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Resistance of Josephson-junction arrays at low temperatures

L. B. Ioffe and B. N. Narozhny
Department of Physics, Rutgers University, Piscataway, New Jersey 08855

~Received 1 December 1997!

We study the motion of vortices in arrays of Josephson junctions at zero temperature where it is controlled
by quantum tunneling from one plaquette to another. The tunneling process is characterized by a finite time and
can be slow compared to the superconducting gap~so thattD@1). The dissipation which accompanies this
process arises from rare processes when a vortex excites a quasiparticle above the gap while tunneling through
a single junction. We find that the dissipation is significant even in the casetD@1; in particular it is not
exponentially small in this parameter. We use the calculated energy dissipation for the single vortex jump to
estimate the physical resistance of the whole array.@S0163-1829~98!03938-1#
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I. INTRODUCTION

In recent years dynamics of Josephson-junction arrays
attracted much interest.1–6 The Josephson-junction array
~which are artificially fabricated networks of supercondu
ing islands weakly coupled by tunnel junctions! became
model systems for the study of quantum phase transitio
i.e., transitions occurring atT→0.

The simplest physical picture of the phase transition i
two-dimensional short-ranged Josephson-junction array
the following. The temperature is lower than the bulk tran
tion temperature of the islands, so that each individual isl
is superconducting and is characterized by a phase of
superconducting order parameter. The absolute value o
order parameter, the superconducting gapD, is the largest
energy scale in the problem. The phase variable is conju
to the Cooper pair charge on the island. When the phas
well defined, the charge fluctuates and the array is super
ducting. That happens in the limit where the Josephson
ergyEJ , associated with the Cooper pair tunneling, is mu
greater than the Coulomb energyEC , which determines the
electrostatic coupling between the islands that tends to lo
ize the charge carriers. In terms of vortices that means th
the limit EJ@EC the vortices form the Abrikosov lattice. In
the opposite limit,EC@EJ , the Coulomb blockade pin
Cooper pairs to the islands, so at low temperatures the a
is insulating. Since in this phase the charge is fixed,
phase variable fluctuates and vortices form a superfluid.

Both phases were observed by preparing samples
different values ofEC andEJ .1 The insulating phase exhibit
high values of resistance at finite temperatures, which g
asT→0. The opposite behavior indicates the supercond
ing phase. The transition can also be induced in the s
sample by varying magnetic field. The field-induced tran
tion can be experimentally observed in arrays2 and also in
granular superconducting films.3

The conventional theoretical picture of the superco
ductor to insulator~S-I! transition suggested by Fisher5 is
based on duality between vortices and charges. In this
ture the transition point between the two phases is chara
ized by finite resistance, which is predicted to have unive
value, proportional to the quantum resistanceRq5h/4e2.

Experimentally reported values1–3 of the transition point
PRB 580163-1829/98/58~17!/11449~9!/$15.00
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resistance, however, while being of the same order as
predicted universal value, differ by as much as a factor o
Moreover, recent experiments7 show that the superconduc
ing and insulating phases are separated by the wide met
region, characterized by nonzero dissipation. In particula
was found that at low temperatures (T,T05100 mK! and in
a noncommensurate magnetic field array resistance beco
temperature independent and remains finite down to the l
est temperatures accessible~10 mK!.

The metallic behavior of the arrays cannot be describ
by the usual duality picture, since it ignores the presence
dissipation. Two issues have to be addressed. In term
vortices, a metal corresponds to anormal liquid, rather than
the superfluid which characterizes an insulator. Vortic
however, are interacting bosons and at low temperatures
to form the Bose condensate. Therefore the first questio
how can the zero-temperature normal liquid exist. The s
ond question is what is the origin of dissipation at zero te
perature.

In this paper we will focus on the second question. W
consider vortex motion at zero temperature where it is c
trolled by quantum tunneling of single vortices from on
plaquette to another. It turns out that during the tunnel
process a vortex can excite a quasiparticle state above
gap with the probability which is not exponentially small
the parametertD@1, whereD is the superconducting gap o
the island andt is the tunneling time. The relaxation of th
excited quasiparticle then provides the dissipation in the s
tem.

In order to calculate the matrix element for quasiparti
excitation during vortex tunneling we first solve a simpl
quantum-mechanical problem. We consider a particle i
quasiclassical potential barrier which is also coupled to
single harmonic oscillator. The probability to tunnel throu
the barrier is given~in the simplest approximation! by the
WKB approach. The initial state of the whole system~the
particle and the oscillator! is that before particle tunneling
the oscillator was in its ground state. After the tunneling t
oscillator could remain in its ground state or it could be
one of its excited states; the latter case corresponds to d
pation because for any nonzero coupling to environment
oscillator will eventually relax to the ground state. Note th
this relaxation cannot affect the tunneling since it has alre
11 449 ©1998 The American Physical Society
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11 450 PRB 58L. B. IOFFE AND B. N. NAROZHNY
happened. For such a problem the dissipation is determ
by the conditional probability of the oscillator excitation
~given the fact of the tunneling! which we calculate below in
Sec. IV.

The solution of this quantum-mechanical problem can
applied to the case of vortex tunneling. When the vor
moves the phase on the islands changes. The time deriv
of the phase acts as an effective field acting on the quas
ticles and thus may result in quasiparticle excitations.
note that the processes of excitation of different quasipart
modes are independent, so the result for the total dissipa
is given by the sum over all modes.

Besides the calculation of the matrix element, we have
make sure that in the process of quasiparticle excitation
energy is conserved. In real arrays7 the quasiparticle gapD is
larger that bothEC andEJ , so at zero temperature a sing
vortex does not have enough energy to excite a quasipart
However, in the vortex liquid dissipation does happen. E
perimental evidence8 suggests that the vortex lattice me
easily due to frustration~since in the incommensurate ma
netic field the vortex lattice does not match the underly
array!. That means that kinetic energy of vortices in the l
uid is rather small, so that the liquid retains the short-ran
order. This viewpoint is supported by numerical simulation9

of two-dimensional~2D! melting, which show that below the
melting point the vortices are mostly in large, ordered cl
ters. When vortices move, these clusters move as a w
and the extra momentum due to the interaction with qu
particles in the island is transferred to the whole cluster. T
energy of the cluster is much larger than the gap in the q
siparticle spectrum, therefore the energy conservation is
isfied.

The rest of the paper is organized as follows. In Sec. II
describe Josephson-junction arrays in terms of phase
ables. In Sec. III we derive the form of the interaction b
tween vortices and quasiparticles. In Sec. IV we solve
quantum-mechanical problem of a particle in a barrierl
potential coupled to a harmonic oscillator, and in Sec.
apply the results to the vortex tunneling. In Sec. VI we d
cuss the vortex lattice melting in the presence of frustrati
In Sec. VII we obtain the array resistance due to the diss
tion found in Sec. V. The conclusions follow in Sec. VIII.

II. JOSEPHSON-JUNCTION ARRAYS

The microscopic theory of superconductivity in each
dividual island will be reviewed in the next section; here w
shall describe an array of small superconducting islands
suming that the amplitude of the order parameter in e
island is constant and it is entirely controlled by a sing
phase variable, i.e., we ignore its spatial dependence on
length scale of the sizea of the islands. This is true when th
magnetic field does not penetrate the bulk of the islan
which is guaranteed by the condition that the flux throu
one island is less than the flux quantumHa2,f0 .

The array Hamiltonian consists in general of three pa
Time variations of the phase in each island result in volta
differences between the islands, which are electrostatic
coupled to each other and to the ground plane. That defi
the first part of the Hamiltonian, the electrostatic energy
(1/2)( i j C̃i j

21ḟ iḟ j , where C̃i j is proportional to a capaci
ed
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tance matrixC̃i j
215(2e)2Ci j

21 . In the real experiment7 the
main contribution comes from the junction capacitanceC.
Taking into account also the self-capacitanceC0 ~the capaci-
tance to the ground plane! we approximateCi j by a matrix in
which only nonzero elements are diagonalCii 5C014C and
those corresponding to nearest neighbors in the arrayCi j b f
52C. The junction capacitance defines the energy sc
EC5e2/2C, which is usually referred to as the charging e
ergy.

The second part of the array Hamiltonian is the Joseph
coupling between the neighboring islands. The coupling
fines the other energy scale in the systemEJ . The dissipation
arises from the coupling of the phase variable to some o
degrees of freedom in the array. We will denote that part
the Hamiltonian asH int and will derive its form in the next
section, where we consider coupling of the time-depend
phase to the quasiparticles in the islands. The Hamilton
therefore is given by

H5
1

2(i j C̃i j
21ḟ iḟ j2EJ(̂

i j &
cos~f i2f j !1H int . ~1!

At small Coulomb energy the ground state of Eq.~1! cor-
responds to the constant phase. Excitations around
ground state are small spin-wave-like fluctuations and to
logical defects, vortices, where the sum of all gaug
invariant phases around a vortex adds up to 2p. In the su-
perconducting state, while the Coulomb energy is sm
vortices appear in bound pairs~with antivortices!. As the
Coulomb energy increases, pairs unbound, resulting in
transition to the insulating state of the array. In the fie
tuned transition,EC is kept constant and vortices are creat
by the magnetic field. In the superconducting state they fo
a lattice, which melts at the transition point. Melting occu
at EC which is smaller than needed to unbound the vort
antivortex pairs. The density of vortices is controlled
magnetic field and remains small even in the liquid pha
The flow of this vortex liquid results in finite resistivity.

Vortices forming this liquid are distinguished by two im
portant features. First, they do not have a normal core reg
which would be the source of dissipation in homogeneo
superconductors. Second, since the Coulomb energy~which
is a measure for the kinetic energy of vortices! is small, the
vortex motion at low temperatures is due to quantu
mechanical tunneling through the cosine potential.

The tunneling rate can be determined by calculating
instanton action corresponding to a vortex moving from o
site to the neighboring site. The instanton action was de
mined by several authors10–12 each for slightly different
models without dissipation, which also differ from Eq.~1! by
another form of capacitance matrix; note, that theoreti
calculation10 involves also approximation of the cosine J
sephson interaction by a piecewise parabolic potential,
the Villain’s approximation. The results are similar, the i
stanton action isSinst5aAEJ /EC, where the numbera is of
the order of unity and depends on a particular model.
determine the resistivity in the array we need to take i
account also the dissipation@described by theH int term in
Eq. ~1!#, which is the main subject of this paper.
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For better comparison with experiments we need to de
mine the constanta in the realistic model with experimenta
values of coupling constants. We have repeated the d
numerical instanton action calculation for the Hamiltoni
Eq. ~1! without the dissipation termH int . First we find the
phase configuration in the array corresponding to one vo
in a particular~arbitrary, but known! plaquette. To do tha
we set the magnetic field through the array so that the t
flux is exactly equal to one flux quantum and then minim
the energy Eq.~1!. Tunneling corresponds to changing th
phase configuration to the one with the vortex in the nei
boring plaquette. In terms of phases the vortex tunneling
be described as tunneling of each individual phase in
vortex configuration from it’s value corresponding to t
original position of the vortex to the value corresponding
the final position of the vortex. We set these two vort
configurations as the boundary conditions for time evolut
of individual phases in the array and minimize the actio
corresponding to the Hamiltonian Eq.~1!, taking the phases
to be functions of imaginary time.

For array sizes 636, 838, and 10310 we determined the
value of the coefficienta50.7 ~for C050). The phases tha
change the most during tunneling are the ones in
plaquette with the vortex. Therefore even with relative
small array sizes the calculation gives the answer that d
not change with increasing the size.

The tunneling rateG0;exp(2Sinst) is then given by

G0;
1

\
AEJECexp~20.7AEJ /EC! ~2!

and provides a measure for the vortex mass.

III. SUPERCONDUCTIVITY IN A SINGLE ISLAND

In this section we briefly derive theH int part of the phase
Hamiltonian Eq.~1! which couples phase fluctuations to qu
siparticles. In this derivation we follow the standard micr
scopic description of superconductivity based on the B
Hamiltonian.13,14

We start with the BCS Hamiltonian with an effective lo
cal, attractive interaction

HBCS52E d3xcs
†~x!

¹2

2me
cs~x!

2
g0

2 E d3xcs
†~x!c2s

† ~x!c2s~x!cs~x!. ~3!

A summation over spins is implied. The order parame
D(x,t) is introduced by means of the Hubbard-Stratonov
transformation. The grand canonical partition functionZG
5Trc$exp@2b(H2mN)#% becomes

ZG5TrcH E D@D,D* #T expS 2E
0

b

dtHeff~t! D J , ~4!

where the effective Hamiltonian is given by

Heff~t!5E d3xH cs
†~x!S 2

¹2

2me
2m Dcs~x! ~5!
r-
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2D* ~x,t!c↑~x!c↓~x!

2D~x,t!c↓* ~x!c↑* ~x!1
1

g0
uD~x,t!u2J . ~6!

We can compactify our notations by introducing Nam
spinor15

ĉ5S c↓

c↑*
D . ~7!

The effective Hamiltonian becomes

Heff~t!5E d3xF ĉ†~K t̂32D̂ !ĉ1
1

g0
uD~x,t!u2G , ~8!

whereK52 ¹2/2me 2m is the kinetic operator and the or

der parameter is described by the matrixD̂5uDue2 ift̂3t̂1,
uDu andf are the absolute value and the phase of the or
parameter. In our approximationuDu is constant andf(t) is
a function of time.

The Hamiltonian is now quadratic in fermion fields an
we can formally perform the trace over the fermion variab
in Eq. ~4!. The partition function becomes the integral ov
the order parameter

ZG5E D@D,D* #exp~2S@D#!, ~9!

where the action is

S@D#52Tr ln Ĝ211E
0

b

dt
1

g0
uD~t!u2. ~10!

HereĜ is a 232 matrix Green’s function in the particle-hol
space15 typical for superconductivity where the inverse
given by

Ĝ21~x,t;x8,t8!5H 2
]

]t
2K t̂31D̂J d~x2x8!d~t2t8!.

~11!

The action Eq.~10! is a standard BCS action written in
form convenient for the following. It does not contain an
dissipation as yet, therefore there are no nonlocal terms
cussed in Ref. 14. The dissipation appears after an additi
assumption about time dependence of the phase varia
namely that while on average it changes slowly, this cha
occurs with rare but large enough jumps, due to the lat
structure of the array. Thus in the following we shall n
assume thatf(t) is a smooth function of time; such an a
sumption would eliminate all dissipation sources in th
problem.

The dependence of the Green’s function~and therefore
the action! on the phase of the order parameter can be
played through the gauge transformation

G21~x,t;x8,t8!5e2 ift̂3/2Ĝ21~x,t;x8,t8!eift̂3/2, ~12!

where G21 is obtained from Eq.~11! by the replacemen
]/]t→]/]t 2 ( i /2)(]f/]t) t̂3. This transformation shows
that a constantf contributes nothing to the action Eq.~11!.
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The fermion contribution to the action can be represen
by the path integral over Grassman variables

exp~Tr ln G21!5E D@cs#exp~2Sc!, ~13!

where the fermion action

Sc5E dtdt8E d3xd3x8ĉ†G21~x,t;x8,t8!ĉ ~14!

is explicitly given by

Sc5E dtd3xĉ†F2S ]

]t
2

i

2

]f

]t
t̂3D2K t̂31uDu t̂1G ĉ.

~15!

At zero temperature we can write the real time action

Sc5 i E dtd3xĉ†F2 i
]

]t
2

1

2

]f

]t
t̂32K t̂31uDu t̂1G ĉ.

~16!

The corresponding Hamiltonian in momentum space is gi
by the 232 matrix

Hc5S 2ek2w uDu

uDu ek1w
D , ~17!

wherew5 (1/2)(]f/]t). In the BCS theoryw50 and the
Hamiltonian can be diagonalized by the Bogolyubov tra
formation, which is just a rotation of the fermion variable
WhenwÞ0 we still can perform the rotation, but the resu
ing action will no longer be diagonal due to the time depe
dence of w. The rotation matrix, which diagonalizes th
Hamiltonian at each moment of time is

R5
1

A2lk~lk1ek1w!
S lk1ek1w 2uDu

uDu lk1ek1w
D .

~18!

After the rotation the Hamiltonian becomes diagonal

Ĥ5S 2lk 0

0 lk
D , ~19!

with the eigenvaluelk5A(ek1w)21uDu2. The action be-
comes

Sg5 i E dtd3kĝ†~k,t !F2 i
]

]t
1Ĥ2

i

2lk~lk1ek1w!

3S ek1w 2uDu

uDu ek1w
D ]w

]t G ĝ~k,t !, ~20!

whereĝ(k,t) are the variables in the rotated basis~which for
w50 correspond to Cooper pairs!.

The additional term in Eq.~20! appeared due to the tim
dependence ofw. The diagonal part is small compared to t
eigenvaluesl and can be ignored. The nondiagonal pa
however, describes a new process: a quasiparticle excita
@the Cooper pairs correspond to diagonal part of Eq.~20!#.
This is the interaction term which is responsible for dissip
tion. Upon integrating out the fieldsĝ(k,t) it becomes the
d

s

n

-
.

-

,
on

-

interaction part of the action, corresponding to theH int part
of the array Hamiltonian Eq.~1!.

Sint5 i E dtd3kĝ†~k,t !
1

2~lk1ek!
S 0 2uDu

uDu 0 D ]f

]t
ĝ~k,t !.

~21!

Here we have integrated the interaction term by parts
order to express the result in terms of the phase fluctuat
f. This brings the extra factor 2lk from the time depen-
dence ofĝ(k,t). Also, we neglectedw in the prefactor which
forms the coupling constantgk' uDu/2(lk1ek) because we
consider only adiabatically slow motion.

The phase now can be treated as independent varia
describing a ‘‘particle’’ in the periodic potential and couple
to the quasiparticles in the island through the action Eq.~21!.
Note that the action Eq.~21! is diagonal in momentumk, so
for eachk the quasiparticle action is that of a two-level sy
tem. Since the probability to excite a quasiparticle is sm
the phase fluctuations excite only one two-level system
time, so these excitation processes are independent an
total probability can be found as a sum of probabilities
excite each individual two-level system. Therefore we c
consider the quantum-mechanical problem of a part
coupled to the two-level system and then integrate the res
over k.

Furthermore, dissipation resulting from exciting a tw
level system is not different from the one of an oscillat
because excitations of the latter to higher levels can be
glected. The latter problem has a slightly broader appli
tion. Note, however, the important difference between t
problem and the Caldeira-Legget16 model. Here the motion
of the particle is coupled to a single oscillator with larg
level spacing, which corresponds to the large quasipart
gap, whereas the Caldeira-Legget16 model is a system
coupled to a large number of small oscillators, so it is n
difficult to excite each one individually and interesting phy
ics arise from exciting a large number of them simul
neously.

Thus we reduced our problem of calculating the proba
ity to excite a quasiparticle in an island to a problem
exciting a harmonic oscillator during tunneling. In the ne
section we consider this simpler problem and then in
following section we apply the obtained results to the case
coupling to a two-level system and then sum the probabi
over momentak to obtain the final probability to excite a
quasiparticle.

IV. SIMPLE MODEL—PARTICLE COUPLED TO
HARMONIC OSCILLATOR

In this section we consider the quantum-mechanical pr
lem of a particle coupled to a harmonic oscillator and tu
neling through some barrier. The Hamiltonian is

H5
p̂2

2m
1V~x!1

P̂2

2M
1

1

2
Mv0

2Q21gp̂Q, ~22!

wherep̂ and P̂ are momentum operators of the particle a
the oscillator,m andM are their respective masses,V(x) is
the potential which we assume has the form of a barrier,
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g is the coupling constant. Here we chose the coupling~us-
ing the momentum operatorp̂ rather then the position opera
tor! which has the same form as the one in the action
~21!. We need to obtain the probability to find the oscillat
in its first excited state after the particle has tunneled thro
the barrier, if before the tunneling the oscillator was in t
ground state. The couplingg is taken to be small enough s
that the oscillator states are unchanged.

We look for the wave function of the system in the for

F5(
n

Cn~x!un&, ~23!

whereun& denotes oscillator wave functions corresponding
the nth energy level.

Neglecting the coupling completely we should have

F05C0~x!u0&, ~24!

which means that the oscillator is in the ground state. T
particle wave function under the barrier is given in the WK
approximation by

C0~x!'u0~x!expS 2E
xa

x
A2m~V2E!dxD . ~25!

In the first order ing we have for the wave functionF1
5C0(x)u0&1C1(x)u1&. The Schro¨dinger equation for the
correctionC1(x) is

F2
1

2m

]2

]x2
1V~x!2E1v0GC1~x!2 igQ10

]

]x
C0~x!50,

~26!

whereQ105^1uQu0&51/A2Mv0
2 is the oscillator matrix el-

ement. The oscillator ground-state energyv0/2 is included in
the definition ofE. It is convenient to express the solution
the form C1(x)5u1(x)C0(x) with the boundary condition
u1(xa)50, noting that the oscillator was in the ground sta
prior to tunneling. The equation becomes

C0

2C08
u191u182mv0

C0

C08
u11 imgQ1050. ~27!

Compare now first and second derivative terms. The ty
cal particle energy isV5AV/mL2, whereL;(xb2xa). The
typical timet;1/V. The ratioC0 /C08 can be estimated us
ing Eq. ~25! as 1/AmV. Therefore the second derivate ter
can be estimated as (C0/2C08) u19;u1 (1/L2AmV). The first
derivative term is simplyu18;u1 /L, so that their ratio is
(C0/2C08) u19/u18;(1/LAmV) !1. Therefore we can drop
the second derivative term in Eq.~27!. Solving the remaining
first-order equation we get for the functionu1 right after the
tunneling

u1~xb!52 imgQ10E
xa

xbFexpS 2E
x

xb mv0

A2m~V2E!
dsD Gdx.

~28!

Consider now two limiting cases. Whenv0!V ~fast tran-
sition!, the integrand in the exponential in Eq.~28! is small,
q.

h

o

e

i-

thereforeu1(xb)'2 imgQ10L so there is no additional sup
pression other than the smallness ofg. In the opposite limit
v0@V we can evaluate the integral in the exponential not
that the main contribution comes from the region near
ending pointxb . We can then expand the integrand arou

xb to get mv0 /A2m(V2E));(2mv0 /A2mV8)Axb2x,
where V85 dV/dx ux5xb

. Evaluating the integral is now
straightforward and we get

u1~xb!52 imgQ10L
V8

mv0L
;2 imgQ10LS V

v0
D 2

, ~29!

which means that in the limit of slow tunnelingu1(xb) is
indeed small inV/v0 but only as a power law.

The probability of exciting the oscillator is proportional t
the square ofu1(xb) and is given by

P'g2m2L2Q10
2 S V

v0
D 4

. ~30!

The average energyW dissipated in one jump is equal to th
energy needed to excite the oscillator (v0) times the transi-
tion probability Eq.~30!

W'~gmLQ10!
2v0S V

v0
D 4

. ~31!

V. TUNNELING OF PARTICLE COUPLED TO
QUASIPARTICLE SYSTEM

We now return to the full problem, formulated in Sec.
namely to the action Eq.~21!. As we have already men
tioned, for each value ofk we can treat the quasiparticl
system as a two-level system and then sum over all poss
k. Again we treat the phase variable on the island as a c
dinate of a ‘‘particle,’’ which tunnels through some barrie
The result for this case is exactly the same as for the cas
the oscillator since we have neglected excitations of hig
levels. In the case of a two-level system there are no hig
levels at all and the result Eq.~31! is the full answer, in
which we have to substitute the corresponding matrix e
ment forQ10 and the value of the gap forv0 .

Therefore in order to apply our results to the case of
phase coupled to the quasiparticle system Eq.~21! we only
need to rewrite it in a Hamiltonian form equivalent to E
~22!. In the Hamiltonian formalism the derivative]f/]t in
Eq. ~21! is replaced by the momentum operatorp̂/m (m is
the ‘‘particle’’ mass! leading to the effective interaction con
stant

gk5
1

m

uDu
2~lk1ek!

. ~32!

The energyV is now the typical frequency of the phas
variation and is equal to the inverse tunneling time,V
'AEJEC.

The probability to excite the quasiparticle at eachk then
follows from Eq. ~30!. The oscillator frequencyv0 is now
exchanged for the quasiparticle gap, which is 2lk at the
samek. The matrix element corresponding toQ10 is just 1.
The probability then is
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Pk'~gkm2p!2S V

2lk
D 4

. ~33!

Here we used the factor of 2p for the effective lengthL,
which is by how much the phase can be changed. The d
pation contribution for eachk follows by multiplying the
probability by the energy gap

Wk'~gkm2p!22lkS V

2lk
D 4

. ~34!

Integrating this expression over momentum we get

W'p5VS V

uDu D
3

N, ~35!

whereN is the number of particles on the island. This d
fines the energy transferred to the quasiparticle system
ing tunneling and therefore the dissipation in a single vor
jump between two neighboring plaquettes.

VI. VORTEX LIQUID

At low magnetic fields vortices form a lattice that melts
higher fields. Because melting is due to the competition
tween kinetic and interaction energies, it happens when
two are parametrically equal. However in 2D the liquid r
tains short-range order and the interaction energy los
melting is numerically much smaller as described by a sm
Lindemann number. In arrays the vortex lattice is frustra
by the incommensurability with the underlying array stru
ture. This effect reduces the ratio of the kinetic energy o
the interaction energy at melting even further.

In the absence of a microscopic theory of melting we u
the phenomenological Lindemann criterion, which descri
the melting in terms of elastic constants of the vortex latti
In the array system these constants are renormalized by
tration. To estimate this effect we analyze the experimen
thermal melting,8 in which the effect of incommensurabilit
on the transition temperature was studied in detail. We e
phasize that these measurements were performed on
systems, which are different from the ones discus
throughout this paper. Here we use these experiments to
tain estimates of the renormalization of the elastic consta
of the vortex lattice and then use this renormalization
describe quantum melting. Our observations however
general and therefore are applicable to the quantum sys
of interest.7

We need to estimate how frustration renormalizes
elastic constants. Therefore we estimate the interaction
ergy in the experimental system,8 which translates into un
renormalized values of elastic constants, leading to an e
mate of unrenormalized melting temperatureTm0 .
ComparingTm0 with the experimentally observedTm we
find the frustration factor.

To estimate the interaction energy we relate the superfl
density rs to the observed magnetizationM . Energy and
current in the Josephson junction in magnetic field can
written as

E5
\

2e
J1cosw, J5J1sinS w1

2eAa

\c D , ~36!
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whereA is the vector potential anda is the distance betwee
islands. We relate the Josephson energyEJ5(\/2e) J1 to the
magnetizationM at low fields, where the response is linea
We use the relationj 5rsA between the supercurrent and th
superfluid densityrs , and expressM via the current. Assum-
ing for simplicity circular geometry the magnetization
given by

M5
1

2cE0

L

2prdr ~ jW3rW !. ~37!

Taking the integral we relate the magnetization to the m
netic fieldH and the superfluid densityrs

M5
1

2c
rs

p

4
L4H. ~38!

We use Eq.~38! to deduce the value ofrs from the data;8 for
its zero-temperature value we getrs(0)56.4931015. The
superfluid density is a function of reduced temperatu
rs(T)5rs(0)t. Since we need the superfluid density at t
true melting temperatureTm , t is defined from the shift in
melting temperature due to frustration and was measure
be t50.01.

Comparing the supercurrent equation with Eq.~36! we
obtain the Josephson energy~and the magnitude of current!

E5
\

2e
J15

\2c

4e2
rs~Tm!. ~39!

We can now estimate the interaction energy to beE'1.7
3104 K. Because the melting temperature is of the order
1 K, its ratio to the interaction energyTc /E5z is estimated
asz51024.

We now compare Lindemann criterion for thermal a
quantum melting. For the thermal melting considered ab
we have

^rr&;TE d2q

c66q
2

5aL
2 , ~40!

where the integral is over the Brillouin zone. Here we ha
also substitutedc66q

2 for the actual dispersion law. Thi
rough estimate will be sufficient for our purposes. Assum
that frustration renormalizes the elastic constant byc66

;krs , we get the renormalization factork;T/rsaL
2

'z/aL
2 . Taking for the Lindemann parameter the usual va

aL'0.1 we getk50.01.
For quantum melting we conjecture that because

renormalizationk is due to frustration~induced by the array!
the elastic constant will be renormalized by the same fac

^rr&;E d2qdv

~v2/EC! 1c66q
2
'AEC

c66
5ãL

2 . ~41!

Using the renormalization factork we get EC /rs;kãL
4 .

Thus we expect that the quantum melting happens at kin
energies which are at least three orders of magnitude sm
than the interaction energy.
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VII. DISSIPATION EFFECTS ON VORTEX MOTION

Before we turn to the estimate of array resistance,
have to address the question of energy conservation.
quasiclassical calculation of the probability to excite a q
siparticle considered above assumed implicitly that the
ergy of the vortex is large enough. Quantitatively that me
that the vortex energy should at least be larger than the
siparticle gap, otherwise the vortex would lack the energy
excite the quasiparticle.

The energy acquired by a vortex driven by the Lore
force is proportional to the applied current so at very lo
currents it would not be sufficient to excite quasipartic
above the finite gap. For larger currents the probability
excite quasiparticles is constant and is given by Eq.~33! so
at these currents vortex dissipation is linear in its veloc
leading to Ohmic conductivity. Here we estimate small
currentsj 0 , at which the conductivity remains Ohmic.

There are two effects that makej 0 very small. First, a
vortex makes many jumps between consecutive emis
processes and accumulates energy. Second, vortex liqu
incompressible and retains short range order in a broad ra
of fields above the melting point, so each emission proc
slows down not an individual vortex but a large number
them. This effect is similar to the Mo¨ssbauer effect in crys
tals, but here the momentum cannot be transferred to
whole number of vortices since there is no long-range ord
The effect is difficult to describe quantitatively, due to t
absence of a theory of a strongly correlated vortex liquid
T50. We shall attempt therefore only to show that the eff
is indeed large.

To see this effect and to estimate the correlation lengt
the liquid state we perform the following calculation, simil
to the calculation of the Debye-Waller factor. The idea is t
when the momentum is being transferred to the liquid a
whole the quantum state of the liquid does not change, s
is described by the same wave function after the transfe
before. The amplitude of such process is

A5E PdxiC* ~x1 . . . xN!ei ~p/N!( i xiC~x1 . . . xN!d~x1!,

~42!

whereN is the number of vortices,p is the transferred mo
mentum, andC(x1 . . . xN) is the macroscopic wave functio
of the vortex liquid. The factord(x1) singles out the coordi-
nate of the island, where the quasiparticle was excited. W
the vortex interacts with the particular island its coordin
becomes fixed and therefore we do not need to integrate
it.

The amplitudeA is a function of momentump, vortex
number, and interaction strength. In a true liquid, where
order is present, the wave functionC(x1 . . . xN) depends
only on the relative coordinates of vortices and thereforeA
50. When vortices are organized in clusters at short d
tances, the correlations decay exponentially like exp(2x/j),
where the correlation lengthj defines cluster size. Therefor
for a system of the finite sizeL the amplitudeA is of the
e
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order of unity whenL;j, but when the system become
large, so thatL@j, then the amplitude is exponentially sma
A;exp(2L/j).

Because the vortex-vortex interaction is proportional
the logarithm of distance between vortices the vortex liq
can be approximated by the two-dimensional Coulomb g
The exact wave functions of the Coulomb gas are unkno
However there exists a three-body Hamiltonian with inter
tion that is Coulomb for long distances, while different~and
three-body! for short distances. The ground-state wave fun
tion for this Hamiltonian is known,17 and it was argued tha
one can use this known wave function to estimate the pr
erties of the Coulomb gas. The amplitudeA then can be
estimated numerically. Due to the limited computer ava
ability we performed the calculation for relatively small a
rays of up to 20 particles in the circular geometry and sm
interaction parametersa50.5– 2.5 @for comparison, the
melting point is ata530 ~Ref. 9!#. But even being that far
from the melting point we could see the momentum dep
dence of the amplitudeA as described above. Our calculatio
allows to estimate the correlation lengthj.5 in the units of
lattice spacing, which would correspond to the cluster size
up to 20–30 vortices and increasing as we increasea.

We now estimate the average energyEcl of a moving
cluster due to the external current. When the current is sm
the force acting on a vortex is given byF5JF0 /ac, where
a in the lattice spacing,J is the current per junction, andF0
is the flux quantum. The energy acquired by the vortex a
one tunneling jump to the neighboring plaquette is equa
the force times the lattice spacingE5Fa5JF0 /c. Since the
probability to excite a quasiparticle is small the excitation
a rare process and the average number of jumps the vo
makes before it excites a quasiparticle is inverse probabi
Therefore at the moment of quasiparticle excitation the v
tex would have the energyE5JF0 /cP. Multiplying this
energy by the number of particles in the cluster we obtain
estimate of the average energy of the cluster at the mom
of quasiparticle excitationEcl5NjJF0 /cP.

The probability can be estimated from Eq.~35! using the
experimental7 values for EC and uDu. We get P'0.001.
Therefore the cluster energy can be estimated asEcl
5NjJ•13102 K, where the current is measured in nan
ampers.

The system has a linear response when the average cl
energy is larger than the gapuDu'2 K. For very small cur-
rents, whenEC,uDu the system would exhibit nonlinea
current-voltage curves. For a cluster sizeNj5100 the current
value where this nonlinearity would be observable can
estimated by settingEcl equal to the gap and using the abo
estimate for the cluster energy. We getJ050.131023 nA.
The currents used in the experiment are of the order oJ
'0.1 nA. Therefore it is likely that in the experimental
observable case the array is in the~pseudo! linear regime.

Thus the coupling to quasiparticles results in dissipat
described by the linear response in contrast to the dissipa
due to coupling to the acoustic phase modes~spin
waves!.18,19 The effective action obtained in Ref. 18 has
dissipation term which is proportional tov2ln v. For the
slow vortex motion we consider~due to very small currents
discussed above! this term is small compared to the linea
term Eq. ~35! which is determined by the energy scaleEJ
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rather than the frequency. For larger currents the situatio
different and the two effects become comparable.

For the~pseudo! linear-response regime we now consid
how the vortex motion is affected by the dissipation. O
goal is to obtain an expression for the total array resista
which arises due to dissipation Eq.~35!, therefore we now
consider a macroscopic equation of vortex motion, avera
over the whole array following Ref. 20. Note that after a
eraging this equation@Eq. ~43!# does not describe the micro
scopic coupling between vortices and quasiparticles, wh
in general is nonlinear.

Under the influence of the driving currentJ a vortex is
moving in a direction perpendicular to the current flow:

G0
21ẍ1WG0

21ẋ5
F0Ja

c
, ~43!

wherex is the vortex position,F0 is the flux quantum,G0 is
the tunneling rate, defined in Eq.~2!, which provides the
measure for the vortex mass, anda is the lattice spacing. The
lattice potential was taken into account when we calcula
the dissipation and the tunneling rate, therefore it does
appear in Eq.~43!.

If the driving current is constant then the vortices mo
with constant velocity. If in the Cartesian coordinate syst
the current flows alongy axis, then vortices move alongx
~the magnetic field is along thez axis, perpendicular to the
xy plane of the array! and their velocity is

vx5
p\Ja

eW G0 . ~44!

The potential difference caused by the time-dependent p
is

U5
\

2e

]f

]t
. ~45!

When one vortex is moving across the array~in time t
5d/vx , whered is the size of the array! the phase change
by 2p. To obtain the total voltage the effect of one vort
should be multiplied by their numbernv5Bd2/F0

U5p2
\

e2

~\G0!

W
Bda

F0
J. ~46!

The current per junctionJ can be obtained from the tota
currentI asJ5Ia/d ~assuming a square array!. The coeffi-
cient of proportionality between the voltageU and the cur-
rent I is the array resistance

R5p2
\

e2

~\G0!

W
Ba2

F0
. ~47!
is
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VIII. CONCLUSIONS

We have considered the vortex tunneling in Josephs
junction arrays at zero temperature. Using the sim
quantum-mechanical analogy we have showed that such
neling is accompanied by small dissipation due to quasip
ticle excitations in the superconducting islands. Even in
presence of the large quasiparticle gap the probability
such excitations is found to contain only power-law sma
ness in the~small! ratio of the characteristic tunneling fre
quency to the gap.

Our main result is the resistance of the vortex liquid E
~47!, which is due to this dissipation. The result is valid f
not too small driving currents~for experimental setup7 we
estimateJ.J050.131023 nA!, for which the system is in
the ~pseudo! linear-response regime. Our results provide t
quantum-mechanical mechanism of dissipation in Joseph
junction arrays. The resistance Eq.~47! is independent of
temperature~due to its quantum-mechanical origin! in agree-
ment with the experiment.7

Our argument is applicable to the vortex liquid just abo
the melting point, where the vortex liquid retains short-ran
crystalline order. Then the vortices are strongly interact
and the external momentum can be transferred to a la
number of vortices. This is similar to the Mo¨ssbauer effect in
crystals where the external momentum is transferred to
whole crystal. In the vortex liquid such a transfer is impo
sible due to the absence of long-range order, but the tran
to a finite size cluster remains possible. Such a cluster
volves a large number of vortices, therefore its energy
much more than the gap in the quasiparticle spectrum, all
ing excitations above the gap. Estimating the minimal clus
size from our numerical data we got that in experimen
conditions the energy contained in such a cluster is alw
larger than the gap; it would get smaller than the gap only
very small currentsJ,J0 .

However these estimates depend crucially on the struc
of the strongly correlated vortex liquid formed when the vo
tex lattice melts. We have argued that the problem is ex
erbated by the frustration imposed on the vortex lattice
the underlying array structure. The frustration reduces e
further the kinetic energy needed for the melting. The se
consistent theoretical description of the normal liquid of vo
tices, however, remains to be an unresolved question. In
ticular it is not clear whether the existence of the norm
liquid is due to the dissipation effects or it is in fact possib
to form a normal liquid in the absence of dissipation.

One of the possible descriptions of the strongly correla
vortex liquid is a dilute gas of dislocations in the vorte
crystal similar to the hexatic phase appearing in 2D therm
melting.21 In this phase the vortex flow is due to the motio
of dislocations. The motion of each single dislocation tra
fers the whole row of vortices across the system. Here
number of moving vortices scales with the system size so
the thermodynamic limit the combined energy of these v
tices becomes infinite and the linear response persists to
currents. A detailed description of the strongly correlat
vortex liquid is the subject of future work.
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