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Differential approximants: An accurate interpolation from high-temperature series expansions
to low-temperature behavior in two-dimensional ferromagnets

M. Roger
Service de Physique de l’Etat Condense´, Commissariat a` l’Energie Atomique, Centre d’Etudes de Saclay,

91191 Gif sur Yvette Cedex, France
~Received 20 February 1998!

We introducebiaseddifferential approximants to high-temperature series expansions of the susceptibility in
two-dimensional Heisenberg ferromagnets, taking into account the exponential divergence at low temperature.
They provide a remarkable continuous description of the susceptibility from high temperature down to the
low-temperature regime.@S0163-1829~98!06637-5#
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Padéapproximants have been extensively used for
analysis of high-temperature series expansions.1 A @L,M #
Padéapproximant to a seriesf (x)5(n50

N anxn is a rational
fraction PL(x)/QM(x), with PL andQM polynomials of or-
der L andM , such thatf (x)5PL(x)/QM(x)1O(xL1M11).

Close to a second-order transition at finite temperat
xc

21 from a paramagnetic to an ordered state, thermodyna
quantities generally diverge as

f ~x!x→xc
;A~xc2x!2g ~1!

and Pade´ approximants to the logarithmic derivativ
xdlnf(x)/dx are most relevant.1 They satisfy, up to orderN
the following relation:

xQM~x! f 8~x!2PL~x! f ~x!50. ~2!

We thus obtain a linear homogeneousordinary differential
equationof first order.

A natural generalization is to add an inhomogeneous t
to Eq. ~2! in the form of a polynomialRK of degreeK:

xQM~x! f 8~x!2PL~x! f ~x!5RK~x!. ~3!

Further generalizations consider anth-order differential
equation:2

(
i 50

n

Qi~x!D i f ~x!5R~x! with D5x
d

dx
, ~4!

whereR(x) is a polynomial of degreeK andQi(x) are poly-
nomials of degreeMi . The solution of this differential inho-
mogeneous nth-order linear differential equation is a‘‘differ-
ential approximant,’’usually noted@K/M0 ;M1 ; . . . ;Mn#.
In this report, we shall only consider the simplest casen
51, i.e.,@K/L;M #, a differential approximant defined by Eq
~3!.

The method of differential approximants is one of t
most efficient tools in series analysis.2 It is particularly rel-
evant if Eq. ~1! does not hold. It is well known from the
Mermin-Wagner theorem3 that there is no ordering at finit
temperature for the Heisenberg model in one or two dim
sions.

H52
J

2(i , j
si•sj ~5!
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(si represent Pauli operators and the sum is over all dist
first-neighbor pairs!. In two dimensions, the correlatio
lengthj(T) and zero-field susceptibilityx(T) diverge expo-
nentially at low temperature.4–6 More precisely renormaliza
tion group techniques have proven that the susceptibility
haves as6

Tx~T!5Cb23exp~lb! ~6!

with b5J/T (kB51). Moreover, there is an intermedia
temperature range (0.7J&T&J for the square lattice! where
both a high-temperature series and Eq.~6! are expected to
describe the correct behavior. We use this information
introduce biased @K/L;M # differential approximants tha
satisfy the functional form of Eq.~6! at low temperature.

In series approximations, Euler transformations on the
pansion variable are frequently used to accelerate the con
gence. They leave diagonal@L,L# Padéapproximants invari-
ant but may improve the convergence of other type
approximants. We consider here the high-temperature se
expansion ofTx(T) after an Euler transformation on th
expansion variableb:

b5z/~12az!. ~7!

The lowest-degree polynomialsPL(z) and QM(z) that lead
to a biased@K/L;M # differential approximant approachin
the correct limit@Eq. ~6!# at T→0 @i.e., z→(1/a)2] are

QM~z!5~12az!2, PL~z!5~lK13a!z23. ~8!

The solution@K/1;2# of the corresponding first-order linea
differential equation will be now more shortly notedDA@K
11#. The (K11) coefficients of the polynomialRK and the
parameterlK are determined from the (K12) first coeffi-
cients of the high-temperature series expansion by writ
that Eq.~3! is verified up to order (K11). This requires the
knowledge of the susceptibility series up to order (K11) in
b. The limit lK→`5l represents the exponent in Eq.~6!.
The value ofa in the Euler transformation will be optimize
to obtain a good convergence of a sequence of differen
approximantsDA@N#. The general solution of the first-orde
linear differential equation~3! with PL(z) andQM(z) given
by Eq. ~8! is
11 115 ©1998 The American Physical Society
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F~z!5A~z!F ~12az!

z G3

expFl z

~12az!G ~9!

with

dA~z!

dz
5

RK~z!z2

~12az!5 expF2l
z

~12az!G . ~10!

The integration of the left-hand side of Eq.~10! can be done
algebraically. It involves exponential functions and produ
of an exponential with theexponential integralfunction7

Ei(u). TheMATHEMATICA software8 was used in this tediou
task. Tx(T) is normalized to 1 atT→`. The integration
constantCK is determined by choosing the particular so
tion DA@K11#5F1(z) that tends to 1 forz→0. The limit
CK→`5C corresponds to the prefactor in Eq.~6!.

We considered high-temperature series expansions
Tx(T) for the Heisenberg model on the square and triang
lattice calculated up to tenth order inb a long time ago1 and
recently extended up to 13th order9,10 using modern comput
ers.

1. Square lattice.We first examine the convergence of o
biased differential approximants DA@N# as a function of the
parametera in the Euler transformation@Eq. ~7!#. Figure 1~a!
represents for different values ofa in the Euler transforma-
tion the variation oflK as a function of 1/K. The conver-

FIG. 1. Square lattice. ParameterslK andCK corresponding to
differential approximantsDA@K11#. The open circles represen
the results obtained after the Euler transformation:b→z/(12z). A
better convergence is obtained after the Euler transformatiob
→z/(124z) ~filled circles!. Extrapolations~dashed lines! based on
a quadratic least-squares fit oflK and linear fit of ln(CK) give the
following: l`'6.32, in excellent agreement with th
renormalization-group expectationl52p, andC`'0.25, in good
agreement with the estimateC'0.26 from quantum Monte Carlo
calculations~Ref. 6!.
s

of
r

gence is poor fora!1. Large oscillations remain up toa
'1 ~see open circles!. An optimum is obtained arounda
54 ~filled circles!. We choose this value. Figure 1~b! repre-
sents the corresponding prefactorCK . A quadratic least-
squares fit oflK for K.6 extrapolates tol'6.32 for K
→`. This value is remarkably close to that expected fro
renormalization-group calculations:l52p. A linear ex-
trapolation of lnCK as a function of 1/K givesC'0.025 for
K→`. This is also in excellent agreement with the val
C'0.026 estimated from quantum Monte Car
calculations.6

Differential approximantsDA@N# are compared in Fig.
2~a! to quantum Monte Carlo simulations.6 There is a re-
markable monotonous convergence of the differential
proximantsDA@6# to DA@13#. Differential approximants of
relatively low order (N56) already give an excellent ap
proximation of the susceptibility down toT/J50.8. We have
also compared differential approximants to usual Pade´ ap-
proximants toTx in Fig. 2~b!. While Pade´ approximants
diverge atT/J,0.8, differential approximants give a reliab
estimate of the susceptibility down toT/J'0.4.

2. Triangular lattice.We apply the same analysis to th
susceptibility series of the triangular lattice.10 An optimal
convergence is obtained after the Euler transformationb
5z/(123z). The parameterslK andCK are represented in
Fig. 3. A quadratic extrapolation oflK at K→` gives l
'12.5, a value 15% higher than that expected fro

FIG. 2. Square lattice.~a! Differential approximantsDA@6# to
DA@13# ~solid lines! are compared to the results of the quantu
Monte Carlo calculations (1) by Kopietzet al. ~Ref. 6!. The inset
represents a zooming of the upper part. From bottom to top,
solid lines representsDA@6# to DA@13#. ~b! Differential approxi-
mantsDA@8# to DA@13# are compared to various Pade´ approxi-
mants@L,M #, with 8<L1M<13.
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renormalization-group calculations:l52pA3 @see Fig.
3~a!#. This difference might be due to the uncertainty in t
extrapolation. The extrapolated prefactorCK is a factor of 2
smaller than the value estimated from quantum Monte C
calculations6 @see Fig. 3~b!#. A remarkable monotonous con
vergence of the differential approximantsDA@7# to DA@13#
is observed in Fig. 4~a!. There is a discrepancy with quantu
Monte Carlo calculations6 that is maximum atJ/T'0.8.
Since in this range both differential approximants and us
Padéapproximants converge accurately to the same va
we believe that this discrepancy is due to large uncertain
in the quantum Monte Carlo calculation for the triangu
lattice.

We have also considered more complicated biased dif

FIG. 3. Triangular lattice. ParameterslK andCK corresponding
to differential approximantsDA@K11#. The open circles represen
the results obtained after the Euler transformation:b→z/(12z). A
better convergence is obtained after the Euler transformatiob
→z/(123z) ~filled circles!. An extrapolation~dashed lines! based
on a quadratic least-squares fit oflK gives l512.5 atK→`, a
value 15% higher than that expected from renormalization-gr
calculations~see arrow!. Consequently, the extrapolated value
CK also differs from the value estimated through quantum Mo
Carlo ~QMC! calculations~Ref. 6!.
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ential approximants with polynomialsPL andQM of higher
degrees. We have not observed a substantial improveme
the convergence.

We have recently extended this analysis to the susce
bility series of a generalized Heisenberg Hamiltonian inclu
ing four-spin exchange interactions. It has proved to be v
useful in the analysis of the experimental susceptibility
ferromagnetic solid3He films.11

Differential Pade´ approximants are already known as o
of the most powerful general tools in series analysis. W
have introduced biased differential approximants to the s
ceptibility series of the two-dimensional ferromagne
Heisenberg models that satisfy, at low temperature, the
rect functional form known from renormalization-group ca
culations. They provide a remarkable continuous descrip
of the susceptibility over the whole temperature range.

p
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FIG. 4. Triangular lattice.~a! Differential approximantsDA@7#
to DA@13# ~solid lines! are compared to the results of the quantu
Monte Carlo calculations (1) by Kopietzet al. ~Ref. 6!. The inset
represent a zooming of the upper part. From bottom to top, the s
lines representsDA@7# to DA@13#. ~b! Differential approximants
DA@8# to DA@13# are compared to various Pade´ approximants
@L,M # with 8<L1M<13.
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