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Effect of nonlinearity of the evolution equation on the spinodal decomposition process
in alloys
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Department of Materials Science and Engineering, Faculty of Engineering, Kyoto University, Kyoto 606-8501, Japan

~Received 26 May 1998!

The spinodal decomposition process is usually described by nonlinear evolution equations. One of them is
the Langer–Bar-on–Miller~LBM ! theory that describes the time evolution of a double-Gaussian probability
distribution function of composition. In the present study, LBM theory was modified in terms of composition
dependence of mobility. The reformulated analytical expression was quantitatively applied to the realistic
structure change. In fact we investigated the nonlinear effect on phase decomposition using computer simula-
tions based on the present modified LBM theory and compared the result with the original LBM theory. It was
made clear that the additional nonlinear terms played a dominant role in the phase decomposition process.
Especially, when the probability distribution function becomes broader in the early stage, the new nonlinear
terms contribute to the rapid phase decomposition.@S0163-1829~98!09041-9#
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I. INTRODUCTION

In general, the phase decomposition phenomena in m
lic alloy systems can be expressed as a change of space
tribution of solute composition, which is represented by
evolution equation based on the diffusion equation.1,2 In the
equation, the state of a system needs to be described b
free energy relating to the space distribution of compositi
In 1960s, Cahn analyzed theoretically the time evolution
composition fluctuation during the spinodal decomposit
using the diffusion equation with Ginzburg-Landau-type fr
energy,3 and obtained its analytical solution by making
linear approximation. However, the solution known
Cahn’s linear spinodal theory does not hold at the late st
of phase decomposition because the nonlinear effects
come more important there. After this, many researchers
posed various theories considering some nonlinear effect4–6

For example, Langeret al. derived the motion equation o
the structure factor from the master equation using the sp
correlation and the probability distribution of the configur
tion of composition.7–10

Recently, the computer simulation on a time-depend
Ginzburg-Landau–type evolution equation and the ot
modified forms11–16are applied quite extensively in order
study the time evolution of phase decomposition. In this ty
of method, the change of space distribution of composit
in real space is given by the straightforward repeatable
merical calculation. The result is directly compared with t
TEM images of the microstructure and gives effective
sight on the anisotropy of structure that generates in the
tem with anisotropic elastic energy or directional extern
field effects.13–16 But, it is difficult to evaluate visibly the
positive nonlinear effect on the phase decomposition us
this type of equation because the effect in the whole sys
was expressed as only a result of transmission of local
fects.

One of nonlinear effects in a realistic metallic system
caused by the composition dependence of mobility10,17,18ow-
ing to local thermal stability defined by local atomic config
PRB 580163-1829/98/58~17!/11371~6!/$15.00
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ration. Some researchers carried out the computer sim
tions based on the Cahn-Hilliard equation with a varia
mobility so as to investigate the time evolution of fluctuati
structure in real space.5,19 Moreover, the analytical static so
lution of the equation with mobility, which was derived from
the Ising model, was also formulated.20 However, the direct
effect of the nonlinear terms due to a variable mobility
phase decomposition has been little focused on. In orde
study the nonlinearity of spinodal decomposition, we ha
adopted Langer–Bar-on–Miller theory10 ~LBM theory! as a
starting reference that has some advantages. First, the th
treats the probability distribution function of compositio
which is important in the phase decomposition with regard
statistical handling. Second, in a series of the equation
LBM theory, there are the nonlinear terms expressing
average effects of the whole system, by which it is possi
to estimate quantitatively the effect of the nonlinearity. Ho
ever, the theory needs to be modified, especially in conju
tion with the composition dependence of mobility.13 In this
paper, we treated the expansion of LBM theory by consid
ing a variable mobility and carried out the numerical calc
lation of structure change, and then finally made clear
role of newly introduced nonlinear terms.

II. THEORETICAL CONSIDERATION

The phenomenological composition dependence of mo
ity on the real binary alloys is known as Darken’s equati
on mutual diffusion constant as follows:17

M ~c!5@MAc1~12c!MB#c~12c!, ~2.1a!

wherec is composition of solute atom,MX is the mobility of
X atom. Equation~2.1a! is rewritten in polynomial equation
form about a difference between local composition within
coarse-graining volume and average composition of wh
systemu(r )5c(r )2c0 as follows:

M̄ ~u!5M̄01M̄1u1M̄2u21M̄3u3, ~2.1b!
11 371 ©1998 The American Physical Society
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11 372 PRB 58TORU UJIHARA AND KOZO OSAMURA
whereM̄n’s are the coefficients of mobility expressed byMX
andc0 . Next, we will briefly review the important points o
modified LBM theory.21 At first, it is assumed that the sys
tem can be described by the functionalc(r ) that is the com-
position at positionr in real space, and a coarse-graining fr
energy written in the Ginzburg-Landau form:

F$c~r !%5E @K~¹c!21 f ~c!#dr , ~2.2!

whereK is a gradient energy coefficient. The first term of t
integrated function means the excess free energy due to
existence of composition gradient and the second term is
Helmholz free-energy density of the homogeneous syst
Instead of the distribution of composition in real space, LB
theory10 describes the state of system using the structure
tor that is the Fourier transform of the spatial two-body c
relation function on composition. The spatial two-body co
relation function is

S~ ur2r0u!5E u~r !u~r0!r~$c%,t !d$c%. ~2.3!

The time dependence of correlation function is defined fr
the change of probability distribution functionalr($c%,t) de-
fined on thec(r ). Besides, the time dependence ofr($c%,t)
obeys the master equation. Since available numerical t
niques for solving the change ofr($c%,t) need a huge
amount of calculation, the following approximation is mad
If there is no correlation between probability distributions
two different points, it is possible to use the functionr(u,t)
instead of the functionalr($c%,t). Moreover, it is considered
that the probability distribution has two peaks when t
phase decomposition sufficiently takes place. Hence L
theory approximately uses the distribution function of t
composition at an arbitrary position, which is a sum of d
placement Gaussians:

r~u!5
b2

&s~b11b2!
expF2

~u2b1!2

2s2 G
1

b1

&s~b11b2!
expF2

~u1b2!2

2s2 G . ~2.4!

There remain three positive parametersb1 , b2 , and s that
mean two average values and standard deviation, res
tively. After some mathematical operations using the ab
equations, finally, the present new mathematical result on
motion equation of structure factor is expressed by the
lowing equations, which are called hereafter the modifi
LBM theory ~MLBM !:21

]S̃~k,t !

]t
>2k2@2k2B̃1Ã#S̃~k,t !12M0k2kBT, ~2.5!

Ã5 (
n50

3

M̄n (
m52

`
m21

n1m21

1

~m21!!

dmf

dc0
m

^un1m&

^u2&
,

~2.6!

B̃5 (
n50

3

M̄n

1

n11

^un12&

^u2&
, ~2.7!
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where kB is the Boltzmann constant. In formulating equ
tions of MLBM theory, a few approximations were neede
~1! When the product ofK andM̄ , and the other one of the
free-energy density andM̄ are expanded in a polynomia
series about¹nu in the development of equations, we n
glect some high-order terms for avoiding the difficulty.~2! In
the second term of Eq.~2.5! as the effect of thermal fluctua
tion, we use a constant valueM̄0 instead of the function
M̄ (u). The other equations in MLBM theory needed for ca
culation have essentially the same form as the ones of
original LBM theory in Ref. 10 except for the replacement
MA andMK with Ã and B̃.

We will now consider the meaning of new nonline
terms introduced by formulating MLBM theory. From th
conceptual and physical viewpoint, while the original LB
theory considers the correlation about the gradient of che
cal potential, the present MLBM theory considers the cor
lation of the flux of diffusion atom. The fact means that t
formation of the structure depends on the tendency of
only the chemical potential, but also ‘‘the flow’’ of the
chemical potential to become homogeneous. We can see
positive nonlinear effects as the result of expansion in E
~2.6! and ~2.7!. The first summation of Eq.~2.6! and the
summation of Eq.~2.7!, if we neglect the terms inn.0, are
the same asMA andMK in the original equations of LBM
theory. On the other hand, from the approximately pheno
enological viewpoint,Ã is equivalent to the product of th
mobility M and (]2F/]c2)c5c0

in the Cahn’s linear theory,3

which is similar to the diffusion coefficient. In the state
where (]2F/]c2)c5c0

,0 the diffusion coefficient is negative
and the diffusion from the low composition area to the hi
composition area, which is called ‘‘up-hill’’ diffusion, oc
curs. Thus, the negative value ofÃ indicates a tendency o
phase decomposition, and its absolute value gives the
composition rate.

Next, we shall consider conditions when the nonline
terms are effective. To formularize the MLBM theory, w
used¹M¹ instead ofM¹2 in Eq. ~2.5! in Ref. 10. Both
terms are the same under these conditions:

~M̄112M̄2u13M̄3u2!¹u50. ~2.8!

If either the part parenthesized or¹u is equal to 0, Eq.~2.8!
is satisfied. The former condition is meaningless becaus
means that there is no dependence of the composition
mobility. As for the latter condition,¹u is equivalent to the
degree of the fluctuation of composition. The small fluctu
tion of composition makes¹u nearly equal to 0. Thus, in the
very early stage of phase decomposition, the latter condi
is experimentally fulfilled. In other words, even if the pha
decomposition progresses slightly, we have to use MLB
theory.

III. COMPUTER SIMULATION AND DISCUSSION

In order to investigate the effect of nonlinear terms on
phase decomposition, we carried out the calculation of ti
evolution of structure factor on the spinodal decompositi
In this paper, we tested a binary alloy system defined by
regular solution free energy in the case ofTc51000 K. We
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supported the realistic experiment as follows. The sol
compositionsc0 are 0.3 and 0.45. After the solution trea
ment at 1273 K the sample is isothermally aged at 800, 9
and 950 K. Other thermodynamic parameters were fitted
the Fe-Cr binary alloy system.22 The numerical values ar
given in Table I. The initial state after solution treatment w
assumed by an Ornstein-Zernike~OZ! type structure factor.4

The three parameters ofr(u,t) at t50 were imposed suit-
able small values under conditions as follows.~1! b1.0,
b2.0, ands.0. ~2! @b1b2<^u2&#. We used the normalized
time defined byt510210t(M̄0 /a2). The calculation for
t52000 is approximately equivalent to the realistic agi
condition for 2 Ms in Fe-Cr alloy at 800 K, at which th
phase decomposition experimentally progresses fully.23

The calculated results of time evolution of the structu
factor as a function of wave numberk are shown in Fig. 1.
The conditions are~a! c050.45 andT5800 K and ~b! c0
50.30 andT5950 K. The solid lines and the broken line
show the results of MLBM and LBM theory, respectively. A
the very early stage,S̃(k) is almost the initial OZ type. At
t52, theS̃(k) increases in the high-k region, and begins to
show the peak. Then the peak increases and shifts to
smallerk with increasing time. The peak positionkm is sup-
ported to be inversely proportional to the wavelength of
periodic structure. Thus the decrease ofkm is consistent with
the increase of wavelength of composition fluctuation.km
due to MLBM theory is the slightly larger rather than one
LBM theory. According to the suggestions of experimen
and theoretical results, the peak positionkm and the peak
intensityI m change according to the power law}tn, and the
present calculated results are no exception. The exponenn
are shown in Table II. The exponents do not have a rem
able temperature dependence except forc50.3 due to LBM
theory, for which the value ofn changes rapidly with the
supersaturation. In Fig. 1~b!, the peak obtained from MLBM
theory increases rapidly andS̃(k) becomes sharper than th
from the original LBM theory. When the supersaturation
small in the case of Fig. 1~b!, the difference between resul

TABLE I. The parameters and condition used for the calcu
tion.

Critical temperature Tc ~K! 1000
Interaction parameter V (ergs/cm3) 2.3431010

Gradient energy coefficient K ~ergs/cm! 3.8531025

Lattice constant a ~Å! 2.87
Diffusion constant~A atom!

D0 (cm2/s) 398
Q0 ~kJ/mol! 325

Mobility ~A atom! MA (cm5/ergs s)
~800 K! 2.76310219

~900 K! 5.63310217

~950 K! 5.26310216

Temperature T ~K! 800, 900, 950
Composition c0 0.30, 0.45
Maximum wave number kmax (Å-1) 1.57
Increment of wave number Dk (Å -1) 5.03103

Calculation time t(510210tM0 /a2) 0–2000
Increment of time Dt 1.031025
e
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on both theories is enhanced. But there is not such a rem
able difference in Fig. 1~a! as the result with large super
saturation. The fact can be explained as follows. In
case of LBM theory, the tendency of phase decomposit
mainly obeys the value of (]2F/]c2)c5c0

, of which absolute
value decreases with decreasing the supersaturation. Th
fore in Fig. 1~b!, the change of structure factor due to LBM
theory is moderate. On the other hand, in the case
the present MLBM theory the tendency of phase decom
sition, we think, obeys the effects of the newly introduc
nonlinear terms, and then they are not responsible to su

-

FIG. 1. The time development of the structure factorS̃(k) cal-
culated by modified LBM theory~MLBM ! and LBM theory. The
calculation conditions are~a! T5800 K, c050.45 and ~b! T
5950 K, c050.30. The solid and broken lines represent MLB
and LBM.

TABLE II. Exponents n (}tn) obtained by the simulations
based on the original LBM theory and the modified LBM theory

Composition Temperature~K!
LBM
km

MLBM
km

LBM
I m

MLBM
I m

0.3 800 20.189 20.205 0.668 0.740
900 20.214 20.205 0.436 0.694
950 20.252 20.206 0.280 0.656

0.45 800 20.198 20.201 0.740 0.715
900 20.187 20.197 0.734 0.708
950 20.177 20.197 0.728 0.703
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11 374 PRB 58TORU UJIHARA AND KOZO OSAMURA
saturation. Therefore the change of structure factor du
MLBM theory does not have a prominent temperature
pendence.

It is one of the characteristic points in these theories
evaluate the change of probability distribution function. T
values ofb1 and b2 in Eq. ~2.4! are corresponding to th
average composition the higher and the lower composi
range of fluctuation structure and the differences ofb1 and
b2 are equivalent to its amplitude. The time evolution of t
probability distribution functionr(u) is shown in Fig. 2. The
composition dependence ofr(u) has a peak around the av
erage compositionu50 in the early stage. Continuously th
peak becomes broader with increasing time. In Fig. 2~a!, the
shoulder appears in the high composition range att520 in
the case of MLBM theory. The shoulder gives an indicati
of the phase decomposition. As for Fig. 2~b! the peak of
r(u) splits into two peaks att52, that means the phas
decomposition is taking place in the same manner as sh
in Fig. 2~a!. Then, the small peak in the right-hand side sh
to the right and becomes shaper. Considering the result a
with Fig. 1, it is found out that the growth of the amplitud
of fluctuation occurs earlier than the formation of the ch
acteristic periodic structure concerned withkm. On the other
hand,r(u) of original LBM theory only becomes broade
with increasing time and does not split. Moreover, the deg

FIG. 2. The time development of the probability distributio
functionr(u) calculated by modified LBM theory~MLBM ! and the
original LBM theory. The calculation conditions are~a! T
5800 K, c050.45 and~b! T5950 K, c050.30. The solid and bro-
ken lines represent MLBM and LBM theory.
to
-

o

n

n

ng
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e

of change in Fig. 2~b! is weaker than the one in Fig. 2~a!. As
compared with the real Fe-Cr alloy aged for time equival
to calculation time, we think that the result of the prese
modified theory fits with the experiment result23 rather than
the original one.

Here, the remarkable point is that the phase decomp
tion due to MLBM theory takes place rapidly in the ear
stage as a result of the effects of proposed nonlinear te
The terms include the time-dependent higher order^un&
linked with the change ofr(u) as in Fig. 2. The time depen
dence of the nonlinear termsÃ andB̃ ~which are correspond
ing to MA andMK in the case of LBM theory! is shown in
Fig. 3. In the MLBM theory, the value ofÃ makes a char-
acteristic negative peak at around specific time while
value of B̃ decreases. In the case of LBM theory,MA in-
creases gradually with increasing time andMK keeps con-
stant. The time-evolution process on MLBM theory can
divided into three stages in accordance withÃ. In the first
stage the difference between LBM and MLBM theory
trivial. In the second stage,Ã due to MLBM theory suddenly
decreases, andr(u) in Fig. 2 begins to split into two peaks
At the third stage,Ã turns to increase and becomes close

FIG. 3. The change of the values ofÃ and B̃ defined by Eqs.
~2.6! and ~2.7! as a function of calculation timet calculated by
modified LBM theory~MLBM ! and LBM theory.~But, in the case

of LBM MA and MK in Ref. 10 are used instead ofÃ and B̃,
respectively.! The calculation conditions are~a! T5800 K, c0

50.45 and~b! T5950 K, c050.30. The solid and broken line
represent MLBM and LBM.
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MA of LBM theory. On the whole, the degree of change
Fig. 3~b! is greater than the one Fig. 3~a! in agreement with
the tendencies in Figs. 1 and 2. SinceÃ is corresponding to
the diffusion coefficient, the negative peak ofÃ in the second
stage predicts that the rate of phase decomposition bec
larger. Besides,Ã andB̃ influence the periodic structure. Th
peak positionkm is also determined byÃ and B̃. S̃(k) at
kR5@2Ã(t)/2B̃(t)#1/2 increase more rapidly than the othe
do. The negative peak ofÃ and the decrease ofB̃ in the
second stage makeskR larger. As a result,km due to the
present MLBM theory is larger than in LBM theory a
shown in Fig. 1.

Considering the discussion mentioned above, when
form of the probability distribution function is broad an
unsymmetrical, the nonlinear terms become significant.
order to evaluate the relation between the introduced non
ear terms and the system state defined asr(u), Eq. ~2.6! is
divided as follows:

Ã5G01G11G21G3 , ~3.1!

Gn5M̄n (
m52

`
m21

n1m21

1

~m21!!

dmf

dc0
m

^un1m&

^u2&
. ~3.2!

Here,G0 is the same asMA of LBM theory. The change of
Ã andGn is corresponding to the change of the function^un&
linked with r(u) defined by three parametersb1 , b2 , ands.
According to calculated results,r(u) becomes broader from
the first to the second stage, and thus the dependenc
nonlinear terms as a function ofs is important. From the
second to the third stage,r(u) has the second peak, therefo
the dependence of nonlinear terms as a function ofb1 is
important. To investigate the relation of the nonlinear ter
and r(u) in detail, we calculated the change of nonline
terms as a function of these parameters. In the real ph
decomposition, the three parameters change at the s
time. However, in order to understand clearly the roles
parameters, it is assumed that the other two parameters
cept the one of interest, are constant. The calculated resu
the s dependence ofÃ and Gn is described in Fig. 4. In

FIG. 4. The change of the nonlinear termsGn (n50;3) de-

fined by Eq.~3.2! andÃ as a function of standard deviations. The
calculation condition is as follows:T5800 K, c050.3, b150.08,
andb250.02.
me

e
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MLBM theory, Ã is a negative value and almost the same
G0 in the range of smalls. With increasings, Ã turns to
decrease as the change ofG2 though G0 is continuously
increasing into the positive value. The fact means that
broad r(u) speeds up the phase decomposition in MLB
theory; on the other hand, the broadr(u) reduced it in LBM
theory as shown in Fig. 2. This fact explains the behavior
Ã in the second stage in Fig. 3. Next, the dependence ofb1 is
shown in Fig. 5. In LBM theory,G0 , that is,MA, is nega-
tive in the range of smallb1 and turns into positive with
increasingb1 . The value ofb1 at G050 is roughly similar to
the equilibrium composition given by free energy thermod
namically. In MLBM theory, at firstG2 andG3 change dra-
matically. But the values almost cancel each other and
reduceÃ a little. ThenÃ turns out to be more positive asG1
changes at largerb1 than the one of LBM theory. It is pos
sible to explain the behavior ofÃ in the third stage by Fig. 5
Here things to be emphasized among both results are tha
phase decomposition is controlled by the present nonlin
terms in MLBM theory, but are not influenced by the degr
of thermodynamical supersaturation as contrasted with
original LBM theory. Thus we have to regard the nonlinea
ity concerned with the composition dependence of mobi
as important with regard to the phase decomposition proc
From now on, we think, it is necessary to make clear
theoretical and phenomenological meanings of the nonlin
termsGn .

IV. CONCLUSION

We extended the LBM theory considering the compo
tion dependence of mobility. From the phenomenologi
point of view, the comparison of the calculation based
both theories made clear the following facts. In the case
the present MLBM theory, in spite of the small degree of t
supersaturation the phase decomposition sufficiently ta
place. And the amplitude of the composition fluctuation ra
idly became large in the early stage. In the original LBM, t
phase decomposition progressed gradually. Especially w
the probability distribution function becomes broad, t
phase decomposition in the present MLBM theory speeds

FIG. 5. The change of the nonlinear termsGn (n50;3) andÃ
as a function of average composition in the range of high com
sition b1 . The calculation condition is as follows:T5800 K, c0

50.3, b250.1, ands50.1.
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but in LBM theory it makes slow progress. The point em
phasized by the authors is especially that these facts
caused by the introduced nonlinear terms controlling
phase decomposition.
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