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Experimental studies of nonlinear continuous waves and pulses in disordered media
showing Anderson localization
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The physics of disordered systems, involving Anderson localization, and the physics of nonlinear systems
merge for systems which are both disordered and nonlinear. A fundamental question concerning continuous
~single frequency! wave or pulse propagation within such systems is whether or not Anderson localization is
weakened by the nonlinearity. Theoretical predictions for the answer are different for the two cases of con-
tinuous waves and pulses. For continuous waves, it is expected that localized eigenstates will not be affected
by the introduction of nonlinearity. For nonlinear pulses the localization may or may not occur depending on
the relative magnitude of the Anderson localization length and a characteristic ‘‘nonlinearity’’ length which
describes the pulse. We have experimentally studied two different types of disordered and nonlinear acoustic
systems involving both pulsed and continuous waves and have obtained results which show that in all cases
studied theoretical predictions are verified.@S0163-1829~98!01541-0#
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I. INTRODUCTION

Two interesting areas of research involve the physics
disordered systems and the physics of nonlinear syste
both having been the subject of experimental and theore
studies for some time. Fundamental studies within the a
of disordered systems treat a wave propagating throug
random array of scatterers,1 and research on this problem h
revealed several interesting phenomena such as coh
backscatter2 and the exponential localization of the wav
known as Anderson localization.3 An understanding of wave
propagation in disordered media is crucial in medical im
ing, acoustic geophysical survey~including oil exploration!,
testing of composites, alloys and porous materials, and
soscopic electronic systems. In nonlinear science, impor
developments have included the introduction of the conc
of ‘‘chaos,’’ which describes the unpredictable behavior o
system governed, paradoxically, by simple and comple
deterministic equations, and the application of a system
method for solving nonlinear differential equations, whi
produces an explanation of the ‘‘soliton,’’ a stable wa
pulse which has particlelike behavior. The overlap betwe
the sciences of disorder and nonlinearity is a relatively n
area of research, motivated by the importance of syst
which are both disordered and nonlinear.4 These systems ar
common both in nature and in technological applications
few examples are many-electron mesoscopic devices,5 high
intensity optical systems, biological and polymer system
solitons in Josephson transmission lines,6 and stress waves in
composite materials.7 To understand many of these system
it is of fundamental importance to study the propagation
nonlinear waves within disordered media. A primary qu
tion of interest is: Does nonlinearity weaken Anderson loc
ization? Recently there has been significant theoret
progress in solving this difficult problem,8,9,11–16 but there
have been few direct experimental studies. In this paper
describe two experiments which were undertaken to prov
experimental answers to the question of the effect of non
PRB 580163-1829/98/58~17!/11377~9!/$15.00
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earity on Anderson localization. Before stating the resu
the question itself should be clarified by means of some
troductory material.

II. ANDERSON LOCALIZATION

Wave propagation in a linear one-dimensional syst
containing a sequence of scatterers may be treated in a
eral manner, commonly found in quantum mechanics t
books.17 Whether the problem is stated in terms of quantu
or acoustic variables, the effect of a wave encounterin
single scatterer or a sequence of scatterers may be desc
by a two-by-two matrix. For static scattering fields it is co
venient to work in the temporal frequency domain, rath
than the time domain, so we treat a monotonal wave fi
with time dependence exp(2ivt), or exp(2iEt/\) for a quan-
tum particle. The wave equation describing the propaga
of the wave is second order and therefore must have
linearly independent solutions with coefficientsuj 21 and
v j 21 on one side of the scatterer anduj andv j on the other
side. Theu andv refer to the forward propagating solutio
and backward propagating solutions, respectively. For
scatterer, it can be shown that the two coefficients on
side of the scatterer are related to the two coefficients on
other side by a two-by-two matrix of the form

S uj 21

v j 21D 5S a j b j

b j* a j* D S uj

v j D . ~1!

For general scatterers, thea ’s andb ’s can be given in terms
of complex reflection and transmission coefficients:a j
51/Tj andb j5(Rj /Tj )* . For a sequence of scatterers o
wishes to find the overall reflection and transmission coe
cients. This is done by assuming the boundary condition
an incoming wave of amplitudeu0 , a reflection wave of
amplitudev0, and a transmitted wave of amplitude 1. Sta
ing with the assumed transmission coefficient vector
11 377 ©1998 The American Physical Society
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S uN

vND 5S 1

0D ~2!

and working backward from the position of the final scatte
at xN11 , the matrices for each scatterer are multiplied
gether until reaching the input end atx050 with the wave
field determined by the coefficientsu0 andv0 :

S u0

v0D 5)
j 51

N S a j b j

b j* a j* D S uN

vND . ~3!

The complex reflection and transmission coefficients for
whole system are then given byR5v0 /u0 andT51/u0 . The
system of scatterers may be characterized by exciting a
tinuous wave cos(vt) at one end of the system and exam
ing the transmission spectrumT(v) at the other end. Alter-
natively, a linear pulse may be incident on the system
the temporal response at the exit point,c(t), may be ob-
tained with an inverse Fourier transform from the frequen
domain into the time domain. A key point is that the beha
ior of the system, whether excited with continuous waves
pulses, involves a product of matrices containing informat
about the whole system. The product of matrices may re
sent a sequence of periodic scatterers or a sequence o
ordered scatterers. For a periodic distribution of scatter
the eigenfunctions of the system, described by the se
coefficientsuj andv j , are the Bloch wave functions. For
random distribution of coupled scatterers, we write the pr
uct of matrices in a simpler form

Pj5 )
j 851

j

M j 8 ~4!

and make use of Furstenberg’s theorem.18 This reveals that
an ensemble average~over different realizations of the ran
dom distribution! of a product of random matrices may b
written as

P̄j5ejM̄ , ~5!

a solution which grows or decays exponentially asj goes to
plus or minus infinity. For discrete eigenfrequenciesv one
finds integrable eigenfunctions which decay exponentially
both the positive and negative directions, i.e., the Ander
localized states. When averaged over the different
sembles, fluctuations which may be present in the individ
eigenfunctions disappear and the system behaves as th
the eigenfunctions were localized with a pure exponentia
decaying eigenfunction such asuc(x)u5exp(22ux2xlu/L),
wherexl is the site of localization in one dimension andL is
the localization length. These localized eigenstates are a
sequence of the presence of disorder to the array of sca
ers, and may be studied using established theoretical to

III. EFFECTS OF NONLINEARITY

Including nonlinear effects greatly complicates the pro
lem of wave propagation in disordered media. With resp
to the question of nonlinearity weakening Anderson locali
tion, theoretical papers discussing the question are divi
between those that predict that Anderson localization will
weakened by nonlinearity8,9,11,12and those that predict that
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will not be weakened.12–16 While seeming to be a contro
versy, the division between the theories reflects a featur
many nonlinear problems: the answer is not unique and
pends on precisely how the question is posed. In this c
the answer depends on whether one is discussing a p
propagating through a disordered media8,9,11 or an extended
single frequency wave.12,13As discussed above, the transmi
sion spectrum for a continuous linear wave and the temp
response for a linear pulse are related to each other b
Fourier transform. In a nonlinear system a simple relat
betweenT(v) andc(t) does not exist, so that careful con
sideration of the two cases must be made. To fully und
stand these important differences, both pulses and cont
ous waves were used in our experimental investigation of
effect of nonlinearity on Anderson localization. For the ca
of a continuous~extended, single frequency! wave, there is
still more than one answer concerning the effect of non
earity on Anderson localization. The measurement of
transmission of an extended single frequency wave throug
disordered one-dimensional region as the length of that
gion increases may be done in two ways; the incident w
amplitude may be held constant, or the output amplitude m
be held constant. In the first method the transmitted powe
not necessarily unique, although it has been shown13 that the
transmission may still decay exponentially with length as
the linear disordered system. When using the second met
one may obtain the unique result that the exponential de
is replaced with a power-law decay.12 The first method, a
more typical way of defining a transmission measureme
was used for the continuous-wave experiments describe
this paper.

For the continuous-wave experiment, the boundary con
tion of holding the input amplitude constant corresponded
the theory of Fro¨lich, Spencer, and Wayne~FSW!.14 Their
paper considers the existence of exponentially localized
lutions of a Hamiltonian with a nonlinear term, and co
cludes that under general conditions Anderson localiza
exists in the presence of nonlinearity. They do not, howev
consider the possibility of the nonlinearity weakening or d
stroying the Anderson localization by enhancing reson
hopping, that is, by the nonlinear parametric excitation of
eigenfunction localized at a distant site but which has
nearby eigenfrequency. In a linear disordered system, r
nant hopping from one state to another is unlikely since
two states would have to be near neighbors for there to b
significant overlap between the exponentially decayi
Anderson localized eigenfunctions. For the linear disorde
system then, there are large resonance free regions in
spectrum and diffusion is prohibited. A nonlocal nonlinea
ity, as present in the continuous-wave experiments descr
in this paper, introduces the possibility of enhanced reson
hopping between localization sites. We found that, for a o
dimensional system under the conditions stated in the F
paper, the nonlocal nonlinearity does not weaken the And
son localization, even with conditions which favored nonli
ear enhanced resonant hopping.

For the pulse experiments, the presence of nonlinea
introduces a second length scale, in addition to the Ander
localization length, to the problem of pulse propagation
disordered media. As mentioned above, the behavior o
linear pulse, which is equivalent to a superposition of eig
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states, depends on satisfying conditions throughout the
tem. By contrast, a nonlinear pulse has extra degrees of
dom which may be adjusted so that conditions need
satisfied only locally, within a characteristic distance~e.g.,
the width of a soliton!, referred to as the ‘‘nonlinearity’’
length. If the nonlinearity of the pulse is weak so that t
nonlinearity length is greater than the Anderson localizat
length, then the pulse transmission exponentially decays
the size of the systemL, as for a linear pulse. If the nonlin
earity of the pulse is strong, so that the nonlinearity length
much less than the Anderson localization length, then
effective extent of the disorder is insufficient to yield loca
ization, and the pulse may show no exponential decay
largeL. When the nonlinearity length and the Anderson
calization length are comparable, theory predicts that
pulse will be transmitted for shortL with moderate decay
but for largerL it will exponentially decay. It is this interest
ing case which is relevant for the nonlinear pulse experim
described in detail below. The experiment was performed
examining the changes in the pulse transmission ve
length as the nonlinear length, defined as the character
width of the pulse, decreased with increasing nonlinear
For weak nonlinearity, the Anderson localization length w
expected to be less than the characteristic nonlinear len
and the pulse transmission was found to decay exponenti
For the interesting intermediate nonlinearity, the predic
break in the transmission versus length was observed.

IV. ACOUSTIC ANALOGS

Advances in understanding waves propagating in dis
dered media have occurred through studies of the loca
tion of light,10 and the wave properties of electrons in diso
dered solids. However electron systems, for example,
complicated by effects of screening, spin interactions,
inelastic scattering at finite temperatures.5 An advantageous
way of studying complicated systems is to study class
analog systems which model the salient features of the c
plicated system.19–23 One of the easiest classical wave sy
tems which may be used is an acoustic system. Indeed
studying an acoustic analog system, many variables of in
est that may be difficult to obtain in quantum or even oth
classical systems, such as the amplitude and phase o
wave function, may be precisely controlled and/or measu
Other important advantages of studying an acoustic an
are that the system may be relatively lossless, ensurin
coherent phase structure throughout the system; that it
be driven parametrically, allowing the simulation of inelas
effects;19 and that it may be driven with finite amplitud
waves, allowing the study of nonlinear effects. Since ma
ematically the effects are the same whether the waves
quantum mechanical or classical~acoustic! in nature, acous-
tic analogs are simple fundamental experiments which m
be relevant to electron systems. In any case, the clas
analog systems are, in many ways, interesting in their o
right. As described in the sections below, we have u
acoustic analogs to study the effects of nonlinearity, b
local and nonlocal, on one-dimensional Anderson locali
tion. The acoustic analogs involved transverse waves o
mass loaded wire21 and the propagation of third sound on
substrate with a controlled distribution of scatterers.22
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V. CONTINUOUS WAVES ON A MASS-LOADED WIRE

The acoustic analog which involved a nonlocal nonline
ity was relatively straightforward in construction. The on
dimensional wave medium consisted of a steel wire wh
had a sequence of small masses attached to it. The wire
mass per unit lengthm5231023 g/cm, and was stretche
to a tensionT0 , giving the speed of low amplitude transver
waves as c05AT0 /m5400 m/s. Continuous transvers
waves were excited with an electromechanical actua
placed against one end of the wire, as shown in Fig. 1. T
vibration field of the wire-mass system was measured w
an electrodynamic transducer which could be moved alon
track running parallel to the wire, recording the amplitu
and phase of the vibration of the wire as a function of po
tion. The smallm50.12 g masses attached to the wire a
curately simulated a Kronig-Penny potential field consist
of a series ofd functions with strengthmv2/T0 wherev is
the temporal frequency of the transverse waves on the w
When the placement of the small masses along the wire
periodic, extended eigenfunctions and the correspond
band structure were observed, verifying that the system
an appropriate acoustic analog to electrons in solids. W
the masses were spaced at random positions along the
Anderson localized eigenstates were observed. For this c
the average spacing of the masses wasa520 cm, and the
positions deviated randomly from periodic lattice positio
within a limit of 0.02a. For small-amplitude transvers
waves, the disordered potential field of the masses was fo
to produce Anderson localized eigenstates with localizat
lengths on the order of 6a.19 Together, the wire and mas
system was relatively lossless; the resonances of the sy
at low amplitudes had quality factors of;1500.

The frequencies used to make measurements were in
neighborhood of what would have been the second trans
sion band if the system had been periodic; that is, the
quencies were such that approximately one-half wavelen

FIG. 1. The one-dimensional mass-loaded wire Anderson lo
ization experiment. The wire under tension with small masses al
its length is an accurate realization of the one-dimensional w
equation with a Kronig-Penny potential field.
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fit between the masses. Measurements were made by se
ing an amplitude for the drive actuator, leaving the rece
transducer in one position and slowly sweeping the f
quency while the spectral response was recorded. Freq
cies which corresponded to Anderson localized states at
amplitude could be selected from the spectral response,
the wire excited at the selected frequency while the rece
transducer was translated along the wire, recording the w
field amplitude and phase. The measurements were repe
for a sequence of increasing drive amplitudes, and the ef
of the increasing nonlinearity on the selected Anderson
calized states was examined.

The nonlinearity affecting wave propagation at large dr
amplitudes was nonlocal, involving interactions between d
ferent portions of the steel wire, as we shall now show.
L0 be the length of a thin unstretched wire with mass per u
length m. When the wire is statically stretched to a leng
L5L01DL the tension in the wire will beT0 . This is the
equilibrium configuration for the system. The acoustic wa
equation for infinitesimal transverse oscillationsC in the
wire is

m
]2C

]t2 2T0

]2C

]x2 50, ~6!

for which the sound speedc is proportional to the square roo
of the tension, assuming that transverse stiffness has n
fect and that for small displacements the tension in the w
is a constant. A finite amplitude wave traveling along t
wire will distort the wire, increasing its arc length and i
creasing the tension at the site of the finite oscillation. T
change in the tension will be propagated along the wire at
speed of longitudinal sound~involving Young’s modulus! in
the wire material, which is much greater than the speed
the transverse displacement waves. In effect, the chang
the tension due to a localized finite amplitude transverse
placement distributed throughout the wire virtually instan
neously. Following the derivation by Morse and Ingard,24 we
obtain an expression for the tension that involves the cha
in arc length of the entire wire:

T5T01
T0

~DL/L !

1

LF E
0

LA11S ]C

]x D 2

dx2LG , ~7!

whereT0 /(DL/L) is related to the Young’s modulus in th
wire and may be experimentally determined. By expand
the square root and keeping only the first-order term,
obtain

T5T0F11
1

2S L

DL D 1

LE0

LS ]C

]x D 2

dxG . ~8!

The right-hand side of this equation may be integrated
parts to yield

T5T0H 11
1

2S L

DL D 1

LF S ]C

]x
C D

0

L

2E
0

L ]2C

]x2 CdxG J ~9!

5T0F11
1

2S L

DL D 1

LS q2E
0

L

uCu2dxD G . ~10!

The last equation follows with either Neuman or Dirichl
boundary conditions, and with an assumed spatial dep
ct-
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dence exp(iqx). This form is useful for analytic calculations
ReplacingT0 by T in Eq. ~6! gives the nonlinear differentia
equation governing the continuous string:

m
]2C

]t2 2T0F11
1

2S L

DL D 1

L
q2E

0

L

uCu2dxG]2C

]x2 50,

~11!

which shows that the nonlinear effect arising from t
change in the tension will be nonlocal, involving the wa
amplitude along the entire length of the wire.24

The nonlocal nonlinearity enhances the possibility of ho
ping between two localization sites, where a large-amplitu
transverse displacement at one localization site modul
the tension in the entire wire at twice the eigenstate f
quency. This modulated tension may then parametrically
cite a response at a distant localization site, even though
eigenfrequency~at low amplitude! of the distant site may be
slightly different from that of the original site. This is pos
sible since the finite amplitude displacement also increa
the effective static tension of the wire, which causes lines
the spectral response to distort, bending over toward hig
frequencies25 as illustrated in Fig. 2. In this case, a give
frequency may correspond to several different eigensta
and states which have different frequencies for low am
tude displacements may be excited concurrently at the s
frequency by finite amplitude displacements. The initial co
ditions of the experiment@as relevant to the theory of FSW
~Ref. 14!# are arbitrary, depending on the state of the syst
prior to adjusting the frequency of the drive.

With the possible nonlinear effects having been discuss
we can now present the actual experimental results. An
formative way to view the results is to examine the spec
response~amplitude at a fixed site as a function of fre

FIG. 2. Schematic of the spectral response for a finite amplit
wave on a wire. The increased tension causes the resonance
quencies for the string to increase, producing the ‘‘bent tun
curves’’ shown by the solid line. In the case of nearby resonan
the bent tuning curves may overlap, so that at a single freque
both modes may be excited, but at different amplitudes. In the
periment, an attempt was made to find a mode, Anderson local
at one site with a large amplitude, which would excite a mode, w
a nearby frequency, but at a different site.
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quency!, measured at a distance of about four localizat
lengths from the drive actuator and normalized by dividi
by the drive amplitude, for different drive amplitudes. If th
system were strictly linear, then the normalized respo
would not change. If Anderson localization is weakened
the nonlinearity, then, as the drive amplitude is increased,
normalized response at the distant site should increase.

Our experimental results are presented in Fig. 3, wh
shows a sequence of normalized spectral response plots
sequence of increasing drive amplitudes. The drive am
tude, expressed as the amplitude of the electrical signal
plied to the drive actuator in volts, is shown in the left co
umn of numbers in Fig. 3. For drive amplitude below 0.0
V, the lowest shown in the figure, there was almost no va
tion in the spectral response. Changes can be seen in
spectral response for the sequence of increasing drive am
tudes shown. For some of the peaks in the spectrum,
example the one indicated by the arrow in Fig. 3, the n
malized response increases with increasing drive amplitu
suggesting that there might be some weakening of
Anderson localization. However, this effect does not seem
persist to the highest drive levels, and examination of
wave fields at the frequency of the increased peaks indic

FIG. 3. Normalized spectral response for a sequence of d
amplitudes. The left column of numbers displays the drive am
tude, expressed as the amplitude of the electrical signal applie
the drive actuator in volts. The right column of numbers prese
the ‘‘average response,’’ defined as the integral of the normal
spectral response over the entire frequency band and normaliz
the value at the lowest drive level~0.003 V!. The arrow indicates a
state whose normalized amplitude increases with drive amplitu
but the effect does not persist.
n

e
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that the effect is due to the growth in amplitude of sectio
of wire between a few masses only. Figure 4 shows an
ample of one such wave field whose peak increased w
increasing drive amplitude. Figure 4~a! is the wave field
~wave amplitude, normalized with the drive amplitude, ve
sus position, with the drive to the left in the figure! for a
drive amplitude of 0.01 V, and Fig. 4~b! is the wave field for
a drive amplitude of 0.50 V. It can be seen that while t
normalized amplitudes of a few sections have increased,
location and size of the Anderson localization site has
changed significantly. It should be noted that for the wa
field in Fig. 4, and in all of the measured wave fields, the
was no significant harmonic generation observable.

Similar examinations of the wave fields at different fr
quencies did not show any significant reduction of Anders
localization, in accord with the FSW~Ref. 14! theory. This
result did not change when the wave fields of states w
nearly the same frequency, but localized at different si
were examined. These states might be expected to show
hanced resonant hopping from the presence of the nonlin
ity, but there was no evidence of this occurring. The high
drive amplitude in our measurements corresponded to a n
linear shift in the eigenfrequencies by as much as 15% of
band width~quite large by acoustic standards!. Analysis at
higher drive amplitude was prevented by the onset of ch
in the system; because the Anderson localization conc
trates the wave energy in a limited region, the state may
like a simple oscillator which might easily show chaotic b
havior.

Evidence for stronger localization may be seen in Fig.
where it can be seen that most of the normalized respo
decreases slightly with increasing drive level. A quantitat
measure of this effect may be found with an ‘‘average
sponse,’’ defined as the integral of the normalized spec
response over the entire frequency band. The results for e
drive level, normalized to the value at the lowest drive lev
in Fig. 3, are presented in the right column of numbers
Fig. 3. The decrease in the average response of about
with increasing drive amplitude suggests that the Ander
localization is slightly enhanced by the nonlinearity. It a
pears that the presence of the nonlocal nonlinearity cause

e
i-
to

ts
d
to

e,

FIG. 4. The wave amplitude, normalized with the drive amp
tude, versus position, with the drive actuator to the left of the figu
~a! The wave field for a drive amplitude of 0.01 V.~b! The wave
field for a drive amplitude of 0.50 V. While the amplitude increas
at some individual sites, the overall localization is hardly chang
by finite amplitude effects.
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Anderson localized state to become increasingly locali
rather than to parametrically excite a distant localization s

VI. PULSED THIRD SOUND IN SUPERFLUID HELIUM

The propagation of third-sound pulses in superfluid
lium, on ordered and disordered substrates, is an aco
analog with a local nonlinearity. Third sound is a surfa
wave analogous to shallow water waves, with a velocity
propagationc dependent on the depth of the fluid.26 In this
system the normal fluid component of the helium is locked
the substrate by its viscosity, and only the zero-viscosity
perfluid component moves, minimizing the damping and
suring that the long-range phase coherence is maintai
admitting the possibility of Anderson localization. Expe
ments by Smithet al.27 and Kono and Nakada28 have shown
that third sound is a viable means of studying Anderson
calization as well as other wave phenomena in the lin
regime. There are also experimental29–31 and theoretical32

studies of third sound in the nonlinear regime, but withou
scattering field. The theoretical work on nonlinear th
sound has been focused on finding a soliton nature of th
sound pulses, but little work has been done to explain exp
mental observations. Although it would be satisfying to ha
a nonlinear theory which accounts for the complexities
finite amplitude third sound, the experimental observatio
show the nonlinear nature of third sound clearly29–31and it is
not essential to have a theoretical model in order to mea
how the pulses transmit through a disordered sequenc
scatterers. The nonlinear nature of third sound may be s
marized as follows: When third-sound pulses with sufficie
amplitude are generated, the initial part of the pulse sa
rates, possibly due to the relative motion of the superfl
exceeding a critical velocity. As the energy delivered to
drive transducer increases, a second pulse appears and p
gates independently of the initial saturated pulse. It is
second pulse which is observed to be nonlinear in nature
only because it exists due to finite amplitudes and is un
plained by the linear theory, but also because its velocity
propagation depends on its amplitude.29 The nonlinearity, in
this case, involves local interactions. When a third-sou
pulse of finite amplitudec is generated, the depth of helium
on the surface is changed andc is locally modified. If the
modified c is used in the wave equation and expanded
small order inc, nonlinear terms involving the local value o
c are obtained.33–35

The effect of the local nonlinearity on Anderson localiz
tion was studied by exciting finite amplitude third sound on
disordered substrate. The superfluid film substrate was
37531 mm glass plate, which was fixed within an e
closed container with its temperature regulated at 1 K.4He
was admitted into the container until a film of several atom
layers formed on the substrate, creating agreeable condi
of temperature and film thickness for the excitation of no
linear third sound and the subsequent observation of An
son localization. The third-sound transducers were c
structed by depositing 0.2 mm wide strips of aluminum fi
across the width of the substrate, with electrical connec
pads at each end. By adjusting the magnetic field from
superconducting solenoid surrounding the substrate, the
minum film could be held near its superconducting tran
d
.
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tion. Each strip could be used as a third-sound generato
as a third-sound receiver. When used as a generator, a p
of current would drive the aluminum film into its norma
state, causing Joule heating and the launch of a third-so
pulse; since each strip acted as a line source, a plane w
front pulse would then propagate in each direction down
length of the glass substrate. By monitoring the current, v
age, and time duration of the electrical pulse sent to
transducer, the energy used to generate the third-sound p
could be calculated. When used as receivers, the alumi
film strips acted as conventional superconducting transiti
edge bolometers. The receivers were calibrated relative
each other by monitoring the change in effective resista
in each transducer as the temperature of the container
changed by small amounts. A one-dimensional sequenc
scatterers was formed by cutting grooves across the widt
the glass substrate~parallel to the transducers22! with a dia-
mond wire saw. The reflection coefficient for a single groo
was measured separately to be about 30%, and more im
tantly, the reflection was the same regardless of the am
tude of the third-sound pulse. Measurements were m
when the sequence of scatterers were arranged periodi
and when the array was disordered.

For each measurement sequence in the experiment,
transducer was selected as a third-sound generator, a
second selected as receiver. Pulses were launched with
erator energies ranging from 25 nJ or less~small enough to
be considered well within the linear regime! to 1200 nJ
~large enough to excite nonlinear effects!, in 25 nJ steps. For
each energy level, 40–100 received wave forms~transducer
signal as a function of time! were recorded and sample a
eraged. In order to magnify the nonlinear part of the receiv
signal~the secondary trailing pulse generated after the ini
primary pulse saturates!, recorded wave forms for successiv
25 nJ separated energy levels were normalized, using
initial linear saturated pulse and subtracted. If the recei
pulses were strictly linear, then this process would result i
null difference; otherwise, a nonlinear signal is observ
Examples may be seen in Ref. 22, which shows the s
tracted wave forms for a transducer separation of 6 mm,
with generator levels ranging from 150 to 400 nJ. The sh
in the time-of-flight of the nonlinear signal with increasin
generator energy, indicating an amplitude-dependent ve
ity, was clearly evident. Since the subtraction proced
magnified noise in the data, every wave form shown in R
22 was an average of several wave forms within a narr
range of energies (675 nJ) about a nominal energy. Th
procedure produced one nonlinear signal representing
transducer pair and one nominal value of generator ene
The propagation distance was the separation of the trans
ers in the pair, and the transmission was taken as the he
of the nonlinear pulse. Further information on the subtract
procedure and results for other transducer separations ma
found in Ref. 36.

Measurements were first made for linear and nonlin
pulse propagation in a periodic array of 30 scatterers, a
temperature of 1.1 K and with a4He film thickness of 7.5
atomic layers.36 For low generator energies (0.013mJ in
Fig. 5! the third-sound pulses on the periodic substrate w
linear. The output pulse, for the linear case, was similar
shape to the input pulse, with the addition of a trail of stru
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ture produced by coherent interference between multiple
flections. A Fourier transform of the output pulse show
distinct band structure, as expected for a periodic system.
high generator energies (0.080mJ and greater in Fig. 5!, the
interference structure and the band structure disappeare
the amplitude of the third-sound pulse increased, possibl
a result of the decreasing nonlinearity length. For h
enough amplitudes~sufficiently short nonlinearity length! the
pulse does not sample enough of the periodic array for in
ference to have effect, and the output pulse loses the tra
interference structure while the band structure in the Fou
transform disappears.

The interesting situation is when the nonlinearity leng
and the Anderson localization length are comparable,
which theory predicts that the pulse will be transmitted
short system lengthL with moderate decay, but for largerL it
will exponentially decay.9 It is this case, illustrated by the
solid line in Fig. 6, which the experiments with the diso
dered substrate addressed. In that case, the scatterers h
average spacing of 1 mm, with a random displacem
within 60.5 mm of the average spacing. Since Anders
localization is a statistical phenomena, different realizatio
of the disordered array of scatterers might give widely flu
tuating measurements of the pulse transmission, even tho
the disorder in each array may possess the same stati
properties. To obtain measurements which resemble
statement of the theory of Anderson localization, it was n
essary to ensemble average over different realizations o
disordered substrate. This was achieved by using diffe
pairs of transducers as generators and receivers, and
average the results from pairs which had the same nom
separation. The nominal separations for the various p
used in the experiment ranged from 6 to 36 mm, in steps
6 mm. The calibration for each pair of generator and rece
transducers included the ordinary attenuation of third so
between the transducers~determined separately with a ba

FIG. 5. Transmitted pulses~left! and their Fourier transforms
~right! for third sound on a periodic substrate, at a temperature
1.1 K and with a4He film thickness of 7.5 atomic layers. Puls
amplitudes and generator energies were:~a! 73 mK, 0.013 mJ,
~b! 386 mK, 0.080 mJ, ~c! 699 mK, 0.206 mJ, ~d!
896 mK, 0.630 mJ, ~e! 1220 mK, 1.04 mJ. For low amplitude,
~a!, the transmitted pulse is trailed by distinct interference struct
and the Fourier transform shows band structure. For higher am
tudes, the trailing structure of the pulse disappears as does the
structure in the Fourier transform. These effects may be the resu
a decreasing nonlinearity length.
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substrate to be 0.660.1 cm21), so that the observed deca
of the measured pulse amplitude was due to Anderson lo
ization only. Using the disorder as imparted to the substr
and the measured magnitude of the reflection coefficien
computer simulation indicated that the Anderson localizat
length was on the order of 1862 mm. The third sound in
the linear regime behaved as expected, with a meas
Anderson localization length of 2262 mm, in reasonable
agreement with the computer simulation.

The final, ensemble-averaged results for the nonlin
measurements are presented as the symbols in Fig. 6, w
shows the logarithm of the pulse transmission versus
propagation distanceL. The dashed line in Fig. 6 is the ex
ponential decay associated with a weak nonlinearity. T
circles are for a nominal generator energy of 275 nJ; at
energy a nonlinear signal is readily observed, but its tra
mission exponentially decays, so that the theory would in
cate that at this energy the nonlinearity length is greater t
the Anderson localization length. The dot-dashed line in F
6 indicates the pulse transmission when the nonlinearity
the pulse is strong with a nonlinearity length that is mu
less than the Anderson localization length. For this case
effective extent of the disorder is insufficient to yield loca
ization and exponential decay may not be observed, even
largeL. The solid line in Fig. 6 shows a theoretical predi
tion for the intermediate case, when the nonlinearity len
and the Anderson localization length are comparable. T
squares in Fig. 6 are for a nominal generator energy of
nJ, for which the transmission is high for short distances a
shows exponential decay after about one Anderson loca
tion length, in excellent agreement with theory. The resu
for intermediate generator energies lie between the curves
the weak nonlinearity case and the intermediate nonlinea
case in Fig. 6. Because there are so few points at the sm
distances, the current data are insufficient to provide a p
cise study of the transition between the types of behav
With the third-sound system, we were unable to achieve s

f

e
li-
nd

of

FIG. 6. Logarithm of the pulse transmission versus the pro
gation distance. The dashed line is for weak nonlinearity, where
nonlinearity length is greater that the Anderson localization leng
The dot-dashed line is for strong nonlinearity, where the nonline
ity length is less than the Anderson localization length. The int
esting case, illustrated by the solid line, is when the two lengths
comparable. The symbols are data from this experiment.



ri
.

o
n
o
e

ar
ua
-
on
.
a

te
r
in
oc

o
tu

o
es
u
,

rit
T
ic
ta
d
er
liz

s.
es
on-
ing
f a
lin-
is

ty.
ber

s of
with
rms
ies,
and
ex-
the
d as

y as
gh

ter-
iling
rier
dis-
ear-
till
ar
an-
e-

in
that
ion
ort
will

11 384 PRB 58VERNON A. HOPKINS, L. C. KRYSAC, AND J. D. MAYNARD
ficient amplitude to observe the case where the nonlinea
length was shorter than the Anderson localization length

VII. CONCLUSIONS

We have studied the effect of nonlinear interactions
continuous wave and pulse propagation in one-dimensio
random systems, in particular the effect of a nonlinearity
Anderson localization. The results represent a significant
perimental contribution to the study of systems which
both disordered and nonlinear. Whether one considers q
tum or classical~acoustic! waves propagating within disor
dered systems, the problem of Anderson localization in
dimension may be treated theoretically in the same way
derivation, entailing the multiplication of a sequence of m
trices and making use of Furstenberg’s theorem,18 illustrates
the existence of the exponentially localized eigensta
which characterize Anderson localization. The two expe
mental systems studied were acoustic in nature, involv
continuous waves and pulses affected by a nonlocal and l
nonlinearity, respectively.

For the case of nonlinear continuous waves in a dis
dered media, a one-dimensional mass loaded wire was s
ied. We show that the nonlinearity which arises in such
system is a nonlocal one, providing the possibility of res
nant hopping between distant localization sites. For th
experiments, the boundary condition of holding the inp
amplitude constant and measuring the output amplitude
outlined in a paper by Fro¨lich, Spencer, and Wayne,14 was
appropriate, and it was found that the nonlocal nonlinea
does not weaken the Anderson localization, as predicted.
Anderson localization persists, even under conditions wh
favor nonlinear enhanced resonant hopping between dis
localization sites. Our studies involve a range of amplitu
of nearly three orders of magnitude, up to the point wh
the system becomes strongly chaotic. The Anderson loca
pi
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tion appears to be even stronger at the largest amplitude
Similarly, experiments with nonlinear third-sound puls

propagating on a disordered substrate, involving local n
linear interactions only, showed different regimes depend
on the strength of the pulse nonlinearity. The concept o
nonlinearity length, a measure of the strength of the non
earity, is an important feature. The nonlinearity length
long for weak nonlinearity, and short for strong nonlineari
This idea was tested using a periodic sequence of a num
of scatterers before experimenting with disordered array
scatterers. For the periodic array, pulses were generated
both low and high generator energies and Fourier transfo
of the output pulses examined. For low generator energ
the output pulses showed structure due to interference
the Fourier transform showed distinct band structure, as
pected for a periodic system. For high generator energies
interference structure and the band structure disappeare
the amplitude of the third-sound pulse increased, possibl
a result of the decreasing nonlinearity length. For hi
enough amplitudes~sufficiently short nonlinearity length! the
pulse does not sample enough of the periodic array for in
ference to have effect, and the output pulse loses the tra
interference structure while the band structure in the Fou
transform disappears. In the system with a sequence of
ordered scatterers, weakly nonlinear pulses, with a nonlin
ity length greater than the Anderson localization length, s
showed effects of localization. But more strongly nonline
pulses, with a shortened nonlinearity length, showed a tr
sition from slight attenuation to exponentially localized b
havior as the propagation distance increased. This is
agreement with the theoretical prediction that states
when the nonlinearity length and the Anderson localizat
length are comparable the pulse will be transmitted for sh
distances with moderate decay, but for larger distances it
exponentially decay.
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