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Level statistics in a two-dimensional disk with diffusive boundary scattering
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We calculate the energy level statistics in a two-dimensional disk with diffusive boundary scattering by the
means of the recently proposed ballistic nonlinears model@B. A. Muzykantskii and D. E. Khmelnitskii, JETP
Lett. 62, 76 ~1995!#. @S0163-1829~98!02724-6#
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The purpose of this paper is to use the recently propo
nonlinears model1 for ballistics in disordered conductor
with long mean free path and find out how it works. In
recent paper2 Andreev and Altshuler~AA ! suggested a gen
eral method of calculation of level statistics in a disorde
system beyond the limits of the random matrix theory. Th
calculations were performed for a diffusive disordered s
tem with the mean free pathl shorter than the system sizeR.
For this case and for energy differencev exceeding the mean
level spacingD ~v@D! their method was based on using t
nonlinears model3 and accounting for a perturbative contr
bution from the vicinity of several stationary points of th
action.3 AA have also conjectured a general form which t
level statistics obeys. In this paper we follow the same g
eral strategy, addressing this problem for a quantum par
in a two-dimensional disk with no scattering in the bulk a
strong boundary scattering.4 Such a problem is a natural ta
get for the recently proposed field theory for quantu
ballistics.1,5 Consideration is restricted solely to unitary sym
metry. In all relevant parts our results coincide with tho
independently obtained by Blanter, Mirlin, an
Muzykantskii.6

In order to apply the general approach of AA, we beg
with replacing the nonlinear diffusive supermatrixs model3

by its ballistic generalization.1 The partition function of this
field theory is determined as a functional integral over a
permatrix g(n,r )5U21LU on the energy shellE5p2/2m
(n5p/p) in the phase space:

Z5E
g251
Dg exp$2F%, ~1!

F5
pn

4
strE dr F ivL^g~r !&22vF^LU21n“U&

1E dOdO8Wn,n8g~r ,n!g~r ,n8!G , ~2!

where ^¯&5*¯dO/2p, O5dOn , dO85dOn8 and the
scattering probabilityW(n,n8) in the bulk is connected with
the mean free timet and transport mean free timet tr as
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t tr
5E dOW~n,n8!~12nn8!.

~3!

In this paper we will consider a clean disk with no scatteri
in the bulk and strong boundary scattering. Therefore bot
andt tr will be taken as being infinitely large. Integration i
Eq. ~2! is not defined unless boundary conditions are i
posed on supermatrixg at the inner boundary of the sampl
Since supermatrixg has a meaning of a distribution functio
of electrons, the boundary condition it obeys is similar to th
which is applied to the distribution function in classic
kinetics.7,8 The general boundary condition for matrix fun
tions ~see Ref. 9 for an example! is pretty complicated. For-
tunately, for the purposes of this paper~calculation of the
spectral correlation function with the precision to the fi
nonvanishing term beyond random matrix theory! the prob-
lem could be significantly simplified, because most of t
properties of the energy levels could be determined by
the values ofg matrix close to the special pointg(rn )5L. If
U512w/21w2/81¯, then the free energyF could be ex-
pressed through matricesw, which gives in the quadratic
approximation

F0$ŵ%52
pn

4 E drdOnstr@w21~ L̂2 iv!w12#, ~4!

where indices 1~2! relate to ‘‘retarded’’~‘‘advanced’’! de-
grees of freedom, andL̂ denotes operator of the kinetic equ
tion. Since the free energy in Eq.~4! is quadratic, it results in
a classical linear equation. The boundary condition wh
should be imposed uponw12(r ,n) is now a direct analog of
the condition imposed upon the distribution function in cla
sical kinetics. Extremely strong boundary scattering is po
larly modeled by the diffusive boundary condition,7,8 which
assumes that the distribution function for outgoing partic
does not depend on angular variablen and is coupled to tha
for incoming particles by flux conservation. IfN is an out-
ward normal to the sample’s boundary, then the diffus
boundary condition reads as

w12~nN,0!5E
n8N.0

dOn8
p

nNw12~n8!. ~5!
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According to AA, the level statistics is determined by t
determinant of a linear operatorL̂ from Eq. ~4!. The eigen-
value condition is

nvF“w5lw, ~6!

subject to boundary condition

2w,52w,E
p/2

3p/2

df cosf5E
2p/2

p/2

df cosfw.~f!,

~7!

wherew, andw. are the values of ‘‘distribution function’’
w(n) at the disk boundary atnN.0 and nN,0, respec-
tively, andw, does not depend on its argument.

The left hand side of Eq.~6! consists of a derivative
]w/] l along the trajectory of a particle inside the disk~see
Fig. 1!.

Its solution has the form of a simple exponential

w~ l !5w~0!expF l l

vF
G . ~8!

Solution ~8! should be substituted into the boundary con
tion ~7!. It is also convenient to express the direction
momentum cosf of incident electron at pointu of the disk
boundary Eq.~7! through that coordinate on the bounda
u8, where this electron was diffusively scattered fro
cosf5sin@(u82u)/2#. This all leads to the eigenvalue equ
tion in the form

4w,~u!5E
u

u12p

du8w,~u8!

3expF2lR

vF
sinS u82u

2 D GsinS u82u

2 D . ~9!

The expansion ofw,(u) in the Fourier seriesw,(u)
5(wmeimu transforms the condition~9! into

f m~mm,k!50,
~10!

f m~m!512
1

2E0

p

exp@2imu1m sin u#sin udu50,

where mm,k52Rlm,k /vF . One can see from Eq.~10! that
one of the eigenvalues withm50 vanishes~say m0,050).

FIG. 1. Typical electron trajectory.
-
f

This corresponds tow independent of bothn andr and it is
not surprising that the relaxation rate of this eigenmode v
ishes. Substitutionm→2m into Eq. ~10! makes it clear that
mm5m2m . The equation, complex conjugate to Eq.~10!,
shows that ifm is an eigenvalue, thenm* is an eigenvalue as
well. None of the eigenvalues has a negative real part
natural labeling6 is k50,61,62, . . . for evenm and k5
61/2,63/2, . . . for oddm. For k50 and evenm the ei-
genvalues are real. The asymptote of the eigenvalues is

mm,k'
ln k

4
1p i S k1

1

8D , 0<m!k. ~11!

So, for 0<m!k Imm@Rem and neither depends onm. ~See
Fig. 2.!

The purpose of this paper is to calculate the spectral c
relation function

R2~v!5~pDR2!2^n~e!n~e1v!&21, ~12!

where n~e! is the density of states andD51/pR2n is the
mean level spacing. The time of ballistic flight along diam
eter of the diskt f52R/vF introduces a natural scale for th
frequencies.

As has been shown by AA, the deviation ofR2(v) from
the Wigner-Dyson expression

R2~s!5d~s!2
sin2ps

s2
, s5

v

D
~13!

at frequenciesv@D is well described by introducing the
spectral determinantD(s),

D~s!5 )
m,kÞ~0,0!

lk,m
2

~lm,k2 isD!~lm,k1 isD!
, ~14!

which is closely connected with the spectral functionS(v),
introduced by Altshuler and Shklovskii10 for diffusive sys-
tems:

S~v!5(
m

(
k

~lm,k2 iv!22, ~15!

]2 ln D~s!

]s2
522S D2ReS~sD!1

1

s2D . ~16!

FIG. 2. Eigenvalues of Liouvillean operator.
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The spectral correlation function can be decoupled atv@D
into the sum2 of a smooth partRsm ~Ref. 10! and an oscil-
lating partRosc:

Rsm~s!5
D2

2p2
ReS~sD!, ~17!

Rosc~s!5
1

2p2s2
D~s!cos 2ps. ~18!

So, the calculation of the spectral determinantD(s) is a key
point of the whole AA program, which we approach now

It is possible to write down an expression for the spec
determinant without an explicit computation of the eigenv
ues. In order to do that, note that the functionf m(m), defined
by Eq. ~10!, is an entire function of its argument, which h
only simple zeros atm5mm,k and f 8(m)/@m f (m)# vanishes
asm→`. Thereforef m(m) can be represented as an infin
product (mÞ0).

f m~m!5 f m~0!ef m8 ~0!m/ f m~0!)
k

F12
m

mm,k
Gem/mm,k

5
4m2

4m221
ef m8 ~0!m/ f m~0!)

k
F12

m

mm,k
Gem/mm,k.

~19!

For m50 the functionf 0(m) vanishes atm50. So the same
theorem could be applied to the function24 f 0(m)/pm.
Multiplying f m(m) and f m(2m), taking the product over al
m, and analytically continuing tom56 i j56 ivt f , we ar-
rive, finally, at the expression for the spectral determinan

D~j!5
j2

4 S p

2 D 6

)
m52`

1`

@ f m~ i j! f m~2 i j!#21, ~20!

where it is taken into account that

)
m51

`
4m221

4m2
5S 2

pz
sin

pz

2 D
z51

5
2

p
. ~21!

Sincelm,k5mm,k /t f , the spectral determinantD(s) consists
of two dimensionless parametersvt f andDt f . One of these
parameters is always small (Dt f!1), while the second one
vt f could be either larger or smaller than unity. These t
limiting cases constitute the limits of high and small freque
cies, respectively.

At low frequenciesvt f!1 the spectral determinantD(j)
can be simplified and the asymptotes of both the smooth
the oscillatory parts of the spectral correlation functions
incide, as was discovered by Kravtsov and Mirlin.11 This
gives the following expression for the spectral correlat
function:

R2~s!5d~s!2
sin2ps

p2s2
1B

D2t f
2

p2
sin2ps, ~22!

B5 (
m,kÞ0,0

mk,m
22 . ~23!
l
-

o
-
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Using the low frequency asymptote of Eq.~20!, we can
present the spectral function

S~v!5(
m

Sm~v!

in the form of a contour integral

Sm~v!5
t f
2

2p i RC

dz

~2 ivt f1z!2

d ln f m~z!

dz

52t f
2F d2

dz2
ln f m~z!G

ivt f

, ~24!

where contourC encloses all zeros of of the functionf m(z).
As v→0 we obtain from Eq.~24! the following expression
for the coefficientB in Eq. ~22!:

B52
19

27
2

175p2

1152
1

64

9p2
'21.48. ~25!

In order to find the asymptote of the spectral determin
D in the high frequency limit, consider a productP( i j),

P~ i j!5 )
m52`

1`

f m~ i j!. ~26!

Its logarithm is presented by the sum

ln P~ i j!5 (
m52`

1`

lnF12E
0

pdu sin u

2
e2imu1 i j sin uG .

~27!

At this stage, it is convenient to use the identity

(
m52`

1`

F~e2imu!5E
2`

1`

dx (
n52`

1`

e2ipnxF~e2ixu!, ~28!

which replaces the sum overm by the sum overn and inte-
gral overx. For large values ofj the integral overu in Eq.
~27! is small and the logarithm should be expanded up to
second order in this integral~linear term vanishes!. After
calculating the sum overn the expression could be simplifie
to the following form:

ln P~ i j!'2
p

8E0

p

du sin2u exp~2i j sin u!. ~29!

To evaluate the spectral determinant, we need to find
product P( i j)P(2 i j). Using the steepest descent metho
we arrive atj@1 at the following asymptote for the spectr
determinant:

D~j!'
j2

8 F11
p

4
Ap

j
cosS 2j2

p

4 D G . ~30!

This gives the smooth part of the spectral correlation fu
tion in the form

Rsm~v!5
D2t f

3/2

4Apv
cosS 2vt f2

p

4 D . ~31!
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Equation~18! gives the oscillatory part of the spectral fun
tion equal to

Rosc~v!5
p4

516
~Dt f !

2cosS 2pv

D D . ~32!

In conclusion, we found that the application of the ball
tic nonlinear s model1 to the study of level statistics fo
electrons in a clean disk with strong boundary scattering
ables us to solve this problem beyond the limits of the r
dom matrix theory.

A clean disk with diffusive scattering on its boundarie
unlike other chaotic systems, has an upper limit for the ti
of flight at t5t f[2R/vF . Therefore, if a Fourier transform
of a time dependent form factor is calculated, it oscillates
a frequencyv with period 2p/t f . As was previously shown
the smooth part of the spectral correlation functionR2(v) at
high frequenciesvt f@1 is proportional to the square of th
relevant form factor. This leads to oscillations ofRsm(v)
with two times as short a periodp/t f . In our understanding
such oscillations would not appear in a general case.
.
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Another striking result is exhibited in Eq.~32!: the ampli-
tude of the oscillatory part of spectral correlation function
small as (Dt f)

2, but does not decay withv, unlike one ob-
tained by AA for a diffusive system. This could be unde
stood if we recall that our disk is clean inside and, therefo
at short timest!t f a certain correlation between electro
wave functions remains. This correlation is small and p
portional to (pFR)22;(Dt f)

2, but decays much more
slowly with the energy differencev. If our disk has a bulk
disorder with the mean free timet@t f ,12 Rosc}exp@2vt#. A
similar result leads to variation of the Fermi velocity wi
energy:Rosc}exp@2v/EF#. The smooth part of spectral cor
relation function@see Eq.~31!# also exhibits weak depen
dence on energy differencev. In our understanding, thes
results are of a general nature.
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