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Ab initio adiabatic He and Ne interaction on Ag: An all-electron calculation
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We report arab initio calculation of the adiabatic electronic properties of He and Ne atoms interacting with
an Ag-like jellium metal surface, using the embedding method and the density functional theory in the local
density approximatioiLDA). Differently from previous results obtained in this framework, the noble atoms
are described with their full potential. The linearized augmented plane-wave basis set is introduced to tackle
the Kohn-Sham equation. Attention is focused on the atom-surface potential in the repulsive regime, i.e., at
distances from the jellium edge smaller then the adsorption one, where the LDA has been shown to work well,
and which are relevant in elastic and inelastic scattering experiments of He and Ne on metals. For incident
atoms with initial kinetic energies in the experimental range of interest, it is shown that Ne gets closer to the
metal than He as previously found with an Al substrate. An analysis of the shift of the atomic core levels by
varying the atom-metal distance is also preseni®6163-1828)01539-2

[. INTRODUCTION consider the electron to be attached to its exchange-
correlation hole as in the LDA.

The main goal of physisorption theory of noble gases on The results presented in this paper are determined within
metals is to obtain the particle-surface interaction in a unifiedhe embedding method for an isolated adsorbate in the
approach valid at any atom distance from the surface. Iframework introduced in Ref. 14. In this method, the Sehro
principle this could be obtained within the density functionaldinger equation, in the DFT-LDA framework, is solved in a
theory (DFT). In practice, the usual difficulty that one has to localized region embedded within an extended system. In the
tackle when writing down such a unified theory, is to obtainpresent problem the localized region contains the He or Ne
the nonlocal response function of the metal. In this respect, atom plus that region of the surface significantly perturbed
recent attempt has been performed via a local approximatiohy the adatom, while the extended system is the remainder of
of the dielectric function of the metal by Hudt al! But this  a semi-infinite substrate. Such a framework has two main
is still an open and important question because the corregiroperties valid for any molecule-surface systémthe ad-
van der Waals behavior of the gas-metal potential affectsorbate is really isolated; i.e., there is no two-dimensional
both the amplitudes of light noble gas probes scattering ofperiodicity of the adsorbate system, afiid the substrate is
metal¢ and dynamical quantities such as sticking coeffi-infinitely extended® In this way we avoid adsorbate-
cients and desorption rat23.0 overcome this problem, vari- adsorbate interactions to be found in slab-supercell calcula-
ous approaches have been propdsé&dn the field ofab  tions and also we take into account the continuum electronic
initio methods, one usually calculates the physisorption postates of substrate. For such reasonsalamitio description
tential closer to the surface of a noble-gas atom interactingf the isolated chemical species on a semi-infinite solid can
with a metal surface and add subsequently the van der Waajsovide more accurate information on the particle-surface
part>1° Note that, to obtain a minimum in the physisorption adiabatic interaction. In the embedding approach, the influ-
potential, the van der Waals interaction has to be added if thence of the extended substrate enters in the form of a nonlo-
approach is only capable of obtaining the repulsive part. cal energy-dependent potential, added to the Hamiltonian,
Alternatively, in some other approaches, such as DFT usingvhich acts upon the surface enclosing the embedded volume.
the local density approximatio(LDA), a reasonable phys- We determine this embedding potential from the Green func-
isorption well can be obtained;*® although the calculated tion of the substrate in the absence of the adsorbate. Eventu-
potential does not display the correct van der Waals tailally all the relevant physical quantities are obtained as in
namely, it drops to zero exponentially. This is because th@ther methods by projecting our equation onto a suitable
LDA accounts well for a phenomenon such as the Pauli rebasis set. However, unlike methods based upon the Dyson
pulsion experienced by a noble gas atom very close to thequation, our boundary conditions do not enter as an expan-
metal. In addition, regarding the atom-metal equilibrium dis-sion throughout the embedded volume, giving us more flex-
tance, Land? in his work on jellium, has shown that the ibility for the choice of the basis set. In addition, our method
LDA may provide a good account of the adatom bindingis based upon a variational solution of the Sclinger equa-
energy. An intuitive explanation of this effect is related totion, without anya priori biasing in the behavior of the
the fact that, at such atom-surface distances, it is correct tGreen function.
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However, we observe that the embedding method may no 17¢
be the most effective one for determining the adiabatic elec-
tronic properties of a noble-gas—atom—metal system. This is
because the electronic states do not lie within the metal bant
as occurs for chemisorbed atoms and/or molecules, so the
the continuous character of the local density of states here i
not crucial. But just because of this reason,aéninitio cal-
culation of the electronic properties of a noble gas on a meta
could show that the embedding approach is flexible enougt
to be applied to a variety of adsorbate systems.

A limitation to be found in our resulténot of the embed- FIG. 1. The embedding geometry, with region | to be embedded
ding methodiis the use of a jellium substrate instead of onejp, the extended region I.
with a lattice structure. In this paper we shall present results
on the adiabatic noble-gas—surface interaction for a metal

. . . . Ag
system with an intermediate electron density wrtﬁl gion around the impurity. So the embedding approach con-

:3'02a°'16 This often refers 1o an Ag substrate though Wecentrates effort and resources on the region where the impor-
are aware that in our calculation we do not include all the 9 P

physical properties following from the substrate periodicity.tant physics is going on. The difficulty is, of course, that

However, we expect our results to be still interesting both td"€re is coupling to the extendédnperturbed in the first
describe the adiabatic interaction of He and Ne on an AgPProximation system, and that this coupling is important,

substrate and to compare them with previous ones on r example, for broadening localized levels into resonances,
higher density Al-like jellium ¢A=2.07a,). We also re- and providing a source of electrons that can then freely flow
s =2. .

mark that several results for physisorbed atoms on metal§t0 and out of the perturbed region. This last phenomenon is
have been obtained in the framework of this simplificationtypical of any calculation in which the Fermi energy is
for the surfacé®2131while recentab initio calculations®  pinned at the unperturbed system value. In this framework
incorporating a realistic metal surface, have not addressed i€ total charge is no longer conserved not only in the local-
detail the question of the penetration depth of He and™@. ized region, but also in the whole space and a grand-
In the following section we shall present a derivation of canonical Hamiltonian has to be considered to determine the
the main equations of our method, and discuss their solutioriotal energie$®
In particular, the linearized augmented plane-wave expan- In the embedding approach the extended system may be
sion in the embedding approach is outlined. Section Il illus-taken into account if the localized region is considered with
trates the application of the method to the isolated noble gaghe appropriate boundary condition. This boundary condition
interacting with the surface of Ag modeled as jellium. Sec-will influence the solution of the Schdinger equation found
tion 1V is devoted to conclusions. within the smaller region. Since the region beyond the
smaller volume remains unperturbed, the boundary condition
will not depend upon the perturbation. In the embedding

Il. THE EMBEDDING APPROACH method, the boundary condition is implemented via a nonlo-
] cal, energy-dependent potential that acts upon the dividing
A. Outline surface of the two regions. Such an embedding potential is

The embedding methdt?~?*has been developed for the derived from a calculation performed on the unperturbed
study of extended systems where a localized perturbation h&ystem once, and independently of which impurity is consid-
lowered the symmetry and has caused a significant enhancered.
ment of the complexity. There are many examples of these We briefly summarize the derivation of the embedding
locally broken symmetries: impurities within a bulk crystal, equations, highlighting pertinent points. Further details and
interfaces in general and surfaces in particular, adsorbates discussion are to be found in Refs. 21,22. The total space is
surfaces, and so on. partitioned into regions | and l[Fig. 1). The former is the

Embedding exploits the fact that very often in these sysvolume to be embedded, the region that contains the admol-
tems the electronic charge density is significantly perturbe@cule and that part of the system perturbed by its presence.
only within a limited region. In fact, for example, in a metal, Region Il is the rest of the extended system, containing the
the electrons rearrange themself at short distances from ttgibstrate. Avariational solution to the single-particle Schro
impurity, screening efficiently the perturbation. From thedinger equation may be found that explicitly depends only
knowledge of the charge density, in principle, all the ground-upon the wave function in region I, the region of interest. To
state properties may be determirfédn the present context do this we construct a trial wave functiab(r), which is to
this means quantities of interest such as the adsorption ele varied within region | and which in region Il is a solution
ergy, the density of states or the band structismectrun), #(r) of the Schrdinger equation for the unperturbed system
the bonding site and geometry of the adsorbate, and the p@t energys. On the surfaces, which divides the two vol-
tential energy surfaces for surface processes such as dissgmes | and Il, the trial wave function is continuous(r)
ciation or diffusion® =uy(rg), as it must be to be a valid wave function, but a

Since the disturbance is essentially localized, it makesliscontinuity in derivative is permitted.
sense to see whether one can obtain the perturbed charge The expectation value of the Hamiltoni&hin the whole
density from a calculation that only considers a limited re-space is given by
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whereng is the unit vector normal to the infinitesimal surface elemetfs; pointing out of the region I, and the surface
integral term is the kinetic energy contribution arising from the discontinuity of the wave function derivative 8cibiss
volume integral in region | may be eliminated by introducing the Green fundBgrfor the unperturbed system, which
satisfies a zero normal-derivative boundary conditiorSon

: (1)

dGy(rg,r'; e
orsir'5e) _ o

&ns (2)
The surface invers@gl(rs,r’s;s) of this Green function, defined by
[ dries s e otra o= atrs- 1), @
S

is a generalized logarithmic derivative that relates the amplitude and derivative of the wave function onSurface
alﬂ( rS) ’~— ’ ’
TS:_ZL, d%rgGq H(rs.rs; &) ¥(rg). 4

Following Ref. 21 we can thus obtain the expectation value of the Hamiltonian with our trial function, purely in terms of
guantities evaluated within or on the surface of region I:

1 _ _
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If this equation is minimized with respect to the trial functign we obtain the following Schitinger equation:

IGq H(rs,rs;€)

P P(rg)=E¢(r), with rel. (6)

1 J d2 ’ -1 ’.
H+§5(r—rs)(9—nS <¢>(r)+5(r—rs)fS rgl Go (rs.rg;e)+(E—¢)

We consider each term in turit is the Hamiltonian of the condition. Such a solution will be entirely equivalent to hav-
system, a sum of kinetic energy and potential energy operang solved the problem of the combined substtzedsorbate
tors. The normal derivative term on the embedding surfacéystemassuming complete basis set convergence and that
provides Hermiticity within region 1G,* is the embedding the perturbation in the charge density and potential are re-
potential, constraining the trial functia to correctly match ~ Stricted to the embedded volume

onto the substrate wave functiogls The energy-derivative . .

term provides a first-order correction ®,*, so that the B. Matrix representation

constraint is evaluated at the working enekgyThe correc- In the previous section the trial wave function that mini-
tion vanishes ifG, ! is evaluated at enerdy, as is done in  mizes the expectation value of the Hamiltonian was shown to
practice for a continuous spectrum. Further details about thsatisfy an effective Schdinger equation. To achieve this
minimization procedure involving the parameteare to be  minimization in practice, we expand the trial wave function
found in Ref. 21. in a basis set and minimize with respect to the expansion
The embedding potential contains all the information re-coefficients, obtaining a matrix-equation representation of
garding the substrate that will enter into the solution of thethe Schrdinger equation. We find it convenient to solve Eq.
Schralinger equation for the perturbed region. It does not(6) in terms of its Green functios. There are beneficial
depend upon the contents of the embedded volume, and neeshsons for switching from the electronic wave function to
to be evaluated only once for a given substrate and choice ahe single-particle Green function. The analyticity of the
embedding volume. Hence it is worthwhile to evaluate it toGreen function may be exploited to simplify valence integra-
high accuracy. Once this has been done an arbitrary pertution through the use of complex energies, and a better de-
bation may be introduced into the embedded region, and thecription for the spectral features and the local density of
electronic structure is obtained from a calculation for thisstates is obtained. However, the presence of the energy-
region with the embedding potential acting as a boundaryglependent embedding potential in E6), prevents the solu-
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tion from being obtained from a single matrix diagonaliza-an improvement because interesting properties such as core-
tion. So one of the cost advantages of wave functions ovelevel shifts can be analyzed. For example the dependence of
Green functions is not available in the present situation.  all valence and core electrons of He and Ne will be discussed
In the usual way the Green functid® for the present in Sec. Ill. From the computational point of view a full po-
problem is that which solves thiehomogeneouSchralinger  tential calculation within the linearized augmented plane
equation corresponding to E¢6). ExpandingG(r,r’;E) in  waves(FLAPW) method displays some advantages with re-

the basis sefx .(r)}, spect to that performed in a pseudopotential framework with
plane waves. They mainly refer to the treatment of atoms
roEy * such Ne with a very deep pseudopotential that requires a

G(r.riE) 2 g(E)““'X“(r)XM’(r ) ™ much larger number of plane waves than of LAPW. So it is

' . - -
i , . convenient to briefly discuss how we have adapted the
the Green function expansion coefficients may be shown t@ Ap\w method to our problem.

satisfy the matrix equation We recall first that the embedding approach is flexible

enough to allow for an arbitrary basis set. For the present
Z [H ot Ggl(E)W"— EO,19(E) yrpr =08, study, in which a single particle interacting with a surface is
" considered, a suitable generalization of the LAPRéfs. 23
®) and 28 is an obvious choice. Note that we shall consider an
where contributions to the matrix elements from the Hamil-all-electron description of a gas atom on jellium. The use of

tonian, embedding potential, and overlap terms are jellium has been justified in Sec. I, but we wish to stress that
our treatment could be applied to a lattice structure too. Re-

- 3p % 1 2 % 9 search is in progress in this direction. Also observe that for

HMM’_J, d*r X H X + EJS d*rsx, ang XK' our problem the most suitable embedding region is a sphere

of radiusrg centered on the adatom and including that por-
. ) ) . tion of jellium significantly perturbed by the gas atom.
Go (E)W':f d fsf d*rexnGo (E)xurs (9 The idea of augmentation was first introduced in the aug-
s s mented plane-wave basisSince the wave function varies
rapidly inside the atomic core, an enormous number of plane
O =] d¥xy*v .. waves is needed to describe this behavior in terms of plane
e XuXu \ T .
' waves only. Thus the idea of augmentation is to use different

We emphasize that the theory developed so far does not if@Sis functions inside the atofmuffin-tin region, matching

troduce any additional approximation beyond the Smg|e_these augmentation functions to plane-wave basis functions

particle model. In the usual manner E®) is solved self- outside ace_rtain radius (7). For asphe_rical region such as
consistently following the density functional theory in local ©Ur €émbedding one, we use the following basis set
density approximatiof? as used here, or if desired by using

gradient-corrected extensions to the LBAIn this caseH Xu(N)=Xiim(r 0, ¢)

=T+ Veg(r) whereT is the kinetic energy operator and [A (k)u (r)+B(k)u (Y Q) for [rl<ryr
Veir(1) =Ved 1)+ Vo) (10) JkinYL(Q) for [r|>ryr.
is a sum of the electrostati¢.and exchange-correlation,; (12

potentials. Note that Note that to identify the above basis set, we adopt the com-

., _ ., monly used acronym LAPW, though ours are linear aug-
Ves(r):f 43P (r)+p (r )' (11  Mented sphericahot plang waves. The composite indgx
Ir"—r| represents both radial, and angular,. = (I,m), indices. The
functionsu(r) are the solutions of the radial atomic Schro

dinger equation at a certain ener§y, and U|(r) are the

In practice, further approximations occur in the solution €"€"9Y _de(:jrlvatlvdes ?fl_t,zg?/?/ so!tjrflonslz‘qt Thlsi_lead§ t% anl
due to truncation of the basis set at a finite basis set siz&€'9y-independen » WIth an energy-linéarized solu-

introducing an error that can be monitored and in principletlon of the atomic Schrrdl_nger equation. Explicitly for a
systematically reduced to any arbitrary level of precision reivot energyE,, u;(r) andu(r) satisfy the following equa-
quired, and through the choice of embedding volume withirtions, respectively:

which the solution is obtained self-consistently. In principle

this too can be systematically increased and the error reduced Hu(r)=Eu(r),

to any desirable level. (13

Hu(r)=Eu(r)+u(r).

wherep*+p~ contain the electronic charge plus the posi-
tive metallic charge and the nuclear one of the adparticle.

C. Basis set and matrix elements The parametera, (k;) andB,(k;) are used to match the aug-

Differently from our previous work studing a noble-gas mentation function to the Bessel functign outside the
atom on a metal, where the effects of the core electtergs,  muffin-tin region. In such a way the basis functions in Eq.
for Ne) were taken into account by using pseudopotentials(12) are continuous with continuous derivative at the muffin-
here we perform an all-electron calculation. This representtin radius. The values of the parametéyék;) andB, (k;) are
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He on Ag
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FIG. 2. Upper side: total charge density of a He atom interacting with an Ag-like jellium surface minus that of the free atom. The four
horizontal panels refer to different distanaksf He from the jellium edgévertical dot-dashed lineMaps are plotted in the plane normal
to the surface containing the atom nucleus. The normal directian@ntour values shown are 0.008, 0.003, 0.0G10,0005,=+0.0002,
+0.0001,=+0.00005,+0.00003 electronag (the solid line is positive, the dashed line is negatit®mwer side: the same for a Ne atom.

Uy (rr) i (K wr) = Kij (K r) Ug (7 ) an expansion with spherical waves with,=8 andi y,,,=9
Al(k)= — - - , radial components. The total charge densities of the interact-
U (rv) Uy () = U (Fvm) Uy (Fwer) ing atom-Ag system either minus that of the He free atom or
minus that of the Ne free atom, are displayed in Fig. 2.
u(ryo) kijy (kirwm) = i (kirvo ) (rvr) Figure 2 clearly visualizes the perturbation induced by the
Bi(ki)= . (14 atom on the metal charge, showing that the atom acts as a

Uy () U () = U () U7 (T ) pseudopotential that is essentially repulsive, pushing away

In the Bessel function argument,=nm/a, where & the metal charge at shorter atom-metal distartesvhile
>re, I's being the radius of the err?beddingi volume Thisbecoming more attractive at larger orféJhis repulsive fea-

S» 'S . : ,19 ;
gives a range of values of amplitude and derivatives on thdure at smald wgs.also fqund prewousl’yq’.. In.F|g. 2. note
surface of the sphere and so does not prejudice or constraﬁi.‘c‘o a characteristic physisorption behavior W|th.nq Intermin-
the description of the boundary conditions. The matrix ele9'NY of the atom and metal charges. The variation of the

ments in Eqs(8) and(9) on our LAPW basis set are defined atom eigenenergies as a functiondofogether with the bare
in the Appendix metal electrostatic potentidl s [see Eq.(11)] and the bare

metal effective potentiaV/o [see Eq(10)], as a function of
d, are given in Fig. 3 for the 4 level of He and in Fig. 4 for
the 1s, 2s, and 2 of Ne. We shift all curves in energy so

In our calculations we use an embedding region of radiuéhat their zero value is located at the |argé§l2 Our results
r<=7a,, while ry;=2.83,. We use the exchange- show that far from the surface the level shifts follow the
correlation functional in Ref. 30. Convergence is reached for

Ill. RESULTS FOR He AND Ne ON Ag

0.2 —
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0.0 .k
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FIG. 4. The variations of thesl(line with diamondg 2s (line
FIG. 3. The variations of thesllevel (line with diamondg of a with crossesand 2p (line with squareglevels of a Ne atom, of the
He atom, of the bare metal electrostatic poter¥igl (dashed ling bare metal electrostatic potentid] (dashed ling and of the bare
and of the bare metal effective potentigk; (solid line) as functions  metal effective potentiaV/¢ (solid line) as functions of the atom
of the atom jellium edge distance. jellium edge distance.
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FIG. 5. The potential energiémeV) for a He(dashed lingand FIG. 6. The potential energigseV) for a He atom impinging

a Ne(dot-dashed linpatom, respectively, impinging on an Ag-like on an Ag-like(solid line) and on an Al-like(dashed ling jellium
jellium surface as a function of the atom jellium edge distance. surface, respectively, as a function of the atom jellium edge dis-
tance.

variation of V., while at shorted they tend to follow the _ _ _
variation of V. This behavior could be explained by ob- ~ An important result is that Ne is shown to penetrate
serving that at first order the shifig; of the eigenenergy;  deeper into the Ag electronic cloud than He for incoming

is proportional to the variation of ., namely, particle energies up to abofyose= 100 meV;* where the
VA two potential energy curves for He and Ne cross. The same
Sei(d)=Ver p"*1— Ver p*] result was already found on Al, but in this cagg g

=240 meV?!® To explain these results, observe that the
~Ved oM+ Vid p"+ "= Vid p. (19 exchange-correIationpcontribution is larger for Ne than for
In the expectation value in E¢15) the argumentpM”, pM, He. This gives a somewhat more attractive character to Ne
p” are the atom-metal and the unperturbed metal and atotthan to He in the repulsive potential region just discussed.
charge densities, respectively. Whef=>p", e.g., at large Above the crossing poinE..ss the Pauli repulsion domi-
d, 6e;~VedpM], while atp”<pM, de;~Vei pM]. As the nates and the classical turning point becomes higher for Ne
atom approaches the metal surface, it experiences an incredban for He at the same incident atom kinetic energies. It is
ing metal charge density, so that the limiting conditigh  also natural to compare our PES for He with that calculated
>pM is no longer valid. A second effect, which at smaler by Lang and Norske'? (LN) on the same Ag-like jellium in
might raise e;(d) of the orbitals concentrated near the the same DFT framework. Such an analysis shows that from
nucleus, is the charge transfer from the metal into the outelF(d)=30 meV there is excellent agreement between the
shell levels of the adatom. Such an effect, which is signifi-two calculations, though ours is performed with a different
cant in previous calculations of chemisorbed adat@®sCl,  expansion, the LAPW, than that of LN. In the attractive re-
Si, Na on Al,*?is absent in physisorption, where the atomsgion our minimum, which is as deep as that of LN, is shifted
are also much further away from the metal. Since, as to babout Ia, further from the metal. This is because our
discussed in the following, we shall present also the atomexchange-correlation expressibrdiffers from that in LN,
metal potential energ¢PES of He and Ne, we add a com- and gives a more attractive exchange-correlation hole en-
ment on the comparison between the PES aad In par-  ergy, which is the one that is more relevant at lardeiWe
ticular, we see from Fig. 4 that thep2eigenvalue of Ne, also observe very good agreement between our PES’s and
differently from the % and 2, displays a maximum at about the PES’s for He and Ne on Ag of Chizmeshya and
the samal where the PES has its minimum. The correspondZaremba.® without the long-range correction. Note that the
ing results for the & eigenvalue of He, whose energy is depth of the physisorption minimum of Ne on Ag is in good
comparable to that of thep2eigenvalue of Ne, do not con- agreement with the results in Ref. 33. A comparison also
tradict the previous behavior. between our results and those computed by a phenomeno-
We now consider the energy dependence of the atorlogical method for He on A@00 and Ag110 (Ref. 7)
metal potentiaE(d) at various distances from the jellium  shows that the minimum of the physisorption potential is
edge, calculated in the grand-canonical framework. Note thatbout the same.
the outermost plane of substrate nuclei lies half an interpla- We wish to point out that the results for He and Ne on Ag
nar spacing behind the positive background etfgem 1.4 (r§9=3.0b0) in this paper and our previous ones on Al-like
bohr to 2.2 bohr for different facg210 or 100 or 11jlof the  jellium with higher density (§'=2.07a0) display interesting
metal surfacke Figure 5 shows the PES's for He and Ne ondifferences. From Figs. 6 and 7, we observe the much
Ag, respectively. Though at large enough atom-surface dissmoother increase of the PES’s of He and Ne on Ag. Also
tances such curves require the contribution of the van dewe observe that He and Ne atoms with the same impinging
Waals tail not described in the LDA approach, for atom-E,;, energy get closer to Al than to Ag up to abdgf;,
surface repulsive potentials at smalkér our results accu- =25 meV for He ancE,;;=50 meV for Ne, respectively.
rately describe the PES in the region relevant to noble-gaBor larger energies the Al repulsion is much stronger. Such
atom—metal elastic scattering experimekits. results can be accounted for, if we recall that an Al-like
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250 . - - . core-level eigenvalues on the atom-surface separation not
200 I ) treated in previous work of He and Ne on metals. To deal
NeonAg — with this problem we have applied the FLAPW basis set
150 |\ Ne on Al - : discussed in Sec. Il C. This approach is also the most con-
= venient to describe Ne and other adatoms, such as N, C,
ETW0 N 1 which display a deep pseudopotential.
? 50 | _ The second result refers to the adiabatic atom-surface po-
S tential of light physisorbed noble gas atoms on Ag. Our re-
0 sults indicate that in the atom-surface range characteristic of
50 1 _____ | noble-gas—surface scattering experiments, the turning point
"""""" of He is farther from the surface than that of Ne. This is
-100 . L ! 1 similar to the case of an Al substrate, and in agreement with
2.5 3.0 D 3.5 4.0 4.5 experiments. We have also discussed the relevance of the
istance (bohr radii) .
substrate charge density on the dependence of the atom sur-
FIG. 7. The same as Fig. 6 but for a Ne atom. face potential on the atom-metal distance.
jellium displays a larger electronic charge tail than that of a ACKNOWLEDGMENTS
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APPENDIX: MATRIX ELEMENTS

IV. CONCLUSIONS The matrix elements of the different terms defined in Eq.

) o i ) (9) with respect to the LAPW basis are calculated as follows.
The first contribution of this paper is the development of

an all electron full potential calculation for an isolated adsor-
bate in the framework of the embedding method and of the
DFT-LDA. This allows one to describe the variation of the  The overlap matrix in the muffin-tin regionr{<ryy) is

1. Overlap matrix elements

otf,}=fMTd3rx,t<r>fo<r>=5LLr[A|(ki>A.<k,->+B.(koB'(kj)f;wdrrz[wrnz}, (A1)

and in the interstitial regionrg,r<|r|<rg):

" . I (r)=Ji(rur)  for i=]
o™, =1 d3ry* TGEIE A2
e fim X (DX (D)= 61, Ilki,kj(rS)_ILi,kj(rMT) for i#] (A2)
with
X X2
IL,B(X)=fodrrzh(ar)j.(ﬁr):rﬁz[ﬂh(axn|_1(ﬁ><)—aj|_1(aX)j|(Bx)], (A3)
X x3
JL(X)=derr2[j|(ar)]2= 5[1’F(aX)—h-l(aX)Jm(aX)]- (A4)

2. Hamiltonian matrix elements

To simplify the derivation we break up the expression for the Hamiltonian matrix element into several contributions. We
start with the muffin tin, and a simple spherical potential, and then consider nonspherical contributions inside the muffin tin.
a. Spherical partThe Hamiltonian matrix element is

i

HMT,=fMTd3r)(;(r)(H+AH)XM,(r), (A5)

whereH is the spherical part of the Hamiltonian adH the nonspherical contribution. The spherical part can be written as
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fMT A xim(DHX e (D)= JMT d3r[A (k) uy(r) +By (k) uy (1) 1* YT (QH[ A (K up (1) + By (Kpup (1) 1Y (Q)
:L dﬂvtm)vum)ﬂw drr2[ Ay (ki) uy (1) + By (ko) Uy (1) JHLA (k) (1) + By (k) Uy (1)
v Mt .
:5LL'[Al(ki)A|'(kj)fo drr2U|(r)HU|'(r)+A|(ki)B|'(kj)JO drr2uy(r)Huy(r)
MT . M1 . .
+B|(ki)A|,(|<j)fO drr2u|(r)Hu|/(r)+B|(ki)B|,(k]-)fo drrzu,(r)HuV(r)}. (AB)

Using Eq.(13), all the above integrals can be reduced to the numerical calculation of only three (téﬂrhﬁ:, (W|V|uy), and
(uViw). _

b. Nonspherical partin general the potential in the muffin tin is not spherically symmetric. This is especially true for an
atom at a surface, where a spherically symmetric potential would provide a rather bad description. We use the general
expansion of the potential in the muffin tin as given by

n
AH= V) YL(Q). (A7)
LH
With calculations similar to that in EGA6), we obtain

Ny
AHY = fMT (N 2 VEDYL(Q) [xjrme (1)
LH

n
> VEEY Q) [[AL(K)up (1) + By (k) Uy ()Y L (Q)
LII

:fm ABTA (k) uy (1) + By (ki) 0y (1) YE ()
n . MT - eff '

:2{ o 4 YL(Q)YMQ)YL'(Q)UO dre LA (ki) uy(r) + By (k) u () V(DA (ki (1) + By (k) up (1)
L” T

i '™MT . .
=> OLL”L’jO dl’rz[A|(ki)u|(r)+B|(ki)u|(r)]Vfﬁ(r)[A|,(k]-)u|,(r)+B|,(kj)u|,(r)], (A8)
L”

where Oy v 1= [4,dQ Y (Q)Y(Q)Y . (Q). The four The potential is expanded as in EA7). The radial com-

kinds of integrals in Eq(A8) have to be evaluated numeri- ponentsV, (r) are tabulated on a grid and include contribu-

cally. tions from the ionic core, known analytically, the Coulomb
Now we handle the Hamiltonian matrix elements in thecontribution, which is found from the solution of the Poisson

interstitial region. In this case the basis functions are simplyequation(this reduces to the solution of a radial problem for

Bessel functions and consequently all terms are easier teachL component and the exchange-correlation potential,

compute than in the muffin tin. In the interstitial region the which is numerically evaluated by fitting its angular varia-

normal derivative and the embedding potential also have ttion via a special directions expantion.

be consideredisee Eq.(6) and following]. The contribution to the Hamiltonian matrix elements from
The kinetic energy is straightforward, as the basis functhe potential is

tions are eigenstates of the kinetic energy operator with ei-

genvaluek?/2: )
int __ S 2. .
Vil =2 OLLMJ drr2j (kir)Ven(r)ji (k).
int ka int L fuT
T =% Or - (A9) (A11)
The normal derivative is Finally, the matrix elements of the embedding potential

are

s, . .
Duu = 5LL'E]I(kirS)[IJ 1(Kjre) —kjrsjia(kjrs) 1,

(AL0 Go M(E) uu =186 M(E)LLrii(kir9i(kirs), (Al2)

making use of recurrence relations satisfied by the Bessavhere Go(E).., are the expansion coefficient of
functions®® G, X(rs.rs,E) onto the spherical harmonics.
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