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Ab initio adiabatic He and Ne interaction on Ag: An all-electron calculation
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We report anab initio calculation of the adiabatic electronic properties of He and Ne atoms interacting with
an Ag-like jellium metal surface, using the embedding method and the density functional theory in the local
density approximation~LDA !. Differently from previous results obtained in this framework, the noble atoms
are described with their full potential. The linearized augmented plane-wave basis set is introduced to tackle
the Kohn-Sham equation. Attention is focused on the atom-surface potential in the repulsive regime, i.e., at
distances from the jellium edge smaller then the adsorption one, where the LDA has been shown to work well,
and which are relevant in elastic and inelastic scattering experiments of He and Ne on metals. For incident
atoms with initial kinetic energies in the experimental range of interest, it is shown that Ne gets closer to the
metal than He as previously found with an Al substrate. An analysis of the shift of the atomic core levels by
varying the atom-metal distance is also presented.@S0163-1829~98!01539-2#
o
e

.
a
to
in
t,
tio

re
c
o

ffi
-

po
tin
a
n
th
t.
in
-

a
th
re
th
is
e
ng
to
t

ge-

thin
the
ro
a
the
Ne
ed
r of
ain

nal

-
ula-
nic

can
ce
flu-
nlo-
ian,
me.
nc-
ntu-
in

ble
son
an-

ex-
od
I. INTRODUCTION

The main goal of physisorption theory of noble gases
metals is to obtain the particle-surface interaction in a unifi
approach valid at any atom distance from the surface
principle this could be obtained within the density function
theory~DFT!. In practice, the usual difficulty that one has
tackle when writing down such a unified theory, is to obta
the nonlocal response function of the metal. In this respec
recent attempt has been performed via a local approxima
of the dielectric function of the metal by Hultet al.1 But this
is still an open and important question because the cor
van der Waals behavior of the gas-metal potential affe
both the amplitudes of light noble gas probes scattering
metals2 and dynamical quantities such as sticking coe
cients and desorption rates.3 To overcome this problem, vari
ous approaches have been proposed.4–8 In the field of ab
initio methods, one usually calculates the physisorption
tential closer to the surface of a noble-gas atom interac
with a metal surface and add subsequently the van der W
part.9,10 Note that, to obtain a minimum in the physisorptio
potential, the van der Waals interaction has to be added if
approach is only capable of obtaining the repulsive par11

Alternatively, in some other approaches, such as DFT us
the local density approximation~LDA !, a reasonable phys
isorption well can be obtained,12,13 although the calculated
potential does not display the correct van der Waals t
namely, it drops to zero exponentially. This is because
LDA accounts well for a phenomenon such as the Pauli
pulsion experienced by a noble gas atom very close to
metal. In addition, regarding the atom-metal equilibrium d
tance, Lang,12 in his work on jellium, has shown that th
LDA may provide a good account of the adatom bindi
energy. An intuitive explanation of this effect is related
the fact that, at such atom-surface distances, it is correc
PRB 580163-1829/98/58~16!/11043~9!/$15.00
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consider the electron to be attached to its exchan
correlation hole as in the LDA.

The results presented in this paper are determined wi
the embedding method for an isolated adsorbate in
framework introduced in Ref. 14. In this method, the Sch¨-
dinger equation, in the DFT-LDA framework, is solved in
localized region embedded within an extended system. In
present problem the localized region contains the He or
atom plus that region of the surface significantly perturb
by the adatom, while the extended system is the remainde
a semi-infinite substrate. Such a framework has two m
properties valid for any molecule-surface system:~i! the ad-
sorbate is really isolated; i.e., there is no two-dimensio
periodicity of the adsorbate system, and~ii ! the substrate is
infinitely extended.15 In this way we avoid adsorbate
adsorbate interactions to be found in slab-supercell calc
tions and also we take into account the continuum electro
states of substrate. For such reasons, anab initio description
of the isolated chemical species on a semi-infinite solid
provide more accurate information on the particle-surfa
adiabatic interaction. In the embedding approach, the in
ence of the extended substrate enters in the form of a no
cal energy-dependent potential, added to the Hamilton
which acts upon the surface enclosing the embedded volu
We determine this embedding potential from the Green fu
tion of the substrate in the absence of the adsorbate. Eve
ally all the relevant physical quantities are obtained as
other methods by projecting our equation onto a suita
basis set. However, unlike methods based upon the Dy
equation, our boundary conditions do not enter as an exp
sion throughout the embedded volume, giving us more fl
ibility for the choice of the basis set. In addition, our meth
is based upon a variational solution of the Schro¨dinger equa-
tion, without anya priori biasing in the behavior of the
Green function.
11 043 © 1998 The American Physical Society
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However, we observe that the embedding method may
be the most effective one for determining the adiabatic e
tronic properties of a noble-gas–atom–metal system. Th
because the electronic states do not lie within the metal b
as occurs for chemisorbed atoms and/or molecules, so
the continuous character of the local density of states he
not crucial. But just because of this reason, anab initio cal-
culation of the electronic properties of a noble gas on a m
could show that the embedding approach is flexible eno
to be applied to a variety of adsorbate systems.

A limitation to be found in our results~not of the embed-
ding method! is the use of a jellium substrate instead of o
with a lattice structure. In this paper we shall present res
on the adiabatic noble-gas–surface interaction for a m
system with an intermediate electron density withr s

Ag

53.02a0 .16 This often refers to an Ag substrate though w
are aware that in our calculation we do not include all
physical properties following from the substrate periodici
However, we expect our results to be still interesting both
describe the adiabatic interaction of He and Ne on an
substrate and to compare them with previous ones o
higher density Al-like jellium (r s

Al52.07a0). We also re-
mark that several results for physisorbed atoms on me
have been obtained in the framework of this simplificati
for the surface,10,12,13,17while recentab initio calculations,18

incorporating a realistic metal surface, have not addresse
detail the question of the penetration depth of He and Ne.19,20

In the following section we shall present a derivation
the main equations of our method, and discuss their solut
In particular, the linearized augmented plane-wave exp
sion in the embedding approach is outlined. Section III illu
trates the application of the method to the isolated noble
interacting with the surface of Ag modeled as jellium. Se
tion IV is devoted to conclusions.

II. THE EMBEDDING APPROACH

A. Outline

The embedding method14,21–23has been developed for th
study of extended systems where a localized perturbation
lowered the symmetry and has caused a significant enha
ment of the complexity. There are many examples of th
locally broken symmetries: impurities within a bulk crysta
interfaces in general and surfaces in particular, adsorbat
surfaces, and so on.

Embedding exploits the fact that very often in these s
tems the electronic charge density is significantly pertur
only within a limited region. In fact, for example, in a meta
the electrons rearrange themself at short distances from
impurity, screening efficiently the perturbation. From t
knowledge of the charge density, in principle, all the groun
state properties may be determined.24 In the present contex
this means quantities of interest such as the adsorption
ergy, the density of states or the band structure~spectrum!,
the bonding site and geometry of the adsorbate, and the
tential energy surfaces for surface processes such as d
ciation or diffusion.3

Since the disturbance is essentially localized, it ma
sense to see whether one can obtain the perturbed ch
density from a calculation that only considers a limited
ot
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gion around the impurity. So the embedding approach c
centrates effort and resources on the region where the im
tant physics is going on. The difficulty is, of course, th
there is coupling to the extended~unperturbed in the first
approximation! system, and that this coupling is importan
for example, for broadening localized levels into resonanc
and providing a source of electrons that can then freely fl
into and out of the perturbed region. This last phenomeno
typical of any calculation in which the Fermi energy
pinned at the unperturbed system value. In this framew
the total charge is no longer conserved not only in the loc
ized region, but also in the whole space and a gra
canonical Hamiltonian has to be considered to determine
total energies.25

In the embedding approach the extended system ma
taken into account if the localized region is considered w
the appropriate boundary condition. This boundary condit
will influence the solution of the Schro¨dinger equation found
within the smaller region. Since the region beyond t
smaller volume remains unperturbed, the boundary condi
will not depend upon the perturbation. In the embedd
method, the boundary condition is implemented via a non
cal, energy-dependent potential that acts upon the divid
surface of the two regions. Such an embedding potentia
derived from a calculation performed on the unperturb
system once, and independently of which impurity is cons
ered.

We briefly summarize the derivation of the embeddi
equations, highlighting pertinent points. Further details a
discussion are to be found in Refs. 21,22. The total spac
partitioned into regions I and II~Fig. 1!. The former is the
volume to be embedded, the region that contains the adm
ecule and that part of the system perturbed by its prese
Region II is the rest of the extended system, containing
substrate. Avariational solution to the single-particle Schro¨-
dinger equation may be found that explicitly depends o
upon the wave function in region I, the region of interest.
do this we construct a trial wave functionf(r), which is to
be varied within region I and which in region II is a solutio
c(r) of the Schro¨dinger equation for the unperturbed syste
at energy«. On the surfaceS, which divides the two vol-
umes I and II, the trial wave function is continuous,f(rS)
5c(rS), as it must be to be a valid wave function, but
discontinuity in derivative is permitted.

The expectation value of the HamiltonianH in the whole
space is given by

FIG. 1. The embedding geometry, with region I to be embedd
in the extended region II.
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E5

E
I

d3rf* Hf1«E
II

d3rucu21
1

2ES
d2rSf* ~]f/]nS2]c/]nS!

E
I

d3rufu21E
II

d3rucu2

, ~1!

wherenS is the unit vector normal to the infinitesimal surface elementsd2rS pointing out of the region I, and the surface
integral term is the kinetic energy contribution arising from the discontinuity of the wave function derivative acrossS. The
volume integral in region I may be eliminated by introducing the Green functionG0 for the unperturbed system, which
satisfies a zero normal-derivative boundary condition onS:

]G0~rS ,r8;«!

]nS
50. ~2!

The surface inverseG0
21(rS ,rS8 ;«) of this Green function, defined by

E
S

d2rS8G0
21~rS ,rS8 ;«!G0~rS8 ,rS9 ;«!5d~rS2rS9!, ~3!

is a generalized logarithmic derivative that relates the amplitude and derivative of the wave function on surfaceS:

]c~rS!

]nS
522E

S
d2rS8G0

21~rS ,rS8 ;«!c~rS8!. ~4!

Following Ref. 21 we can thus obtain the expectation value of the Hamiltonian with our trial function, purely in term
quantities evaluated within or on the surface of region I:

E5

E
I

d3rf* Hf1
1

2ES
d2rSf* ]f/]nS1E

S
d2rSE

S
d2rS8f* ~G0

21~«!2«]G0
21~«!/]«!f

E
I

d3rufu22E
S

d2rSE
S

d2rS8f* ]G0
21~«!/]«f

. ~5!

If this equation is minimized with respect to the trial functionf, we obtain the following Schro¨dinger equation:

S H1
1

2
d~r2rS!

]

]nS
Df~r!1d~r2rS!E

S
d2rS8S G0

21~rS ,rS8 ;«!1~E2«!
]G0

21~rS ,rS8 ;«!

]« Df~rS8!5Ef~r!, with rPI . ~6!
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We consider each term in turn:H is the Hamiltonian of the
system, a sum of kinetic energy and potential energy op
tors. The normal derivative term on the embedding surf
provides Hermiticity within region I.G0

21 is the embedding
potential, constraining the trial functionf to correctly match
onto the substrate wave functionsc. The energy-derivative
term provides a first-order correction toG0

21 , so that the
constraint is evaluated at the working energyE. The correc-
tion vanishes ifG0

21 is evaluated at energyE, as is done in
practice for a continuous spectrum. Further details about
minimization procedure involving the parameter« are to be
found in Ref. 21.

The embedding potential contains all the information
garding the substrate that will enter into the solution of
Schrödinger equation for the perturbed region. It does n
depend upon the contents of the embedded volume, and
to be evaluated only once for a given substrate and choic
embedding volume. Hence it is worthwhile to evaluate it
high accuracy. Once this has been done an arbitrary pe
bation may be introduced into the embedded region, and
electronic structure is obtained from a calculation for t
region with the embedding potential acting as a bound
a-
e

e

-
e
t
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condition. Such a solution will be entirely equivalent to ha
ing solved the problem of the combined substrate1adsorbate
systemassuming complete basis set convergence and
the perturbation in the charge density and potential are
stricted to the embedded volume.

B. Matrix representation

In the previous section the trial wave function that min
mizes the expectation value of the Hamiltonian was shown
satisfy an effective Schro¨dinger equation. To achieve thi
minimization in practice, we expand the trial wave functio
in a basis set and minimize with respect to the expans
coefficients, obtaining a matrix-equation representation
the Schro¨dinger equation. We find it convenient to solve E
~6! in terms of its Green functionG. There are beneficia
reasons for switching from the electronic wave function
the single-particle Green function. The analyticity of th
Green function may be exploited to simplify valence integ
tion through the use of complex energies, and a better
scription for the spectral features and the local density
states is obtained. However, the presence of the ene
dependent embedding potential in Eq.~6!, prevents the solu-
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tion from being obtained from a single matrix diagonaliz
tion. So one of the cost advantages of wave functions o
Green functions is not available in the present situation.

In the usual way the Green functionG for the present
problem is that which solves theinhomogeneousSchrödinger
equation corresponding to Eq.~6!. ExpandingG(r,r8;E) in
the basis set$xm(r)%,

G~r,r8;E!5 (
mm8

g~E!mm8xm~r!xm8
* ~r8! ~7!

the Green function expansion coefficients may be shown
satisfy the matrix equation

(
m9

@Hmm91G0
21~E!mm92EOmm9#g~E!m9m85dmm8 ,

~8!

where contributions to the matrix elements from the Ham
tonian, embedding potential, and overlap terms are

Hmm85E
I

d3rxm* Hxm81
1

2ES
d2rSxm*

]

]nS
xm8 ,

G0
21~E!mm85E

S
d2rSE

S
d2rS8xm* G0

21~E!xm8 , ~9!

Omm85E
I

d3rxm* xm8 .

We emphasize that the theory developed so far does no
troduce any additional approximation beyond the sing
particle model. In the usual manner Eq.~8! is solved self-
consistently following the density functional theory in loc
density approximation,26 as used here, or if desired by usin
gradient-corrected extensions to the LDA.27 In this caseH
5T1Veff(r) whereT is the kinetic energy operator and

Veff~r!5Ves~r!1Vxc~r! ~10!

is a sum of the electrostaticVesand exchange-correlationVxc
potentials. Note that

Ves~r!5E d3r8
r1~r8!1r2~r8!

ur82ru
, ~11!

wherer11r2 contain the electronic charge plus the po
tive metallic charge and the nuclear one of the adparticle

In practice, further approximations occur in the soluti
due to truncation of the basis set at a finite basis set s
introducing an error that can be monitored and in princi
systematically reduced to any arbitrary level of precision
quired, and through the choice of embedding volume wit
which the solution is obtained self-consistently. In princip
this too can be systematically increased and the error red
to any desirable level.

C. Basis set and matrix elements

Differently from our previous work studing a noble-ga
atom on a metal, where the effects of the core electrons~e.g.,
for Ne! were taken into account by using pseudopotenti
here we perform an all-electron calculation. This represe
-
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an improvement because interesting properties such as c
level shifts can be analyzed. For example the dependenc
all valence and core electrons of He and Ne will be discus
in Sec. III. From the computational point of view a full po
tential calculation within the linearized augmented pla
waves~FLAPW! method displays some advantages with
spect to that performed in a pseudopotential framework w
plane waves. They mainly refer to the treatment of ato
such Ne with a very deep pseudopotential that require
much larger number of plane waves than of LAPW. So it
convenient to briefly discuss how we have adapted
LAPW method to our problem.

We recall first that the embedding approach is flexib
enough to allow for an arbitrary basis set. For the pres
study, in which a single particle interacting with a surface
considered, a suitable generalization of the LAPW~Refs. 23
and 28! is an obvious choice. Note that we shall consider
all-electron description of a gas atom on jellium. The use
jellium has been justified in Sec. I, but we wish to stress t
our treatment could be applied to a lattice structure too.
search is in progress in this direction. Also observe that
our problem the most suitable embedding region is a sph
of radiusr S centered on the adatom and including that p
tion of jellium significantly perturbed by the gas atom.

The idea of augmentation was first introduced in the a
mented plane-wave basis.29 Since the wave function varie
rapidly inside the atomic core, an enormous number of pl
waves is needed to describe this behavior in terms of pl
waves only. Thus the idea of augmentation is to use differ
basis functions inside the atom~muffin-tin region!, matching
these augmentation functions to plane-wave basis funct
outside a certain radius (r MT). For a spherical region such a
our embedding one, we use the following basis set

xm~r!5x i lm~r ,u,w!

5H @Al~ki !ul~r !1Bl~ki !u̇l~r !#YL~V! for uru,r MT

j l~kir !YL~V! for uru.r MT .

~12!

Note that to identify the above basis set, we adopt the co
monly used acronym LAPW, though ours are linear au
mented spherical~not plane! waves. The composite indexm
represents both radial,i , and angular,L5( l ,m), indices. The
functionsul(r ) are the solutions of the radial atomic Schr¨-
dinger equation at a certain energyEl , and u̇l(r ) are the
energy derivatives of those solutions atEl . This leads to an
energy-independent LAPW, with an energy-linearized so
tion of the atomic Schro¨dinger equation. Explicitly for a
pivot energyEl , ul(r ) andu̇l(r ) satisfy the following equa-
tions, respectively:

Hul~r !5Elul~r !,
~13!

Hu̇l~r !5Elu̇l~r !1ul~r !.

The parametersAl(ki) andBl(ki) are used to match the aug
mentation function to the Bessel functionj l outside the
muffin-tin region. In such a way the basis functions in E
~12! are continuous with continuous derivative at the muffi
tin radius. The values of the parametersAl(ki) andBl(ki) are
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FIG. 2. Upper side: total charge density of a He atom interacting with an Ag-like jellium surface minus that of the free atom. T
horizontal panels refer to different distancesd of He from the jellium edge~vertical dot-dashed line!. Maps are plotted in the plane norma
to the surface containing the atom nucleus. The normal direction isz. Contour values shown are 0.008, 0.003, 0.0012,60.0005,60.0002,
60.0001,60.00005,60.00003 electrons/a0

3 ~the solid line is positive, the dashed line is negative!. Lower side: the same for a Ne atom
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Al~ki !5
u̇l8~r MT! j l~kir MT!2ki j l8~kir MT!u̇l~r MT!

ul~r MT!u̇l8~r MT!2u̇l~r MT!ul8~r MT!
,

Bl~ki !5
ul~r MT!ki j l8~kir MT!2 j l~kir MT!ul8~r MT!

ul~r MT!u̇l8~r MT!2u̇l~r MT!ul8~r MT!
. ~14!

In the Bessel function argument,kn5np/ã, where ã
.r S , r S being the radius of the embedding volume. Th
gives a range of values of amplitude and derivatives on
surface of the sphere and so does not prejudice or cons
the description of the boundary conditions. The matrix e
ments in Eqs.~8! and~9! on our LAPW basis set are define
in the Appendix.

III. RESULTS FOR He AND Ne ON Ag

In our calculations we use an embedding region of rad
r S57a0 , while r MT52.8a0 . We use the exchange
correlation functional in Ref. 30. Convergence is reached

FIG. 3. The variations of the 1s level ~line with diamonds! of a
He atom, of the bare metal electrostatic potentialVes ~dashed line!,
and of the bare metal effective potentialVeff ~solid line! as functions
of the atom jellium edge distance.
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an expansion with spherical waves withl max58 andi max59
radial components. The total charge densities of the inter
ing atom-Ag system either minus that of the He free atom
minus that of the Ne free atom, are displayed in Fig.
Figure 2 clearly visualizes the perturbation induced by
atom on the metal charge, showing that the atom acts
pseudopotential that is essentially repulsive, pushing aw
the metal charge at shorter atom-metal distancesd, while
becoming more attractive at larger ones.31 This repulsive fea-
ture at smalld was also found previously.13,19 In Fig. 2 note
also a characteristic physisorption behavior with no interm
gling of the atom and metal charges. The variation of
atom eigenenergies as a function ofd together with the bare
metal electrostatic potentialVes @see Eq.~11!# and the bare
metal effective potentialVeff @see Eq.~10!#, as a function of
d, are given in Fig. 3 for the 1s level of He and in Fig. 4 for
the 1s, 2s, and 2p of Ne. We shift all curves in energy s
that their zero value is located at the largestd.32 Our results
show that far from the surface the level shifts follow th

FIG. 4. The variations of the 1s ~line with diamonds!, 2s ~line
with crosses! and 2p ~line with squares! levels of a Ne atom, of the
bare metal electrostatic potentialVes ~dashed line!, and of the bare
metal effective potentialVeff ~solid line! as functions of the atom
jellium edge distance.
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variation of Ves, while at shorterd they tend to follow the
variation of Veff . This behavior could be explained by ob
serving that at first order the shiftd« i of the eigenenergy« i
is proportional to the variation ofVeff , namely,

d« i~d!5Veff@rMA#2Veff@rA#

'Ves@rM#1Vxc@rM1rA#2Vxc@rA#. ~15!

In the expectation value in Eq.~15! the argumentsrMA, rM,
rA are the atom-metal and the unperturbed metal and a
charge densities, respectively. WhenrA@rM, e.g., at large
d, d« i'Ves@rM#, while at rA!rM, d« i'Veff@rM#. As the
atom approaches the metal surface, it experiences an inc
ing metal charge density, so that the limiting conditionrA

@rM is no longer valid. A second effect, which at smallerd
might raise d« i(d) of the orbitals concentrated near th
nucleus, is the charge transfer from the metal into the o
shell levels of the adatom. Such an effect, which is sign
cant in previous calculations of chemisorbed adatoms~O, Cl,
Si, Na! on Al,32 is absent in physisorption, where the atom
are also much further away from the metal. Since, as to
discussed in the following, we shall present also the ato
metal potential energy~PES! of He and Ne, we add a com
ment on the comparison between the PES andd« i . In par-
ticular, we see from Fig. 4 that the 2p eigenvalue of Ne,
differently from the 1s and 2s, displays a maximum at abou
the samed where the PES has its minimum. The correspo
ing results for the 1s eigenvalue of He, whose energy
comparable to that of the 2p eigenvalue of Ne, do not con
tradict the previous behavior.

We now consider the energy dependence of the at
metal potentialE(d) at various distancesd from the jellium
edge, calculated in the grand-canonical framework. Note
the outermost plane of substrate nuclei lies half an inter
nar spacing behind the positive background edge~from 1.4
bohr to 2.2 bohr for different faces~110 or 100 or 111! of the
metal surface!. Figure 5 shows the PES’s for He and Ne
Ag, respectively. Though at large enough atom-surface
tances such curves require the contribution of the van
Waals tail not described in the LDA approach, for ato
surface repulsive potentials at smallerd, our results accu-
rately describe the PES in the region relevant to noble-
atom–metal elastic scattering experiments.13

FIG. 5. The potential energies~meV! for a He~dashed line! and
a Ne~dot-dashed line! atom, respectively, impinging on an Ag-lik
jellium surface as a function of the atom jellium edge distance.
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An important result is that Ne is shown to penetra
deeper into the Ag electronic cloud than He for incomi
particle energies up to aboutEcross5100 meV,34 where the
two potential energy curves for He and Ne cross. The sa
result was already found on Al, but in this caseEcross
5240 meV.19 To explain these results, observe that t
exchange-correlation contribution is larger for Ne than
He. This gives a somewhat more attractive character to
than to He in the repulsive potential region just discuss
Above the crossing pointEcross, the Pauli repulsion domi-
nates and the classical turning point becomes higher for
than for He at the same incident atom kinetic energies. I
also natural to compare our PES for He with that calcula
by Lang and Norsko”v13 ~LN! on the same Ag-like jellium in
the same DFT framework. Such an analysis shows that f
E(d)>30 meV there is excellent agreement between
two calculations, though ours is performed with a differe
expansion, the LAPW, than that of LN. In the attractive r
gion our minimum, which is as deep as that of LN, is shift
about 1a0 further from the metal. This is because o
exchange-correlation expression30 differs from that in LN,
and gives a more attractive exchange-correlation hole
ergy, which is the one that is more relevant at largerd. We
also observe very good agreement between our PES’s
the PES’s for He and Ne on Ag of Chizmeshya a
Zaremba,10 without the long-range correction. Note that th
depth of the physisorption minimum of Ne on Ag is in goo
agreement with the results in Ref. 33. A comparison a
between our results and those computed by a phenom
logical method for He on Ag~100! and Ag~110! ~Ref. 7!
shows that the minimum of the physisorption potential
about the same.

We wish to point out that the results for He and Ne on A
(r s

Ag53.02a0) in this paper and our previous ones on Al-lik
jellium with higher density (r s

Al52.07a0) display interesting
differences. From Figs. 6 and 7, we observe the mu
smoother increase of the PES’s of He and Ne on Ag. A
we observe that He and Ne atoms with the same imping
Ekin energy get closer to Al than to Ag up to aboutEkin
525 meV for He andEkin550 meV for Ne, respectively
For larger energies the Al repulsion is much stronger. S
results can be accounted for, if we recall that an Al-li

FIG. 6. The potential energies~meV! for a He atom impinging
on an Ag-like ~solid line! and on an Al-like~dashed line! jellium
surface, respectively, as a function of the atom jellium edge
tance.
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jellium displays a larger electronic charge tail than that o
lower density metal such as Ag. For this reason, when ei
the Pauli repulsion~small d) or the attractive exchange
correlation ~large d) effects dominate, the PES’s of th
noble-gas atom on the metal with greater density are ei
more repulsive or more attractive.

IV. CONCLUSIONS

The first contribution of this paper is the development
an all electron full potential calculation for an isolated ads
bate in the framework of the embedding method and of
DFT-LDA. This allows one to describe the variation of th

FIG. 7. The same as Fig. 6 but for a Ne atom.
a
er

er

f
-
e

core-level eigenvalues on the atom-surface separation
treated in previous work of He and Ne on metals. To d
with this problem we have applied the FLAPW basis s
discussed in Sec. II C. This approach is also the most c
venient to describe Ne and other adatoms, such as N
which display a deep pseudopotential.

The second result refers to the adiabatic atom-surface
tential of light physisorbed noble gas atoms on Ag. Our
sults indicate that in the atom-surface range characteristi
noble-gas–surface scattering experiments, the turning p
of He is farther from the surface than that of Ne. This
similar to the case of an Al substrate, and in agreement w
experiments. We have also discussed the relevance of
substrate charge density on the dependence of the atom
face potential on the atom-metal distance.

ACKNOWLEDGMENTS

We are grateful to J.B.A.N. van Hoof for interesting di
cussions about the LAPW method and its implementati
and to S. Crampin for a careful reading of the manuscrip

APPENDIX: MATRIX ELEMENTS

The matrix elements of the different terms defined in E
~9! with respect to the LAPW basis are calculated as follow

1. Overlap matrix elements

The overlap matrix in the muffin-tin region (uru,r MT) is
s. We
ffin tin.

as
Omm8
MT

5E
MT

d3rxm* ~r!xm8~r!5dLL8FAl~ki !Al~kj !1Bl~ki !Bl~kj !E
0

r MT
drr 2@ u̇l 8~r !#2G , ~A1!

and in the interstitial region (r MT,uru,r S):

Omm8
int

5E
int

d3rxm* ~r!xm8~r!5dLL8H Jki

l ~r S!2Jki

l ~r MT! for i 5 j

I ki ,kj

l ~r S!2I ki ,kj

l ~r MT! for iÞ j
~A2!

with

I a,b
l ~x!5E

0

x

drr 2 j l~ar ! j l~br !5
x2

a22b2
@b j l~ax! j l 21~bx!2a j l 21~ax! j l~bx!#, ~A3!

Ja
l ~x!5E

0

x

drr 2@ j l~ar !#25
x3

2
@ j l

2~ax!2 j l 21~ax! j l 11~ax!#. ~A4!

2. Hamiltonian matrix elements

To simplify the derivation we break up the expression for the Hamiltonian matrix element into several contribution
start with the muffin tin, and a simple spherical potential, and then consider nonspherical contributions inside the mu

a. Spherical part.The Hamiltonian matrix element is

Hmm8
MT

5E
MT

d3rxm* ~r!~H1DH !xm8~r!, ~A5!

whereH is the spherical part of the Hamiltonian andDH the nonspherical contribution. The spherical part can be written
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E
MT

d3rx i lm* ~r!Hx j l 8m8~r!5E
MT

d3r@Al~ki !ul~r !1Bl~ki !u̇l~r !#* YL* ~V!H@Al 8~kj !ul 8~r !1Bl 8~kj !u̇l 8~r !#YL8~V!

5E
4p

dVYL* ~V!YL8~V!E
0

r MT
drr 2@Al~ki !ul~r !1Bl~ki !u̇l~r !#H@Al 8~kj !ul 8~r !1Bl 8~kj !u̇l 8~r !#

5dLL8FAl~ki !Al 8~kj !E
0

r MT
drr 2ul~r !Hul 8~r !1Al~ki !Bl 8~kj !E

0

r MT
drr 2ul~r !Hu̇l 8~r !

1Bl~ki !Al 8~kj !E
0

r MT
drr 2u̇l~r !Hul 8~r !1Bl~ki !Bl 8~kj !E

0

r MT
drr 2u̇l~r !Hu̇l 8~r !G . ~A6!

Using Eq.~13!, all the above integrals can be reduced to the numerical calculation of only three terms:^u̇l uu̇l&, ^ul uVuul&, and

^u̇l uVuul&.
b. Nonspherical part.In general the potential in the muffin tin is not spherically symmetric. This is especially true fo

atom at a surface, where a spherically symmetric potential would provide a rather bad description. We use the
expansion of the potential in the muffin tin as given by

DH5(
L9

ñl

VL9
eff

~r !YL9~V!. ~A7!

With calculations similar to that in Eq.~A6!, we obtain

DHmm8
MT

5E
MT

d3rx i lm* ~r!F(
L9

ñl

VL9
eff

~r !YL9~V!Gx j l 8m8~r!

5E
MT

d3r@Al~ki !ul~r !1Bl~ki !u̇l~r !#* YL* ~V!F(
L9

ñl

VL9
eff

~r !YL9~V!G @Al 8~kj !ul 8~r !1Bl 8~kj !u̇l 8~r !#YL8~V!

5(
L9

ñl F E
4p

dV YL* ~V!YL9~V!YL8~V!G E
0

r MT
drr 2@Al~ki !ul~r !1Bl~ki !u̇l~r !#VL9

eff
~r !@Al 8~kj !ul 8~r !1Bl 8~kj !u̇l 8~r !#

5(
L9

ñl

OLL9L8E
0

r MT
drr 2@Al~ki !ul~r !1Bl~ki !u̇l~r !#VL9

eff
~r !@Al 8~kj !ul 8~r !1Bl 8~kj !u̇l 8~r !#, ~A8!
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where OLL9L85*4pdV YL* (V)YL9(V)YL8(V). The four
kinds of integrals in Eq.~A8! have to be evaluated numer
cally.

Now we handle the Hamiltonian matrix elements in t
interstitial region. In this case the basis functions are sim
Bessel functions and consequently all terms are easie
compute than in the muffin tin. In the interstitial region th
normal derivative and the embedding potential also have
be considered@see Eq.~6! and following#.

The kinetic energy is straightforward, as the basis fu
tions are eigenstates of the kinetic energy operator with
genvalueki

2/2:

Tmm8
int

5
kj

2

2
Omm8

int . ~A9!

The normal derivative is

Dmm85dLL8

r S

2
j l~kir S!@ l j l~kj r S!2kj r Sj l 11~kj r S!#,

~A10!

making use of recurrence relations satisfied by the Be
functions.35
ly
to

to

-
i-

el

The potential is expanded as in Eq.~A7!. The radial com-
ponentsVL(r ) are tabulated on a grid and include contrib
tions from the ionic core, known analytically, the Coulom
contribution, which is found from the solution of the Poiss
equation~this reduces to the solution of a radial problem f
eachL component!, and the exchange-correlation potenti
which is numerically evaluated by fitting its angular vari
tion via a special directions expantion.

The contribution to the Hamiltonian matrix elements fro
the potential is

Vmm8
int

5(
L9

OLL8L9E
r MT

r S
drr 2 j l~kir !VL9~r ! j l 8~kj r !.

~A11!

Finally, the matrix elements of the embedding potent
are

G0
21~E!mm85r S

4G 0
21~E!LL8 j l~kir S! j l 8~kj r S!, ~A12!

where G 0
21(E)LL8 are the expansion coefficient o

G0
21(rS ,rS8 ,E) onto the spherical harmonics.
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