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Effect of nonlinearity of the evolution equation on the spinodal decomposition process
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The spinodal decomposition process is usually described by nonlinear evolution equations. One of them is
the Langer—Bar-on—Mille(LBM) theory that describes the time evolution of a double-Gaussian probability
distribution function of composition. In the present study, LBM theory was modified in terms of composition
dependence of mobility. The reformulated analytical expression was quantitatively applied to the realistic
structure change. In fact we investigated the nonlinear effect on phase decomposition using computer simula-
tions based on the present modified LBM theory and compared the result with the original LBM theory. It was
made clear that the additional nonlinear terms played a dominant role in the phase decomposition process.
Especially, when the probability distribution function becomes broader in the early stage, the new nonlinear
terms contribute to the rapid phase decompositi§0163-18208)09041-9

[. INTRODUCTION ration. Some researchers carried out the computer simula-
tions based on the Cahn-Hilliard equation with a variable
In general, the phase decomposition phenomena in metaobility so as to investigate the time evolution of fluctuation
lic alloy systems can be expressed as a change of space dgtucture in real spac?el.g Moreover, the analytical static so-
tribution of solute composition, which is represented by thelution of the equation with mobility, which was derived from
evo|uti0n equation based on the diffusion equaﬁvamn the the ISing model, was also formulaté(aHOWeVer, the direct
equation, the state of a system needs to be described by tgdect of the nonlinear terms due to a variable mobility on
free energy relating to the space distribution of compositionPhase decomposition has been little focused on. In order to

In 1960s, Cahn analyzed theoretically the time evolution ofStudy the nonlinearity of spinodal decomposition, we have

composition fluctuation during the spinodal decompositionadopted Langer—Bar-on—Miller thedf(LBM theory) as a

using the diffusion equation with Ginzburg-Landau-type freestarting reference that has some advantages. First, the theory

energy® and obtained its analytical solution by making atregts .th_e probab|l_|ty distribution funcﬂon .Of composition,
. o . which is important in the phase decomposition with regard to
linear approximation. However, the solution known as

. . statistical handling. Second, in a series of the equations of
Cahn’s linear spinodal theory does not hold at the late staggg, theory, there are the nonlinear terms expressing the

of phase decomposition because the nonlinear effects b‘i":‘(verage effects of the whole system, by which it is possible

come more important there. After this, many researchers prag, estimate quantitatively the effect of the nonlinearity. How-

posed various theories c0n5|d_er|ng some n_onllnear gﬁé?;ts. ever, the theory needs to be modified, especially in conjunc-

For example, Langeet al. derived the motion equation of tjon with the composition dependence of mobiftfyin this

the structure factor from the master equation using the spatiglaper, we treated the expansion of LBM theory by consider-

correlation and the probability distribution of the configura- |ng a variable mob|||ty and carried out the numerical calcu-

tion of composition.~*° lation of structure change, and then finally made clear the
Recently, the computer simulation on a time-dependentole of newly introduced nonlinear terms.

Ginzburg-Landau—type evolution equation and the other

modified forms'~*®are applied quite extensively in order to

study the time evolution of phase decomposition. In this type

of method, the change of space distribution of composition The phenomenological composition dependence of mobil-

in real space is given by the straightforward repeatable nuity on the real binary alloys is known as Darken’s equation

merical calculation. The result is directly compared with theon mutual diffusion constant as follows:

TEM images of the microstructure and gives effective in-

sight on the anisotropy of structure that generates in the sys- M(c)=[Mac+(1—c)Mglc(1—c) (2.13

tem with anisotropic elastic energy or directional external- A B ’ '

field effectst®~® But, it is difficult to evaluate visibly the

Il. THEORETICAL CONSIDERATION

. wherec is composition of solute atonil y is the mobility of
% atom. Equation2.13 is rewritten in polynomial equation

Wi Xpr nl result of transmission of local ef: L -
feifse pressed as only a result of transmission of loca ecoarse—gralnmg volume and average composition of whole

One of nonlinear effects in a realistic metallic system issystemu(r)=c(r)—c0 as follows:
caused by the composition dependence of mob?tityCow- - L -
ing to local thermal stability defined by local atomic configu- M(u)=My+ M u+M,u?+Mjud, (2.1b
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whereM,’s are the coefficients of mobility expressediy, ~ Wherekg is the Boltzmann constant. In formulating equa-
andc,. Next, we will briefly review the important points of tions of MLBM theory, a few approximations were needed.
modified LBM theory?! At first, it is assumed that the sys- (1) When the product oK andM, and the other one of the
tem can be described by the functioct) that is the com-  free-energy density an¥ are expanded in a polynomial
position at positiorr in real space, and a coarse-graining freeseries abouv"u in the development of equations, we ne-

energy written in the Ginzburg-Landau form: glect some high-order terms for avoiding the difficultg) In
the second term of Eq2.5) as the effect of thermal fluctua-
F{c(r)}:J [K(Vc)2+f(c)]dr, (2.2 tion, we use a constant valud, instead of the function

. ) o ] M(u). The other equations in MLBM theory needed for cal-
whereK is a gradient energy coefficient. The first term of the cyjation have essentially the same form as the ones of the

integrated function means the excess free energy due to thgiginal LBM theory in Ref. 10 except for the replacement of
existence of composition gradient and the second term is thﬁIA andMK with A andB

Helmholz free-energy density of the homogeneous system.
Instead of the distribution of composition in real space, LBM
theory'° describes the state of system using the structure fa
tor that is the Fourier transform of the spatial two-body cor
relation function on composition. The spatial two-body cor
relation function is

We will now consider the meaning of new nonlinear
terms introduced by formulating MLBM theory. From the
Cc'onceptual and physical viewpoint, while the original LBM
“theory considers the correlation about the gradient of chemi-
“cal potential, the present MLBM theory considers the corre-
lation of the flux of diffusion atom. The fact means that the
formation of the structure depends on the tendency of not
S(|r—r0|)=f u(ryu(rg)p({c},t)s{c}. (2.3  only the chemical potential, but also “the flow” of the
chemical potential to become homogeneous. We can see the
The time dependence of correlation function is defined fronpositive nonlinear effects as the result of expansion in Egs.
the change of probability distribution functiona({c},t) de- (2.6) and (2.7). The first summation of Eq(2.6) and the
fined on thec(r). Besides, the time dependencepg{c},t) summation of Eq(2.7), if we neglect the terms in>0, are
obeys the master equation. Since available numerical teclthe same a$1A and MK in the original equations of LBM
niques for solving the change qf({c},t) need a huge theory. On the other hand, from the approximately phenom-
amount of CalCUIation, the fOIlOWing apprOXimation is made.eno|ogica| Viewpointz is equiva]ent to the product of the
If there is no correlation between probability distributions atmobility M and (32F/302)c=c0 in the Cahn’s linear theory,
two different points, it is possible to use the functipfu,t) \ynich is similar to the diffusion coefficient. In the states

instead of the functionagd({c},t). Moreover, it is considered where @ZF/t?CZ)c:co<0 the diffusion coefficient is negative

that the probability distribution has two peaks when the . . .
phase decomposition sufficiently takes place. Hence LBl\/fmd the diffusion from the low composition area to the high

theory approximately uses the distribution function of theCOMPosition area, which is called “up-hill” diffusion, oc-

composition at an arbitrary position, which is a sum of dis-curs. Thus, the negative value Afindicates a tendency of

placement Gaussians: phase decomposition, and its absolute value gives the de-
composition rate.

b, (u—by)? Next, we shall consider conditions when the nonlinear
p(u)= —exp{— %52 terms are effective. To formularize the MLBM theory, we
v20(b;+b;) usedVMYV instead ofMV? in Eq. (2.5 in Ref. 10. Both
b, (u+b,)? terms are the same under these conditions:
+ ex;{ — 1. (2.9 _ _ _
V2o (by+by) 20 (M1 +2M,u+3M5u?) Vu=0. 2.9

There remain three positive parameters b,, ando that  |f either the part parenthesized Bu is equal to 0, Eq(2.9)
mean two average values and standard deviation, respeg satisfied. The former condition is meaningless because it
tively. After some mathematical operations using the aboveneans that there is no dependence of the composition on
equations, finally, the present new mathematical result on theobility. As for the latter conditiony u is equivalent to the
motion equation of structure factor is expressed by the foldegree of the fluctuation of composition. The small fluctua-
lowing equations, which are called hereafter the modifiedion of composition makeSu nearly equal to 0. Thus, in the
LBM theory (MLBM):?! very early stage of phase decomposition, the latter condition
- is experimentally fulfilled. In other words, even if the phase
(?S(ali,t) = 2K 2kZB+ ATS(K. 1) + 2Mok?ksT, (2.5 ?heec(;)rr;position progresses slightly, we have to use MLBM

m—1 1 ﬂ (un*m lIl. COMPUTER SIMULATION AND DISCUSSION
o "2 n+m—1 (m-1)! dcf (u?) ’
(2.6

>
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In order to investigate the effect of nonlinear terms on the
phase decomposition, we carried out the calculation of time
evolution of structure factor on the spinodal decomposition.
’ (2.7) In this paper, we tested a binary alloy system defined by the
regular solution free energy in the caseTqf= 1000 K. We
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TABLE I. The parameters and condition used for the calcula-

e
£

tion.
Critical temperature T. (K) 1000 E
Interaction parameter Q (ergs/cm) 2.34x 10 =
Gradient energy coefficientK (ergs/cm 3.85x10°° g
Lattice constant aA) 2.87 g
Diffusion constani{A atom) L;:é
D, (cn¥/s) 398 )
Qo (kd/mo) 325 5
Mobility (A atom) M, (cnPlergs s) S
(800 K) 2.76x10° % Bl N
(900 K) 5.63x10 Y7 0.01 0.1 1
(950 K) 5.26x10° 16
Temperature T (K) 800, 900, 950 b)
Composition Co 0.30, 0.45
Maximum wave number Koy (A 1.57 m’g E
Increment of wave number Ak (A1) 5.0x 10° s i
Calculation time 7(=10"1%M,/a?) 0-2000 = 1
Increment of time AT 1.0x1075 e E
§“ ]
S ]
supported the realistic experiment as follows. The solute = E
compositionscy are 0.3 and 0.45. After the solution treat- § ]
ment at 1273 K the sample is isothermally aged at 800, 900, = 1
and 950 K. Other thermodynamic parameters were fitted to <2 E

the Fe-Cr binary alloy systeff. The numerical values are

given in Table I. The initial state after solution treatment was
assumed by an Ornstein-ZernikdZ) type structure factot. Wave number, k (nm’)
The three parameters pf(u,t) att=0 were imposed suit-

able small values under conditions as follow$) b;>0, -
b,>0, ando>0. (2) [b1b2$<u2>]. We used the normalized culated by modified LBM theoryMLBM) and LBM theory. The
calculation conditions arga) T=800K, c;=0.45 and(b) T

. . _ — 1 N 2 .

time defl_ned byT__ 10 Ot(MO_/a ). The Calcula_tlo_n for_ =950 K, cy=0.30. The solid and broken lines represent MLBM
7=2000 is approximately equivalent to the realistic aging,,q | gMm.

condition for 2 Ms in Fe-Cr alloy at 800 K, at which the

phase decomposition experimentally progresses fdlly. o ,
The calculated results of time evolution of the structure@n both theories is enhanced. But there is not such a remark-

factor as a function of wave numbkrare shown in Fig. 1. able difference in Fig. (&) as the result with large super-
The conditions aréa) c,=0.45 andT=800 K and (b) ¢, saturation. The fact can be explained as follows. In the
=0.30 andT=950 K. The solid lines and the broken lines &S of LBM theory, the tendency of phase decomposition
show the results of MLBM and LBM theory, respectively. At Mainly obeys the value ofF/dc?).-,, of which absolute

the very early stageS(k) is almost the initial OZ type. At value decreases with decreasing the supersaturation. There-
7=2, the3(k) increases in the higk-region, and begins to fore in Fig. 1b), the change of structure factor due to LBM

show the peak. Then the peak increases and shifts to ttheory is moderate. On the other hand, in the case of
peax. h he p o rH?ie present MLBM theory the tendency of phase decompo-
smallerk with increasing time. The peak positidg, is sup-

ported to be inversely proportional to the wavelength of thesmon’ we think, obeys the effects of the newly_ introduced
S . ) nonlinear terms, and then they are not responsible to super-

periodic structure. Thus the decreas&gfis consistent with

the increase of wavelength of composition fluctuati&p.

due to MLBM theory is the slightly larger rather than one of ~ TABLE Il. Exponentsn (x7") obtained by the simulations

LBM theory. According to the suggestions of experimentalbased on the original LBM theory and the modified LBM theory.

and theoretical results, the peak positigp and the peak

intensityl ,, change according to the power law", and the

FIG. 1. The time development of the structure fackk) cal-

LBM MLBM LBM MLBM

present calculated results are no exception. The exponentscom'oos'tlon Temperatué)  km K m m

are shown in Table Il. The exponents do not have a remark- .3 800 —0.189 —0.205 0.668 0.740
able temperature dependence exceptcfe0.3 due to LBM 900 —0.214 —0.205 0.436 0.694
theory, for which the value oh changes rapidly with the 950 —0.252 —0.206 0.280 0.656
supersaturation. In Fig.(h), the peak obtained from MLBM 0.45 800 —0198 —0.201 0.740 0.715
theory increases rapidly ar{k) becomes sharper than that 900 —0.187 —0.197 0.734 0.708
from the original LBM theory. When the supersaturation is 950 —0.177 —0.197 0.728 0.703

small in the case of Fig.(h), the difference between results
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FIG. 3. The change of the values AfandB defined by Egs.
(2.6) and (2.7) as a function of calculation time calculated by
modified LBM theory(MLBM ) and LBM theory.(But, in the case
of LBM MA and MK in Ref. 10 are used instead &f and B,
respectively. The calculation conditions aréa) T=800K, c,
=0.45 and(b) T=950K, cy=0.30. The solid and broken lines

saturation. Therefore the change of structure factor due tfppresent MLBM and LBM.
MLBM theory does not have a prominent temperature de-
pendence. of change in Fig. th) is weaker than the one in Fig(&®. As

It is one of the characteristic points in these theories tecompared with the real Fe-Cr alloy aged for time equivalent
evaluate the change of probability distribution function. Theto calculation time, we think that the result of the present
values ofb; and b, in Eq. (2.4 are corresponding to the modified theory fits with the experiment redltather than
average composition the higher and the lower compositioth€ original one. o _
range of fluctuation structure and the differencespfand ~ Here, the remarkable point is that the phase decomposi-
b, are equivalent to its amplitude. The time evolution of thetion due to MLBM theory takes place rapidly in the early
probability distribution functiorp(u) is shown in Fig. 2. The Stage as a result of the effects of proposed nonlinear terms.
composition dependence pfu) has a peak around the av- The terms include the time-dependent higher ordief)
erage composition=0 in the early stage. Continuously the linked with the change gb(u) as in Fig. 2. The time depen-
peak becomes broader with increasing time. In Fi@),2he  dence of the nonlinear terrdsandB (which are correspond-
shoulder appears in the high composition range=a20 in  ing to MA andMK in the case of LBM theoryis shown in
the case of MLBM theory. The shoulder gives an indicationfig. 3. In the MLBM theory, the value ok makes a char-
of the phase decomposition. As for Figtbp the peak of  acteristic negative peak at around specific time while the

p(u) splits into two peaks ar=2, that means the phase \ 6 ofB decreases. In the case of LBM theoA in-

decomposition is taking place in the same manner as Show&eases raduallv with increasina time adK keeps con-
in Fig. 2(@). Then, the small peak in the right-hand side shifts d y d P

) c 2 stant. The time-evolution process on MLBM theory can be
to the right and becomes shaper. Considering the result aloné;i ided into th ¢ . q wihIn the first
with Fig. 1, it is found out that the growth of the amplitude &'V'9€¢ INfO INTre€ sStages In accordance n the mrs

of fluctuation occurs earlier than the formation of the char—St_a_ge the difference bet!veen LBM and MLBM theory is
acteristic periodic structure concerned with. On the other trivial. In the second stagé, due to MLBM theory suddenly

hand, p(u) of original LBM theory only becomes broader decreases, ang(u) in Fig. 2 begins to split into two peaks.
with increasing time and does not split. Moreover, the degredit the third stageA turns to increase and becomes close to

FIG. 2. The time development of the probability distribution
functionp(u) calculated by modified LBM theorfMLBM ) and the
original LBM theory. The calculation conditions aré) T
=800 K, c,=0.45 and(b) T=950 K, c;=0.30. The solid and bro-
ken lines represent MLBM and LBM theory.
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FIG. 4. The change of the nonlinear ten@g (n=0~3) de- FIG. 5. The change of the nonlinear ter@s (n=0~3) andA

fined by Eq.(3.2) andA as a function of standard deviatien The a5 3 function of average composition in the range of high compo-
calculation condition is as followst=800 K, ¢o=0.3,b,=0.08,  gjtion b,. The calculation condition is as followd=800 K, ¢,
andb,=0.02. =0.3,b,=0.1, ando=0.1.

MA of LBM theory. On the whole, the degree of change in
Fig. 3(b) is greater than the one Fi in agreement with ~
9. Ab)is g (e in ag W Gy in the range of smalb. With increasingo, A turns to

the t(_ande_ncies in_F_igs. 1and 2. Sin@és cgrresponding 0 gecrease as the change @5 though G, is continuously
the diffusion coefficient, the negative peakffn the second  increasing into the positive value. The fact means that the
stage predlctsjhat tr~1e rate of phase decomposition becongoad p(u) speeds up the phase decomposition in MLBM
larger. BesidesA andB influence the periodic structure. The theory; on the other hand, the broa¢l) reduced it in LBM
peak positionk,, is also determined b)7\ and B. ”é(k) at Eheory as shown in Fig. 2. This fact explains the behavior of
kr=[ —A(t)/2B(t)]*? increase more rapidly than the others A in the second stage in Fig. 3. Next, the dependenty of

do. The negative peak dk and the decrease & in the ShOwWn in Fig. 5. In LBM theoryG,, that is,MA, is nega-

second stage makes, larger. As a resultk,, due to the tive in the range of smalb; and turns into positive with

. m . . ) o
present MLBM theory is larger than in LBM theory as increasing; . The value ob; atG,=0 is roughly similar to
shown in Fig. 1. the equilibrium composition given by free energy thermody-

Considering the discussion mentioned above, when th8amically. In MLBM theory, at firs5; andG; change dra-
form of the probability distribution function is broad and matically. But the values almost cancel each other and just
unsymmetrical, the nonlinear terms become significant. IrfeduceA a little. ThenA turns out to be more positive &,
order to evaluate the relation between the introduced nonlinchanges at largdy; than the one of LBM theory. It is pos-
ear terms and the system state definegp@8, Eq.(2.6) is  sible to explain the behavior @ in the third stage by Fig. 5.

MLBM theory, A is a negative value and almost the same as

divided as follows: Here things to be emphasized among both results are that the
phase decomposition is controlled by the present nonlinear

A=Gy+G,+G,+G3, (3.1) termsin MLBM theory, but are not influenced by the degree
of thermodynamical supersaturation as contrasted with the

o~ m—1 1 d™f (utm) original LBM theory. Thus we have to regard the nonlinear-
G,=M, E ey > (3.2 ity concerned with the composition dependence of mobility
m=2 N+m—1(m—-1)! dcf (u) as important with regard to the phase decomposition process.
From now on, we think, it is necessary to make clear the
theoretical and phenomenological meanings of the nonlinear
termsG,, .

Here, G, is the same aM A of LBM theory. The change of

A andG,, is corresponding to the change of the funct{on)
linked with p(u) defined by three parametdss, b,, ando.
According to calculated resultp{u) becomes broader from
the first to the second stage, and thus the dependence of
nonlinear terms as a function ef is important. From the We extended the LBM theory considering the composi-
second to the third stage(u) has the second peak, therefore tion dependence of mobility. From the phenomenological
the dependence of nonlinear terms as a functiobpfs  point of view, the comparison of the calculation based on
important. To investigate the relation of the nonlinear termsyoth theories made clear the following facts. In the case of
and p(u) in detail, we calculated the change of nonlinearthe present MLBM theory, in spite of the small degree of the
terms as a function of these parameters. In the real phasgipersaturation the phase decomposition sufficiently takes
decomposition, the three parameters change at the samgyce. And the amplitude of the composition fluctuation rap-
time. However, in order to understand clearly the roles ofidly became large in the early stage. In the original LBM, the
parameters, it is assumed that the other two parameters, eyhase decomposition progressed gradually. Especially when
cept the one of interest, are constant. The calculated result ghe probability distribution function becomes broad, the
the o dependence oA and G, is described in Fig. 4. In phase decomposition in the present MLBM theory speeds up,

IV. CONCLUSION
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but in LBM theory it makes slow progress. The point em-
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