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The physics of disordered systems, involving Anderson localization, and the physics of nonlinear systems
merge for systems which are both disordered and nonlinear. A fundamental question concerning continuous
(single frequencywave or pulse propagation within such systems is whether or not Anderson localization is
weakened by the nonlinearity. Theoretical predictions for the answer are different for the two cases of con-
tinuous waves and pulses. For continuous waves, it is expected that localized eigenstates will not be affected
by the introduction of nonlinearity. For nonlinear pulses the localization may or may not occur depending on
the relative magnitude of the Anderson localization length and a characteristic “nonlinearity” length which
describes the pulse. We have experimentally studied two different types of disordered and nonlinear acoustic
systems involving both pulsed and continuous waves and have obtained results which show that in all cases
studied theoretical predictions are verifi¢80163-182808)01541-Q

[. INTRODUCTION earity on Anderson localization. Before stating the results,
the question itself should be clarified by means of some in-
Two interesting areas of research involve the physics ofroductory material.
disordered systems and the physics of nonlinear systems,
both having been the subject of experimental and theoretical
studies for some time. Fundamental studies within the area
of disordered systems treat a wave propagating through a Wave propagation in a linear one-dimensional system
random array of scatteretsind research on this problem has containing a sequence of scatterers may be treated in a gen-
revealed several interesting phenomena such as coheregfidl manner, commonly found in quantum mechanics text
backscattér and the exponential localization of the wave, books:” Whether the problem is stated in terms of quantum
known as Anderson localizatiohAn understanding of wave ©OF acoustic variables, the effect of a wave encountering a
propagation in disordered media is crucial in medical imag-Single scatterer or a sequence of scatterers may be described
ing, acoustic geophysical survéincluding oil exploratio, by a two-by-two matnx. For static scattering fields _|t is con-
testing of composites, alloys and porous materials, and me/€nient to work in the temporal frequency domain, rather
soscopic electronic systems. In nonlinear science, importafifia" the time domain, so we treat a monotonal wave field

developments have included the introduction of the concep‘f"'th time dependence exp(wt), or exp(-iEt/#) for a quan-

of “chaos,” which describes the unpredictable behavior of atum particle. The wave equation describing the propagation
i : of the wave is second order and therefore must have two

system governed, paradoxically, by simple and completely. . ! . -
LS ! . dinearly independent solutions with coefficients_; and
deterministic equations, and the application of a systematic

method for solving nonlinear differential equations. which i-1 on one side of the scatterer andandv; on the other
ving nonll ! " , ”qu 10NS, WNICN 46 Theu andv refer to the forward propagating solution
produces an explanation of the “soliton,” a stable wave

) S ) and backward propagating solutions, respectively. For one
pulse which has particlelike behavior. The overlap betwee%catterer, it can be shown that the two coefficients on one

the sciences of disordgr and nonIinea}rity is a relatively neWjge of the scatterer are related to the two coefficients on the
area of research, motivated by the importance of systemginer side by a two-by-two matrix of the form
which are both disordered and nonlinéarhese systems are

common both in nature and in technological applications. A

few examples are many-electron mesoscopic devitegh Uj—1 aj By [y

intensity optical systems, biological and polymer systems, UT ,3}* af v |- (1)
solitons in Josephson transmission lifiesd stress waves in

composite materialsTo understand many of these systems

it is of fundamental importance to study the propagation ofFor general scatterers, tlagés andS’s can be given in terms
nonlinear waves within disordered media. A primary ques-of complex reflection and transmission coefficients;
tion of interest is: Does nonlinearity weaken Anderson local-=1/T; and 8;=(R;/T;)*. For a sequence of scatterers one
ization? Recently there has been significant theoreticalishes to find the overall reflection and transmission coeffi-
progress in solving this difficult problefit:'*~'®but there  cients. This is done by assuming the boundary conditions of
have been few direct experimental studies. In this paper wan incoming wave of amplitudey, a reflection wave of
describe two experiments which were undertaken to providamplitudev,, and a transmitted wave of amplitude 1. Start-
experimental answers to the question of the effect of nonlining with the assumed transmission coefficient vector
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Uy 1 will not be weakened?~® While seeming to be a contro-
vl =10 (2)  Vversy, the division between the theories reflects a feature of
N many nonlinear problems: the answer is not unique and de-

rpends on precisely how the question is posed. In this case,
the answer depends on whether one is discussing a pulse
propagating through a disordered médi&! or an extended
single frequency wav&:1*As discussed above, the transmis-
sion spectrum for a continuous linear wave and the temporal
(Uo) N O[a B (UN) response for a linear pulse are related to each other by a

and working backward from the position of the final scattere
at Xy.1, the matrices for each scatterer are multiplied to-
gether until reaching the input end x=0 with the wave
field determined by the coefficients andvg:

:H B o (3) Fourier transform. In a nonlinear system a simple relation
j=1 \ i j betweenT(w) and (t) does not exist, so that careful con-
sideration of the two cases must be made. To fully under-
The complex reflection and transmission coefficients for theytgnd these important differences, both pulses and continu-
whole system are then given B=vo/up andT=1/us. The  ous waves were used in our experimental investigation of the
system of scatterers may be characterized by exciting a corsfect of nonlinearity on Anderson localization. For the case

tinuous wave cosft) at one end of the system and examin- of a continuougextended, single frequencyave, there is

ing the transmission spectruii{w) at the other end. Alter-  still more than one answer concerning the effect of nonlin-
natively, a linear pulse may be incident on the system an@arity on Anderson localization. The measurement of the
the temporal response at the exit poitit), may be ob- transmission of an extended single frequency wave through a
tained with an inverse Fourier transform from the frequencygisordered one-dimensional region as the length of that re-
domain into the time domain. A key point is that the behaV-gion increases may be done in two ways; the incident wave
ior of the system, whether excited with continuous waves oamplitude may be held constant, or the output amplitude may
pulses, involves a product of matrices containing informatiorpe held constant. In the first method the transmitted power is
about the whole system. The product of matrices may reprenot necessarily unique, although it has been sHdwrat the
sent a sequence of periodic scatterers or a sequence of digansmission may still decay exponentially with length as for
ordered scatterers. For a periodic distribution of scatterershe linear disordered system. When using the second method,
the eigenfunctions of the system, described by the set adne may obtain the unique result that the exponential decay
coefficientsu; andv;, are the Bloch wave functions. For a is replaced with a power-law decdyThe first method, a
random distribution of coupled scatterers, we write the prodmore typical way of defining a transmission measurement,

Uo UN

uct of matrices in a simpler form was used for the continuous-wave experiments described in
j this paper.
P.=]1 M (4) For the continuous-wave experiment, the boundary condi-
i i . . g ;
i"=1 tion of holding the input amplitude constant corresponded to

and make use of Furstenberg’s theofriThis reveals that the theory of Fitich, Spencer, and WayngSW).'* Their
an ensemble averadever different realizations of the ran- Paper considers the existence of exponentially localized so-

dom distribution of a product of random matrices may be lutions of a Hamiltonian with a nonlinear term, and con-
written as cludes that under general conditions Anderson localization

R exists in the presence of nonlinearity. They do not, however,
P; =elM, 5 consider the possibility of the nonlinearity weakening or de-

a solution which grows or decays exponentiallyj apes to  Stroying the Anderson localization by enhancing resonant
plus or minus infinity. For discrete eigenfrequenciemne  hopping, that is, by the nonlinear parametric excitation of an
finds integrable eigenfunctions which decay exponentially irffigenfunction localized at a distant site but which has a
both the positive and negative directions, i.e., the Andersof€arby eigenfrequency. In a linear disordered system, reso-
localized states. When averaged over the different entant hopping from one state to another is unlikely since the
sembles, fluctuations which may be present in the individualwo states would have to be near neighbors for there to be a
eigenfunctions disappear and the system behaves as thougnificant overlap between the exponentially decaying,
the eigenfunctions were localized with a pure exponentiallyAnderson localized eigenfunctions. For the linear d_lsord.ered
decaying eigenfunction such ag(x)|=exp(2x—x|/A),  System then, there _are_large resonance free regions in the
wherex is the site of localization in one dimension ands ~ SPectrum and diffusion is prohibited. A nonlocal nonlinear-
the localization length. These localized eigenstates are a coHy, @ present in the continuous-wave experiments described
sequence of the presence of disorder to the array of scattefl this paper, introduces the possibility of enhanced resonant

ers, and may be studied using established theoretical toolshoPPINg between localization sites. We found that, for a one-
dimensional system under the conditions stated in the FSW

paper, the nonlocal nonlinearity does not weaken the Ander-
son localization, even with conditions which favored nonlin-
Including nonlinear effects greatly complicates the prob-ear enhanced resonant hopping.
lem of wave propagation in disordered media. With respect For the pulse experiments, the presence of nonlinearity
to the question of nonlinearity weakening Anderson localizaintroduces a second length scale, in addition to the Anderson
tion, theoretical papers discussing the question are dividelbcalization length, to the problem of pulse propagation in
between those that predict that Anderson localization will bedisordered media. As mentioned above, the behavior of a
weakened by nonlinearfty''**2and those that predict that it linear pulse, which is equivalent to a superposition of eigen-

Ill. EFFECTS OF NONLINEARITY
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states, depends on satisfying conditions throughout the sys- cotton
tem. By contrast, a nonlinear pulse has extra degrees of free- v t:rnn‘ifrlllz?tli%n
dom which may be adjusted so that conditions need be

satisfied only locally, within a characteristic distan@eg.,
the width of a solitol referred to as the “nonlinearity” f
length. If the nonlinearity of the pulse is weak so that the

nonlinearity length is greater than the Anderson localization &@ an
length, then the pulse transmission exponentially decays with ) | trolley
the size of the systery, as for a linear pulse. If the nonlin- string
earity of the pulse is strong, so that the nonlinearity length is mass
much less than the Anderson localization length, then the

effective extent of the disorder is insufficient to yield local-

ization, and the pulse may show no exponential decay for

largeL. When the nonlinearity length and the Anderson lo-

calization length are comparable, theory predicts that the

magnet

chain drive

pulse will be transmitted for shott with moderate decay, transverse Ol | d mot
but for largerL it will exponentially decay. It is this interest- actuator i anc motor
ing case which is relevant for the nonlinear pulse experiment N

descr!bgd in detail below. _The experiment was per.formed by longitudinal @

examining the changes in the pulse transmission versus actuator

length as the nonlinear length, defined as the characteristic FIG. 1. The one-dimensional mass-loaded wire Anderson local-
width of the pulse, decreased with increasing nonlinearityization experiment. The wire under tension with small masses along
For weak nonlinearity, the Anderson localization length wasgts length is an accurate realization of the one-dimensional wave
expected to be less than the characteristic nonlinear lengtgduation with a Kronig-Penny potential field.

and the pulse transmission was found to decay exponentially.

For the interesting intermediate nonlinearity, the predicted V. CONTINUOUS WAVES ON A MASS-LOADED WIRE

break in the transmission versus length was observed. The acoustic analog which involved a nonlocal nonlinear-
ity was relatively straightforward in construction. The one-
dimensional wave medium consisted of a steel wire which
had a sequence of small masses attached to it. The wire had

Advances in understanding waves propagating in disorass per unit lengtiu=2x10"2 g/cm, and was stretched
dered media have occurred through studies of the localizd0 a tensiorly, giving the speed of low amplitude transverse
tion of light,'® and the wave properties of electrons in disor-waves asco=+To/u=400 m/s. Continuous transverse
dered solids. However electron systems, for example, ar¢/aves were excited with an electromechanical actuator
complicated by effects of screening, spin interactions, anglaced against one end of the wire, as shown in Fig. 1. The
inelastic scattering at finite temperatuPe&n advantageous Vibration field of the wire-mass system was measured with
way of studying complicated systems is to study classicain electrodynamic transducer which could be moved along a
analog systems which model the salient features of the contrack running parallel to the wire, recording the amplitude
plicated system®2% One of the easiest classical wave sys-and phase of the vibration of the wire as a function of posi-
tems which may be used is an acoustic system. Indeed, Bion. The smallm=0.12 g masses attached to the wire ac-
studying an acoustic analog system, many variables of intecurately simulated a Kronig-Penny potential field consisting
est that may be difficult to obtain in quantum or even otherof a series ofs functions with strengtime?/T, wherew is
classical systems, such as the amplitude and phase of titlee temporal frequency of the transverse waves on the wire.
wave function, may be precisely controlled and/or measured/Vhen the placement of the small masses along the wire was
Other important advantages of studying an acoustic analoperiodic, extended eigenfunctions and the corresponding
are that the system may be relatively lossless, ensuring land structure were observed, verifying that the system was
coherent phase structure throughout the system; that it magn appropriate acoustic analog to electrons in solids. When
be driven parametrically, allowing the simulation of inelastic the masses were spaced at random positions along the wire,
effects’® and that it may be driven with finite amplitude Anderson localized eigenstates were observed. For this case,
waves, allowing the study of nonlinear effects. Since maththe average spacing of the masses was20 cm, and the
ematically the effects are the same whether the waves ajgositions deviated randomly from periodic lattice positions
guantum mechanical or classidalcoustig in nature, acous- within a limit of 0.02a. For small-amplitude transverse
tic analogs are simple fundamental experiments which mayvaves, the disordered potential field of the masses was found
be relevant to electron systems. In any case, the classictd produce Anderson localized eigenstates with localization
analog systems are, in many ways, interesting in their owengths on the order of &*° Together, the wire and mass
right. As described in the sections below, we have usedystem was relatively lossless; the resonances of the system
acoustic analogs to study the effects of nonlinearity, bothat low amplitudes had quality factors ef1500.
local and nonlocal, on one-dimensional Anderson localiza- The frequencies used to make measurements were in the
tion. The acoustic analogs involved transverse waves of aeighborhood of what would have been the second transmis-
mass loaded wiré and the propagation of third sound on a sion band if the system had been periodic; that is, the fre-
substrate with a controlled distribution of scatter&rs. guencies were such that approximately one-half wavelength

IV. ACOUSTIC ANALOGS
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fit between the masses. Measurements were made by select
ing an amplitude for the drive actuator, leaving the receive
transducer in one position and slowly sweeping the fre-
quency while the spectral response was recorded. Frequen-,
cies which corresponded to Anderson localized states at low
amplitude could be selected from the spectral response, and .
the wire excited at the selected frequency while the receive
transducer was translated along the wire, recording the wave-
field amplitude and phase. The measurements were repeatec
for a sequence of increasing drive amplitudes, and the effect
of the increasing nonlinearity on the selected Anderson lo-
calized states was examined.

The nonlinearity affecting wave propagation at large drive
amplitudes was nonlocal, involving interactions between dif-
ferent portions of the steel wire, as we shall now show. Let frequency
L, be the length of a thin unstretched wire with mass per unit
length «. When the wire is statically stretched to a length FIG. 2. Sc_hematic Qf the spectral response for a finite amplitude
L=Lo+AL the tension in the wire will b . This is the wave on a wire. Thg |ncree_15ed tension causes the resonance fre-
equilibrium configuration for the system. The acoustic waveduencies for the string to increase, producing the “bent tuning

equation for infinitesimal transverse oscillatiods in the curves shown by the solid line. In the case of ”eafby resonances,
wire is the bent tuning curves may overlap, so that at a single frequency,

5 B both modes may be excited, but at different amplitudes. In the ex-
v 1 7 4 _ ©6) periment, an attempt was made to find a mode, Anderson localized
K at? 0 9x2 ’ at one site with a large amplitude, which would excite a mode, with
ta nearby frequency, but at a different site.

ts)

uni

(arb

response

for which the sound speetiis proportional to the square roo
of the tension, assuming that transverse stiffness has no ef-

fect and that for small displacements the tension in the wirglence exp(x). This form is useful for analytic calculations.
is a constant. A finite amplitude wave traveling along theReplacingT, by T in Eq. (6) gives the nonlinear differential
wire will distort the wire, increasing its arc length and in- equation governing the continuous string:

creasing the tension at the site of the finite oscillation. The

change in the tension will be propagated along the wire at the

speed of longitudinal soun@hvolving Young’s modulusin >V P L1, L|\If|2d A o
the wire material, which is much greater than the speed of  * 52 0 2laL/d 0 Xoxz =
the transverse displacement waves. In effect, the change in (12)

the tension due to a localized finite amplitude transverse dis-

placement distributed throughout the wire virtually instanta-

neously. Following the derivation by Morse and Ing&teye which shows that the nonlinear effect arising from the

obtain an expression for the tension that involves the chang%harlge in the tension will be nonlocal, involving the wave

in arc length of the entire wire: amplitude along the entire length of the wite. o
The nonlocal nonlinearity enhances the possibility of hop-
To 1| (v | g\ ? ping between two localization sites, where a large-amplitude
T:TO“LME fo 1+ 5) dx—L, (D transverse displacement at one localization site modulates
, ) . the tension in the entire wire at twice the eigenstate fre-
whereTo/(AL/L) is related to the Young's modulus in the q,,ency. This modulated tension may then parametrically ex-
wire and may be experimentally determined. By expanding;ite 5 response at a distant localization site, even though the
the square root and keeping only the first-order term, Weygenfrequencyat low amplitude of the distant site may be

obtain slightly different from that of the original site. This is pos-
1/ L \1 (L ow)\2 sible sinc_e the fi_nite ar_nplitude dis_placem_ent also in;reas_es
T=To 1+ = —)—J — | dx|. (8)  the effective static tension of the wire, which causes lines in
21ALJLJo \ ax the spectral response to distort, bending over toward higher

. . . . . frequencie® as illustrated in Fig. 2. In this case, a given
The rlg'htlahand side of this equation may be integrated b3frequency may correspond to several different eigenstates,
parts to yie and states which have different frequencies for low ampli-

1/ L\1[/ow \L L 929 tude displacements may be excited concurrently at the same
T:TO[ 1+ = _)_ <—1[/> —f — Wdx ] (99  frequency by finite amplitude displacements. The initial con-
2\ALJL[\ ox ], Jo o ditions of the experimertas relevant to the theory of FSW
UL\ (Ref. 14] are arbitrary, depending on the state of the system
L ) S .
_ R ) 2 prior to adjusting the frequency of the drive.
=To 1+ 2 AL) L( q fo v dx) ' (10 With the possible nonlinear effects having been discussed,

we can now present the actual experimental results. An in-
The last equation follows with either Neuman or Dirichlet formative way to view the results is to examine the spectral
boundary conditions, and with an assumed spatial depemesponse(amplitude at a fixed site as a function of fre-
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drive average
amplitude response

} (volt)
0.003 1.00
MM 0.010 093

WM 0.100 0.68 position {(arb. units)

FIG. 4. The wave amplitude, normalized with the drive ampli-
tude, versus position, with the drive actuator to the left of the figure.
(a) The wave field for a drive amplitude of 0.01 \h) The wave
field for a drive amplitude of 0.50 V. While the amplitude increases

M at some individual sites, the overall localization is hardly changed
1000 065 by finite amplitude effects.

(a)

(N

)

displacement amplitude (arb. units)

0.300 0.74

normalized response amplitude (arb. units)

that the effect is due to the growth in amplitude of sections
MM 1500 0.68 of wire between a few masses only. Figure 4 shows an ex-
ample of one such wave field whose peak increased with
WM\WM increasing drive amplitude. Figure(ad is the wave field
. / . 2000 070 (wave amplitude, normalized with the drive amplitude, ver-
1010 1050 1090 sus position, with the drive to the left in the figliror a

drive amplitude of 0.01 V, and Fig.(8) is the wave field for
a drive amplitude of 0.50 V. It can be seen that while the
FIG. 3. Normalized spectral response for a sequence of drivélormalized amplitudes of a few sections have increased, the
amplitudes. The left column of numbers displays the drive ampli-location and size of the Anderson localization site has not
tude, expressed as the amplitude of the electrical signal applied tohanged significantly. It should be noted that for the wave
the drive actuator in volts. The right column of numbers presentdield in Fig. 4, and in all of the measured wave fields, there
the “average response,” defined as the integral of the normalizegvas no significant harmonic generation observable.
spectral response over the entire frequency band and normalized to Similar examinations of the wave fields at different fre-
the value at the lowest drive IevéD.OOS V) The arrow indicates a quencies did not show any Significant reduction of Anderson
state whose normalized amplitude increases with drive amp”tquDcalization, in accord with the FSMRef. 14 theory. This
but the effect does not persist. result did not change when the wave fields of states with
nearly the same frequency, but localized at different sites,
guency, measured at a distance of about four localizatiorwere examined. These states might be expected to show en-
lengths from the drive actuator and normalized by dividinghanced resonant hopping from the presence of the nonlinear-
by the drive amplitude, for different drive amplitudes. If the ity, but there was no evidence of this occurring. The highest
system were strictly linear, then the normalized responsedrive amplitude in our measurements corresponded to a non-
would not change. If Anderson localization is weakened bylinear shift in the eigenfrequencies by as much as 15% of the
the nonlinearity, then, as the drive amplitude is increased, thband width(quite large by acoustic standayd#nalysis at
normalized response at the distant site should increase. higher drive amplitude was prevented by the onset of chaos
Our experimental results are presented in Fig. 3, whichn the system; because the Anderson localization concen-
shows a sequence of normalized spectral response plots fottrates the wave energy in a limited region, the state may act
sequence of increasing drive amplitudes. The drive amplitike a simple oscillator which might easily show chaotic be-
tude, expressed as the amplitude of the electrical signal apravior.
plied to the drive actuator in volts, is shown in the left col- Evidence for stronger localization may be seen in Fig. 3,
umn of numbers in Fig. 3. For drive amplitude below 0.003where it can be seen that most of the normalized response
V, the lowest shown in the figure, there was almost no variadecreases slightly with increasing drive level. A quantitative
tion in the spectral response. Changes can be seen in timeeasure of this effect may be found with an “average re-
spectral response for the sequence of increasing drive ampkponse,” defined as the integral of the normalized spectral
tudes shown. For some of the peaks in the spectrum, faresponse over the entire frequency band. The results for each
example the one indicated by the arrow in Fig. 3, the nordrive level, normalized to the value at the lowest drive level
malized response increases with increasing drive amplitudén Fig. 3, are presented in the right column of numbers in
suggesting that there might be some weakening of th&ig. 3. The decrease in the average response of about 30%
Anderson localization. However, this effect does not seem tavith increasing drive amplitude suggests that the Anderson
persist to the highest drive levels, and examination of thdocalization is slightly enhanced by the nonlinearity. It ap-
wave fields at the frequency of the increased peaks indicatggears that the presence of the nonlocal nonlinearity causes an

frequency (Hz)
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Anderson localized state to become increasingly localizedion. Each strip could be used as a third-sound generator or
rather than to parametrically excite a distant localization siteas a third-sound receiver. When used as a generator, a pulse
of current would drive the aluminum film into its normal
state, causing Joule heating and the launch of a third-sound
pulse; since each strip acted as a line source, a plane wave-
The propagation of third-sound pulses in superfluid hefront pulse would then propagate in each direction down the
lium, on ordered and disordered substrates, is an acoustiength of the glass substrate. By monitoring the current, volt-
analog with a local nonlinearity. Third sound is a surfaceage, and time duration of the electrical pulse sent to the
wave analogous to shallow water waves, with a velocity oftransducer, the energy used to generate the third-sound pulse
propagationc dependent on the depth of the flfin this  could be calculated. When used as receivers, the aluminum
system the normal fluid component of the helium is locked tdilm strips acted as conventional superconducting transition-
the substrate by its viscosity, and only the zero-viscosity suedge bolometers. The receivers were calibrated relative to
perfluid component moves, minimizing the damping and eneach other by monitoring the change in effective resistance
suring that the long-range phase coherence is maintaineth each transducer as the temperature of the container was
admitting the possibility of Anderson localization. Experi- changed by small amounts. A one-dimensional sequence of
ments by Smittet al?’ and Kono and Nakad&have shown scatterers was formed by cutting grooves across the width of
that third sound is a viable means of studying Anderson lothe glass substratgarallel to the transducéf with a dia-
calization as well as other wave phenomena in the lineamond wire saw. The reflection coefficient for a single groove
regime. There are also experimeftaf! and theoreticdf ~ was measured separately to be about 30%, and more impor-
studies of third sound in the nonlinear regime, but without atantly, the reflection was the same regardless of the ampli-
scattering field. The theoretical work on nonlinear thirdtude of the third-sound pulse. Measurements were made
sound has been focused on finding a soliton nature of thirdwhen the sequence of scatterers were arranged periodically
sound pulses, but little work has been done to explain experiand when the array was disordered.
mental observations. Although it would be satisfying to have For each measurement sequence in the experiment, one
a nonlinear theory which accounts for the complexities oftransducer was selected as a third-sound generator, and a
finite amplitude third sound, the experimental observationsecond selected as receiver. Pulses were launched with gen-
show the nonlinear nature of third sound cle&tyland itis  erator energies ranging from 25 nJ or lésmall enough to
not essential to have a theoretical model in order to measutee considered well within the linear regijnéo 1200 nJ
how the pulses transmit through a disordered sequence d@farge enough to excite nonlinear effeéctia 25 nJ steps. For
scatterers. The nonlinear nature of third sound may be suneach energy level, 40—100 received wave foftmsnsducer
marized as follows: When third-sound pulses with sufficientsignal as a function of timewere recorded and sample av-
amplitude are generated, the initial part of the pulse satueraged. In order to magnify the nonlinear part of the received
rates, possibly due to the relative motion of the superfluicsignal (the secondary trailing pulse generated after the initial
exceeding a critical velocity. As the energy delivered to theprimary pulse saturatgsecorded wave forms for successive
drive transducer increases, a second pulse appears and proga- nJ separated energy levels were normalized, using the
gates independently of the initial saturated pulse. It is thenitial linear saturated pulse and subtracted. If the received
second pulse which is observed to be nonlinear in nature, ng@ulses were strictly linear, then this process would result in a
only because it exists due to finite amplitudes and is unexnaull difference; otherwise, a nonlinear signal is observed.
plained by the linear theory, but also because its velocity oExamples may be seen in Ref. 22, which shows the sub-
propagation depends on its amplittderhe nonlinearity, in  tracted wave forms for a transducer separation of 6 mm, and
this case, involves local interactions. When a third-soundvith generator levels ranging from 150 to 400 nJ. The shift
pulse of finite amplitude) is generated, the depth of helium in the time-of-flight of the nonlinear signal with increasing
on the surface is changed ands locally modified. If the generator energy, indicating an amplitude-dependent veloc-
modified ¢ is used in the wave equation and expanded tdty, was clearly evident. Since the subtraction procedure
small order ings, nonlinear terms involving the local value of magnified noise in the data, every wave form shown in Ref.
o are obtained®> % 22 was an average of several wave forms within a narrow
The effect of the local nonlinearity on Anderson localiza- range of energies#75 nJ) about a nominal energy. This
tion was studied by exciting finite amplitude third sound on aprocedure produced one nonlinear signal representing one
disordered substrate. The superfluid film substrate was a 2Bansducer pair and one nominal value of generator energy.
X75X1 mm glass plate, which was fixed within an en- The propagation distance was the separation of the transduc-
closed container with its temperature regulated at 'l e  ers in the pair, and the transmission was taken as the height
was admitted into the container until a film of several atomicof the nonlinear pulse. Further information on the subtraction
layers formed on the substrate, creating agreeable conditiomgocedure and results for other transducer separations may be
of temperature and film thickness for the excitation of non-found in Ref. 36.
linear third sound and the subsequent observation of Ander- Measurements were first made for linear and nonlinear
son localization. The third-sound transducers were conpulse propagation in a periodic array of 30 scatterers, at a
structed by depositing 0.2 mm wide strips of aluminum film temperature of 1.1 K and with &He film thickness of 7.5
across the width of the substrate, with electrical connectiormtomic layers® For low generator energies (0.013J in
pads at each end. By adjusting the magnetic field from d&ig. 5 the third-sound pulses on the periodic substrate were
superconducting solenoid surrounding the substrate, the allinear. The output pulse, for the linear case, was similar in
minum film could be held near its superconducting transi-shape to the input pulse, with the addition of a trail of struc-

VI. PULSED THIRD SOUND IN SUPERFLUID HELIUM
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FIG. 5. Transmitted pulsefeft) and their Fourier transforms
(right) for third sound on a periodic substrate, at a temperature of propagation distance (mm)

1.1 K and with a*He film thickness of 7.5 atomic layers. Pulse . L
amplitudes and generator energies wee:73 uK, 0.013 ud FIG. 6. Logarithm of the pulse transmission versus the propa-
(b) 386 uK, 0.080 uJ, () 699 uK, O 206 1 (d)’ gation distance. The dashed line is for weak nonlinearity, where the

896 uK, 0.630 wJ, (&) 1220 uK, 1.04 ud. For low amplitude nonlinearity length is greater that the Anderson localization length.

(a), the transmitted pulse is trailed by distinct interference structureThe dot-dgshed line is for strong nonllnea.rlty,. where the nonll.near-
ity length is less than the Anderson localization length. The inter-

and the Fourier transform shows band structure. For higher ampli-? i dby th lid line. is when th | h
tudes, the trailing structure of the pulse disappears as does the bafigting case, illustrated by the solid line, is when the two lengths are

structure in the Fourier transform. These effects may be the result cﬁomparable. The symbols are data from this experiment.
a decreasing nonlinearity length.

substrate to be 0:60.1 cni ), so that the observed decay

ture produced by coherent interference between multiple reof the measured pulse amplitude was due to Anderson local-
flections. A Fourier transform of the output pulse showedization only. Using the disorder as imparted to the substrate
distinct band structure, as expected for a periodic system. F&nd the measured magnitude of the reflection coefficient, a
high generator energies (0.080J and greater in Fig.)5the =~ computer simulation indicated that the Anderson localization
interference structure and the band structure disappeared &1gth was on the order of #82 mm. The third sound in
the amplitude of the third-sound pulse increased, possibly ahe linear regime behaved as expected, with a measured
a result of the decreasing nonlinearity length. For highAnderson localization length of 222 mm, in reasonable
enough amplitudegsufficiently short nonlinearity lengjtthe ~ agreement with the computer simulation.
pulse does not sample enough of the periodic array for inter- The final, ensemble-averaged results for the nonlinear
ference to have effect, and the output pulse loses the trailinmeasurements are presented as the symbols in Fig. 6, which
interference structure while the band structure in the Fourieshows the logarithm of the pulse transmission versus the
transform disappears. propagation distanck. The dashed line in Fig. 6 is the ex-
The interesting situation is when the nonlinearity lengthponential decay associated with a weak nonlinearity. The
and the Anderson localization length are comparable, focircles are for a nominal generator energy of 275 nJ; at this
which theory predicts that the pulse will be transmitted forenergy a nonlinear signal is readily observed, but its trans-
short system length with moderate decay, but for largeiit ~ mission exponentially decays, so that the theory would indi-
will exponentially decay. It is this case, illustrated by the cate that at this energy the nonlinearity length is greater than
solid line in Fig. 6, which the experiments with the disor- the Anderson localization length. The dot-dashed line in Fig.
dered substrate addressed. In that case, the scatterers hadbaindicates the pulse transmission when the nonlinearity of
average spacing of 1 mm, with a random displacementhe pulse is strong with a nonlinearity length that is much
within =0.5 mm of the average spacing. Since Andersoriess than the Anderson localization length. For this case the
localization is a statistical phenomena, different realizationeffective extent of the disorder is insufficient to yield local-
of the disordered array of scatterers might give widely fluc-ization and exponential decay may not be observed, even for
tuating measurements of the pulse transmission, even thoudgwrge L. The solid line in Fig. 6 shows a theoretical predic-
the disorder in each array may possess the same statistidan for the intermediate case, when the nonlinearity length
properties. To obtain measurements which resemble thend the Anderson localization length are comparable. The
statement of the theory of Anderson localization, it was necsquares in Fig. 6 are for a nominal generator energy of 975
essary to ensemble average over different realizations of theJ, for which the transmission is high for short distances and
disordered substrate. This was achieved by using differerghows exponential decay after about one Anderson localiza-
pairs of transducers as generators and receivers, and thgan length, in excellent agreement with theory. The results
average the results from pairs which had the same nomindbr intermediate generator energies lie between the curves for
separation. The nominal separations for the various pairthe weak nonlinearity case and the intermediate nonlinearity
used in the experiment ranged from 6 to 36 mm, in steps ofase in Fig. 6. Because there are so few points at the smaller
6 mm. The calibration for each pair of generator and receivedistances, the current data are insufficient to provide a pre-
transducers included the ordinary attenuation of third soundise study of the transition between the types of behavior.
between the transducef(determined separately with a bare With the third-sound system, we were unable to achieve suf-
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ficient amplitude to observe the case where the nonlinearityion appears to be even stronger at the largest amplitudes.

length was shorter than the Anderson localization length. Similarly, experiments with nonlinear third-sound pulses
propagating on a disordered substrate, involving local non-
VII. CONCLUSIONS linear interactions only, showed different regimes depending

. . . . n th rength of th Ise nonlinearity. Th n f
We have studied the effect of nonlinear interactions o on the strength of the pulse nonlinearity e concept of a

. S . . onlinearity length, a measure of the strength of the nonlin-
continuous wave and pulse propagation in one-dimensional_ . . : . X )
random systems, in particular the effect of a nonlinearity o earity, Is an |mpo.rtant'feature. The nonlinearity Iength' IS
Anderson localization. The results represent a significant e;]%)n_g for weak nonlmeant_y, and short_ for strong nonlinearity.
perimental contribution to the study of systems which are! NiS idéa was tested using a periodic sequence of a number
both disordered and nonlinear. Whether one considers quaf! Scatterers before experimenting with disordered arrays of
tum or classicalacousti¢ waves propagating within disor- scatterers. For.the periodic array, pulses were generated with
dered systems, the problem of Anderson localization in on®0th low and high generator energies and Fourier transforms
dimension may be treated theoretically in the same way. /2f the output pulses examined. For low generator energies,
derivation, entailing the multiplication of a sequence of ma-the output pulses showed structure due to interference and
trices and making use of Furstenberg’s theot&itiustrates  the Fourier transform showed distinct band structure, as ex-
the existence of the exponentially localized eigenstatepected for a periodic system. For high generator energies the
which characterize Anderson localization. The two experi-nterference structure and the band structure disappeared as
mental systems studied were acoustic in nature, involvinghe amplitude of the third-sound pulse increased, possibly as
continuous waves and pulses affected by a nonlocal and local result of the decreasing nonlinearity length. For high
nonlinearity, respectively. enough amplitudegsufficiently short nonlinearity lengitihe

For the case of nonlinear continuous waves in a disorpulse does not sample enough of the periodic array for inter-
dered media, a one-dimensional mass loaded wire was stuterence to have effect, and the output pulse loses the trailing
ied. We show that the nonlinearity which arises in such anterference structure while the band structure in the Fourier
system is a nonlocal one, providing the possibility of reso-transform disappears. In the system with a sequence of dis-
nant hopping between distant localization sites. For theserdered scatterers, weakly nonlinear pulses, with a nonlinear-
experiments, the boundary condition of holding the inputity length greater than the Anderson localization length, still
amplitude constant and measuring the output amplitude, ashowed effects of localization. But more strongly nonlinear
outlined in a paper by Fiich, Spencer, and Wayrté,was  pulses, with a shortened nonlinearity length, showed a tran-
appropriate, and it was found that the nonlocal nonlinearitysition from slight attenuation to exponentially localized be-
does not weaken the Anderson localization, as predicted. THeavior as the propagation distance increased. This is in
Anderson localization persists, even under conditions whictagreement with the theoretical prediction that states that
favor nonlinear enhanced resonant hopping between distamthen the nonlinearity length and the Anderson localization
localization sites. Our studies involve a range of amplituddength are comparable the pulse will be transmitted for short
of nearly three orders of magnitude, up to the point wheralistances with moderate decay, but for larger distances it will
the system becomes strongly chaotic. The Anderson localiza&xponentially decay.
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