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Differential approximants: An accurate interpolation from high-temperature series expansions
to low-temperature behavior in two-dimensional ferromagnets
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We introducebiaseddifferential approximants to high-temperature series expansions of the susceptibility in
two-dimensional Heisenberg ferromagnets, taking into account the exponential divergence at low temperature.
They provide a remarkable continuous description of the susceptibility from high temperature down to the
low-temperature regim¢S0163-182¢08)06637-5

Padeapproximants have been extensively used for thg ¢, represent Pauli operators and the sum is over all distinct
analysis of high-temperature series expansfoAs[L,M] first-neighbor pairs In two dimensions, the correlation
Padeapproximant to a serie§(x)=3)\_oa,x" is a rational  length&(T) and zero-field susceptibility(T) diverge expo-
fraction P_(x)/Qu(x), with P_ andQy, polynomials of or-  nentially at low temperatur&.® More precisely renormaliza-
derL andM, such thatf(x) =P (x)/Qy(x)+O(x-"M*1), tion group techniques have proven that the susceptibility be-

Close to a second-order transition at finite temperaturdaves a%

X¢ ! from a paramagnetic to an ordered state, thermodynamic

guantities generally diverge as Tx(T)=CB 3exp(\B) (6)
~ — Y
PO, = AXe=X) @ with 8=J/T (kg=1). Moreover, there is an intermediate
temperature range (A% T=J for the square lattidewhere
both a high-temperature series and ). are expected to
describe the correct behavior. We use this information to
introduce biased [K/L;M] differential approximants that
XQu(X)f’(X)—PL(X)f(x)=0. 2) satisfy the funct|on_al fqrm of Eq6) at low temperature.

In series approximations, Euler transformations on the ex-

We thus obtain a linear homogeneomislinary differential  pansion variable are frequently used to accelerate the conver-

and Pade approximants to the logarithmic derivative
xdInf(x)/dx are most relevarit.They satisfy, up to ordeN
the following relation:

equationof first order. gence. They leave diagorfdl,L] Padeapproximants invari-
A natural generalization is to add an inhomogeneous termant but may improve the convergence of other type of
to Eq. (2) in the form of a polynomiaRy of degreeK: approximants. We consider here the high-temperature series
expansion ofTx(T) after an Euler transformation on the
XQu(X) " (X) = PL(X)f(X) =R(X). (3)  expansion variabl¢:
Further generalizations consider rah-order differential
equatior? p=2(1-az). ™
n _ d The lowest-degree polynomiaB, (z) and Qy,(z) that lead
20 Qi) D(X)=R(x) with D=x, (4)  to a biased K/L;M] differential approximant approaching
i=

the correct limit[Eq. (6)] at T—0 [i.e.,z—(1/a)"] are
whereR(x) is a polynomial of degre& andQ;(x) are poly-

nomials of degred; . The solution of this differential inho- Qu(z)=(1—a2? P(2)=(\¢+3a)z—3. (8
mogeneous nth-order linear differential equation fsléfer-
ential approximant,”usually notedK/Mg;M;...:Mnl.  The solution[K/1;2] of the corresponding first-order linear

In this report, we shall only consider the simplest case (jfferential equation will be now more shortly not&A[K
=1,i.e.,[K/L;M], a differential approximant defined by Eq. 1 1]. The (K+1) coefficients of the polynomid®, and the
(3). ) ] . . parametem\y are determined from theK(+2) first coeffi-
The method of differential approximants is one of thecjents of the high-temperature series expansion by writing
most e_ff|C|ent tools in series analy§|$t is particularly rel- {4t Eq.(3) is verified up to orderK + 1). This requires the
evant if Eq.(1) does not hold. It is well known from the nowledge of the susceptibility series up to order{1) in
Mermin-Wagner theorefrthat there is no ordering at finite B. The limit \x_...=\ represents the exponent in E@).

temperature for the Heisenberg model in one or two dimenThe yajye ofa in the Euler transformation will be optimized

sions. to obtain a good convergence of a sequence of differential
3 approximant A[N]. The general solution of the first-order
H=— _2 o, (5) linear dlffe.renual equatioiid) with P (z) andQy(z) given
2|<] by Eq(8) IS
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FIG. 1. Square lattice. Parameters and Cx corresponding to JIT
differential approximantDA[K+1]. The open circles represent ) ) ) ]
the results obtained after the Euler transformatjgn: z/(1—z). A FIG. 2. Square latticel@) Differential approximantA[6] to

better convergence is obtained after the Euler transformagion DA[13] (solid lineg are compared to the results of the quantum
—27/(1-42) (filled circles. Extrapolationgdashed linesbased on ~ Monte Carlo calculations<) by Kopietzet al. (Ref. 6. The inset

a quadratic least-squares fit b and linear fit of InCy) give the ~ '€Presents a zooming of the upper part. From bottom to top, the
following: \.~6.32, in excellent agreement with the solid lines represent® A[6] to DA[13]. (b) Dlﬁgrentlgl approxi-
renormalization-group expectation=2, andC,~0.25, in good ~ MantsDA[8] to DA[13] are compared to various Padgproxi-

agreement with the estima@~0.26 from quantum Monte Carlo Mants[L,M], with 8<L+M=13.
(99 =4 (filled circles. We choose this value. Figurehl repre-

calculations(Ref. 6).
(l—az)}3 F{ z
—| eXpA ———
z (1-az) sents the corresponding prefactGi . A quadratic least-
with squares fit of\x for K>6 extrapolates to.~6.32 for K
—oo, This value is remarkably close to that expected from
dA(z) Rk(2)7? renormalization-group calculationx=27. A linear ex-
4z (1-az)’ ex;{ —Nm : (100 trapolation of I as a function of I gives C~0.025 for
K—oo. This is also in excellent agreement with the value
The integration of the left-hand side of H4.0) can be done C=~0.026 estimated from quantum Monte Carlo
algebraically. It involves exponential functions and productscalculations
of an exponential with thexponential integralfunction’ Differential approximantd A[N] are compared in Fig.
Ei(u). TheMATHEMATICA softward was used in this tedious 2(a) to quantum Monte Carlo simulatioisThere is a re-
task. Ty(T) is normalized to 1 afT—«. The integration markable monotonous convergence of the differential ap-
constantCy is determined by choosing the particular solu- proximantsDA[6] to DA[ 13]. Differential approximants of
tion DA[K+1]=F(2) that tends to 1 foz—0. The limit  relatively low order N=6) already give an excellent ap-
Ck_=C corresponds to the prefactor in E®). proximation of the susceptibility down f/J=0.8. We have
We considered high-temperature series expansions a@flso compared differential approximants to usual Pagle
Tx(T) for the Heisenberg model on the square and triangulaproximants toTy in Fig. 2(b). While Padeapproximants
lattice calculated up to tenth order fha long time agband  diverge afT/J<0.8, differential approximants give a reliable
recently extended up to 13th ordé? using modern comput- estimate of the susceptibility down ®©/J~0.4.
ers. 2. Triangular lattice.We apply the same analysis to the
1. Square latticeWe first examine the convergence of our susceptibility series of the triangular lattite An optimal
biased differential approximants A ] as a function of the convergence is obtained after the Euler transformatjgn:
parameten in the Euler transformatiofEq. (7)]. Figure Xa) =1z/(1—3z). The parametersy andCy are represented in
represents for different values afin the Euler transforma- Fig. 3. A quadratic extrapolation ofy at K—o gives \
tion the variation ofAx as a function of (. The conver- =~12.5, a value 15% higher than that expected from

gence is poor fola<<1. Large oscillations remain up @
~1 (see open circlgs An optimum is obtained around

F(2)=A(2)
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FIG. 3. Triangular lattice. Parametexg andCy corresponding

to differential approximant® A[K + 1]. The open circles represent ~ FG- 4. Triangular lattice(a) Differential approximant©A[7]

the results obtained after the Euler transformatjgn: z/(1—z). A to DA[13] (solid lineg are compared to the results of the quantum

better convergence is obtained after the Euler transformagion Monte Carlo calculations+) by Kopietzet al. (Ref. 6. The inset

—2/(1—32) (filled circles. An extrapolation(dashed linesbased represent a zooming of the upper part. From bottom to top, the solid

on a quadratic least-squares fit b§ gives \=12.5 atKk—=, a lines represent®A[7] to DA[13]. (b) Differentiql approximants

value 15% higher than that expected from renormalization-grouf?Al8] to DA[13] are compared to various Padgproximants

calculations(see arrow. Consequently, the extrapolated value of [L,M] with 8<L+M=13.

Ck also differs from the value estimated through quantum Monte

Carlo (QMC) calculations(Ref. 6. ential approximants with polynomia®, andQy, of higher
degrees. We have not observed a substantial improvement of

renormalization-group calculationsh =273 [see Fig. the convergence.

3(a)]. This difference might be due to the uncertainty in the We have recently extended this analysis to the suscepti-

extrapolation. The extrapolated prefac@g is a factor of 2  bility series of a generalized Heisenberg Hamiltonian includ-

smaller than the value estimated from quantum Monte Carlang four-spin exchange interactions. It has proved to be very

calculation§ [see Fig. 80)]. A remarkable monotonous con- useful in the analysis of the experimental susceptibility of

vergence of the differential approximari@#\[ 7] to DA[ 13] ferromagnetic solid®He films!?

is observed in Fig. @). There is a discrepancy with quantum  Differential Padeapproximants are already known as one

Monte Carlo calculatiofsthat is maximum at)/T~0.8. of the most powerful general tools in series analysis. We

Since in this range both differential approximants and usuahave introduced biased differential approximants to the sus-

Padeapproximants converge accurately to the same valueseptibility series of the two-dimensional ferromagnetic

we believe that this discrepancy is due to large uncertaintiesleisenberg models that satisfy, at low temperature, the cor-

in the quantum Monte Carlo calculation for the triangularrect functional form known from renormalization-group cal-

lattice. culations. They provide a remarkable continuous description

We have also considered more complicated biased differof the susceptibility over the whole temperature range.
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