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Level statistics in a two-dimensional disk with diffusive boundary scattering
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We calculate the energy level statistics in a two-dimensional disk with diffusive boundary scattering by the
means of the recently proposed ballistic nonlineanodel[B. A. Muzykantskii and D. E. Khmelnitskii, JETP
Lett. 62, 76 (1995]. [S0163-18208)02724-4

The purpose of this paper is to use the recently proposed 1 1
nonlinear ¢ modet for ballistics in disordered conductors ;=f dOW(n,n"), T—=J dOW(n,n")(1—nn").
with long mean free path and find out how it works. In a v &)
recent papérAndreev and AltshulefAA) suggested a gen-
eral method of calculation of level statistics in a disorderedn this paper we will consider a clean disk with no scattering
system beyond the limits of the random matrix theory. Theirin the bulk and strong boundary scattering. Therefore both
calculations were performed for a diffusive disordered sysand 7, will be taken as being infinitely large. Integration in
tem with the mean free pathshorter than the system siRe Eqg. (2) is not defined unless boundary conditions are im-
For this case and for energy differene@xceeding the mean posed on supermatrix at the inner boundary of the sample.
level spacingA (w>A) their method was based on using the Since supermatrig has a meaning of a distribution function
nonlinears modef and accounting for a perturbative contri- of electrons, the boundary condition it obeys is similar to that
bution from the vicinity of several stationary points of the which is applied to the distribution function in classical
action® AA have also conjectured a general form which thekinetics!® The general boundary condition for matrix func-
level statistics obeys. In this paper we follow the same gentions (see Ref. 9 for an examplés pretty complicated. For-
eral strategy, addressing this problem for a quantum particleunately, for the purposes of this pape@alculation of the
in a two-dimensional disk with no scattering in the bulk andspectral correlation function with the precision to the first
strong boundary scatterifigSuch a problem is a natural tar- nonvanishing term beyond random matrix theattye prob-
get for the recently proposed field theory for quantumlem could be significantly simplified, because most of the
ballistics?® Consideration is restricted solely to unitary sym- properties of the energy levels could be determined by the
metry. In all relevant parts our results coincide with thosethe values ofy matrix close to the special poig(rn)=A. If
independently obtained by Blanter, Mirlin, and U=1—w/2+w?/8+---, then the free energy could be ex-
Muzykantskii® pressed through matrices, which gives in the quadratic
In order to apply the general approach of AA, we beginapproximation
with replacing the nonlinear diffusive supermatrixmodef
by its ballistic generalizatiohThe partition function of this
field theory is determined as a functional integral over a su-
permatrixg(n,r)=U "*AU on the energy shelE=p?/2m o
(n=p/p) in the phase space: where indices 12) relate to “retarded”(“advanced”) de-
grees of freedom, anid denotes operator of the kinetic equa-
tion. Since the free energy in E@}) is quadratic, it results in
sz Dy exp(—F}, (1) a classical linear equation. The boundary condition which
g?=1 should be imposed upom,(r,n) is now a direct analog of
the condition imposed upon the distribution function in clas-
sical kinetics. Extremely strong boundary scattering is popu-
F= 2strf dr{i"’Mg(r))—zuF(AUanU) larly modeled by the diffusive boundary conditi6fwhich
4 assumes that the distribution function for outgoing particles
does not depend on angular variahland is coupled to that
+f dOdO’ W, ,,.g(r,n)g(r,n")|, (2)  forincoming particles by flux conservation. N is an out-
’ ward normal to the sample’s boundary, then the diffusive
boundary condition reads as

-~ awv A
Fo{W}: - Tf drdOnStl{Wﬂ(L— | (J))Wlﬂ, (4)

where (---)=[---dO2mw, O=d0O,, dO'=d0O, and the 4o
scattering probability¥/(n,n") in the bulk is connected with :f n’ ,
the mean free time and transport mean free timg as W1 (NV<0) nNAS0 T nAWgAn’). ®)
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FIG. 1. Typical electron trajectory.

According to AA, the level statistics is determined by the

determinant of a linear operatﬁrfrom Eq. (4). The eigen-
value condition is

nueVw=Aw, (6)
subject to boundary condition
3m/2 /2
2W_=—W_ L/z d¢ cos¢p= _ledqs COS pW~. (),
(7

wherew_ andw-. are the values of “distribution function”
w(n) at the disk boundary abAN>0 and nN'<O, respec-
tively, andw_ does not depend on its argument.

The left hand side of Eq(6) consists of a derivative
ow/dl along the trajectory of a particle inside the digee
Fig. 1).

Its solution has the form of a simple exponential

Al
: (®)

Ur

w(I)=w(O)ex;{

Solution (8) should be substituted into the boundary condi-
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FIG. 2. Eigenvalues of Liouvillean operator.

This corresponds tw independent of both andr and it is

not surprising that the relaxation rate of this eigenmode van-
ishes. Substitutiom— —m into Eq.(10) makes it clear that
Mm=M_m- The equation, complex conjugate to HGO),
shows that ifu is an eigenvalue, then* is an eigenvalue as
well. None of the eigenvalues has a negative real part. A
natural labelin§ is k=0,=1,+2, ... forevenm andk=
+1/2,+3/2, ... for oddm. For k=0 and everm the ei-
genvalues are real. The asymptote of the eigenvalues is

In k ] 1
Um~——+ai|k+ =], 0s=m<Kk. 11

: 4 8
So, for 0=m<k Imu>Reu and neither depends an. (See

Fig. 2)
The purpose of this paper is to calculate the spectral cor-
relation function

Ry(w)=(mAR?)Xv(e)v(e+ w))—1, (12

where 1(e) is the density of states ani=1/7R?v is the
mean level spacing. The time of ballistic flight along diam-
eter of the disk;=2R/v introduces a natural scale for the

tion (7). It is also convenient to express the direction of frequencies.

momentum cogb of incident electron at poiné of the disk

As has been shown by AA, the deviation Rf(w) from

boundary Eq.(7) through that coordinate on the boundary the Wigner-Dyson expression

0', where this electron was diffusively scattered from

cosp=sin(0'—0)/2]. This all leads to the eigenvalue equa-
tion in the form

0+2m
4w<(¢9)=L de'w_(6")

0'—0
2

0'—0
2

42AR _(
X ex v Sin

The expansion ofw_(6) in the Fourier seriesw_(6)
=>w,,e'™ transforms the conditiof®) into

). 9

sin(
=

fm(ﬂm,k):()’ (10)

1=
1——J' exd 2imu+ u sinu]sinudu=0,

fm()= 2o

where wm =2R\  /vg. One can see from Ed10) that
one of the eigenvalues witm=0 vanishes(say uqo=0).

sirtars
2

Ra(s)=6(s) - (13

=3

at frequenciesw>A is well described by introducing the
spectral determinarid(s),

1 Nem
mk#(0,0 Amk—ISA)(Apt+isA)’

which is closely connected with the spectral functg(w),
introduced by Altshuler and ShklovsKiifor diffusive sys-
tems:

D(s)= (14)

S(w>=§ g Amx—iw) 2, (15)
3% In D(s) ) 1
————=—2| A’ReS(sA) + | (16)
Js S
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The spectral correlation function can be decoupledaiA Using the low frequency asymptote of E{0), we can
into the sur of a smooth parRg,, (Ref. 10 and an oscil- present the spectral function
lating partRg.:

A2 S(@) =2 Sn()
Ranl(S) = —ReS(sA), 17)
2m in the form of a contour integral
R(S) 1 D(s)c08 27 18 (o) t? dz dinfy(2)
s)= ———=D(s)cos 2rs. =—
osd 2m?s? Sl 2@ Je (—iwt;+2)2  dz
So, the calculation of the spectral determinBxis) is a key g2
point of the whole AA program, which we approach now. = —tfz — In f(2) , (29
It is possible to write down an expression for the spectral dz iwtg

determinant without an explicit computation of the eigenval- _
ues. In order to do that, note that the functioy{x), defined ~Where contouC encloses all zeros of of the functidg(2).
by Eq.(10), is an entire function of its argument, which has AS @—0 we obtain from Eq(24) the following expression
only simple zeros aft =y and f'(u)/[«f(w)] vanishes for the coefficient in Eq. (22):

as u—o. Thereforef ,(u) can be represented as an infinite 5
product (n+0). 19 175w 64

T 27 1152 T 9.2

~—1.48. (25)

_ £ (0)ulf (O Lt B
fn( ) = Fy(0) € m 1/ )l_k[ [1_ e Hitim In order to find the asymptote of the spectral determinant
' D in the high frequency limit, consider a produeti &),
4m2 £ M
_ em(O)M/fm(O)H 1— —|e*rmk, Al
am?—1 K M,k Pie= [l f(id). (26)
m:—:)c
(19 o
) i Its logarithm is presented by the sum
Form=0 the functionfy(u) vanishes au=0. So the same
theorem could be applied to the function4fqy(u)/mu. te =dusinu .. .
Multiplying f(«) andf(—u), taking the product over all InPGi&= > In 1—] > glimutiesinu
m, and analytically continuing tge=*ié=*iwt;, we ar- m=-" 0 27
rive, finally, at the expression for the spectral determinant
, - At this stage, it is convenient to use the identity
& : o
D&)=715] Il [fui®) fu(-ie)17% (20 S o 1T .
m=—o E F(e2|mU):f dx E eZIWHXF(eZIXU)' (28)
m=—o — o n=—o

where it is taken into account that
which replaces the sum over by the sum oven and inte-
2 Trz) 2 gral overx. For large values of the integral oveu in Eq.
z=1

m]l = (21 (27) is small and the logarithm should be expanded up to the
= second order in this integrdlinear term vanishgs After

Sincen = umk/ts, the spectral determinabt(s) consists calculating the sum ovar the expression could be simplified

of two dimensionless parametans; andAt;. One of these to the following form:

parameters is always smalA{;<1), while the second one

wtf _could be either_larger or smaller _than unity. These two In P(ig)~— ZJ du sirfu exp(2i£ sinu).  (29)

limiting cases constitute the limits of high and small frequen- 8Jo

cies, respectively. . .
At Iowpfrequezcie&otf<1 the spectral determinabt(£) To evaluate the spectral determinant, we need to find the

can be simplified and the asymptotes of both the smooth angroductP(i ¢)P(—i¢). Using the steepest descent method,

the oscillatory parts of the spectral correlation functions co V€ arrnve atg>1 at the following asymptote for the spectral

incide, as was discovered by Kravtsov and MifinThis determinant:

4mi-1
2

— SIN—

am Tz 2

gives the following expression for the spectral correlation £ - -
function: ~2 _\/: _r
D(¢) A 1+4 £ cos<2§ 4) . (30
sirfars Azt% This qi ;
_ _ . gives the smooth part of the spectral correlation func-
Ry(s)=4(s) w252 w2 i s, (22) tion in the form
2 f3/2 -
B= 2 23 Ry @)= cos( 2wti— —) . (31)
g 2 ) T 1P
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Equation(18) gives the oscillatory part of the spectral func-  Another striking result is exhibited in E¢32): the ampli-
tion equal to tude of the oscillatory part of spectral correlation function is
small as (\t;)?, but does not decay with, unlike one ob-
tained by AA for a diffusive system. This could be under-
stood if we recall that our disk is clean inside and, therefore,
at short timest<<t; a certain correlation between electron
In conclusion, we found that the application of the ballis-wave functions remains. This correlation is small and pro-
tic nonlinear o modef to the study of level statistics for portional to @EgR) 2~(At;)?, but decays much more
electrons in a clean disk with strong boundary scattering enslowly with the energy difference. If our disk has a bulk
ables us to solve this problem beyond the limits of the randisorder with the mean free time>t;,** Ry exd —w7]. A
dom matrix theory. similar result leads to variation of the Fermi velocity with
A clean disk with diffusive scattering on its boundaries, €Nergy:Ros<exd —w/Eg]. The smooth part of spectral cor-
unlike other chaotic systems, has an upper limit for the timgelation function[see Eq.(31)] also exhibits weak depen-
of flight at t=t;=2R/v . Therefore, if a Fourier transform dence on energy difference. In our understanding, these
of a time dependent form factor is calculated, it oscillates a&€Sults are of a general nature.
a frequencyw with period 2r/t; . As was previously shown,

the smooth part of the spectral correlation functity{w) at We are grateful to B. A. Muzykantskii, who participated
high frequenciesot;>1 is proportional to the square of the n this work at its initial stage, for numerous conversations
relevant form factor. This leads to oscillations Bf,(w) during the process of work, and to Ya. M. Blanter, A. D.
with two times as short a period/t;. In our understanding, Mirlin, and B. A. Muzykantskii for the opportunity to read
such oscillations would not appear in a general case. their papet prior to publication.

77_4

) 27w
Rosd )= g7 (Atp)"co§ ——|.

(32

1B. A. Muzykantskii and D. E. Khmelnitskii, Pis'ma zh. Eksp. mean level spacind (E>A). Although serious difficulties re-

Teor. Fiz.62, 68 (1999 [JETP Lett.62, 76 (1995)]. main[see B. D. Simongunpublishedl], they are irrelevant to the
2A. V. Andreev and B. L. Altshuler, Phys. Rev. Leff5 902 discussion in this paper, because we study a level statistics av-
(1995. eraged over disorder, which leads to the boundary scattering.

3K. B. Efetov, Adv. Phys32, 53 (1984); Supersymmetry in Dis- 8ya. M. Blanter, A. D. Mirlin, and B. A. Muzykantskii, Phys. Rev.
order and ChaogCambridge University Press, Cambridge, En-  Lett. 80, 4161(1998.
gland, 1997. "E. M. Lifshits and L. P. PitaevskiPhysical Kinetic§Pergamon,
4This limiting case contrasted with the relatively slight disorder ~ New York, 1983, Sec. 86.
considered by F. Borgonovi, G. Cassati, and B. Li, Phys. Rev. 8K. Fuchs, Proc. Cambridge Philos. SGd, 100 (1938.
Lett. 77, 4744 (1996; K. M. Frahm and D. L. Shepelyansky, 9Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fi29, 853 (1969 [Sov.

ibid. 78, 1440(1997); 79, 1833(1997; E. Louis et al, Phys. Phys. JETP6, 1590(1969].

Rev. B56, 2120(1997. 10B. L. Altshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fig1, 220
SAfter the ballisticc model for disordered conductofRef. 1) had (1986 [Sov. Phys. JET®B4, 127(1986)].

been proposed, Andreev and co-workgksV. Andreev and B.  1!V. E. Kravtsov and A. D. Mirlin, Pis’'ma Zh. Eksp. Teor. Fi&0,

L. Altshuler, Phys. Rev. LetZ5, 902(1996; A. V. Andreev, B. 645 (1994 [JETP Lett.60, 656 (1994].

D. Simons, O. Agam, and B. L. Altshuler, Nucl. Phys.4B2 12The smooth part of spectral correlation function in ballistic bil-
536 (1996 ] made an attempt to derive the field theory by the liards with bulk was studied by A. Altland and Y. Gefen, Phys.
means of averaging over the energy interizalexceeding the Rev. Lett.71, 3339(1992.



