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Landau model for uniaxial systems with complex order parameter

M. Latković and A. Bjeliš
Department of Theoretical Physics, Faculty of Science, University of Zagreb, P.O.B. 162, 10001 Zagreb, Croatia

~Received 26 May 1998!

We study the Landau model for uniaxial incommensurate-commensurate systems of class I by keeping
umklapp terms of third and fourth order in the expansion of the free energy. It applies to systems in which the
soft-mode minimum lies between the corresponding commensurate wave numbers. The minimization of the
Landau functional leads to the sine-Gordon equation with two nonlinear terms, equivalent to the equation of
motion for the well-known classical mechanical problem of two mixing resonances. We calculate the average
free energies for periodic, quasiperiodic, and chaotic solutions of this equation, and show that in the regime of
finite strengths of umklapp terms only periodic solutions are absolute minima of the free energy, so that the
phase diagram contains only commensurate configurations. The phase transitions between neighboring con-
figurations are of the first order, and the wave number of ordering goes through a harmless staircase with a
finite number of steps. These results are the basis for the interpretation of phase diagrams for some materials
from class I of incommensurate-commensurate systems, in particular of those forA2BX4 and betaine-
calciumchloride-dihydrate compounds. Also, we argue that chaotic barriers which separate metastable periodic
solutions represent an intrinsic mechanism for observed memory effects and thermal hystereses.
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I. INTRODUCTION

Usual treatments of uniaxial incommensura
commensurate (IC-C) phase transitions are based either
microscopic models with competing interactions or on p
nomenological Landau theories. The relevant reviews can
found in Refs. 1 and 2. The well-known example of t
former is the Frenkel-Kontorova~FK! model,3,4 in which the
wave number of ordering goes through the devil’s stairc
sequence of second-order phase transitions.3 In the regime of
weak interactions the FK model can be continuated, and
reduced to the exactly solvable~i.e., integrable! sine-Gordon
model.4 The solutions that then participate in the phase d
gram are phase soliton lattices, i.e., commensurate reg
separated by so called discommensurations.5 The phase tran-
sition to the commensurate state is of the second~continu-
ous! order, and the devil’s staircase variation of the wa
number is replaced by its simple continuous dependenc
the control parameter.

The phenomenological Landau theory, another usual
proach to the IC-C transitions, started from the expansion
the thermodynamic potential in terms of the order parame
and relied on the symmetry requirement by which the or
parameter is defined through one of the irreducible repre
tations of the symmetry group of the normal phase. For
ample, for structural phase transitions the order paramet
defined as a set of normal coordinates of the soft mod6,7

Generally the minimum frequency of this soft mode may
located at an arbitrary point~i.e., star of wave vectors! in the
first Brillouin zone. The simplest irreducible representati
for a uniaxial ordering is then two dimensional. The cor
sponding basic~‘‘minimal’’ ! form of the Landau expansio
comprises, besides the leading normal terms, one, pres
ably the strongest, umklapp term allowed by symmetry. T
term favors a commensurate ordering and is responsible
the lock-in transition from the incommensurate ordering
PRB 580163-1829/98/58~17!/11273~12!/$15.00
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vored by the elastic term. Minimization of the Landau fun
tional again leads, after neglecting the space variations of
order-parameter amplitude,5 to the sine-Gordon equation,8,9

i.e., to the phase diagram equal to that of the FK model a
the space continuation.

The above approaches predict either a dense sequen
second-order phase transitions~devil’s staircase in the FK
model! or an isolated transition of the same type~Landau
theory!. Both possibilities are indeed close to the obser
tions of IC-C transitions in some materials.10,11A majority of
materials, however, exhibits a more complex behavior co
prising one or more first-order phase transitions, mem
effects, wide~‘‘global’’ ! hystereses, finite density of soliton
at the very IC-C transition, etc.~for a review see, e.g., Ref
11!. It is usually difficult to decide solely from the exper
mental observations, even for the most carefully prepa
samples, whether such effects are of purely intrinsic or
some extrinsic origin. From the theoretical side, they can
be explained within either of above approaches without
tending the models. So far this problem was mainly cons
ered by taking primarily into account some extrinsic agen
like external fields~e.g., electric field in ferroelectric materi
als!, pinning centers, fixed or mobile defects, additional e
ternal periodic potentials with periodicities different fro
those already present in the model, etc.

Another, more intricate possibility is that of intrinsi
sources and mechanisms as the potential explanations fo
aforementioned phenomena.12 In this respect the centra
question is the following: what are the simplest intrinsic e
tensions of the above basic approaches that lead to p
diagrams with a finite sequence of first-order transitions~i.e.,
harmless staircase13!, and thus offer an inherent explanatio
for global hystereses and corresponding phenomena?

The attempts in this direction were more successful in
realm of discrete models. The examples are models tha
clude couplings between next-nearest neighbors, like the
11 273 ©1998 The American Physical Society
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11 274 PRB 58M. LATKOVIĆ AND A. BJELIŠ
called discrete frustratedc4 ~DIFFOUR! model,14 axial next-
nearest-neighbor Ising~ANNNI ! model,15,16 as well as
various extensions,17–19 and models with two spinlike vari
ables per site like those of Chen and Walker20 and Janssen.21

Both types of extensions were aimed mostly towards
interpretation of the phase diagrams observed in the fam
of A2BX4 compounds.

On the other hand, the attempts within Landau mod
were based on the formal inclusion of more and more u
klapp terms~i.e., stars of wave vectors! into the basic models
for classes I~Refs. 22–24! and II ~Refs. 25–27! of IC-C
systems. From one side, the relevance of the umklapp te
of high orders in the Landau expansion can be hardly ju
fied on the physical grounds. Also, the ensuing analyses
into account only sinusoidal modulations, which, as
present study shows, is a too crude approximation for
determination of phase diagrams with a harmless stairc
as well as for the interpretation of accompanying hyster
effects.

In contrast to such approaches, we propose in the pre
work a simple, physically well justified, extension of th
basic Landau model for class I, which is still framed within
‘‘minimal’’ free-energy expansion for a single star of wav
vectors. The phase diagram that emerges from our mod
characterized by a harmless staircase and first-order tra
tions between highly nonsinusoidal configurations with d
ferent periods. Furthermore, a closer examination of confi
rations that participate in the phase diagram, and also
those that are not thermodynamically favored, enable a p
sible explanation of the memory and hysteresis effects as
intrinsic ~or at least semi-intrinsic! properties of IC-C sys-
tems.

Our considerations are based on a sine-Gordon m
with two umklapp terms.28 This type of model is physically
well grounded whenever the Landau expansion conta
terms that favor two different commensurabilities that are
comparable strengths. The most interesting case is rea
with umklapp terms of third and fourth order, the lowe
possible ones within the models with the Lifshitz invaria
appropriate for the so-called systems of class I~Ref. 6! ~the
systems of class II have lock-in transitions at the comm
surabilities of order one and two, and are covered by
essentially different type of Landau model29,30!.

The mean-field~saddle-point! approximation for our Lan-
dau functional leads to the Euler-Lagrange~EL! equation
that has the form of the double sine-Gordon equation. Th
one of the most intensively studied nonintegrable proble
in contemporary classical mechanics.31–33The corresponding
phase portrait contains periodic, quasiperiodic, and cha
trajectories, the latter appearing only whenboth nonlinear
terms in the Landau functional are finite. As the strength
nonlinear terms increases, the chaotic trajectories occu
larger and larger portion of the phase space, destroy
gradually quasiperiodic Kolmogorov-Arnold-Moser~KAM !
layers, and eventually allowing only for some isolated pe
odic trajectories. The latter are orbitally unstable and the
fore are not realized within the scope of classical mechan
However, we show that just this tiny subset of the pha
space comprises local minima of the free-energy functio
i.e., the solutions~configurations! that participate in the ther
modynamic phase diagram. The question that then arise
analogous to that met in the analyses of the disc
e
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models,3,34 i.e., are there thermodynamically stable config
rations among other, quasiperiodic and chaotic, trajector

In order to analyze this additional,thermodynamic, aspect
of the phase portrait, we calculate the average free energ
periodic, quasiperiodic, and a representative set of cha
solutions of the EL equation, with the aim to find, for give
values of control parameters, those solutions that have
lowest value of the average free energy. We show that
chaotic configurations are never thermodynamically sta
in agreement with results obtained for some discr
models.3,34 The quasiperiodic configurations might b
present in the phase diagram only when the umklapp te
are weak enough, i.e., at temperatures slightly below
phase transition from the disordered to the incommensu
state. In the regime of strong umklapp terms~to be specified
later! the phase diagram is completely covered by perio
configurations, and the wave number of ordering pas
through a finite number of values separated by the first-or
transitions, i.e., the corresponding staircase, is harmless

The paper is organized as follows. In Sec. II we introdu
the Landau model of uniaxial ordering with two umklap
terms and discuss its classical mechanical counterpart.
solutions of the Euler-Lagrange equation are considered
Sec. III, and the corresponding thermodynamic phase
grams are presented in Sec. IV. Finally, in Sec. V we disc
possible implications to the phenomena observed in real
terials, and compare our results with those obtained in
previous analyses of the similar models and other theorie
uniaxial IC-C ordering.

II. MODEL

We start from the assumption that the quadratic contri
tion to the Landau expansion has minima at wave numb
(1Q,2Q), where Q4,Q,Q3 , with Q452p/4 and Q3
52p/3. Here the unit length is taken equal to the latti
constant. The distances ofQ from Q3 andQ4 are denoted by
d3 and d4 , respectively, withd31d45p/6 ~Fig. 1!. From
now on we shall used4 as an independent control paramet
Let us furthermore specify that the order parameter is co
plex, reif. Limiting the further analysis to the temperatu
range well below the critical temperature for the transiti
from the disordered to the incommensurate phase, we
make the usual approximation of space-independent am
tuder,5 and keep only the phase-dependent part of the fr
energy density. The latter reads

f ~f,x!5
1

2S df

dx D 2

1B cosF3f13S p

6
2d4D xG

1C cos~4f24d4x!. ~1!

FIG. 1. Brillouin zone with the soft-mode minimum atQ, and
the commensurate wave numbers of third (Q3) and fourth (Q4)
order.
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Here we scale the free-energy functional

F5E dx f~f,x! ~2!

by j0
2r2, wherej0 is the correlation length in thex direction.

The first, gradient term in Eq.~1! is the elastic contribution
that favors the incommensurate sinusoidal ordering with
wave numberQ. The second and third terms are the u
klapp contributions of the third and fourth order, respe
tively. Due to the closeness of the wave numberQ to both
respective commensurate wave numbers, they are pre
ably the leading umklapp contributions, provided both a
allowed by symmetry. Their effective strengths are deno
by coefficientsB andC that are proportional to the first an
the second power of the amplituder, respectively. They are
another two control parameters~besided4) of model~1!. The
temperature variation ofr is expected to be the main sourc
of the temperature dependence ofB andC.

Model ~1! covers a variety of possibilities that may tak
place in particular physical examples. Besides the comp
tion of each umklapp term and the elastic term present
ready in basic sine-Gordon models, the essential new p
erty of the present model is an additional competiti
between two umklapp terms. The relative importance
these two terms relies on both the ratio of the strengthsB and
C and the position of the wave numberQ, i.e., the ratio ofd3
andd4 , so that various regimes are possible. Regarding
pansion ~1! it is reasonable to expect that the relati
strength of two terms varies from the dominance of the th
order term (B@C) at temperatures not far below the tran
tion from the disordered phase to the comparable valuesB
and C at lower temperatures. However, even whenB@C,
the relative weakness of the fourth-order umklapp term
be compensated by a small value ofd4 with respect tod3 ,
i.e., by its much slower space dependence. In this case
necessary to keep both umklapp terms in expansion~1!. Al-
though similar arguments may be invoked in favor of reta
ing some other pair of commensurate wave numbers, or e
more than two of them, example~1! seems to be the mos
interesting one, due to the lowest possible powers or
present in coefficientsB andC.

The configurations that take part in the thermodynam
phase diagram of model~1! are the solutions of the Euler
Lagrange~EL! equation,

f913B sinF3f13S p

6
2d4D xG14C sin~4f24d4x!50,

~3!

which for given values of the control parameters have
lowest value of the free energy averaged over the ma
scopic length of the systemL,

^F&5
1

LE dx f@f~x!,x#. ~4!

Before developing the appropriate method for the de
mination of such configurations, let us make a few rema
about Eq.~3!. From the classical mechanical side it repr
sents the nonintegrable double resonance~i.e., double sine-
Gordon! model,31,32 with the corresponding Hamiltonian
e
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H~pf ,f,x!5
pf

2

2
2B cosF3f13S p

6
2d4D xG

2C cos~4f24d4x!, ~5!

wherepf[] f /]f85f8. Obviously forB50 or C50 Eqs.
~3! and ~5! reduce to completely integrable sine-Gord
problems. For bothB andC finite, one encounters the coex
istence of two overlapping resonance domains. This can
easily seen with help of the Poincare´ cross section. We in-
troduce the auxiliary variable

c5f1S p

6
2d4D x, ~6!

and plot the Poincare´ cross section in the phase spa
(c,pc), c[c(x013n),pc[c8(x013n). Here x0 is the
starting point of integration andn is an integer. The reso
nance domains are situated around elliptic fixed points
@c50,pc5(2p/3)m# and @c5p/6,pc5(p/4)(2m11)#,
wherem is an integer. Their respective widths are 12AB/p if
C50 and 12AC/p if B50. For small values ofB and C
@Fig. 2~a!# the trajectories between two resonances conse
their topological form, while chaotic trajectories exist on
very close to the separatrices of both resonances. AsB and/or
C increase@Fig. 2~b!# the separatrices burst out into stocha
tic layers that grow and eventually merge between resona
domains. One gradually arrives at the threshold of the s
chasticity@Fig. 2~c!#, given by the Chirikov criterion31

12

p
~AB1AC!'1, ~7!

at which the last KAM torus is destroyed, i.e., there are
more quasiperiodic solutions between two resonances. C
otic trajectories are now free to diffuse through all pha
space between two resonances. Let us mention here
points relevant for further discussion. First, the widths of t
chaotic layers grow exponentially35 as parametersB and C
increase. Thus, the area between two resonances will be
idly covered with chaotic layers. Second, KAM tori repr
sent the main obstacles to diffusion of chaotic trajector
through phase space~Ref. 33, and references therein!.

III. SOLUTIONS OF THE EULER-LAGRANGE EQUATION

Beside the classical mechanical context, our problem
an additional aspect, namely, we are looking for the therm
dynamically stable solutions, i.e., the trajectories in the ph
space from Figs. 2~a!, 2~b!, and 2~c!, which are local minima
of the functional~2!. Since we have to compare average fr
energies~4! of the trajectories present in the phase space,
first task is to specify numerical methods appropriate for
calculation of particular types of solutions.

The orbitally unstable periodic solutions obviously cann
be determined by a direct integration of the EL equations~3!,
commonly used for calculation of orbitally stable solution
It is therefore necessary to calculate them by using a suit
boundary value method for nonlinear equations. The m
natural choice is the finite difference method, which is, ho
ever, rather demanding regarding computer memory
time. It is therefore important to reduce the search for pe
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11 276 PRB 58M. LATKOVIĆ AND A. BJELIŠ
odic solutions by establishing in an analytic way sufficie
conditions for the possible values of periods. To this end
start from the relation

FIG. 2. The Poincare´ cross sections for the Euler-Lagrang
equation~18! and the choice of parameters:x051.5, c(x0)50, B
5C50.002 ~a!, B50.008,C50.006 ~b!, B5C50.02 ~c!. The pe-
riod that defines the section is equal to 3. Symbols for the perio
solutions (k,l ) ared, ~0,1!; j, ~1,0!; l, ~1,1!; m, ~1,2!; b, ~1,3!;
., ~1,4!; c, ~2,1!; 1, ~2,3!; 3, ~3,1!; *, ~3,2!.
t
e

f~x1P!5f~x!1fP , ~8!

which holds for any periodic solution. HereP is its period
andfP is the phase increment per period~note that the pe-
riodic solutions with finitefP belong to the rotational part o
the phase space!. Inserting Eq.~8! into the EL equation~3!
taken atx1P one gets

f913B sinF3f13S p

6
2d4D x13fP13S p

6
2d4D PG

14C sin~4f24d4x14fP24d4P!50, ~9!

wheref[f(x). Sufficient conditions on the values of pa
rametersP andfP follow from the requirement that Eqs.~9!
and ~3! have the same form, i.e., that

3fP13S p

6
2d4D P52pk, 4fP24d4P522p l ,

~10!

wherek and l are integers. Thus we get

P54k13l , fP5d4P2 l
p

2
. ~11!

Obviously, each periodic solution satisfying the requirem
~10! is uniquely defined by a pair of integers (k,l ) that do not
have a common integer factor.28 Note that the above proce
dure, in particular the step from Eq.~9! to the conditions
~10!, in principle does not forbid the existence of period
solutions that do not belong to the set defined by Eqs.~11!.
However, our attempts to locate numerically such solutio
although based on two independent algorithms, the pre
and the alternative one,36 always led to a negative resul
This is an indication that the solutions with the periods~11!
are very probably the only possible periodic solutions, i
that relations~10! are also the necessary conditions for th
existence.

The solutionf(x) with the period~11! has the total wave
number~that measured from the origin of Brillouin zone!:

q̃[Q2
fP

P
[2pq52p

k1 l

4k13l
. ~12!

The values ofq allowed by conditions~10! form a Farey
tree, shown in Fig. 3 for the wave numbers betweenq51/3

ic

FIG. 3. Farey tree for wave numbersq defined by Eq.~12!.
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(k50, l 51, and P53) and q51/4 (k51, l 50, and P
54). Thus, already at this introductory stage of the analy
we conclude that model~1! has the phase diagram wit
branchings between neighboring commensurate config
tions equivalent to those of ANNNI models.16,18

The periodic solutionsq51/3 (k50, l 51, and P53)
andq51/4 (k51, l 50, andP54) in the Farey tree of Fig
3 are the basic commensurate configurations, belongin
the umklapp terms of third and fourth order, respective
The wave numbers at lower levels of the Farey tree from F
3 represent higher-order commensurate solutions that co
spond to all positive values ofk and l . They are situated
between two main resonances in the Poincare´ cross section
shown in Fig. 2. Note that for small values ofB andC their
positions in the phase space@Fig. 2~a!# perfectly match po-
sitions in the Farey tree~Fig. 3!. As parametersB and C
further increase, the positions of periodic solutions that
embedded in chaotic layers become slightly intermixed si
there are no more KAM tori between two resonances t
restrict their positions in phase space@Fig. 2~c!#. We do not
include the parts of the Farey tree belonging to negative
ues ofk and/orl since, as it will become clear later, they a
not thermodynamically stable for 0,d4,p/6 andB,C.0.

In the next step we specify boundary conditions for
particular periodic solutionfkl(x). Since every periodic so
lution possesses at least two inflection points, we chose
of them,x0 , to be the initial point of integration, i.e., the le
end point of one period. Thusfkl9 (x5x0)50. The boundary
conditions now read

fkl~x5x01P!5fkl~x5x0!1fP ,
~13!

fkl8 ~x5x01P!5fkl8 ~x5x0!.

Since the values ofP and fP follow from the choice of
integers (k,l ) @Eqs.~11!#, it remains to establish the conne
tion between the other three parameters,x0 , fkl(x5x0), and
fkl8 (x5x0), which figure in conditions~13!. As it follows
from the EL equation~3! with x5x0 ,

3B sinF3f~x0!13S p

6
2d4D x0G

14C sin@4f~x0!24d4x0#50, ~14!

x0 andf(x0) are not independent. Even more, the numeri
experience suggests that for a given periodic solution bothx0
and f(x0) do not vary as we changeB and/orC, i.e., that
Eq. ~14! in fact decomposes into two conditions,

3f~x0!13S p

6
2d4D x05Mp,

~15!
4f~x0!24d4x052Np,

whereM andN are integers. This means thatx0 andf(x0)
may have values

x05
1

2
~4M13N! ~16!

and
is

a-

to
.
.

re-

e
e
t

l-

ne

l

f~x0!5d4x02
p

4
N. ~17!

These relations would allow for 2P values of x0 and an
infinite number of values forf(x0) ~for a general value of
d4). The further analysis of symmetry properties of proble
~3!, as well as the numerical insight, however indicate t
for any choice of periodsP and fP this enumerable set is
highly degenerate and reduces to only two distinct~nonde-
generate! solutions. The convenient choices ofx0 andf(x0)
characterizing these solutions for various combinations
odd and/or even values of integersk andl are listed in Table
I.

The above analysis simplifies drastically the numeri
procedure, since after specifying the parametersk, l , x0 , and
f(x0), the determination of a given periodic solution fo
lows from the variation of the single remaining parame
f8(x0). In accomplishing this procedure it appears conv
nient to eliminate, by transforming the variablef(x), the
explicit x dependence from one of the umklapp terms in
EL equation~3!, and to keep this dependence in the te
with a weaker amplitude. Thus forB larger thanC we use the
variablec(x) @Eq. ~6!# instead off(x), so that the EL equa-
tion

c913B sin~3c!14C sinS 4c2
2p

3
xD50, ~18!

and its solutionsc(x), do not depend ond4 . The corre-
sponding free energy then acquires ad4-dependent term in
the form of Lifshitz invariant,

F5E dxH 1

2Fc82S p

6
2d4D G2

1B cos~3c!1C cosS 4c2
2p

3
xD J , ~19!

which simplifies the calculation of thed4 dependence of the
averaged free energy for any particular periodic solution
the EL equation. As is visible in Fig. 4, the form of period
solutions resembles that of multisoliton solutions of t
simple sine-Gordon model~still, note the slight modulation
of commensurate regions, i.e., between discommens
tions!. WhenC is larger thanB, it is appropriate to introduce
an analogous variable that makes theC term x independent,
namely, x(x)5f(x)2d4x. Again, the corresponding EL

TABLE I. The set of possible values ofx0 andf(x0) needed for
specifying boundary conditions of EL equation~3!.

k l P x0 f(x0)

Odd Odd Odd 0 0
0 p

Even Odd Odd 0 0
0 p

Odd Even Even 0 0

1/2 1
2

d41
p

4
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11 278 PRB 58M. LATKOVIĆ AND A. BJELIŠ
equation does not depend ond4 . The boundary conditions
have to be modified correspondingly for both transform
tions.

Although the steps described above greatly simplify
numerical procedure, the finite difference method poses
limitations on the computer memory and time that do n
allow us to calculate solutions with periods well above 10
Note in this respect that the nonlinearity of EL equations~3!
or ~18! forces us to use about 1000 mesh points per perio
order to get solutions that are reliable enough.

Periodic solutions of EL equation~3! show several inter-
esting properties that are important for analysis of phase
grams. We notice that for some values~or ranges of values!
of parametersB andC one of the two periodic solutions with
the same values ofk and l from Table I ceases to exist~see
Fig. 5!. In general, the solutions with the lower value
averaged free energy are more robust with this disapp
ance. We do not go into a closer analysis of this effect,
only indicate that it seems to be closely connected with
destruction of KAM tori asB andC increase.

Another interesting property of periodic solutions is t
splitting in averaged free energies of two solutions with
same values of (k,l ) ~see Fig. 5!. As parameterC gradually
increases from zero, while keepingB fixed, values of the
difference between these two energies increase, thus ma
one periodic solution more and more thermodynamically
vorable with respect to the other. This splitting is larger
the solutions with smaller periods. The qualitative con
quence is that such solutions participate over greater
greater parts of the phase diagram as parametersB and C
increase.

For the calculation of quasiperiodic and chaotic trajec
ries we use standard, Adams or Runge-Kutta-Merson, m
ods for an initial value problem. Quasiperiodic trajectori
as building objects of KAM tori, are orbitally stable.34 Cha-
otic orbits, although certainly orbitally unstable, are diffusi
through all the corresponding chaotic layer in the ph
space, so that by picking one of them we get practically
averaged free energy for all chaotic solutions in that lay
Thus, in order to calculate the averaged free energies of
siperiodic and chaotic solutions we chose initial values

FIG. 4. The periodic solutionsc(x) from the class (1,l ). The
parameters are:B50.02,C50.02,x051.5, c(x0)50.
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random ~the probability of picking a periodic solution in
stead of quasiperiodic or chaotic ones is equal to zero!, and
carry out the integration as long as the accuracy is satisfy
The fact that the averaged free energy of quasiperiodic
chaotic solutions can be determined only to a limited ac
racy was already pointed out by Fradkinet al.,34 who esti-
mated the degree of accuracy for a given type of solutio

The estimation of the common averaged free energy
chaotic solutions within a given layer can be done
follows.37 The average value of umklapp terms in express
~19! is zero since these terms contain trigonometric functio
with an argument that chaotically~randomly! varies withx.
For the fourth-order umklapp term cos@4c2(2p/3)x# we
have

K cosS 2p

3
xD cos~4c!L 5 K sinS 2p

3
xD sin~4c!L 50,

~20!

FIG. 5. Average free energies of the periodic solutions fro
class (1,l ) as the function ofC for B50.02 andd45p/12. ~b! is the
enlarged detail of~a! with energies lower than 0.01. Solutions wit
lower average free energies are those from the second rows in T
I. Note from~b! that, e.g., the upper solution~1,6! does not exist for
few subranges of the values of parameterC, and that both solutions
from this class cease to exist forC.0.03.
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while for the third-order umklapp term we have an avera
of cos 3c that is also zero. The averaged free energy is t
given by the integral of the gradient term12 @c82(p/6
2d4)#2. The latter depends on the position and the width
the chaotic layer in the phase space, i.e., only on the de
dence ofc8 on x along the trajectory in this layer.

In order to determine a solution with the lowest avera
free energy we follow solutions~periodic, quasiperiodic, and
chaotic! with initial conditions that belong to the line
@c(x0)50,c8(x0)# in the phase space (c,c8) ~Fig. 2!, and
compute their average free energies. For small values oB
andC, periodic and quasiperiodic solutions are regularly
ranged in the phase space@Fig. 2~a!#, with hardly distin-
guishable average free energies@Fig. 6~a!#. In order to show
that the solution with the lowest free energy is periodic,
follow downwards the branch of the Farey tree~Fig. 3! that
starts at the point with the averaged free energy lower t
those for neighboring points above and below this point. I
numerical evidence that the average free energies incr
~and tend to some finite value! as we go down through suc
cessive branch points, i.e., through the solution with lar
and larger periods. Quasiperiodic solutions can be rega
as asymptotic limits of series of periodic solutions defined
successive branchings in the Farey tree in which the pe
and the phase increment tend to infinity~but with a finite,
irrational, value ofq). The averaged free energies of qua
periodic solutions thus should be equal to the limiting valu
of averaged free energies at a given branch, which are,
argued above, higher than the averaged free energy o
starting periodic solution. Since this argument is based
numerical calculations, it cannot be extended to very sm
values ofB andC for which the solution with the lowest fre
energy, as well as the solutions at the accompanying bra
in the Farey tree, have too large periods.

In the range of intermediate values ofB andC @Fig. 6~b!#
there are intervals of initial conditions in which quasipe
odic solutions disappear, and only chaotic and periodic s
tions are present. The chaotic layers can be easily recogn
in the Poincare´ cross section@Fig. 2~b!#. The average free
energies of periodic solutions then look as needlelike min
immersed in the average free energy of chaotic layers,
resented by plateaus in Fig. 6~b!. Finally, for large values of
B and C @Fig. 6~c!# for which the Chirikov criterion~7! is
fulfilled, there remains a single chaotic layer between t
resonance domains@Fig. 2~c!#, while the number of existing
periodic solutions gradually decreases asB and C increase.
Since there remains a finite number of corresponding w
defined needlelike minima, it is sufficient to limit the nu
merical calculations to the search for existing periodic so
tions, and to find out among them the solution that has
lowest average free energy.

IV. PHASE DIAGRAM

We have argued in the previous section that the confi
rations with minimal average free energy are among perio
solutions of EL equation~3!. Before presenting results o
numerical calculations that confirm this expectation,
briefly discuss the parameters present in model~1!.

The parametersB and C depend on external conditions
most usually on temperature and pressure. As it was m
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FIG. 6. Average free energy vsc08 of periodic (n), quasiperi-
odic (s), and chaotic (l) solutions, forB50.002,C50.002~a!,
B50.008,C50.006 ~b!, B50.02, C50.02 ~c!, andd45p/12, x0

51.5. The (k,l ) indices for the periodic solution with the lowes
average free energy (m) are ~3,4! in ~a! and ~b!, and ~1,1! in ~c!.
The insets in~a! and ~b! are enlarged neighborhoods of the fre
energy minima.
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tioned in Sec. II, they depend on the amplitude of the or
parameter linearly and quadratically, respectively. At te
peratures closely belowTI , the temperature of phase trans
tion from the disordered to the incommensurate phase,
ratio B/C is proportional to (TI2T)21/2. A more complete
insight into the temperature dependence of the order par
eter, and of the ratioB/C as well, in the wider temperatur
range belowTI , can be obtained from the neutron scatterin
NMR, and similar experimental data for particular materi
~e.g., Refs. 38 and 39!. As for the pressure dependence ofB
and C, it can be specified only after the insight into th
microscopic model for a particular material on which t
Landau theory is based. The parameterd4 also might be
temperature and/or pressure dependent. Usually, in a
crete physical situation certain dependences may be rega
as dominant. For example, when temperature varies
pressure is constantd4 can be often regarded as consta
while B and C are temperature dependent. Having this
mind we simplify the further discussion by keeping one
the parameters fixed and concentrating on phase diagram
the remaining two-dimensional parameter subspaces.

The role of the parameterd4 , the position of the instabil-
ity with respect to the wave number of the fourth-order co
mensurability, is expressed through the Lifshitz invaria
d4c8(x) in Eq. ~19! which favors the incommensurate orde
ing. On the other side, two umklapp terms favor commen
rate orderings with their respective wave numbers. Ford4
→0, and fixed values of parametersB and C, the umklapp
term of the fourth order dominates with respect to that of
third order, and the thermodynamically stable periodic so
tion is expected to have the wave numberq051/4. On the
same footing, ford4 nearp/6 ~i.e., for d3→0) the stabiliza-
tion of the modulation withq051/3 is preferred. For 0,d4
,p/6 we expect that some other higher-order wave numb
of modulation become thermodynamically stable and t
they follow the order specified by the Farey tree from Fig.

Let us now fix parameterB and allow for the variation of
the parametersd4 andC. For a particular value ofC we find
periodic solutions of the EL equation~18! by following the
steps from Sec. III, and calculate their average free ene
~19! for a relevant range of values of the parameterd4 . Then
we determine a solution that is the absolute minimum of
average free energy for a given value ofd4 , and in particular
the isolated values ofd4 at which first-order phase transition
take place since two~or more! configurations are simulta
neously absolute minima of the free energy. Varying a
systematically parameterC we obtain the phase diagram, a
shown in Fig. 7 forB50.02. All lines in this diagram repre
sent the phase transitions of the first order between the p
odic configurations with different wave numbers~which are
denoted only for few dominant phases in the diagram!. Note
that the Chirikov line~7! is at C'0.0145, and that below
C'0.01 there is a proliferation of configurations with com
mensurabilities of higher and higher orders. The absenc
these configurations at larger values ofC is mostly due to the
fact that, although they exist as solutions of the EL equat
their average free energies are too high in comparison
those of the solutions with lower commensurabilities. In a
dition, some periodic solutions simply cease to exist asC ~or
B) increase, as shown in Fig. 5. Note also that only one
two different classes of periodic solutions with the same v
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ues ofk andl participates in the phase diagram in Fig. 7, i.
that characterized by the initial conditions from the seco
rows ~depending on evenness and oddness of integersk and
l ) in Table I. Still, we find out numerically that the averag
free energies for two different solutions with the same (k,l )
may change order, i.e., that the solutions from the first ro
in Table I may have lower average free energy than th
from the second rows provided they are of rather high co
mensurability. Thus, it is somewhat surprising that in t
phase diagram in Fig. 7 the periodic solutions with only o
type of boundary condition prevail. We shall come back
this point later in Sec. V.

In addition to the phase diagram, we plot in Fig. 8 t
corresponding staircase, i.e., the wave number of the st
configuration vs parametersC and d4 . As long asC is not
very small there is a finite number of steps, i.e., we obt

FIG. 7. Phase diagram in the (C,d4) plane for B50.02. The
numbers in the figure are periods of some stable commensu
phases. The dashed line atC'0.0145 represents the Chirikov cr
terion ~7!.

FIG. 8. The wave number of modulationq0 vs C andd4 for B
50.02. The dotted cross section represents the Chirikov crite
~7!.
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the so-called harmless staircase, introduced by Villain
Gordon.13 We stress that the most interesting property of
phase diagram from Figs. 7 and 8, the presence of a fi
~small! number of stable commensurate configurations, is
countered in the regime of rather high values of parameteB
and C. The phase portrait of the EL equation~3! is then
almost everywhere chaotic@Fig. 2~c!# and there are no mor
quasiperiodic solutions between two resonances. By incr
ing further the values of parametersB andC one eventually
comes to the phase diagram in which only two main co
mensurate phases (q51/3 andq51/4) take place.

Another possible presentation of the phase diagram is
with a fixed value of the parameterd4 and with varying
parametersB andC. It is presumably closer to usual physic
situations in which only weak temperature and pressure
pendences ofd4 are expected. The construction of the (B,C)
phase diagram is however computationally more demand
since one has to look for the solution with the lowest aver
free energy within a set of solutions for given values ofB
and C, i.e., one has to calculate the whole set of perio
solutions of the EL equation@Eq. ~3! or ~18!# for each point
in the two-dimensional phase diagram. To this end we us
mesh of points that is dense enough in the (B,C) plane, and
determine the solution with the lowest average free energ
each point. The phase diagram obtained in this way ford4
5p/12 is shown in Fig. 9. Note that again only configur
tions with rather low orders of commensurability, i.e., wi
small values of parameters (k,l ), are present above the Chi
ikov line @Eq. ~7!#, while below this line the diagram is mor
complex since a great number of first-order transitions t
place within a small part of the phase diagram.

V. CONCLUSION

The most important conclusions of the above analysis
low from the thermodynamic phase diagram obtained in
regime of comparable strengths of two umklapp terms
cluded into the Landau expansion~1!. At first we emphasize
that only one type of solution of the corresponding EL eq
tion, namely, periodic configurations, participates in t

FIG. 9. Phase diagram in the (B,C) plane ford45p/12. The
numbers in the figure are periods of some stable commensu
phases. The dashed curve represents the Chirikov criterion~7!.
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phase diagram. Furthermore, all phase transitions betw
successive commensurate phases are of the first order, s
the wave number of ordering follows a harmless stairc
with a finite number of steps. The examples of such a ph
diagram, namely, a series of successive lock
commensurate-commensurate transitions with accompan
effects that characterize first-order transitions,10 are often en-
countered in particular materials. Here we focus our atten
on a few well-known examples.

One of the most studied type of materials areA2BX4
compounds, among which we take Rb2ZnBr4 as a prominent
representative. Early neutron-diffraction measurements40–42

of the temperature variation of modulation wave numb
revealed the existence of several higher-order commensu
phases. The more complete pressure-temperature phase
gram followed from various subsequent data, in particu
again from the neutron-diffraction measurements of Parlin
et al.43,44 It resembles to a great extent our phase diagra
from Figs. 7 and 9. Note also that the phenomenolog
formula for wave numbers of observed commensurate ph
introduced by Parlinskiet al.43 coincides to our expressio
for the Farey tree~12!, which is, as is shown in Sec. III
inherent to the model~1!. Harmless staircases are clear
seen in, e.g., pressure variation of the wave vector for a fi
temperature,43 with steps going as 1/3, 7/24, 2/7, and 1/4
increasing pressure. They are accompanied by hysteres
pressure and temperature runs, which are particularly str
when only a few steps appear in the phase diagram. T
corresponds to the regime of rather high values of parame
B and C, in which the phase diagram contains only a fe
commensurate phases and the average free energy of the
otic plateau is well above the average free energies of p
odic solutions@Fig. 6~c!#.

Existing theoretical approaches to the~in!commensurate
orderings inA2BX4 compounds, in particular to the appea
ance of a series of commensurate phases, are mostly
nomenological, based either on Landau expansions45 or on
the discrete models of competing local interactions.17,20,21

The justification for the continuous Landau models, whi
are generally appropriate to weak-coupling systems, co
from many experimental indications, starting from the ea
neutron-scattering data,40–42 showing a well-defined disper
sion curve for collective modes with distinct soft-mod
minima. However, the previous analyses of Landau mod
were restricted to purely sinusoidal modulation, and, as s
were not able to explain the appearance of phases with c
mensurabilities of orders higher than three or four. It w
therefore proposed that such phases appear due to the
ence of umklapp terms of higher orders in the free-ene
expansion.22–24 This explanation, which is based on the a
sumption that distinct commensurate stars of wave vec
are necessary for the stabilization of, presumably sinusoi
phases with corresponding wave vectors,22–24is not convinc-
ing since the umklapp terms of order higher than four
expected to be negligible in weakly coupled systems wit
displacive order.

For these reasons the more recent attempts turned a
towards another type of approach, that which assumes st
couplings, so that the lattice discreteness has to be ta
into account. Originally the sequences of IC-C and
commensurate-commensurate phase transitions were w

te
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this scheme interpreted in terms of the FK model as dev
staircase dependences of the wave number of ordering,
as dense sequences of second-order phase transitions.3 How-
ever, observed staircases rarely resemble, even within
perimental limitations, the dense devil’s staircase. Bes
phase transitions between successive commensurate p
are usually of the first order. The phase diagrams that
closer to experimental findings may be, however, obtai
by various extensions of the basic FK model, e.g., by incl
ing an additional harmonic potential.46,47 Also, the more
complex models of competing interactions, e.g., DIFFOU
~Ref. 14! and ANNNI ~Refs. 15–18! models, as well as mod
els that assume two critical modes per lattice site,20,21 are
particularly successful in describing the phase transition
A2BX4 compounds. Within some of these models~e.g., Refs.
20 and 21! one also obtains the first-order phase transitio
between configurations having the same wave numbers
different symmetries. As was already stated in Sec. IV, t
is not the case within model~1!, i.e., although the EL equa
tion ~3! may possess two types of solutions with the sa
periods, only one type of solution participates in the ph
diagram.

The present analysis again starts from the minimal L
dau expansion~with terms up to the fourth order!, but takes
into consideration all solutions of the corresponding
equation. In particular it indicates that the theoretic
approach,40 proposed together with the first neutro
scattering measurements on Rb2ZnBr4 , might be essentially
sufficient for the understanding of complex phase diagra
in A2BX4 materials. The more detailed analysis that tak
into account some additional aspects, like the couplings
the homogeneous polarization and strain that appear in s
materials as secondary order parameters, will be done e
where.

Betaine-calciumchloride-dihydrate~BCCD!, together with
its deuterated version D-BCCD, belong to the second typ
intensely studied materials with the commensurate lock-
It shows an exceptionally rich staircase going fromq51/3
down to q50, with numerous intermediate steps of high
orders.48–50A closer insight into the region of the phase di
gram with the wave number betweenq51/3 and q51/4
shows that only the upper right triangle of the Farey t
from Fig. 3 is realized, i.e., the phase diagram is mos
covered by wave vectors close toq51/4, and not by those
close toq51/3. This sequence of IC-C transitions was suc
cessfully interpreted within various discrete models w
competing interactions, e.g., in Refs. 51 and 52. Wit
model~1! such a phase diagram corresponds to the regim
which the fourth-order umklapp term dominates with resp
to that of the third order. Also, two types of extensions of o
model may lead to the stabilization of commensurate pha
with q,1/4. Namely, one may allow for negative values
the parameterd4 , or start with other umklapp terms, e.g
with those of the fourth and fifth order, and pursue the ana
sis analogous to that of Secs. III and IV.

We also mention some other materials that exhibit a
quence of IC-C and commensurate-commensurate ph
transitions betweenq51/3 andq51/4, but are not so exten
sively studied as the previous two examples. For exam
Dénoyer et al.53 investigated NH4HSeO4 and its deuterated
version ND4DSeO4 by neutron diffraction, and found th
s
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harmless staircase and first-order phase transitions, acco
nied by the coexistence of several phases in the relativ
wide range of temperatures. A series of IC-C and
commensurate-commensurate phase transitions are als
served in BaZnGeO4 in x-ray diffraction measurements b
Sakashitaet al.54 and in electron-diffraction measuremen
by Yamamotoet al.55 that also provide dark field images o
discommensurations appearing in the vicinity of aq51/3
phase. An example of a particularly sharp transition fromq
51/3 to q51/4, with a very wide temperature range of th
coexistence of these two commensurate phases, was f
by Broda56 in (NH4)2CoCl4 , the material that also belong
to A2BX4 family.

The free energy~1! is similar to that of Fradkinet al.,34

who also studied continuum systems with competing peri
icities. The only difference between the two expressions
the absence of the factors 3 and 4 in front of the varia
f(x) in the cosine terms of the model.34 However, in con-
trast to ours, the analysis carried out in Ref. 34 is limited
the close vicinity of the separatrices~and hyperbolic points!
in the phase space,31 i.e., to the dilute soliton lattices. The
the continuum model can be converted into a discrete m
ping of the FK type, analyzed in detail previously by Aubry3

Our analysis covers the whole phase space, i.e., all solut
of the EL equation~3!, and in particular the whole class o
periodic configurations. In particular, our thermodynam
phase diagram~Figs. 7 and 9! includes, in contrast to that o
Ref. 34, the most interesting part of the phase space, nam
that between two resonances~i.e., sets of hyperbolic points!.

The model34 was the starting point in the investigation57

of the memory effects in systems with IC modulations, bas
on the earlier proposition58 that mobile defects might be re
sponsible, by forming defect density waves, for the sensi
ity of the IC ordering on the thermal history of crystal, o
served, e.g., in thiourea.59 Errandonea57 argued that the
double sine-Gordon model, with two lock-in potentials orig
nating from the lattice defect density wave, is an appropri
description of this phenomena.

Model ~1! provides the explanation of memory effec
~together with thermal hystereses!, without referring, in con-
trast to the models in Refs. 57 and 58, to defects as an
trinsic ingredient of the theory. At first, we note that th
crossings of lines of first-order phase transitions in Figs. 7
and 9 are accompanied by hystereses. Our prelimin
analysis36 indicates that these hystereses may be rather w
on, e.g., temperature scale. Furthermore, the present ana
of the EL equation~3! shows that periodic solutions, whic
constitute the phase diagram, are immersed as isolated p
into the environment of chaotic configurations. This enviro
ment prevents both the continuous variation of the wa
number of ordering and the continuous phase transition
the second and higher orders. The average free energ
chaotic solutions from Fig. 6~c! is the measure of the ene
getic barrier which the system has to overcome in orde
pass from some periodic~metastable! configuration to an-
other one with lower free energy. This is expected to b
common property of models that are nonintegrable~beside
being nonlinear!, and have thermodynamically stable pe
odic configurations isolated in the chaotic phase space.12

The memory effects are also observed in class II of
systems.10 The detailed analysis of phase diagram for th
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class30 led to the conclusion that the corresponding pheno
ena seen in particular materials may be interpreted as we
terms similar to those presented above. However, it was
stressed30 that defects may have a secondary role as trigg
that favor the stabilization of some domain patterns. T
interpretation invokes neither the mobility of defects nor t
formation of defect density waves. The analogous second
influence of defects on memory phenomena is expected
in presently investigated systems of class I.

Finally, let us mention a common problem that arises
the analysis of continuous nonintegrable Landau models
uniaxial systems of classes I~Ref. 28! and II ~Ref. 30! in
which periodic solutions have an essential role in the ex
malization of corresponding thermodynamic functionals. W
recall that there is no firm universal principle that wou
favor the thermodynamic stability of the~meta!stable peri-
odic configurations on account of other, quasiperiodic
chaotic, solutions of EL equations. Some hints in this dir
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tion for ‘‘autonomous’’ functionals~those for which the free-
energy density does not depend explicitly onx) follow from
the recently derived general criteria60 based on the additiona
extremalizations~like, e.g., those involving boundary cond
tions!. However, these criteria cannot be directly applied
the present model since the explicitx dependence in Eq.~1!
introduces fundamental singularities in the addition
extremalizations.60 Thus, the most important property of th
phase diagrams from Figs. 7 and 9, their complete cover
by a finite number of periodic configurations, still awaits
deeper understanding.
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