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We study the motion of vortices in arrays of Josephson junctions at zero temperature where it is controlled
by quantum tunneling from one plaquette to another. The tunneling process is characterized by a finite time and
can be slow compared to the superconducting @apthat7A>1). The dissipation which accompanies this
process arises from rare processes when a vortex excites a quasiparticle above the gap while tunneling through
a single junction. We find that the dissipation is significant even in the ¢Asel; in particular it is not
exponentially small in this parameter. We use the calculated energy dissipation for the single vortex jump to
estimate the physical resistance of the whole arf89163-182@08)03938-1

[. INTRODUCTION resistance, however, while being of the same order as the
predicted universal value, differ by as much as a factor of 5.
In recent years dynamics of Josephson-junction arrays hadoreover, recent experimeritshow that the superconduct-
attracted much intere$t® The Josephson-junction arrays ing and insulating phases are separated by the wide metallic
(which are artificially fabricated networks of superconduct-region, characterized by nonzero dissipation. In particular it
ing islands weakly coupled by tunnel junctionsecame was found that at low temperaturéb< To=100 mK) and in
model systems for the study of quantum phase transitiongs noncommensurate magnetic field array resistance becomes
i.e., transitions occurring at— 0. temperature independent and remains finite down to the low-
The simplest physical picture of the phase transition in sest temperatures accessifl® mK).
two-dimensional short-ranged Josephson-junction array is The metallic behavior of the arrays cannot be described
the following. The temperature is lower than the bulk transi-by the usual duality picture, since it ignores the presence of
tion temperature of the islands, so that each individual islandissipation. Two issues have to be addressed. In terms of
is superconducting and is characterized by a phase of theortices, a metal corresponds taarmal liquid, rather than
superconducting order parameter. The absolute value of thitte superfluid which characterizes an insulator. Vortices,
order parameter, the superconducting gapis the largest however, are interacting bosons and at low temperatures tend
energy scale in the problem. The phase variable is conjugate form the Bose condensate. Therefore the first question is
to the Cooper pair charge on the island. When the phase tsow can the zero-temperature normal liquid exist. The sec-
well defined, the charge fluctuates and the array is supercomnd question is what is the origin of dissipation at zero tem-
ducting. That happens in the limit where the Josephson erperature.
ergy E;, associated with the Cooper pair tunneling, is much In this paper we will focus on the second question. We
greater than the Coulomb energy., which determines the consider vortex motion at zero temperature where it is con-
electrostatic coupling between the islands that tends to locatrolled by quantum tunneling of single vortices from one
ize the charge carriers. In terms of vortices that means that iplaquette to another. It turns out that during the tunneling
the limit E;>E_ the vortices form the Abrikosov lattice. In process a vortex can excite a quasiparticle state above the
the opposite limit,Ec>E;, the Coulomb blockade pins gap with the probability which is not exponentially small in
Cooper pairs to the islands, so at low temperatures the arrdhe parameterA>1, whereA is the superconducting gap on
is insulating. Since in this phase the charge is fixed, thehe island andr is the tunneling time. The relaxation of the
phase variable fluctuates and vortices form a superfluid.  excited quasiparticle then provides the dissipation in the sys-
Both phases were observed by preparing samples wittem.
different values of ¢ andE,.* The insulating phase exhibits In order to calculate the matrix element for quasiparticle
high values of resistance at finite temperatures, which grovexcitation during vortex tunneling we first solve a simpler
asT—0. The opposite behavior indicates the superconductquantum-mechanical problem. We consider a particle in a
ing phase. The transition can also be induced in the samguasiclassical potential barrier which is also coupled to a
sample by varying magnetic field. The field-induced transi-single harmonic oscillator. The probability to tunnel through
tion can be experimentally observed in arfagsd also in  the barrier is giver(in the simplest approximatiorby the
granular superconducting filnis. WKB approach. The initial state of the whole systéthe
The conventional theoretical picture of the supercon-particle and the oscillatdris that before particle tunneling
ductor to insulator(S-I) transition suggested by FisReis  the oscillator was in its ground state. After the tunneling the
based on duality between vortices and charges. In this pigscillator could remain in its ground state or it could be in
ture the transition point between the two phases is characteone of its excited states; the latter case corresponds to dissi-
ized by finite resistance, which is predicted to have universapation because for any nonzero coupling to environment the
value, proportional to the quantum resistaf:g= h/4e?. oscillator will eventually relax to the ground state. Note that
Experimentally reported valuEs of the transition point this relaxation cannot affect the tunneling since it has already
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happened. For such a problem the dissipation is determinegnce matrixf:ijlz(Ze)ZCijl. In the real experimehtthe
(given the fact of the tunnelingvhich we calculate below in  Taking into account also the self-capacita@g(the capaci-
Sec. IV. ] ) ) tance to the ground plapee approximateC;; by a matrix in

The solution of this quantum-mechanical problem can b&yhich only nonzero elements are diagoal=C,+4C and

applied to the case of vortex tunneling. Wher_1 the VortéXhose corresponding to nearest neighbors in the aBrayf
moves the phase on the islands changes. The time derivative_ - The junction capacitance defines the energy scale

o_f the phase acts as an eﬁeptive fie!d ac_ting on _the.quasipaEC:ezlzcy which is usually referred to as the charging en-
ticles and thus may result in quasiparticle excitations. We,,

note that th_e processes of excitation of different quagipgrti(_:le Tﬁe second part of the array Hamiltonian is the Josephson
modes are independent, so the result for the total d|SS|pat|05bup”ng between the neighboring islands. The coupling de-
is given by the sum over all modes. fines the other energy scale in the sys&m The dissipation
Besides the calculation of the matrix element, we have Qyises from the coupling of the phase variable to some other
make sure that in the process of quasiparticle excitation thgeqrees of freedom in the array. We will denote that part of
energy is conserved. In real arragise quasiparticle gaft is  ihe” Hamiltonian a#;,, and will derive its form in the next
larger that bottEc andE,, so at zero temperature a single gection, where we consider coupling of the time-dependent

vortex does not have enough energy to excite a quasiparticlgyase 1o the quasiparticles in the islands. The Hamiltonian
However, in the vortex liquid dissipation does happen. Exthearefore is given by

perimental eviden&esuggests that the vortex lattice melts
easily due to frustratioigsince in the incommensurate mag-
netic field the vortex lattice does not match the underlying 1o =4, -
array). That means that kinetic energy of vortices in the lig- H= EZ Cilidi—Es> cofi— ) +Him. (D)
uid is rather small, so that the liquid retains the short-range ! <”>
order. This viewpoint is supported by numerical simulatfons
of tWO'dimenSiona(ZD) melting, which show that below the At small Coulomb energy the ground state of E‘t) cor-
melting point the vortices are mostly in large, ordered clusyesponds to the constant phase. Excitations around that
ters. When vortices move, these clusters move as a wholground state are small spin-wave-like fluctuations and topo-
and the extra momentum due to the interaction with quaSirogicaj defects, vortices, where the sum of all gauge-
particles in the island is transferred to the whole cluster. Thenyariant phases around a vortex adds up ta i the su-
energy of the cluster is much larger than the gap in the quaperconducting state, while the Coulomb energy is small,
;iparticle spectrum, therefore the energy conservation is saprtices appear in bound paifsvith antivortices. As the
isfied. Coulomb energy increases, pairs unbound, resulting in the
The rest of the paper is organized as follows. In Sec. Il Weransition to the insulating state of the array. In the field-
describe Josephson-junction arrays in terms of phase vafigned transitionE. is kept constant and vortices are created
ableS. In S_eC. " we der|Ye the form Of the Interaction be'by the magnetic f|e|d In the Superconducting state they form
tween vortices and quasiparticles. In Sec. IV we solve & |attice, which melts at the transition point. Melting occurs
quantum-mechanical problem of a particle in a barrierlikeat £ which is smaller than needed to unbound the vortex-
potential coupled to a harmonic oscillator, and in Sec. Vantivortex pairs. The density of vortices is controlled by
apply the results to the vortex tunneling. In Sec. VI we dis-magnetic field and remains small even in the liquid phase.
cuss the vortex lattice melting in the presence of frustrationTne flow of this vortex liquid results in finite resistivity.
In Sec. VIl we obtain the array resistance due to the dissipa- \v/grtices forming this liquid are distinguished by two im-

tion found in Sec. V. The conclusions follow in Sec. VIIIl. - portant features. First, they do not have a normal core region,
which would be the source of dissipation in homogeneous
II. JOSEPHSON-JUNCTION ARRAYS SUpercondUCtorS. Second, since the Coulomb en@Vg}Ch

is a measure for the kinetic energy of vortices small, the

The microscopic theory of superconductivity in each in-vortex motion at low temperatures is due to quantum-
dividual island will be reviewed in the next section; here wemechanical tunneling through the cosine potential.
shall describe an array of small superconducting islands as- The tunneling rate can be determined by calculating the
suming that the amplitude of the order parameter in eackhstanton action corresponding to a vortex moving from one
island is constant and it is entirely controlled by a singlesite to the neighboring site. The instanton action was deter-
phase variable, i.e., we ignore its spatial dependence on thined by several authd®'? each for slightly different
length scale of the siza of the islands. This is true when the models without dissipation, which also differ from Ed) by
magnetic field does not penetrate the bulk of the islandsanother form of capacitance matrix; note, that theoretical
which is guaranteed by the condition that the flux throughcalculatiort® involves also approximation of the cosine Jo-
one island is less than the flux quanti#a®< ¢, . sephson interaction by a piecewise parabolic potential, i.e.,

The array Hamiltonian consists in general of three partsthe Villain’s approximation. The results are similar, the in-
Time variations of the phase in each island result in voltag&tanton action iS,,= a VE;/Ec, where the numbet is of
differences between the islands, which are electrostaticallyhe order of unity and depends on a particular model. To
coupled to each other and to the ground plane. That definasetermine the resistivity in the array we need to take into
the first part. of the Hamiltonian, the electrostatic energy agccount also the dissipatidiescribed by theH, term in
(1/2)2ij(~3ﬁ1¢i bj, whereéij is proportional to a capaci- Eg.(1)], which is the main subject of this paper.
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For better comparison with experiments we need to deter- —A* (X, 7) 1 (X) ¢ (X)
mine the constant in the realistic model with experimental
values of coupling constants. We have repeated the direct
numerical instanton action calculation for the Hamiltonian
Eqg. (1) without the dissipation tern;,,. First we find the ) ) ) )
phase configuration in the array corresponding to one vorte¥/€ ¢an compactify our notations by introducing Nambu
in a particular(arbitrary, but knowh plaquette. To do that SP!NO
we set the magnetic field through the array so that the total ( "

|

1
—AX, YT (X) P (x) + g—olﬁ(X,T)lz]- (6)

flux is exactly equal to one flux quantum and then minimize lA//Z
the energy Eq(1). Tunneling corresponds to changing the w’{
phase configuration to the one with the vortex in the neigh- ) o
boring plaguette. In terms of phases the vortex tunneling caf N €ffective Hamiltonian becomes
be described as tunneling of each individual phase in the
vortex configuration from it's value corresponding to the H (T):f d3x
.. o . eff
original position of the vortex to the value corresponding to
the final position of the vortex. We set these two VOrteX, erek = — V2/2m, — p is the kinetic operator and the or-
configurations as the boundary conditions for time evolution i . - LA
of individual phases in the array and minimize the actionder parameter is described by the mathix-|Ale™" 737y,
corresponding to the Hamiltonian E¢{), taking the phases |A| and¢ are the absolute value and the phase of the order
to be functions of imaginary time. parameter. In our approximatiga | is constant andb(7) is
For array sizes 86, 8x8, and 10<10 we determined the @ function of time. o o
value of the coefficiente=0.7 (for Co=0). The phases that The Hamiltonian is now quadratic in fermlorj flelds and
change the most during tunneling are the ones in th&'e can formally perfprm the trace over the fermlon variables
plaquette with the vortex. Therefore even with relativelyin Ed. (4). The partition function becomes the integral over
small array sizes the calculation gives the answer that dodf€ order parameter
not change with increasing the size.

Y

)

S PR ST
P (Krg—A) g+ —|A(X,7)]
Jdo

The tunneling ratd”y~exp(—S,s) IS then given by ZG:f DIA,A* Jexp — S[(A]), (9)
Fp% E;Ecexp —0.7VE,/Ec) (2)  Where the action is
and provides a measure for the vortex mass. JA]=—Trin G+ fOBdTgiOM(THZ- (10
IIl. SUPERCONDUCTIVITY IN A SINGLE ISLAND HereG is a 2<2 matrix Green’s function in the particle-hole

In this section we briefly derive the, part of the phase spacé® typical for superconductivity where the inverse is

Hamiltonian Eq.(1) which couples phase fluctuations to qua- 9V€n by
siparticles. In this derivation we follow the standard micro-
scopic description of superconductivity based on the BCS G L(x,mx’ r’):{ _ i_K;SJrA
Hamiltonian®** B ar

We start with the BCS Hamiltonian with an effective lo- (1)

cal, attractive interaction

S(X—x"Yo(m—1").

The action Eq.(10) is a standard BCS action written in a

V2 form convenient for the following. It does not contain any
Wo(X) dissipation as yet, therefore there are no nonlocal terms dis-
2me "7 cussed in Ref. 14. The dissipation appears after an additional
assumption about time dependence of the phase variable,
- @j A3yt )l (), () (X).  (3) namely that while on average it changes slowly, this change
2 occurs with rare but large enough jumps, due to the lattice

. L structure of the array. Thus in the following we shall not
A summation over spins is implied. The order parameter : ) e
L __ assume thatp(t) is a smooth function of time; such an as-
A(Xx,7) is introduced by means of the Hubbard-Stratonovich . o R . '
; ; I X sumption would eliminate all dissipation sources in this

transformation. The grand canonical partition functidg

a - N problem.
=Tr,{exd—B(H—pN)]; becomes The dependence of the Green’s functiand therefore

8 the action on the phase of the order parameter can be dis-
ZG=Tr¢,{ J DIAA*]T exp( —J d7H o5( q-)) } (4)  played through the gauge transformation
0

Hgcs= — f d3X‘//:rr(X)

-1 oy ) — a—ibTal2A -1 eyl I\l dTal2
where the effective Hamiltonian is given by G X, 1) =e HREG X, T, 1)@, (12)

5 where G 1 is obtained from Eq(11) by the replacement

_ V__ )¢ () (5) aldr—aldr — (i/2)(a¢/(97-)3-3. This transformation shows
2me 7 that a constant contributes nothing to the action E{.1).

Hert( 7) = J d3x{ Yh(x)
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The fermion contribution to the action can be representeghteraction part of the action, corresponding to thg, part

by the path integral over Grassman variables of the array Hamiltonian Eq1).
_ . 1 0 —|Al\ag.
expTring 1)=J Dl lexp(—Sy), (13 :-f 3Tk ) ——— 7
where the fermion action (21

A . Here we have integrated the interaction term by parts, in
S¢=J deT’J’ d3xd®x’ ' "Y(x,7;x",7')¢ (14)  order to express the result in terms of the phase fluctuations
¢. This brings the extra factor g from the time depen-

is explicitly given by dence ofy(k,t). Also, we neglecteg in the prefactor which

PR forms the coupling constamf,~ |A|/2(\+ €) because we

Swzf drd3xgt| — (__ L _d’;s) — K73+ |A| 71| . consider only adiabatically slow motion. _
dr 2 07 The phase now can be treated as independent variable,

(15 describing a “particle” in the periodic potential and coupled
. . . to the quasiparticles in the island through the action(Eg).
At zero temperature we can write the real time action aS\jote that the action Eq21) is diagonal in momenturk, so
9 1dd. . 1. for eachk the quasiparticle action is that of a two-level sys-
—i %2 E’Tg_KTs"‘ IAlrl}d/. tem. Since the prqbability .to excite a quasiparticle is small,
(16) the phase quctuatpns_ excite only one tvv_o—IeveI system at a
time, so these excitation processes are independent and the
The corresponding Hamiltonian in momentum space is giveriotal probability can be found as a sum of probabilities to
by the 2<2 matrix excite each individual two-level system. Therefore we can
consider the quantum-mechanical problem of a particle
, 17 coupll(ed to the two-level system and then integrate the results
overk.

S,=i f dtdx g’

€T @ |A|

H, =
v ( Al €t o

_ _ Furthermore, dissipation resulting from exciting a two-
where o= (1/2)(9¢/a). In the BCS theoryp=0 and the level system is not different from the one of an oscillator

Hamiltonian can be diagonalized by the Bogolyubov trans-

) N ) . . because excitations of the latter to higher levels can be ne-
formation, which is just a rotation of the fermion variables. lected. The latter broblem has a slightly broader applica-
When ¢ # 0 we still can perform the rotation, but the result- 9 : P ghtly PP

. : X . . tion. Note, however, the important difference between this
ing action will no longer be diagonal due to the time depen-

. ) s : problem and the Caldeira-Legg®model. Here the motion
azrr]r?ﬁto%fi:r'\ ;h:aéﬁt?;'g;ewfgf'xﬁmvéhi'gh diagonalizes the of the particle is coupled to a single oscillator with large

level spacing, which corresponds to the large quasiparticle
gap, whereas the Caldeira-Leglfeimodel is a system
coupled to a large number of small oscillators, so it is not
difficult to excite each one individually and interesting phys-
(18)  ics arise from exciting a large number of them simulta-
After the rotation the Hamiltonian becomes diagonal neously. _ _
Thus we reduced our problem of calculating the probabil-
ity to excite a quasiparticle in an island to a problem of
, (19 exciting a harmonic oscillator during tunneling. In the next
section we consider this simpler problem and then in the
with the eigenvalue\,= /(e + ¢)?+[A]%. The action be- following section we apply the obtained results to the case of
comes coupling to a two-level system and then sum the probability
over momentek to obtain the final probability to excite a

1 /7\k+€k+‘P —|A]

\/2)\k()\k+€k+(P)\ |A| )\k+6k+(P

R=

~N\¢ O
0 A

) 3t d . i quasiparticle.
Syzl dtd*ky'(k,t) —IE-FH—m
kU k k
IV. SIMPLE MODEL—PARTICLE COUPLED TO
aete  —|Al)ag]. HARMONIC OSCILLATOR
— | v(kt), (20
Al e+ o) dt

R _ _ o In this section we consider the quantum-mechanical prob-
wherey(k,t) are the variables in the rotated ba@isich for  |em of a particle coupled to a harmonic oscillator and tun-

¢=0 correspond to Cooper pairs neling through some barrier. The Hamiltonian is

The additional term in Eq(20) appeared due to the time
dependence ap. The diagonal part is small compared to the p? Pz 1 2o n
eigenvalues\ and can be ignored. The nondiagonal part, H=o  TV0+ 5 ¥ 5MegQ7+gpQ,  (22)

however, describes a new process: a quasiparticle excitation

[the Cooper pairs correspond to diagonal part of @@)].  wherep andP are momentum operators of the particle and
This is the interaction term which is responsible for dissipathe oscillatorm andM are their respective massa4(x) is
tion. Upon integrating out the fieldg(k,t) it becomes the the potential which we assume has the form of a barrier, and
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g is the coupling constant. Here we chose the couplirg  thereforeu,(x,)~ —imgQ;oL so there is no additional sup-

ing the momentum operatgrrather then the position opera- Pression other than the smallnessgofin the opposite limit
tor) which has the same form as the one in the action Eqwo>{) we can evaluate the integral in the exponential noting
(21). We need to obtain the probability to find the oscillator that the main contribution comes from the region near the
in its first excited state after the particle has tunneled througlgnding pointx,. We can then expand the integrand around
the barrier, if before the tunneling the oscillator was in thex, to get mwy/v2m(V—E))~(2mwgy/\2mV)xp—X,
ground state. The coupling is taken to be small enough so where V' = dV/dX|x:xb- Evaluating the integral is now
that the oscillator states are unchanged. . straightforward and we get

We look for the wave function of the system in the form

!’

, : Q)2
o= ¥, (x)|n), 29 Ul(Xb):_lmngoLm~_|mngoL<w_o) . (29

which means that in the limit of slow tunneling;(x,) is
Ondeed small i)/ w, but only as a power law.

The probability of exciting the oscillator is proportional to
the square ofi;(x,) and is given by

where|n) denotes oscillator wave functions corresponding t
the nth energy level.
Neglecting the coupling completely we should have

®O=q,0(x)|0>, (24) o o1 22 Q 4
which means that the oscillator is in the ground state. The P=g'mL Q1°<w_o> ' (20
particle wave function under the barrier is given in the WKB

approximation by

Vo(x)~ uo(x)ex;{ — LX vam(V— E)dx) . (25)

The average energy dissipated in one jump is equal to the
energy needed to excite the oscillatesy] times the transi-
tion probability Eq.(30)

Q 4
. . . W”(gmLQlo)zwo(_) : (31
In the first order ing we have for the wave functiof® ; Wo

=W,(x)|0)+W¥,(x)|1). The Schrdinger equation for the
correctionW ;(x) is V. TUNNELING OF PARTICLE COUPLED TO

QUASIPARTICLE SYSTEM
2

19
— 2 —+V(X)—E+w,

J
2m a2 \Ifl(x)—ngm&\Ifo(x)=0, We now return to the full problem, formulated in Sec. I,

namely to the action Eq21). As we have already men-
(26)  tioned, for each value ok we can treat the guasiparticle

- — : : ; tem as a two-level system and then sum over all possible
whereQ;0=(1|Q|0)=1/\2M w3 is the oscillator matrix el- ~SySt€mM ; _
ement. The oscillator ground-state enetgy? is included in k. Again we treat the phase variable on the island as a coor-

the definition ofE. It is convenient to express the solution in dinate of a “pafF'C'e”' W.h'Ch tunnels through some barrier.
the form W, (x) = u;(X)W(x) with the boundary condition The result for this case is exactly the same as for the case of
1 — Y1

()0, notng tat the oscltor was n the round s PSCIACT ST e have negicted ectaons of ioher
prior to tunneling. The equation becomes ) y 9

levels at all and the result E¢31) is the full answer, in
v, v, _ which we have to substitute the corresponding matrix ele-
Wu’l’Jr ui—mwovulJrlmngO: 0. (277 ment forQ,q and the value of the gap faw,.

0 0 Therefore in order to apply our results to the case of the

Compare now first and second derivative terms. The typi—p hase coupled to the quasiparticle system @4) we only

. S e B need to rewrite it in a Hamiltonian form equivalent to Eq.
cal_par'u_cle energy is= V/_mL ' erlereL Xy _Xa)' The (22). In the Hamiltonian formalism the derivativp/dt in
typical time 7~1/Q). The ratio¥ /¥ can be estimated us- Eq. (21) i laced by th ¢ - .
ing Eq. (25 as 1A/mV. Therefore the second derivate term th?a. ( a)rtliilcr;pma;ses) Iegdine g?rqqeegﬁuer::]ti\o/g?ﬁg;ti(oﬂ ::Son-
can be estimated asl(p/2¥ () uj~uy (1/L2JmV). The first P g

L oo . .. stant

derivative term is simplyu;~u, /L, so that their ratio is

(Po/2¥ () uj/uj~ (1L ymV) <1. Therefore we can drop 1Al

the second derivative term in EQ7). Solving the remaining 9= 200t ) (32

first-order equation we get for the function right after the

tunneling The energy(Q is now the typical frequency of the phase
variation and is equal to the inverse tunneling tin{e,
%\/EJEc.

Xp
Xa

Uy(Xp) = _imngoJ

dx. The probability to excite the quasiparticle at edcthen
(29) follows from Eg.(30). The oscillator frequency, is now
exchanged for the quasiparticle gap, which s, 2at the
Consider now two limiting cases. When<( (fasttran-  samek. The matrix element corresponding @y is just 1.
sition), the integrand in the exponential in E@8) is small,  The probability then is

ex% — JXb&ds)
x \2m(V—E)
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Q\4 whereA is the vector potential andis the distance between
Pk”(gkaTF)Z(X) : (33  islands. We relate the Josephson endtgy (%/2€) J; to the
k magnetizatiorM at low fields, where the response is linear.
Here we used the factor ofz2for the effective lengthL,  We use the relatiop= p A between the supercurrent and the
which is by how much the phase can be changed. The disssuperfluid density,, and expresM via the current. Assum-
pation contribution for eaclk follows by multiplying the ing for simplicity circular geometry the magnetization is
probability by the energy gap given by

e [ Q)7 1 (L .
Wi~ (gm2m) <2\ ) (34 Mzzf 27rdr(jXr). (37
0

Integrating this expression over momentum we get . . N
9 9 P 9 Taking the integral we relate the magnetization to the mag-

Q)3 netic fieldH and the superfluid density;
W~ 720 W) N, (35)
1 =
R
where A is the number of particles on the island. This de- M= 2cPsy L™H. (38)

fines the energy transferred to the quasiparticle system dur-
ing tunneling and therefore the dissipation in a single vortesWVe use Eq(38) to deduce the value gf; from the date for

jump between two neighboring plaquettes. its zero-temperature value we ge§(0)=6.49x 10" The
superfluid density is a function of reduced temperature,
VI. VORTEX LIQUID ps(T)=ps(0)7. Since we need the superfluid density at the

true melting temperatur@,,, = is defined from the shift in
At low magnetic fields vortices form a lattice that melts at melting temperature due to frustration and was measured to
higher fields. Because melting is due to the competition bepe 7=0.01.
tween kinetic and interaction energies, it happens when the Comparing the supercurrent equation with Eg6) we

two are parametrically equal. However in 2D the liquid re- optain the Josephson ener@nd the magnitude of currgnt
tains short-range order and the interaction energy loss in

melting is numerically much smaller as described by a small Z 72c
Lindemann number. In arrays the vortex lattice is frustrated E=o-d1=——ps(Tn). (39
by the incommensurability with the underlying array struc- 2e 4e

ture. This effect reduces the ratio of the kinetic energy over . . .
the interaction energy at melting even further. We can now estimate the interaction energy toEbe1.7

In the absence of a microscopic theory of melting we use* 10" K. Because the melting temperature is of the order of
the phenomenological Lindemann criterion, which described K 1t rfi}'o to the interaction enerdl./E={ is estimated
the melting in terms of elastic constants of the vortex lattice@S¢{=10"". ) o
In the array system these constants are renormalized by frus- W& now compare Lindemann criterion for thermal and
tration. To estimate this effect we analyze the experiment ofua@ntum melting. For the thermal melting considered above
thermal melting in which the effect of incommensurability We have
on the transition temperature was studied in detail. We em-
phasize that these measurements were performed on array d%q
systems, which are different from the ones discussed <pp>~Tf Conl?
throughout this paper. Here we use these experiments to ob- 66
tain estimates of the renormalization of the elastic constantghere the integra| is over the Brillouin zone. Here we have
of the vortex lattice and then use this renormalization toglso substitutectggq?® for the actual dispersion law. This
describe quantum melting. Our observations however argyugh estimate will be sufficient for our purposes. Assuming
general and therefore are applicable to the quantum systemigat frustration renormalizes the elastic constant dy
of interest. ~kps, Wwe get the renormalization factok~T/peal

We need to estimate how frustration renormalizes the /52 Taking for the Lindemann parameter the usual value
elastic constants. Therefore we estimate the interaction e ~0.1 we _
L ~0. getk=0.01.

ergy in the experimental systefnyhich translates into un-
renormalized values of elastic constants, leading to an esti—e
mate of unrenormalized melting temperatur&,g.
Comparing T, with the experimentally observed,, we
find the frustration factor. d2ad £
To estimate the interaction energy we relate the superfluid <pp>~J' qde ~ /_Czaz_ (41)
density p; to the observed magnetizatid. Energy and (w?/Ec) +Cge0? Ces -
current in the Josephson junction in magnetic field can be
written as Using the renormalization factok we getEc/ps~«a .
Thus we expect that the quantum melting happens at kinetic
energies which are at least three orders of magnitude smaller
than the interaction energy.

=a, (40)

For quantum melting we conjecture that because the
normalizationk is due to frustratiortinduced by the arrgy
the elastic constant will be renormalized by the same factor.

2eAa
o+

h .
E=--J,cos¢, J=J;SIn 7c

2e ’ (36)
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VII. DISSIPATION EFFECTS ON VORTEX MOTION order of unity whenL~ ¢, but when the system becomes

Before we turn to the estimate of array resistance, Wéarge, so that > ¢, then the amplitude is exponentially small

have to address the question of energy conservation. TH%NBeexcpa(;sLég)the vortex-vortex interaction is proportional to
quasiclassical calculation of the probability to excite a 94236 logarithm of distance between vortices thpe VF:)I’IEX liquid
siparticle considered above assumed implicitly that the en- 9 q

: o can be approximated by the two-dimensional Coulomb gas.
ergy of the vortex is large enough. Quantitatively that Mmeanse exacl??/vave functior):s of the Coulomb gas are unknogwn
that the vortex energy should at least be larger than the qu :

S 4 Fowever there exists a three-body Hamiltonian with interac-
siparticle gap, otherwise the vortex would lack the energy tq. : . L
excite the quasiparticle. Qtlon that is Coulomb for long distances, while differéand

The energy acquired by a vortex driven by the I_Oren,[zthree-bodyfor short distances. The ground-state wave func-

f : . . tion for this Hamiltonian is known! and it was argued that
orce is proportional to the applied current so at very low

currents it would not be sufficient to excite quasiparticlesone can use this known wave function to estimate the prop-

above the finite gap. For larger currents the probability toertles of the Coulomb gas. The amplituélethen can be

excite quasiparticles is constant and is given by B8) so estimated numerically. Due to the limited computer avail-

at these currents vortex dissipation is linear in its velocityabIIIty we performed the calculation for relatively small ar-

leading to Ohmic conductivity. Here we estimate smalles{®> of up to 20 particles in the circular geometry and small

currentsjq, at which the conductivity remains Ohmic. Interaction pgrameterm=0.5—2.5 [for comparison, the
There are two effects that makg very small. First, a melting point 1S ata_=30 (Ref. 9]. But even being that far

vortex makes many jumps between consecutive emissio OLn thef $elgrr1ng ﬁtOISLV;Ze goué?isegégevmog‘jrm;m (ljet?enn—

processes and accumulates energy. Second, vortex liquid ce(t) et' 't3 tl;1 S Iest Ie L:Se: th ¢ 'tu afo

incompressible and retains short range order in a broad ran ows 1o estimate the correlation engt In the units o

of fields above the melting point, so each emission procesé‘ttlce spacing, W.h'Ch woul_d corre_spond to the cluster size of

slows down not an individual vortex but a large number ofUp\}\c; 20-30 v?.rtlc?s ‘?;d Increasing as we n;ncrea.se_

them. This effect is similar to the Msbauer effect in crys- e now estimate the average energy of a moving

tals, but here the momentum cannot be transferred to th Juster due to the external current. When the current is small

whole number of vortices since there is no long-range order€ force acting on a vortex is given fy=Jd,/ac, where

The effect is difficult to describe quantitatively, due to the @ in the lattice spacing] is the current per junction, antl,

absence of a theory of a strongly correlated vortex liquid afS the flux guantum. The energy acquired by the vortex after
T=0. We shall attempt therefore only to show that the effec©ON€ tunneling jump to the neighboring plaquette is equal to
is indeed large. the force times the lattice spacibg=Fa=J®,/c. Since the

To see this effect and to estimate the correlation length iProPability to excite a quasiparticle is small the excitation is
the liquid state we perform the following calculation, similar arareé process and_the average nqmb_er .Of jumps the vortex
to the calculation of the Debye-Waller factor. The idea is thaf@kes before it excites a quasiparticle is inverse probability.
when the momentum is being transferred to the liquid as 4 "erefore at the moment of quasiparticle excitation the vor-
whole the quantum state of the liquid does not change, so fEX Would have the energi=Jd,/cP. Multiplying this

is described by the same wave function after the transfer d&n€r9y by the number of particles in the cluster we obtain an
before. The amplitude of such process is estimate of the average energy of the cluster at the moment

of quasiparticle excitatiolt ;=N JP,/cP.

The probability can be estimated from H&5) using the
experimentdl values forEc and |A|. We get P~0.001.

. Therefore the cluster energy can be estimated Egag
A=f IdxW* (X ...xy)e PP (x, . xy)8(Xq), =NgJ-1x10% K, where the current is measured in nano-
(42) ampers.

The system has a linear response when the average cluster
energy is larger than the gap|~2 K. For very small cur-
rents, whenEc<|A| the system would exhibit nonlinear

whereN is the number of vortices is the transferred mo- current-voltage curves. For a cluster sitg=100 the current
mentum, andP (X, .. .Xy) is the macroscopic wave function value where this nonlinearity would be observable can be
of the vortex liquid. The factob(x,) singles out the coordi- estimated by setting equal to the gap and using the above
nate of the island, where the quasiparticle was excited. Wheestimate for the cluster energy. We digt=0.1x 103 nA.

the vortex interacts with the particular island its coordinateThe currents used in the experiment are of the orded of
becomes fixed and therefore we do not need to integrate ovet0.1 nA. Therefore it is likely that in the experimentally
it. observable case the array is in ttfpseud9 linear regime.

The amplitudeA is a function of momentunp, vortex Thus the coupling to quasiparticles results in dissipation
number, and interaction strength. In a true liquid, where nalescribed by the linear response in contrast to the dissipation
order is present, the wave functiok(x, ...xy) depends due to coupling to the acoustic phase modéspin
only on the relative coordinates of vortices and therefdre waves.'®1% The effective action obtained in Ref. 18 has a
=0. When vortices are organized in clusters at short disdissipation term which is proportional te?n w. For the
tances, the correlations decay exponentially like ex@f),  slow vortex motion we considgdue to very small currents
where the correlation lengthdefines cluster size. Therefore discussed aboyehis term is small compared to the linear
for a system of the finite size the amplitudeA is of the term Eq. (35 which is determined by the energy scdlg
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rather than the frequency. For larger currents the situation is VIIl. CONCLUSIONS
different and the two effects become comparable.

For the(pseudg linear-response regime we now consider
how the vortex motion is affected by the dissipation. Our
goal is to obtain an expression for the total array resistan

We have considered the vortex tunneling in Josephson-
junction arrays at zero temperature. Using the simple

C .
; . R uantum-mechanical analogy we have showed that such tun-
which arises due to dissipation E@5), therefore we now a 9y

consider a macroscopic equation of vortex motion averagep(aling is accompanied by small dissipation due to quasipar-
over the whole array following Ref. 20. Note that ’after av- icle excitations in the superconducting islands. Even in the
eraging this equatiofEq. (43)] does ﬁot describe the micro- Presence Of. the .Iarge quasipartic_le gap the probability of
scopic coupling between vortices and quasiparticles, whicfUCh €xcitations is found to contain only power-law small-
in general is nonlinear. ness in the(smal) ratio of the characteristic tunneling fre-

Under the influence of the driving curredta vortex is  dueéncy to the gap.. _ o
moving in a direction perpendicular to the current flow: Our main result is the resistance of the vortex liquid Eq.
(47), which is due to this dissipation. The result is valid for

not too small driving currentgfor experimental setupwe
. .. dla estimateJ>J,=0.1x 10"3 nA), for which the system is in
Iy '+ Wy 'x= e (43)  the (pseudd linear-response regime. Our results provide the
guantum-mechanical mechanism of dissipation in Josephson-
junction arrays. The resistance E@7) is independent of
wherex is the vortex positiondp, is the flux quantuml'yis  temperaturédue to its quantum-mechanical origin agree-
the tunneling rate, defined in E@2), which provides the ment with the experimerit.
measure for the vortex mass, amds the lattice spacing. The Our argument is applicable to the vortex liquid just above
lattice potential was taken into account when we calculatedhe melting point, where the vortex liquid retains short-range
the dissipation and the tunneling rate, therefore it does natrystalline order. Then the vortices are strongly interacting
appear in Eq(43). and the external momentum can be transferred to a large
If the driving current is constant then the vortices movenumber of vortices. This is similar to the Msbauer effect in
with constant velocity. If in the Cartesian coordinate systemrystals where the external momentum is transferred to the
the current flows alony axis, then vortices move along  whole crystal. In the vortex liquid such a transfer is impos-
(the magnetic field is along the axis, perpendicular to the sjple due to the absence of long-range order, but the transfer
xy plane of the arrayand their velocity is to a finite size cluster remains possible. Such a cluster in-
volves a large number of vortices, therefore its energy is
much more than the gap in the quasiparticle spectrum, allow-
mhia ing excitations above the gap. Estimating the minimal cluster
0 (44) . , . :
ew size from our numerical data we got that in experimental
conditions the energy contained in such a cluster is always
darger than the gap; it would get smaller than the gap only for

Uyx=

The potential difference caused by the time-dependent pha

is very small currentsd<<J,.
However these estimates depend crucially on the structure
h d¢ of the strongly correlated vortex liquid formed when the vor-
~2%e ot (49 tex lattice melts. We have argued that the problem is exac-

erbated by the frustration imposed on the vortex lattice by
the underlying array structure. The frustration reduces even
further the kinetic energy needed for the melting. The self-
consistent theoretical description of the normal liquid of vor-
tices, however, remains to be an unresolved question. In par-
ticular it is not clear whether the existence of the normal

A liquid is due to the dissipation effects or it is in fact possible

, i (fil') Bda o L
e — — 7. (46) to form a normal liquid in the absence of dissipation.

e W @ One of the possible descriptions of the strongly correlated
vortex liquid is a dilute gas of dislocations in the vortex
crystal similar to the hexatic phase appearing in 2D thermal
The current per junctiod can be obtained from the total melting?! In this phase the vortex flow is due to the motion
currentl asJ=la/d (assuming a square arjayrhe coeffi-  of gislocations. The motion of each single dislocation trans-
cient of proportionality between the voltage and the cur-  fers the whole row of vortices across the system. Here the
rentl is the array resistance number of moving vortices scales with the system size so in

the thermodynamic limit the combined energy of these vor-
tices becomes infinite and the linear response persists to zero
, T (L) Ba’ currents. A detailed description of the strongly correlated
™ ; W ¢TO- (47 vortex liquid is the subject of future work.

When one vortex is moving across the arr@g time t
=d/vy, whered is the size of the arraythe phase changes
by 27. To obtain the total voltage the effect of one vortex
should be multiplied by their number, =Bd?/®,
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