1="1-nN-1 K1= =N k=~
* *
XY e 1Sk k) IklYkz,mklvkz(skl,kz)Yul'kz'm’l‘kz(skl,kz)- (7)



11 468 JACQUES CUR;IEY, FRANCESC LLORET, AND MIGUEL JULVE PRB 58

Site (i+k,j+k) Case II Site (i+k,j+k')
Sy
WHH HE
i 1 1 [ —
e I
R B
1, T _\
Site (ij) Site (L.j) M Casel
(a) (b)
Site (i+k,j+k')

Site (i,j)
Case III

(©

FIG. 3. (a) Description of the lattice sites arid) and(c) examples of correlation paths for a honeycomb lattice composed of classical
spins isotropically coupled.

Therefore, in a second step, a global work of integratiorsively characterize the angular factor.

must be achieved over all the angular variables characteriz- Due to the fact that the construction of the polynomial
ing all the states of the classical spins belonging to the wholgtructure ofZy(0) is quite analogous to that one previously
lattice. Thus, by expanding all tHesummations in Eq(7),  detailed for the 2D Heisenberg classical square latfi¢é?
Z\(0) can be considered asNg-polynomial expansion in e have recalled it in a separate appendix. More particularly,
which each term is composed of a product of radial factorsye briefly show that, for a finite honeycomb lattice, the zero-
A and angular one§ «/ characterizing each lattice site fie|q partition functionz,(0) does not have a unique expres-
(K,K") whereFy k- is the current integral. Note that, in the gjon so that the analytical problem is unsolvable. However,
formal writing of Eq.(7), the number of spherical harmonics o 5 physical point of view, the most interesting situation
represents the total number of bonds characterizing each sitg.c,rs \yhen the lattice becomes infinite, i.e., in the thermo-

In other words, for the honeycomb lattice, one or two Spherl'dynamic limit. Therefore, using the numerical argument con-

cal harmonics must be replaced by unity according to ; e - ;
i . cerning the classification of the various eigenvalies we
whether the corresponding sit&K(K’) has three or two 9 9 e3

o ) o . have established the beginning of the polynomial expansion
bonds with its nearest nelghbo(ng-sne or edge site Con- f Z,(0) [see Eq(A3)]. At this step, due to the hexagonal
sequently, from now, we take into account the hexagon

h f th it cell b L 43— tructure of the unit cell, the work of integration over the
character of the unit cell by assumidg=J andJo=0[s€e 5 jar variables differs and must be thoroughly detailed. Of
Figs. 4a) and 2b)].

) . L course, it is plainly influenced by the new structure of the
_For expressing the beginning of the characteristic polynoy it cell. Thus the lattice can be considered as the juxtapo-
mial given by Eq.(7), we use a numerical argument which

X , sition of rectangles linked horizontally with the nearest-
has bﬁelga)prewously employed for the classical squar§eighnhor rectangles by the middle of their vertical sifee
lattice: ™ For nonzero temperatures and for & same arguriq " 3)]. Therefore, the horizontal edges as well as all the
ment 3|j|, the functionsh,(]j[) defined above rapidly de- gher horizontal in-lines are made of square zigzags, whereas
crease wheih increases. Consequently, this is the radial fache vertical ones are continuous lines. Under these condi-
tor involving the product of functionsk; which is  {ions the main difference with the square-lattice structure
preponderant and allows a classification of each term in thgphears for the treatment of the horizontal lines, which can
A-polynomial expansion a(0). Theangular factor com- e then considered as the particular junction of two consecu-
posed of a product of integral - only intervenes in this  tjye horizontal lines of the previous square lattice.
expansion by.the bias of a numgnca! coefficient which does  a¢ the beginning of the integration work, one can start at
not play a major role. Therefore, in this framework, when theyhe four infinite lattice edges simultaneously. Indeed, for
total radial factor is known for each term of the characteristiGhese sites. the integetsand |’ concerning the horizontal
polynomial, i.e., when the current integeligy, and e k! ~ zigzag edgesrespectively|’ for the vertical onescan be
have been chosgn for the vyholg Iattlcg, the global integratioghosen independently with respect to h&s (respectively,
process concerning all the imbricated integfals, leads to  |'s) characterizing the in-bonds linked with the correspond-
the determination of integersy k- and m,’<’K, which exclu- ing edge because they are exclusively shared between con-
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secutive edge sites. Then, after having achieved this choice, Consequently, using the preceding remark concerning the
the work of integration concerns the other infinite in- numerical property of functions, andX\,., the contribution
horizontal zigzags and in-vertical rows which are closer ando the higher-degree term of thg-polynomial expansion of
closer to the lattice heart. In this respect one must note that, (0) is obtained when all the integerand|’ are equal to
each new horizontal zigzag or vertical row behaves itself likeg common positivéor null) value; notably, its upper value is
an edge. For illustrating this property let us consider the tWQyerived forl=1'=0 (m=m’=0). For the highest value of
types of sites appearing in the hexagonal structure. If the sitg,e second-rank term, one also considers that all the in-bonds
(K’K') belonging to.the horizontal mggalg shows a left are characterized by vanishing coefficieiitsand I, (and
horizontal bond, _the mtegeth,__l andlyc, ., are s_hared subsequentlyn,, andm;)). In that case, among all the edge
by two consecupve sites belonging to th? sa,me Z|g'zag anﬁjnegrals those containing three spherical harmonics are re-
can be chosen independently from the third g, which  4,ced to a product of two spherical ones due to the fact that
characterizes the vertical bond connected with the similagne spherical harmonics characterizing the corresponding in-
following horizontal zigzadk — 2. If the site K,K") shows a  pond reduces to unitjsee Fig. 8)]. Thus we derive that,
right horizontal bond, for example, the intedgr. . is - inside each edge, after integrating over the angular variables
ready determined by the integration over the preceding horimyolved in each current integrély ¢/, the edge integers
zontal zigzagk +2; the remaining integer - andly .,  and |’ (respectively,m and m’) are equal to a common
are shared by two consecutive sites belonging to the samglue. Moreover, due to the fact that, at the four lattice cor-
zigzagK and can be chosen independently frq’le, [see ners, the current integral only contains two spherical har-
Fig. 3(@)]. Note that for the vertical rows each site is alwaysmonics characterizing two consecutive edges, we globally
characterized by two vertical bonds and a single horizontashow that all the edge coefficientand!’ (respectivelym

one; in all cases, the integdss, , ., andl, ., can be chosen andm’) are equal to a common positive vallig (respec-
independently from .1 (if the site shows a left horizon- tively, mey. Consequently, in the thermodynamic limit,
tal bond or I - (if the site shows a right horizontal bond  Zy(0) may be written as

AO N(2N+1) + {m=+1} +N +N
Zp(0)~ (43NN [—3J + 2, (AN X I T R g(m)
(4) =2 (M=—1} kj==N ky=—N

Alb | N@N-3) +oo Afi 4N
+{(4ﬂ_)3} El (2|ed+1){(4ﬂ_)3] te

leg=

as N— + oo, (8)

where 1/4r and F(m) are the current values of integral g|j|, the function\,(3|j|) rapidly decreases wheh in-

Fk k' [for m=0 and for each current value af belonging  creases. WheN tends to infinity, i.e., in the thermodynamic
to the set{m} in the leader term; note that this symbolical |imit, the quantities \;/Ao)N®N*D and (A9/A)*N rap-
ed

noFa-tion concerns tbeN{ZN+ 1)-2 summatiqns over co- idly vanish so that the second part of the higher-degree term
efficientsm; ; andmy j]. The factor 24t 1, which appears  ang the upper limit of the second-rank term in E8) be-
in the second-rank term, is due to the summation augf  come negligible with respect to unity as well as the nonana-
achieved for each edge site and characterizes the degeneragycal terms represented by the ellipsis, which are of lower
of the corresponding eigenvalug . The factorsAq, A, rank. ThereforeZy(0) finally has an analytical expression
Ag, and Afﬁd represent the product,(—BJo)\(—BJ)%,  and may be written
with =0 for A and Al, 1=2 (and evehfor A, l,=1
for A%, As for the terms represented by the ellipsis they are

e P T e Zu(0)~ho(— BIghg(— BTN as N+

constituted by a product of functions(— Bj) (with j=J, 9)
or J) in which most of these functions describing the in-
bonds are characterized by different coefficidatdl. In ad-
dition, one must note that these terms do not have a uniqu@ne can note that this result appears to be independent of the
analytical expressiotbecause of the undetermination of co- chojce of edge coefficientsand!’ used at the beginning of
efficientsm andm’ which characterize the final angular fac- {he integration process, thus confirming the fact that edge
tor; see the Appendjx _ _ effects are negligible in the thermodynamic [liffif

If one factorizes the term\, in Eq. (8), ratios appear, Finally, it has been showf? that, even af =0 K, the pre-
such asAj/Ao and Af/A, [in fact, ratios such as ceding reasoning prevails: For infinite arguments all Xhe
M(BliINo(Blj1)], which are always lower than unit§in ~ functions have the same asymptotic behavior whatdver
absolute valuedue to the fact that, for the same argument=1, i.e., explj|)/8lj|, so that all the terms of the character-
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istic polynomial given by Eq(7) become equivalent to the C. Evaluation of the specific heat of an infinite
corresponding higher-degree term obtained for vanishig honeycomb lattice
and 1"’s, i.e., [Ao(—BIo)ho(—BI)ZNENTD In other At this step one can note that, owing to the exact knowl-

words, when the square unit cell is transformed into a hexedge of the zero-field partition functiafy(0) in the thermo-
agonal one, at 0 K,Zy(0) is directly proportional to dynamic limit and the correlative definition of the specific

[No(— BIo)No( — BI)ZINEN*D Of course, this particular N€atCn,
aspect also prevails for all the thermodynamic functions de-

rived from Zy(0). Indeed, these functions are characterized & In Zy(0)
by a fraction the denominator of which is precisely(0) Cn=kgf3? — (10
and the numerator a derivative @f,(0) with respect to the B

parameteB = 1/kgT (specific hegtor to the external applied
field B, expressed in the vanishirgdimit (spin-spin corre- one can directly derive the specific heat per $ifg, C, in
lation, susceptibility. Therefore, they are independent of the terms of hyperbolic functions:
factor of proportionality appearing iB\(0). Thus this very
particular case will not be considered in the present article 131 B 2 BJ 2
because its mathematical treatment is similar to that used for B2 2 Sinf(—,BJo)) - sinh(=BJ)
nonvanishing temperatures, in the thermodynamic limit.

Finally, one must notice that the result given by E).is as N— +o. (11)
very close to that obtained by Fish&for an open classical
spin chain. By assuming,=0, one finds again Fisher’s re- The study of this quantity will not be detailed in the present
sult, whereas ifJ=0, one retrieves the zero-field partition article, but in the next subsection, Sec. Il A, we shall deter-
function of N(2N+ 1) dimers, as expected. Moreover, as for mine the associated critical exponenin the general discus-
the 2D Heisenberg classical square latli#8,2,,(0) appears sion concerning the low-temperature behaviors, i.e., near the
as the product of the zero-field partition functions, respecCrltlcal point.
tively, associated with the horizontal linédimer9 and the
vertical rows(spin chaing which compose the latticéheo- D. Evaluation of the spin-spin correlation for an infinite
rem 1). Note thatZy(0) can be also seen as the product of honeycomb lattice
the zero-field partition functions of horizontal square zigzag
chains and vertical dimers, respectivélyis result has been ~ Due to the isotropic aspect of couplings, the three spin-
previously justifie?® by the fact that we mainly deal with spin correlations (S S, i) (S s)» and
classical moments isotropically coupled, which constitutes &S’ | |+kJ+k,> are equal; for simplifying the various calcu-
generalization of the corresponding theorem 1 obtained for dations, we are exclusively going to focus on theZ spin-
square unit celf® spin correlation, which may be defined as

(477)3N(2N+l)

(s} .+k,+k,>—W|E Ny (7B 2 Ny (BIX X 2 N (= BIp)
N.=N N-N

l-N.N-1
+IN—N +IN - N tlonN-1
X oo X 2 2 X oo X

my,-N= ~In,— N mp =

—

II

m_onyN—1= " NNo1 K =— -
I,\I _N N,N—1 N,N-1 K1

* *
fdsk ko Xky ko, Y1 (S ) Vi - 1ome 1Sk Vi om (S Y (S kg

ke + 1k My 1k, RLLAS

(12

with

Xi, k,=C0S Ok, [(Kika)=(i,]),  (Kykp)=(i+k,j+k')],

=1 [(ky,ko)#(0,]), (K, kp) #(i+k,j+kK], (13
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and whereZy(0) is the zero-field partition function given by ferent values and has no analytical contribution, as the cor-
Eqg. (9). As for the formal integral expression @§(0) [cf.  responding one of the polynomial expansionZgf(0) (see
Eq. (7)], note that, in the analogous writing of the spin-spin Appendiy. However, in the thermodynamic limit, these
correlation, the spherical harmonics characterizing the nonterms become negligible with respect to the higher-degree
existing bonds must be replaced by unity. one.
In a preceding articié” we have detailed the calculus of  Therefore, several conclusions may be deriv@din the
the spin-spin correlations for a 2D Heisenberg classicajhermodynamic limit, only the higher-degree term of the
square Iattic_e. Notably, dge to the grgat similarity bet"veerbolynomial expansion of the-Z spin-spin correlation nu-
th? respective polynomial expressions @y(0) and  merator (characterized by vanishing coefficients | afidis
<$vjslz+k,i+k’> [here given by Eqs(7) and (13)], we have  gojacted so thalS’;Sf, ;1) appears to be independent of
depved that_the\|—polynom|a| expansion of thé-Z spin- the choice of edge coefficien@,,l as expected; (ii) the cor-
spin correlation can be evaluated owing to the same mthO%Iations between sites (i,j) ar@-+k,j + k') are exclusively
Wh'(f‘h has Ied_to the clos_ed-form Expression of_th_e Zero'f'e'qjlchieved owing to paths constructed by means of bonds be-
partition functionZy(0), in thethermodynamic limit. How- |, 4ing 16 the correlation rectangle and independently of the
ever, we have noted that, because of the presence of extf. ctangle sizetheorem 2 or the confinement theoem
terms cosf k- at sites K,K')=(i,j) and (+k,j+k'), itis
necessary to distinguish the sites belonging to the “correla-
tion rectangle” constructed between sit@$), (i,j +k’), (i
+k,j+k’), and §+k,j) and those belonging to the remain- 2. Contribution of the “correlation” domain to the spin-spin
ing part of lattice called the “wing domain.” Therefore, the correlation for an infinite honeycomb lattice
results derived for a square unit cell can be easily transposed As expected, the heart of the reasonigncerning the
to the case of the hexagonal one. in-sites belonging to the correlation rectangteainly de-
pends on the lattice unit cell structure. At this step one can
recall that, as the wing domain, the correlation rectangle is
1. Wing contribution to the spin-spin correlation for an infinite ~ composed of horizontal square zigzags and vertical continu-
honeycomb lattice ous rows. Subsequently, it becomes necessary to detail the

For all the sites belonging to the wing domain and as forspecmc work of integration for a honeycomb lattice, inside

) . ; S ~_“the correlation rectangle. In the most general dase Fig.
Zn(0), thework of integration begins at the infinite lattice : R . o
edges. At this step it is necessary to choose intelgansl |’ 3(@)], atsite (+k,j+ k') [respectively, at sitd )], there are

. three bonds and the corresponding intedfal c.—which
for the edge bonds, independently of the current dpesnd contains the extra term cRy, Le. 2(/3) 2

l;, characterizing the in-bonds. After that, one may considerYlo(SK «)—is composed of four spherical harmonics. How-
the other infinite in-horizontal zigzags and in-vertical rows inevér it one uses the decomposition law of the product
the direction of the correlation rectangle. Due to the preced-__

d P COSGK,K’YLK’K/,MKYK,(SQK’) VerSUSYLK’Kﬁl,MK’KV(SK,K’) and

ing work of integration, they behave themselves as edge zig- h ) ;
zags or vertical lines as has been explained above during th K,Kf*lyMK,K/(SK,K’)’ whereYy, My (Sckr) is one o
calculation ofZy(0). In thethermodynamic limit, the upper the three spherical harmonics involved ik k', Fi k' is
“wing contribution” to the \;-polynomial expansion appear- finally made of two terms, each of them showing a product
ing in the numerator of th&-Z spin-spin correlation is also ©of three spherical harmonics. However, due to the “wing”
obtained when all the coefficienkg are equal to a common contribution (evaluated in the thermodynamic limitvhich
valuel;,=0. Consequently, the edge integrals reduce to thémposes a vanishing coefficiehbr |" for the bonds linked
product of two spherical harmonics and it allows one to deWith the edges of the correlation rectandte k- reduces to
rive that all the current edge coefficierlig are equal to a two spherical harmonics. In fact and as expected, the choice
common positiveor null) value. In this respect, one must be 0f the remaining coefficientsand!’ is mainly conditioned
precise about an important point which is a direct conseby the position of sitei(+ k,j +k”) [respectively, sitéi,j)] in
quence of the imbricated character of integrBilsy, de- the hexagonal unit cell considered as a rectangular see
scribing all the spin statements: All the bonds belonging tdFig. 3@)]. For simplifying the discussion let us consider site
the wing domain and connected with the edges of the corred +k,j +k’). If this site is characterized by a vanishing left
lation rectangle are characterized by vanishing coefficienttond (J,=0), one has automatically;, .+ —1=0 and
l;» and /. This result is obtained without achieving the in- lj+j+x =0 due to the infinite wing contribution so that one
tegration work over all the infinite zigzags and rows whichhas to determinq’+k+1’j+k, andli’+k’j+k, . As for the square
cross themselves inside the correlation rectqngle.' As fqr thenit cell, there are two possible ChOiCd$#k+1j+kr:1a
upper value of the second-rank term, there is a slight differ; - —0orl’ -0 —1. due to the cumu-
: : : ik, j+ k! ikt 1tk O likjrk =

ence with respect to the corresponding one obtained folr‘ Sl 1 )

. " ative product of functiona (= B8Jg) and\,.(— BJ) charac-
Zn(0) and characterized by all this and thel'’s equal to a - P . o .

) . terizing the infinite horizontal zigzagt k. If there is a left

common valuel >0. As seen in the Appendix, the current & .
) S oo bond Jy#0), one hasli ;=0 (no right bond and
integral Fy «» does not vanish if is even. But at site§,)) X —0 due to the infinite wi tributi That
and (+k,j+k"), Fgx ks contains the extra term c@g THk1j+k ™ ue to _e infinte wing ?on ribution. Tha
and vanishes if all thés are even. In other words, the only ime one has to determinle, ;. -y andli, ;. ; forthe
nonvanishing contribution of the second-rank terms is charsame reasons just evoked above, there are two possible

acterized by a mixture of coefficientsand|’ showing dif-  choices Ii+k,j+k/_1=1,Ii’+kj+k,=0 or liykjrk-1=0,
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Ii’+kyj+k,:1, In other words, there are two possible begin- Of course, a similar rt_aasoning may be.done. if one cqnsid—

nings for the correlation paths, as for the infinite squarees that the upper horizontal edd® which site (+k]

lattice 1518 consequently, it becomes necessary to detail the” k") belongg is fixed. Under these conditions the correla-

general process of integration. tion path appears to be constructed by means of the respec-
At this step one must notice that, due to the lattice sym/iV® upPer and left edges of the correlation rectafgée Fig.

metries and as observed fdg(0), thework of integration 3(b),.case II. Moreover, to not compliqate the .p're.zsent .d.is-
gussion, we have not considered a third possibility: mixing

inside the correlation rectangle can be achieved according tboth preceding methodsee Fig. &), case Il Finally, one
two equivalent processes, i.e., starting from siterK,j can note that, as for the squére iatﬁﬁ@ if.one or’both

+k’) for going to site(i,j) (and reciprocally or starting si- site(s) belongs) to the lattice edg@), the .
o A . : preceding reason-
multaneously from siteg,j) and (+k,j+k’) in the direc- 0 yrevails too so that it keeps a general character.

tion of thg lattice hear.t. Before beginning tnis yvork let us |, conclusion, one can say that, due to the fact that the
recall an important point. In the wing domain, it has beencorrelation rectangle is always swept in the same direction,
observed that, due to the work of integration on the precedie integration process leads to the determination of coeffi-
ing horizontal zigzags and vertical rows, each new zigzag ogjents| and|’ characterizing horizontal zigzags and vertical
row behaves itself like an edge. This aspect also prevails foflows closer and closer to the lattice heart so that one cannot
the zigzags and rows crossing inside the correlation rectanglgo backwards, thus forbidding the possibility of finding
and not yet taken into account by the integration work insideclosed paths of correlatiofi.e., loops. All the preceding

the wing domain. results constitut¢heorem 3 Due to the infinite wing contri-

For simplifying the discussion without losing its general bution, (i) all the paths are equivalent inside the correlation
character, let us suppose that integration starts at site @domain; i.e., they show the same length (which is the shortest
+k,j+k’), withi=0, j=0, k>0, andk’ >0; note that, from one for going from one site to another one) and involve the
now, the position of sitei(+k,j+k’) characterized by the Same number of similar bonds whatt_aver the chosen path; (ii)
presence or the absence of a left bond has no importance {Re number of these bonds can be simply measured along the
the following reasoning. As shown for the square lath®, horizontal and vertlpal sides of the correlatlon rgctanglg, for
there are two possibilitiei) The vertical rowj +k’ is fixed, ~ the honeycomb lattice structure described by Fig. 3(ajis
and integration concerns infinite horizontal zigzags betweef€SUlt constitutes a generalization of a similar t'g(t;fge}zéorem de-
sites (+k,j+k’) and(i,j). At this step one can notice that nveq for th_e 2D I_-|e_|s_enberg C|8..SS.Ica| square_la -
one must consider horizontal zigzags, the structure of which Finally, in the infinite-attice limit, theZ-Z spin-spin cor-
is imposed by that one of the starting edge containing sitéelatlon may be written as
(i+k,j+k"), due to the fact that one must respect the hex- 1
e_lgonal unllt cell structure(n) Thg no_nzonta! zigzag+Kk is <Szjslz+kj+k,>~ - (UU)|k’|v\k\’
fixed, and integration concerns infinite vertical rol/s such ‘ ' 3
asj<K'’'=j+k'. Of course, we are going to show that both
methods lead to the same resullt. |k| even or odd,

In a first step let us consider that rgw- k'’ is fixed. Each
new infinite horizontal zigza$ showing the same geometri- 11 )
cal structure as that of the starting edgek behaves like an (S ki)~ 3 5 (uv) Ky,
edge; the cumulative product of eigenvalugé— BJ,) and
(= BJ) imposes vanishing coefficientsandl’ character-
izing all the bonds of zigzadK, except for the coefficients
lj+k» Which are equal to unity. When one arrives at the
lowest edge of the correlation rectangle to which sitp (S S, >~E U(UU)\k’\v\k\
belongs, all the vertical in-bonds are characterized by van- ATk K3 '
ishing coefficientd’ (except at rowj +k’), whereas all the
vertical out-bonds are also characterized by vanishing coef- |k| even or odd,k’ odd (k’<0), as N— +,
ficientsl’ (due to the wing contribution At site (i,j) and for (14)
the lattice configuration described by Figbg the integral _

Fi; is reduced to the product c@s Yﬁj m,(S.;), whereas whereu andv are given by

at site {—1,j+k'), i.e., at the right lower corner of the _r ]
correlation rectangleF;_, ;. contains a similar product u=L(=Bdo).

YaidS-1j+k) Y1y e ogm g0 1 (S-1jw) due o the  on g \wherer(— gj) is the well-known Langevin function.
preceding work of integration. For the other edge sites each
current integraF - reduces to the product of two spherical
harmonics characterizing consecutive vertical and horizontal
bonds. Consequently, these integrals do not vanish if all the
edge coefficients are such hg=1, m,s=0. In other words, Due to the isotropic aspect of couplings, the static suscep-
the correlation path is nothing more than the respective rightibilities x,x, xyy, andx,, are equal and labeleg; conse-
and lower edges of the correlation rectangdee Fig. &), quently, the static susceptibility per site can be defined ow-
case |. ing to theZ-Z spin-spin correlations, i.e.,

k'| even,

|k| even or odd,k’ odd (k’'>0),

v=L(—BJ), (15

E. Evaluation of the static susceptibility for an infinite
honeycomb lattice
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N N we are mainly going to focus on the behaviors of the product
x=p E E G, JG,+kJ+k/< ¥ |+kJ+k’>- (16) xT. For practical purposes its value will be considered nor-
k==Nyk=-n malized to the infinite-temperature val(tbe Curie constat

note that the dynamic susceptibilig(q) can be simply de- S0 thatyT will be labeled (T),. Similarly, we shall intro-
rived from Eq.(16) by means of a Fourier transform—i.e., duce the ratio of magnetic moments=G'/G (note that

by adding the factor eXp-i(gyk+ak’)], whereg, andg, are because of the classical character of the involved spin mo-
the components of the wave vector Therefore, exact Mentsr is always equal to or lower than unjty

knowledge of the spin-spin correlations allows one to evalu-

ate the susceptibility. Reporting the relev@a®Z correlation F. Evaluation of the correlation length for an infinite

given by Eq.(14) in Eqg. (16), we can define a susceptibility honeycomb lattice

X per two consecutive unit cell sites: The correlation lengtlg also appears as a very useful and

significant quantity from a physical point of view, notably
as N—+w, (17 near the critical point; it may be defined as

B (G?*+G'2)W,;+2GG'W,
e

(1-u?v?)(1-0v?)
with o[ B DS )
W;=(1+uv)?(1+v?), DS k'—foo|<500$k'>|

(19

_ 2 22 Similarly, equivalent correlation length%;, and &, can be
Wz=2v(1+uv)"+u(l-v%)" (18) defined for the horizontal zigzagk€0) and the vertical
At this step, one can note that, in the particular case of théines (k' =0) of the lattice, respectively, characterized by the
chain limit (J,=0, i.e., u=0), one finds again Fisher's exchange energiesl{,J) andJ. Using the closed-form ex-
result!” in addition, if J=0, i.e., v=0, one retrieves the pression of the spin-spin correlation given by Etg), we
well-known dimer susceptibility. As previously explained, have

1=

8u%v?(1+u?v?) +u?v|(1+v?)[(1+u?v?)2+4u%v?] v
[1+]u(1+v?) +u??](1-u%?)?

o E=N(E)PH (6% (20)

_[802(1+vz)+2|v|[(1+v2)2+4vz] vz
a (L+[o))2(1-v2)?

[ll. THEORETICAL DISCUSSION negligible. Subsequently, the corresponding critical exponent

vis such asv=1 and¢ behaves a3 ~*

) ) This result is strictly similar to the corresponding one that
In the low-temperature range the Langevin functians e have exactly derived for the 2D Heisenberg classical

=L(—pJo) and v=L(—pJ) tend to unity (in absolute gqyare latticd>*® thus proving its universal character

value. Therefore, the correlation ;er;g}?ﬁ and ¢, dgf'[‘?d whatever the unit cell structure. At this step one can recall

above by Eq(20) behave as (+uv?) " and (1-v°)""  that, by using the renormalization group technique within a

A. Determination of the critical exponents

respectively, i.e., one-loop approximation, Chakravarey al® have obtained
the resultr=1 for a 2D Heisenberg quantum square lattice
131130 so that this vglue also appears to _be independent of Fhe quan-
E~B = T+ 13" Bl as T—0. (21)  tum or classical nature of the spin moment. In addition, in

the low-temperature domain, these authors have pointed out
the coexistence of three regimes for the correlation length in
Thus, as for the 2D Heisenberg classical square latfige, the critical domain: The quantum disordered regime (
and &, (and subsequently) diverge when the temperature =0), the quantum critical regimerE&1), and the “renor-
tends to 0 K. In that case too, absolute zero plays the pamalized” classical one ¥— +). However, atT=0K, a
ticular role of critical temperature. At this step one can notesingle regime prevails: The quantum critical one<(1).

that, as for the 2D classical square lattfé@, this result can This situation corresponds to the present case upon which
be directly obtained from the minimum value of the free we have focused in this article and, as for the classical square
energy —kgT In Z\(0), whereZy(0) is given by Eq.(9). lattice 18 a similar interpretation may be given. Thus this
Consequently, the critical domain is quasi-infinite: Theresult gives an argument for validating the presence of quan-
short-range order remains important, whereas the long-rangam fluctuations neaf ;=0 K (i.e., the true nature of thé

one is absent, except & K where it becomes preponderant behavior is exclusively conditioned by these fluctuatjons
and stable due to the fact that the quantum fluctuations armdeed, these fluctuations can be clearly explained by the
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fact that the classical moments are characterized by an availiecay of the critical correlation is fulfilled whep=—1 and
able energy-level density larger than for quantum sfiies, D=2, but this result must be handled with care because a
of quantum spin number such 8s:3/2),'° so that they can rough interpretation could naively lead one to think that the
easily evolve between very close energy levels. In othespin-spin correlation increases with distance accordingrto a
words, due to these fluctuations, for a finite but low temperalaw, as for the classical square lattié&)
ture, one can say that the lattice state is described by spin It must be noted that a similar paradox occurs with open
moments which are less than fully aligned. By approaching @lassical spin chaindd=1) showing Heisenberg-type cou-
K, it tends to a state characterized by more and more aligneplings between nearest neighbdtise corresponding critical
spin moments and it appears more and more stable becausgponents are=1, y=2, and =0, respectively. This as-
these fluctuations are smaller and smaller: There is no longect has been clearly detailed in a preceding atfitlend is
range order for it is precisely destroyed by quantum fluctuanotably due to the classical aspect of the involved moments
tions on behalf of the short-range order. But wiereaches and the isotropic character of couplings.
0 K exactly, a transition occurs: The ground state is then Finally, near absolute zer@.e., the critical temperatuye
constituted by fully aligned spin moments and long-rangethe specific heat per si€ behaves as
order is preponderant. Therefore, from experiments carried
out at finite temperatures as close as possible to absolute
zero, it becomes possible to determine the nature of the C~kg
ground state at ;=0 K.

In the zero-temperature limit and for noncompensated
spin sublattices@# G’), the examination of Eq17) giving xexp(—2B3))
the static susceptibility allows one to say thag diverges as
B&E,, i.e., according to g3 law. Thus, as for the 2D ThusC/kg tends to 3/2 when the temperature tends to 0 K;
Heisenberg classical square latticé®® the associated criti- the corresponding critical exponent is suchaas0, as for
cal exponent isy=3. In addition,y appears as the vanishing the 2D Heisenberg classical square |lattit®. Therefore, Jo-
q limit of the dynamic susceptibility(q) (which is the Fou-  sephson’s scaling law=2—vD, whereD is the layer di-
rier transform ofy). Near the critical temperature,.=0K,  mensionality, is fulfilled.
x(0) (i.e., x) behaves ag?~ 7, which permits us to derive the
critical exponenty=—1 (as for the square lattigg>*%" B. Construction of the 2D spin arrangement
Consequently, Fisher's scaling lay= v(2— ) is fulfilled. . L . .
This value can be also obtained from the Iow-temperatureI In_ alflrst st_edp anhd for 5|mpl|fy|n%the dlzcusr?lonh we elx-
behavior of the spin-spin correlati¢of. Eq.(14)] on the one clusively consider t dﬂ.|>|‘]0|' In other words, the physical
hand and owing to the corresponding one of the correlatior?tUdy can be summarized to that of vertical classical spin

) chains characterized by the same exchange en&rgpd
lengths¢; and¢, on the other hangcf. Bq. (21)] weakly coupled to each other by meansJgf thus leading

3 2 2
5 2(830)% expl —26]35) —4(8Y)

as T—0. (23

1 k'] |K| to a 2D arrangemeifisee Fig. 8)]. At a very high tempera-
|<Sé,0$k,>|—>§ 1- . g—} ture, i.e., at a temperature such lgsr>|J|, the chain be-
! 2 havior is dominant. I{J| is weak enough, one can reach the
k| even or odd, k| even low-temperature domain. In that case the quasi-isolated ver-
' ’ tical chains are made of quasirigid quasi-independent blocks
1 k| |k|-1 of length &, [where &, behaves ag|J| near 0 K; cf. Eq.
|<Sé,osi,k'>|—>§ 1- g—— 5 | (21)]. This chain behavior is maintained down to the tem-
1 2

perature at which the interchain exchange engrggf such
blocks of lengthé, becomes similar té&gT. This crossover
temperaturel g then appears to be the solution of the fol-
K| [K+1 lowing equation:

i
|<Sé,03i,kr>|—>§ 1- o

|k| even or odd,k’ odd (k'>0),

& kg Tco~ &2/ Jol; (24)

|k| even or odd,k’ odd (k'<0), asT—0. (22 by means of Eq(21), which also gives the low-temperature

behavior of¢,, one derives
The distance between sité3,0) and (,k’) can be repre-

sented by the length of a vector the components of which are ks Tco~ VIIJ. (25)

|k’| and |k (respectively,|k|—1 or |k|+1) along the hori-

zontal and vertical axes of the lattice. In the low-temperaturén the intermediate case, i.e., for closer values)gfand J,
range (i.e., near the critical pointwe always havelk’|  when|Jo|<|J| or |Jo|=|J]|, at high temperature, the lattice
<&, |k|<€,: Thus this is the deviation between unity and can be considered as an assembly of horizontal zigzag chains
the ratiogk’|/ £, and|k|/ &, which is relevant. Consequently, (characterized by the regular alternation of exchange ener-
for a fixed temperature near 0 K, the spin-spin correlatiorgies Jo and J) coupled to each other by means of bonds
does globally decrease with distanfe absolute valug  involving the exchange energly This aspect is enhanced as
moreover, for a fixed distancg.e., for fixedk andk’), it  soon as the temperature obeys B} in which £, is sub-
decreases according toTalaw whenT increases. In other stituted for¢, andJ for J,. In that case Eq(25) giving the
words, the general power lanv (° =27 which describes the crossover temperature must be replaced by
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o), XT)J

= 1.00 Tco=0.577 K
0.20} Jo/J =0.50/1.00
1.0+
Jo
0.10} 5 ,
] J
Tco do
0.0 0.00 . A )
00 0.0 0.3 0.6 0.9 KkT/I1JI
(b)

FIG. 4. Thermal behaviors of the producg{T), for a honeycomb lattice composed of classical spins isotropically coypek],J
>0).

[Jol on the sign of the exchange energigsand J). When the
keTco™~[J)| m' (26) temperature reaches absolute zgm, the critical pointand
if one considers the expression of the static susceptilpiity
In a second step, if we consider tHat<|Jo|, we deal EQ.(17)], it is easily shown that the low-temperature behav-
with horizontal dimers which are weakly coupled at temperador of T is essentially ruled by that af, £, M2, where M
tures such akgT>|Jo|. When the temperature is cooling has been just defined above and whéjeand ¢, are the
down, the intercouplings become effective if the interdimercorrelation lengths associated with the horizontal and vertical
exchange energy becomes similakid . In the present case lines of the lattice, respectivelicf. Eq. (21)]. Thus, in the
the corresponding correlation lengh (expressed in lattice low-temperature range, the lattice can be considered as an
step unit$ reduces to unitfwhich can be directly obtained assembly of quasi-independent quasirigid rectangular blocks,
in Eq. (19) by assumingk=0,k’=1]. Therefore, the new €ach one being characterized by sides of respective lengths

crossover temperaturésg is given by the solution of the &1 andé, and momentM. Subsequently, the value of the
equation productxT is mainly related to that of: If M is finite

(noncompensated sublattic€s# G'), xT diverges a%,¢,,
i.e., according to g2 law; if M vanishes in the ground state
keTeo~ €119), (270  (compensated sublattiogeshe behavior ofyT appears as a
_ competition between the divergence&g, and the evanes-
1e., cence ofM.
Due to the unit cell structure involving two types of ex-
, change energied, andJ, two cases of interest must be ex-
keTco~ 13l (28 amined: 1fJ,J>0, the couplingsl, andJ have the same
sign; i.e., they are both ferromagnetit, 0, J<0) or anti-

In both cases, as soon as the temperature decreases fr(f)%romagnetic 40>Q"]?0); if JoJ <0, ‘.JO andJ havg oppo-
Tco, the 2D arrangement becomes dominant. One must no te signs, so that i, is ferrpmagnetlc 1<0), Jis anti-
that, for regular honeycomb lattices suchds=J, 2D or- erromagnetic §>0) and reciprocally.

dering already exists at high temperature and is more an In a first §tep, !et us consiqer a ferromagnetic or an anti-
more enhanced when the temperature is cooling down, i.e ?rromagnetlc latticécharacterized by noncompensated sub-
as soon a&sT reached] lattices, G#G’, r+1). In other words, we havé,J>0.

Finally, if the respective values taken hy| and|J| do Using the low-temperature behaviors of the Langevin func-

not allow one to classifif o or Tig in the low-temperature tionsu andv [defined by Eq(15)] in the definition of the

range, the problem is plainly more complicated. We aIwaysStat'C susceptibilitycf. Eq.(17)], one derives

have to compare the interchain exchange energy of blocks of

length &, or &, to kgT (whereé;, with i=1,2, is the corre- NERN J 2
lation length corresponding to the “dominant” chain, i.e., G#G' (r#1) XTN__O( — G’)
the chain characterized by the strongest exchange energies 3 3]+ 3l 19

In other words, one has an equation similar to Efl) or
(27), but, now, &, (respectively ;) must be replaced by its as T—0. (29
temperature-dependent expression given by(E@. There-

fore, in th numerical resolution is unavoidable. . .
ore, in that case, a numerical resolution is unavoidable Thus, as expectegT diverges according to A2 law due to

the fact that the magnetic momem, i.e., GEG/’, is finite

in the ground state. In addition, the divergence is accentuated

for ferromagnetic couplingslg<<0, J<0) due to the fact that

the magnitude of\ is more important than in the antiferro-
Let M be the temperature-dependent magnitude of thenagnetic caseJy>0, J>0). These behaviors are reported in

magnetic moment per unit celhote thatAM mainly depends Fig. 4@ (|Jol/kg=0.50K, |J|/kg=1.00 K); under these

C. Study of the low-temperature behaviors
of the static susceptibility
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conditions, the crossover temperatufgg [given by Eq. =G'/G loses its specific character with respect to the prob-
(26)] is such asTco=0.577 K. In this respect one can note lem of compensation between consecutive sites of the same
that the divergence of T is plainly accentuated for ferro- unit cell. In other words, ifJo|<|J|, the vertical ferromag-
magnetic or antiferromagnetic lattices wh&g, is reached netic chains carry a stronger moment than in the ¢age

due to the fact that the 2D ordering becomes effective, thus>|J|. Therefore, the corresponding value oT is always
characterizing the fact that the lattice moment is more imgreater[see Figs. &) and §b)]. When T, is reached the
portant. For compensated sublattice,*0,J>0,G=G’, 2D ordering becomes effective. A change of behavior is duly
r=1), the factortG—G’ in Eq. (29) vanishes near the criti- observed and is more accentuateflf <|J| due to the fact

cal point(i.e., 0 K) and theT expansion must be examined that we deal with a phenomenon of compensation between

up to the following term; one has consecutive ferromagnetic vertical chains. In these two cases
and whatever the value 0f=G'/G, xT tends to a constant
Jo>0, J>0, G=G' (r=1), limit according to aT law with a positive [Jg|<|J|) or a

negative [Jo|>|J|) slope. This character can be simply de-
rived in Eq. (31) by assumingd/|J|=—1 and G=G’ (r
=1). If GG’ (r#1), a numerical study is necessary, but
) ) from a physical point of view, as the ratic= G'/G has lost
In the present case, dg<'J, we deal with vertical compen- i gpecific influence, one can predict that the behavigyTof
sated chains at temperatures suctkglb>|J|; whenTcois  js not drastically changed. This aspect is confirmed by a
reached(i.e., 0.577 K, a change of slope is dgly ob- comparison of the corresponding curves of Fig&) ®nd
served: The produckT vanishes according to &° law g5, |n the particular casd,= —J, the low-temperature ex-
instead of aT one, for similar isolated vertical chaifjsee pansion ofyT given by Eq.(31) must be replaced by that
Fig. 4b)]. As xT behaves agfléz_/\/lz, ie., asﬁz/\/lz in the given by Eq.(32). Near 0 K, xT also tends to a constant
!ow-tempgrature range, one derives thdtvanishes accord- |imit, but now with aT2 law. This is due to the fact that we
ing to aT* law. _ _ ~deal with the double compensation between consecutive ver-
If JoJ<0, the horizontal and vertical bonds of the lattice tica| ferromagnetic chains on the one hand and horizontal
are characterlzeq by exchange energies showing OpPOSsitgtiferromagnetic spin pairs on the other hand.
signs. By assuming a similar work that in the cagd>0, If the horizontal couplings are ferromagnetity& 0) and
we derive, in the low-temperature range, the vertical ones antiferromagnetid*0), the horizontal
2 zigzags are made of ferromagnetic pairs of spins antiferro-
L] [2te + (a=1)(a”"+2a+2) ] magnetically coupled. In other words, |dy|<|J|, we deal
12| 1+« 2|9[(1+ a)* . with dominant vertical antiferromagnetic chainkX0) fer-
2 1 w1 romagnetically coupledJy<0), whereas if|_J0|>|J|, we
G— — G’) +[ — > kBT} still have dominant alternated horizontal zigzags antiferro-
9] I+ta 2|(1+a) magnetically coupled to each other. Therefore, in all cases,

G2 2Jy+J
T 12103 Jo+3d

xT (kgT)?> as T—O0. (30

xT— a

X

J 2 the global magnetic moment involved in the cake<O0, J
G+ — G’) } >0 (case |) is always lower than the corresponding one in
N the casely>0, J<O0 (case ). Thus one can predict two con-
sequences(i) For a given ratioa=|J/Jy|, xT is always
(a#1), asT—0, (31 lower in case Il than in case [ji) xT decreases when
increases in case Il, whereas it increases witm case |.
These phenomena can be easily observed in Figs.ahd
- 113 29 w2 g g o 2 5(d) on the one hand and by comparing Fig&)%nd 5c) as
XT—= 15112 32 (keT) 19 well as Figs. ) and 5d) on the other hand. Subsequently
) the interpretation of thg T curves in case Il is very similar
(G+ i G’) } to that one given above in case I. However, a slight differ-
19| ' ence occurs in the present case Il: Due to the fact iat
shows smaller values than in case |, the ratioG’/G has a
a=1, asT—O0. (32 smaller influence over thgT slope near 0 K.

X

J

Jo

a=

1 17 1o
Flz7 s el

In all cases the infinite lattice shows a vanishing moment

in the ground state. In other words, g% always tends to a IV. COMPARISON WITH EXPERIMENTAL RESULTS
constant limit near the critical point, that means that the mag-
netic momentM vanishes according to Rlaw. If the hori-
zontal couplings are antiferromagnetig,~0) and the ver- In a preceding article concerning the 2D Heisenberg clas-
tical ones ferromagneticJ0), the horizontal zigzags are sical square lattic®®® we have recalled the general condi-
made of antiferromagnetic pairs of spins ferromagneticallytions which must be fulfilled by the magnetic ions and the
coupled(case ). If |Jo|<|J|, at low temperature, the domi- various ligands involved for obtaining a quasi-2D lattice
nant vertical rows are made of ferromagnetic chaihs Q) characterized by isotropic couplings. Notably, we have no-
antiferromagnetically coupled Jg>0), whereas if |Jg| ticed that the ion Mfi" is an excellent candidate. Thus, for
>|J|, one deals with dominant alternated horizontal zigzagHeisenberg-type couplings, the three static susceptibilities,
ferromagnetically coupledJ&0). Subsequently, the ratio respectively, measured along the three axds andc of the

A. General considerations
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FIG. 5. Thermal behaviors of the producgtT), for a honeycomb lattice composed of classical spins isotropically coypek],J
<0).

crystal, i.e.,xa, xp,» andy., are equal to a common valge ~ Using the low-temperature expressiongfand &, [cf. Eq.

More particularly, for compensated antiferromagnetic com+{21)], one derives

pounds, the susceptibility curve shows a maximum which

appears as a characteristic signature of such a kind of mag-

netic behavior. When the temperature is still cooling doyn,

vanishes according tolaw [cf. Eq.(30)] if one deals with

a purely 2D lattice. But as often occurs, if the lattice is not aNote thatTy vanishes withl’, i.e., when the arrangement is

purely 2D one, the three-dimensional magnetic ordering ap purely 2D one; of course, from a practical point of view,

pears at the Nal temperaturdy, . one must not forget that the superexchange mechanism as
Above Ty, by coming from the high-temperature domain, vv_eII as the unavoidabl_e interlaygr dipolar interactions often

Xa, Xb, andy. remain equal toy and gradually increase up 9ive a further contribution to the interlayer exchange energy

to a characteristic maximum before decreasing. Whgris J.

reached, generally, and x, remain equalotherwise, one

deals with an anisotropic compourahd are labeleg, (par- B. Study of the maximum of the susceptibility curve

aI_IeI susceptibility; then, be!OWTN' X rapidly decreases As noted above, the study of this maximum is fundamen-
with temperature before vanishing at 0 K, as expected for aly and we are going to show that it allows one to character-

antiferromagnet. As for the out-plane contributipn(or per- ;¢ the 2D Heisenberg magnetic behavior. In this respect,
pendicular susceptibility, ), it passes through a minimum e can easily guess that this characterization will be excel-
value atTy and slightly increases before tending 0 & CON-jgnt if the Neel temperaturely, and the temperature of the

stant value at O K. At this step, one can g_ive an estimate OlfnaximumT(Xmm) are well separated. By replacidg andJ
Ty . In the low-temperature range, as previously seen in SeGyiw, their respective renormalized expressiojas=JoS(S
Il B, the lattice is made of quasi-independent quasmg|d+1) andj=J(S+1) (with S=5/2) and by derivating the

blocks, the sides of which have the respective lengthsnd uscenptibili ; ;

, i X X : ptibilityy [given by Egs(17) and(18)] with respect to
&>, i.e., the correlation lengths associated with the horizontajy, temperature, one has to solve the following equation:
zigzags and the vertical lines of the latticeJIfis the inter-

’ 1/3
(13 /J|)(|Jo/3|)) (34

kBTNlJ'( 1+1]30/9]

layer exchange energy, the 3D magnetic ordering appears uW'A+v'B—C=0, (35)
when the interlayer energy of blocks of surfageé, be-
comes similar tkgT, i.e., with

1
"= gi(1— thz . il
keT~&1&,|3']. (33 u'=pBjo(l—cothr(Bjg))+ Bio
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exchange energiek, andJ. A similar numerical study has

v'=Bj[1-cott?(B})]+ Bj’ allowed one to find the following equations:
A={[1+02(1+2u)](1— u20?)+ 2uv?(1+uv?) (1+u)} KeT(Xma) =2jot Dol +Cj,  jo=J0S(S+1),
X(1-v?), j=JS(S+1), S=5/2,
B={[1+uv(2+3v)](1-u?v?)(1—v)+[1+ U (2—3v)] a=0.2559, b=0.3780, c=0.43009, (40)
X (1+uv?)(1+v)}(1+u), 2
=a'jotb Jﬁ+c i
C=(1+uv?(1-u?v?(1+u)(1—v?), (36) Xmax
where u and v are the respective Langevin functions a’'=2.9845, b’'=0.6161, c'=4.9111, (41
L(—BJy) and L(— BI).
Of course, Eq(35) can only be solved numerically and, T aintbyini+Ci
for given jo/kg and j/ks, one may derive the temperature Xmax ((:Xmax) = ,.JO ,\/E J,_ . (42)
T(xmaw Of the maximum of the susceptibility curve. For a'jo+b'Vioj +¢']

simplifying the discussion, in a first step,

we exclusively s .
consider thal,=J. We have found Of course, one can note that, whiy=j, one retrieves the

respective resultszof Eq§37)—(39). Consequently, we have
_ . _ plotted T(xmad, G/ Xmax» @Nd Xmax! (Xmax/C versusjqo/kg

keT(Xma)=1.0648, [=JS(St1), S=5/2. (37) and j/kg; they are, respectively, illustrated by Figsah

This study has been previously achieved for a 2D Heisenber§(b), and &c). The linear behaviors 6F (xma) andG?/ xmax

classical square lattic&® and we have derived that the cor- have been also reported whég=J. Thus, under these con-

responding coefficient is 1.2625, which is very close to theditions, one may derive the respective valueslgfand J.

value published by Liné8 and later by De Jongh and Using Eq.(42) and setting

Miedema?! after having fitted experimental susceptibilities

owing to refined high-temperatu(kelT) series expansions. In _J ~ Xmax! (Xmax) 43
other words, such a kind of coefficient appears as a universal @= J_O’ = C ' (43
constant characterizing the nature of the unit cell. Thus
knowledge of T(xma) allows one to derive the exchange ©ne has to solve
energyJ.

But from a practical point of view and as remarked by De (c—¢'a+(b—b'7)at+(a-a'n)=0, (49

Jongh and Miedemi?! the susceptibility curves often show wherea, a’, b, b’, ¢, andc’ are given by Eqsi40) and(41).

a broad_ maximum so that the corresponding temperaturg’ imerical study has allowed one to show that the conve-
T(xmay IS known with a poor accuracy. Therefore, it is more nient root is

interesting to study the inverse of the value of the suscepti-
bility. Under these conditions, we have derived —(b—b'7)—(b—b'7)—4(a—a' n(c—c'7)

2 Ja- ,

G _ 2(c—c'7)
—=8.5111, j=JS(S+1), S=5/2. (39 (45)
Xmax
For the 2D Heisenberg classical square lattf@ we have so that
found 10.6838. Another quantity which often appears in the ) )
literature is the ratioymax (xmad/C, Where C is the Curie ﬂz G/ Xmax i: @G/ Xmax (46)
constant(i.e., G%/3kg in our case if one considers the sus- kg a’+b’\/5+ c'a’ Ks a’+b’\/5+ c'a

ceptibility per atom. We have obtained
Note that similar expressions can be derived from knowledge

XmaxT (Xma) of T(xmay Owing to Eq.(40). A further numerical study
— ¢ 0375 (39  concerning the comparison between the initially imposed
values of J; and J leading to the numerical results of
In that case too, this coefficient exclusively characterizes thd (Xmad» G Xmax: @Nd XmaxT (Yma)/C and the corresponding
hexagonal unit cell and thus shows a universal chardfder values derived from Eq46) has been achieved. J>J, or
the 2D Heisenberg classical square lattice, we have derived slightly lower thanJ,, J is obtained with an accuracy
the value 0.3545, which is also very close to that one oblower than 1%;a and J, are given with a precision lower
tained by De Jongh and Miedema owing to HT than 5% ife is such as 0.8 a<12.5(respectively, 6.4% if
expansions™?! Finally, note that all the coefficients appear- a<14, 8% if <16, and 10% ifa<18.5). Thus,a poste-
ing in Egs.(37)—(39) have been calculated with an accuracyriori, we can justify the choice of Eq42) for finding « by
plainly lower than 0.01%. the fact according to which its expression given by the root
In a second step, one may focus on a more general casef, Eq. (44) limits the cumulative products of coefficierds
i.e., that one concerning 2D lattices characterized by twa’, b, b’, ¢, andc’ and plainly improves the accuracy with
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FIG. 6. (a) Variation of the temperature of the maximum of the susceptibility clre,.,) versus the exchange energigskg and
j/kg, for a compensated 2D Heisenberg classical hexagonal lattice antiferronjagtiet,=J,S(S+1), j=J(S+1), S=5/2], (b)
variation 0fG?/ ymax, and(c) variation of ¥ maT (xma)/C WhereC is the Curie constar®?/3kg .

which Jo andJ are found. In this respect, by combining Egs. lattice is characterized by a single exchange endgyJ,
(40) and (41), we have verified that the ratia is obtained ~Which can be found owing to E¢37) or (38). On the con-
with a very poor accuracy. trary, if xmax! (Yma/C#0.3753, the theoretical treatment of

In summary, the experimental determinationTfy,) the maximum of the susceptibility curve just detailed above
and G?/ ymax allows one to derive directly the exchange en-permits one to assert that the hexagonal lattice is character-
ergiesJy and J. If xmad (mad/C=0.3753, where the Curie ized by two exchange energidg andJ, which can be then
constantC can be obtained from the HT experimental limit found owing to Eqs(45) and (46). Thus, before testing all
of the productyT, the 2D Heisenberg classical hexagonalthe experimental data with the theoretical expression of the



11 480 JACQUES CUR;IEY, FRANCESC LLORET, AND MIGUEL JULVE PRB 58

301 S — 0.08
] _. 007} Jupm Mn,(bpm)(0x),
4.00[ 2 Jos Jox
) I g 0.06 | Jopm= 0-34 K
g 3 - Tox -
E 3.00! g 005 if Jox= 4.20 K
- - Mn, (bpm)(0x), : 0.04 § G =1.99p,/4
&Ei 2.00¢ Jo ] _ 0.03
o i Tppm= 0-34 K
=
1.00- JOX Jox J0X= 4'20 K J 0'02 g e
4 Jopm G =199/ 0.01
0.00& ] 0.00 L. - . — - -
0 50 100 150 200 250 300 0 50 100 150 200 250 300
T (X) T (K)

(a) (b)

FIG. 7. (a) Fit of the experimental thermal variations of the prody€tfor a powder of the antiferromagnet Mbpm)(ox), characterized
by a 2D Heisenberg classical hexagonal lattitgom” and “ox” are the ligands bipyrimidine and oxalateand(b) fit of the experimental
thermal variations of the susceptibilify

susceptibility given by Eqg(17) and (18), one may have a are isotropic fofT=2 K. At this step, one can recall that, for
good estimate of the exchange energlgsaandJ. However,  ogpen compensated Heisenberg classical spin chgitends
from an experimental point of view, one must suppose thafg 3 constant limit at 0 K, whereagT vanishes according to
there exist enough experimental points around the maximurg T |aw %” For a 2D-compensated Heisenberg classical hon-
of the susceptibility curve for obtaining(xma) with a cor-  eycomb Jattice, we have shown thavanishes according to
rect accuracy. a T law, while T vanishes according to & law [cf. Eq.
(30)]. In the present experimental case,and xT vanish
simultaneously, notably with @ law for the total suscepti-
C. Interpretation of the experimental data obtained bility x. Thus, starting from the crystallographic structure
for the antiferromagnet Mn 5(bpm)(0x),-6H,O depicted by Fig. 1, all the information given in poirts and

The variable-temperature magnetic susceptibility datdil) allows one to conclude that, from a magnetic point of
(per manganese atonmave been obtained between 2 andView, the compound Mstbpm)(ox),-6H,O is well described
300 K for a powder of the complex Mtbpm)(ox),-6H,0 by a 2D Heisenberg classical honeycomb lattice, thus justi-
(“bpm” and “ox” refer to the bipyrimidine and oxalate fying the arguments detailed in the Introduction of the
ligands, respectively Note that these data have been cor-present article.
rected for the presence of a small amo(irg., about 1% of (iii) In order to be definitively sure, let us examine the
paramagnetic impurities and the experimental uncertaintgharacteristic maximum of the susceptibility curve illustrated
has been estimated to 0.1%. At first sight, the global shapdsy Fig. Ab). More refined measuremen(se., more experi-
of both T and y curves, respectively depicted in Fig§ay  mental points obtained around the maximugive a good
and Tb), allow one to derive several important conclusions.determination ofyma and T(xmay. Note that this work is

(i) In the high-temperature limit, thg T curve shows a facilitated by the fact that the susceptibility curve maximum
plateau and the corresponding constant value at room tenis not too broad. Under these conditions, we have exactly
perature is 4.06 cik mol™%, as expected for a single ion found x;a=6.697< 102 cm® mol™! and T(xma)=20.5 K.
characterized by a sextuplet. In other words, that means th&Ve immediately derive thgf,,axT (xma/C=0.3381, wher&C
we deal with a spin such &=5/2 so that it can be consid- has been given above. Consequently, »&guxT(Xmad/C
ered as a classical one; the corresponding Lafaitor  #0.3753, this experimental result confirms that the 2D clas-
is G=2ugl/f, and the Curie constant i<C=4.06 sical honeycomb structure is characterized by two different
cn® K mol ™. exchange energiek, andJ. Comparing with the structure of

(i) In the low-temperature range, near absolute zgro, the compound Ms(bpm)(ox),-6H,O depicted by Fig. 1 on
and xT vanish with temperature. This property is characterthe one hand and the theoretical convention used for describ-
istic of the occurrence of antiferromagnetic couplings. As theing the unit cell on the other hand, one can &gt,=J, and
magnetic data have been obtained on a powder sample, Jt,=J. At this step, one must recall that the comparison
means that the Mg temperatureTy is very close to 0 K; between the experimental molar susceptibility per atom of
thus, one can consider that there is no three-dimensionahanganesd) and the theoretical expression of the suscep-
magnetic perturbation. Otherwise, as explained in Sec. IV Atibility derived from our modelcf. Eq. (17) in which one
below Ty, the perpendicular contribution to the susceptibil-considers equal LandactorsG and G’] imposes to renor-
ity, i.e., y, , tends to a constant limit & K sothat, globally, malize the theoretical susceptibility by the fact¥jug?S(S
the total susceptibility does not vanish too. Therefore, oner1)/kg where A is the Avogadro constanjug the Bohr
can immediately derive that the antiferromagnetic couplingsnagneton, andkg the Boltzmann constarjthe factorS(S
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+1), with hereS=5/2, comes from the renormalization of partition functionZy(0), thespecific heat, the spin-spin cor-
the Landefactor]. Under these conditions, if the experimen- relations, the static susceptibility, and the correlation
tal susceptibility is expressed in émmol ™, one has length of a 2D Heisenberg classical square lattice. In the
Nug?S(S+1)/kg=3.2841. Then, owing to Eqg45) and  present case we have adapted these methods for deriving the
(46), which directly give the value of the exchange energiesespective expressions of the same thermodynamic functions,
Jo/ks and J/kg characterizing the 2D classical honeycombfor a similar 2D lattice showing a hexagonal unit cell conve-
lattice whenT(xma) and xmax are known, one may derive niently described by two different exchange energies. Then
Jomp/Ke=0.32 K and J,,/kg=4.22 K if one imposesG  we have achieved a theoretical study of the low-temperature
=2ug/fi. In this respect, it now becomes easy to verify that,behaviors: It has allowed us to verify that absolute zero
as noticed in Sec. IV B, the experimental determination ofplays the important role of critical temperature as it occurs
T(xmad With a good accuracy is fundamental and plainly each time that the involved spin couplings characterizing the
conditions the quality of the results concernihyg,, andJ,,. 2D lattice are of Heisenberg type.
For example, if T(Xmad=20.0K, Jpmp/kg=0.23 K and Near 0 K wehave notably derived the critical exponents
Jox/kg=4.30K, whereas if T(xmad=21.0K, Jpmp/Kg a=0,7=-1,y=3, and v=1 as for the 2D Heisenberg
=0.44 K andJ,,/kg=4.13 K. However, these results show square lattice, thus confirming their universal value, indepen-
that, in all cases)q,> Jppm, Which is in agreement with the dently of the nature of the involved unit cell. Similarly, in the
fact that the oxalato bridge has a greater ability to transmitow-temperature range, we have shown that the progiiict
electronic effects. Indeed, one can recall that, for bpmbehaves ast;&,M? where ¢; and &, are the correlation
bridged mangane&¢) complexes characterized by a chain lengths associated with the infinite horizontal and vertical
structure, it has been previously found that,,/kg lattice lines andM the temperature-dependent magnitude of
=1.44 K 10149149 whereas for ox-bridged manganése  the magnetic moment per unit cell. In other words, in the
compounds,)y,/kg= 3.45 K 143140 low-temperature range, the lattice is composed of quasi-
Finally, owing to a refined least-squares method whichindependent quasirigid rectangular blocks of lengthsnd
allows one to optimize the paramet&sJyy,,, andJ,,, one &, and momentM. For noncompensated sublatticgd, be-
can derive the best fit of the experimental points through thénaves ast &,, i.e., asB?; for compensated sublattices, the
theoretical expression of the susceptibiliygiven by Egs. T behavior appears as a competition between the diver-
(17) and(18) and the produckT. Let us recall thaG, Jpyp, gence of¢ €, and the evanescence @ff according to a
and Jo (i.e., Jo and J) are renormalized by the factor T-polynomial law which has been derived in each relevant
S(S+ 1), with S=5/2. These fits are reported in Figayfor  case.
xT and in Fig. Tb) for x (solid lineg. One can easily ob- From a practical purpose, as there exit compensated 2D
serve that all the experimental points between 2 and 300 Keisenberg antiferromagnets, we have studied the maximum
belong to the theoretical curve, and we have obtaied of the susceptibility curve because it gives a nonambiguous
=(1.992+0.002)ug/f, Jpmp/ks=(0.3400+0.0003) K, characterization of the corresponding magnetic behavior. If
andJ,,/kg=(4.200t 0.004) K. Within the experimental un- T(xmay andxmaxare the respective coordinates of the maxi-
certainty range, th& value derived from the fit is in perfect mum of the susceptibility curve ar@the Curie constant, we
agreement with the corresponding theoretical one, i.ehave shown that the ratip,.,T(xmad/C immediately allows
2ugl/f. In addition, the values of the exchange energieone to say if the 2D Heisenberg classical honeycomb lattice
Jomp/Kg @andJ,, /Kg are also very close to the correspondingis characterized by a single exchange enelgyr by two
ones calculated from EQsi45 and (46), i.e., Jpmp/ks ~ OnesJy andJ [cf. Eq.(39)]. If a single exchange energ)is
=0.32K andJ./kg=4.22 K. Therefore, one can say that involved, we have shown that there is a linear variation be-
the theoretical expression giving the susceptibility of the 2DtweenJ/kg andT(xmad ON the one hand as well as between
Heisenberg classical honeycomb lattice allows an excellent and G2/ ymay 0N the other hanfcf. Egs.(37) and(38)]. If
characterization of the magnetic behavior of the compoundhere are two exchange energiksandJ, we have obtained
Mn,(bpm)(ox),-6H,0. At this step, one can notice that, by more complicated relationsf. Egs.(40) and (41)]. But in
comparing these values with the corresponding ones medoth cases, knowledge Gf(xma a@nd xmax allows one to
sured for similar ligands involved in chain structur®$?one  derive the value of the involved exchange energies so that
can observe that the strongest exchange energyJig.is  one can simultaneously characterizpthe isotropic aspect
enhanced, whereas the smallest one, g, is weakened. of couplings andii) the hexagonal nature of the unit cell.
This phenomenon can be simply explained by the fact that For illustrating this theoretical work we have analyzed the
the two-dimensional character of the lattice favors the elecmagnetic behavior of the Heisenberg-compensated antiferro-
tronic exchanges between nearest neighbors of the same latagnet M(bpm)(ox),-6H,0, the structure of which is a 2D
tice row showing the strongest exchan@haracterized by classical honeycomb lattidef. Fig. 1). This new class of 2D
the ox ligandsto the detriment of the lateral bonds showing compound is characterized by organic ligands so that their
the weakest onécharacterized by the bpm ligands presence allows one to distance the magnetic ions within the
layer itself as well as the layers along tbexis, thus con-
ferring on them a quasi-2D structure characterized by @l Ne
temperature very close to absolute zero. We have shown that,
by fitting the experimental data, the curve obtained from the
In this paper we have generalized a theoretical model pretheoretical expression of the static susceptibility joins all the
viously published®in which we have set on general meth- experimental points in a very broad range of temperature,
ods for establishing closed-form expressions of the zero-fielavhereas so far numerous models have only given approxi-

V. CONCLUSION
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mated description¥. In addition, from the theoretical study (Afd)le(A:n)N(ZN—S)M(_,3\])—2, with AedzA:":Air_‘ , for

of the characteristic maximum of the susceptibility curve, we, | n

have verified that it is possible to obtain the value of the e";"”h_.l' hat th d4d ch ¢
corresponding exchange energies. In addition there are verx Ft IS step one can _notet at_t e even or odd character o
close to the values derived by fitting all the experimentalt € index| -charactenzmg the hlgher-degree.term may be
points. By comparing these values with those measured fgfirectly derived from the study of the current 'ntequll»kz
similar ligands involved in chain structures, we have ob-intervening inside the angular subfactor of each term of the
served that the strongest exchange energy is enhancegharacteristic polynomial:

whereas the smallest one is weakened. As has been ex-

plained, this phenomenon results from the two-dimensional

character of the lattice. Finally, because of the absence of

experimental data in the very low-temperature domain, we

have not been able to derive the critical expongntiow- Fkl,kff dSq; k, Y1, .m, (S k) Y1y m,y(Sk k)

ever, for compensated 2D lattices, if it is possible to obtain

these data, one can hope that the fit of the thermal variations XY, my(Skg ky) (A1)

of the static susceptibility will give an excellent method for
deriving the experimental value of the critical exponent
with a good accuracy.
with, for instance,llzllQlJrLkz, l2=ly,~1k, OF I k, and
I3=I,Ql]k2. For the four lattice corners;y, k, reduces to two
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APPENDIX and the second one if

We start from the characteristic polynomial of the zero-
field partition functionZy(0) given by Eq.(7). In the main
text we have evoked a numerical property of the functions
N, i.e., (@/2Bj)Y . 1(— Bj), which decrease whelnin- m; +my=ms. (A2)
creases, for the same nonvanishing argunggntTherefore,
the term of higher degree is obtained when all thes and
all theli"j’s are equal to a common positiver null) valuel,
for the whole lattice. Thus all theand|’ summations in-
volved in Eq.(7) (and within which there exist imbricate " Lo o )
integrals over the various spherical harmopiceduce ©dualities and them; ;’s and them;'s, respectively. Note
to a single one so that the corresponding term istha; all these resu_lts can be also derlved_ by stl_delng the
[M(= BIo)\ (— BI)2INENT D) (— BJ)~2. Note that the to- parity of the associated Legendre polynomials which can be

written from the corresponding spherical harmorjick Eq.

Therefore, for the in-sites, there are no more selection rules
q over the coefficients; ; Ii’,j (which only obey triangular in-

tal superscript of the latter fact¢as well as for each current
term of the characteristic polynomjaiepresents the total (AD)]. ) o )
number of bonds composing the honeycomb lattice, i.e., 1hUS: ifli=I>=Is=I, thatimplies that is even(or null)
3N(2N+1)—2. for t2he hlgher-Qegree term. In addition, there exisiN(2

Now we examine second-rank terms of the characteristic” 1) —2 equations such as E¢A2) for 3N(2N+1)—2
polynomial; notably, the main problem concerns the deterUnknownsm;;, and mi; so that there ar¢3N(2N+1)
mination of the upper term among all these terms of lower—21—[(2N+1)?—2], i.e., (N+1)(N—-1) independent
degree. Subsequently, we are led to distinguish theN4 (3 over Z solutions (...,m;;,m/;, ...). In other words, in
—1) edge bonds characterized by the{$g§ of the various  the most general case, lifj#0 andl{;#0, them;;’s and
coefficientsl; ; andl{ ; and the (2N —3)+2 inside bonds m/;’s are not necessarily equal to zewhich is the trivial
characterized by theamecoefficients; ; andl{ ; labeledl;,. ~ solution and, for a finite latticei.e., for a finiteN), there is
The edge contribution is Iabele/tifl‘id}, and it involves the NO analy.t|cal expression for {ill t_he terms of t_he characteristic
product of 4(N—1) functions\,(— 8j), i.e., 4N functions golynomtlal hshowmg ponva?lshlggfvalues. Flna]ly,ZN(O) ti
M(—BJo) and 4(N-1) functions A (—pBJ): the hoeshno show a'urll'qu'Je closed-form expression, except in
in-contribution is AMNCN-IN, (-7 with ap e thermodynamic fimit. o

lin lin lin Consequently, in this limiti.e., for an infinite latticg the

=\, (—BJI)\y, (—BJ)% In this respect, note that the term zero-field partition function may be written under the general
of higher degree can be also expressed as the produftirm
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+o0 {m=+1} +oo {Mmgg= +lgg {Min=+ljn}
ZN(O):(47T)3N(2N+1) 2 (Afd)4N(A:n)N(2N73) 2 + A{Ied} 2 (A:I:n)N(ZNfS) 4.
=0 {m=-1}  {leg>0} {meq=~led {Min=—1lin}
|n¢{|ed}
+N +N
X H H Fk 1Ky as N— +oo, (A3)
K= —N kp=—

where the extra factors of argumegtl characterized by
a superscript independent & (tending to infinity have

labeled{m;,}). The ellipsis(representing the terms of lower
degree is made of a product of 8(2N—3)—2 functions

been dropped. In the leader term, the symbolical notation (- gj), j=J,, orJ, with different coefficients. If the I's

{m} refers to the BI(2N+1)—2 summations over the
m; j’s and m/ i's (thus recalling that they belong to the
set Iabelec{m}) Similarly, for the second term, the symbol
{legt Or {Mmeg concerns the 4(8—1) summations over
coefficientsl o4 or mgq (respectively| .4 or m,y) characteriz-
ing the edge bondgéand belonging to the set labeldt.

or {mg4), whereas the symbo{my} refers to the
3N(2N—-3)+2 summations over the coefficients;, ; and
mi"j characterizing the inside bondand elements of the set

are equal for a given argumepj, the highest value of the
corresponding superscript is at most equaNi@N+1) if
j=Jo [respectively, N(2N+1)—2 if j=J]. If that case
occurs, the other contribution of argumed (respectively,
BJo) giving the higher-degree term of these second-rank
factors is characterized by a superscript lower than
2N(2N+1)—2 [respectivelyN(2N+1)], the other factors

of similar argument being characterized by a mixture of co-
efficientsl.
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