PHYSICAL REVIEW B VOLUME 58, NUMBER 3 15 JULY 1998-I

Duality relation among periodic-potential problems in the lowest Landau level
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Using a momentum representation of a magnetic von Neumann lattice, we study a two-dimensional electron
in a uniform magnetic field and obtain one-particle spectra of various periodic short-range potential problems
in the lowest Landau level. We find that the energy spectra satisfy a duality relation between a period of the
potential and a magnetic length. The energy spectra consist of the Hofstadter-type bands and flat bands. We
also study the connection between a periodic short-range potential problem and a tight-binding model.
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A physical system somgtimes shows a peculiar fractal (X+iY)| amn) =aZmn @mn)» )
structure of the spectrum if the system has two scales of
periods. In the nearest-neighb@iN) tight-binding model
with a magnetic flux, Hofstadter obtained one-particle specwhere a=+2n%/eB, z,,=Mwy+nw, (MneZ), and
tra of butterfly shape and discovered a multifractal structure.w, ,», are complex numbers that satisfy [laf w,]=1.1
Experimentally, it may be a challenging theme to observe th&or our purpose, it is convenient to use the Fourier trans-
spectrum of the fractal structure. Actually, interesting phe<formed basis as
nomena have been observed in experiments of lateral
superlattice$™* The system with the cosine potential has
been well studied theoreticalfyln the case of the antidot 1 _ _
array, however, the potential term includes a large number of [1,p)=—— > ePx™T Py @, 2
cosine functions with different wavelength3he steeper the A(p) fn
potential of the antidot, the harder it is to solve the eigen-
value problem. Silberbaueand Kihn et al® studied a steep
antidot potential problem. Huaret al® solved the periodic
short-range potential problem in a finite system numerically.

Analytic properties of the problem are unknown.

In t_he prgsent paper, we study eigen\{alue problem; qf Fhe B(p)=(21m T)l/4ei(rl47r)p§,ﬂl
two-dimensional electron systems defined on an infinite
plane with the periodic short-range potentials in the lowest
Landau level(LLL) analytically and numerically. We find ) )
Hofstadter-type bands and flat bands. The former bands sedd 7=~ y/w,. For 7=i, the von Neumann lattice be-
isfy a duality relation. Namely, the spectrum at one value ofcomes a square lattice. For=e'>™%, it becomes a triangular
t is connected with that of 4/ wheret is the fluxd pen- lattice. The Fourier transformed basis is an orthonormal set
etrating the unit cell of the periodic potential normalized by Of extended states and obeys a nontrivial boundary condition
the unit flux @, i.e., t=®/d,. Our duality is concerned
with flux and is different from Aubry and Andre’s duality, _
which is concerned with hopping strengths in the NN tight- I, p+2aNy=e""¢P:N)|| p), (4)
binding model. We also study the connection between a pe-
riodic short-range potential problem and a tight-binding
model. Where¢(va):ﬂj(Nx+ Ny)_Nypx- ) S

The magnetic von Neumann lattidé?is a representation ~!If the magnetic von Neumann lattice has a periodicity
of the quantum system in a uniform magnetic field and ha§ommensurate with the pgnodlcny of the external potential
quite useful properties in studying the system with periodicV(X), the one-body potential problem becomes easy to treat.
potentials. In particular, its lattice structure varies and we car Nis happens when is equal tog/p with relatively prime
select the suitable one in accordance with the potential lathtegersp,q. Let us consider an arbitrary regular lattice of
tice. Using a momentum representation of the von Neumanghort-range potentials af=q/p:
lattice® we give a proof of the duality and show energy
spectra in the periodic potential problems.

In a two-dimensional system under a uniform magnetic
field B, the von Neumann lattice basis is formed by the direct
product of harmonic oscillator eigenfunctioffs) of relative
coordinates £, %) and coherent statés,, of guiding cen-
ter coordinatesX,Y). The coherent states are defined by The matrix element of the potential in the LLL is given by

where 8(p) is a normalization factor defined by

Pxt TPy
o

T) 3

N
V(x)=aVv,>, 8?2 z+aNqux+a?ywy ()
N
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. Vo r p Cin
<O-p|V(X)|O1p >:Erp%,N B( px_ZWFpapy) er(p):bo px+77_277'arq1py e ImPlA)rg (12
o g and b;(p) is the annihilation operator of the statgp).
X B*| py—2m| —+—=|,py|(2m)? Equation(11) is equivalent to the tight-binding Hamiltonian
p g/
with the hopping term
r
X8| py—P +27T(_q+N ) T
© q " Vhop= Vo€X —z[(mz—ml)2+(n2—n1)z]
X 8(py=py+2mNy)e PP, (6) .
wherer,=0,1,...p—1 andr,=0,1,...g—1. Here we +i T(m2+ml)(n2—n1)), (13

study the eigenvalue equations in the LLL. The eigenvalue ) )
equation becomes wherem,—m;=m andn,—n;=n. This hopping term has a

flux per unit cell of a square lattice72t and the hopping
D'Dy= ey, (7) strength varies witht. If (m,n)=(=1,0),(0+1), Eq.(11)
becomes the NN tight-binding Hamiltonian. In a square lat-
tice of short-range potentials, the summation is taken over all
(m,n) with an equal weight. Therefore, the result becomes a

where apx g matrix D is defined by

B p Tq S o e :
[D(p)]rprq—ﬁ* ( Py— 27T 6+ E) Dy (8)  tight-binding Hamiltonian with finite-range hopping terms
, " . . . 1
andD'D is a gxq Hermitian matrix. The magnetic Bril- ?2 CT(mZrnz)vhop(mzun2;mlyn1)c(mlrnl)- (14)
m,n

louin zone(MBZ) is the region wherép,|<=/q and|p,|
<. Each band has p-fold degeneracy. Consequently, the
fundamental region of the MBZ is the region wheg|
<w/pq and|py| <.

We should note that the rank dd'D is generally
min(p,q). If p<q, the band splits intg subbands and one
flat band, which corresponds to the zero mode®ofThe
number of zero modes ig—p. By a linear transformation
' =Dy, the eigenvalue equatidi) becomes

The hopping range is abouyft and the number of relevant
terms increases linearly with
In a regular lattice, the one-particle spectrum is given by
the solution of Eq(7). Since the matrix element @D is
given in the analytic form, it is easy to solve numerically.
Figure 1 shows the spectra for the square and triangular lat-
tices. The points aE=0 correspond to the original LLL.
There are two marked structures in these figures: Hofstadter-
DDy =ey'. (9) type bands and a Iarge_ gap above the flat b_ands_'m. The
origin of the large gap is easily understood in a dilute poten-
DD' is apx p Hermitian matrix. Equatiori7) is equivalent tial limit t—cc. In this limit, the potential approaches one
to Eq. (9) except for the zero modes. Apparently, E@). is  short-range potential. Its spectrum consists of a bound state
obtained by taking the complex conjugate and interchangingrapped at the potential and a flat band. The bound state has
p andq of Eq. (7). Therefore, there exists a duality relation the energyE=V, and the flat band has the energy-0. In
between two problems df=qg/p>1 andt=p/q<1. Actu- a dense potential limit—0, the potential approaches con-
ally, the energy spectr& obey the relation stantV, /t. Therefore, the asymptotic form of the spectrum in
t—0 andt—oo except for the zero modes is given by

1

1 /1
E(t)= YE(?)’ (10
1+-
t

E(t)~Vo ; (15

except for the flat bands. [f>q, Eq. (10) is also obtained.
Thus the duality relation is proved in an arbitrary regularwhich satisfies the duality relatioid.0).

lattice of short-range potentials. The self-dual pointssl To check the duality, we replade with Et for t<1 and

and the physical quantity has critical behavior near the pointreplacet with 2— 1/t otherwise in Fig. 1. Then the figures

Before solving the eigenvalue problems numerically, webecome symmetric with respecttte 1 owing to the duality.
clarify the connection between a periodic short-range potenthe results for the square lattice are shown in Fig. 2. The
tial problem and a tight-binding model in the LLL. Let us duality is clear in this figure. The patterns in Figs. 1 and 2 are
suppose a square lattice potentd(x)=Vy exgd2mi(mx  very similar to that of the NN and next-nearest-neighbor
+ny)/b], wheret=(b/a)?=q/p. The potential energy term (NNN) tight-binding model on the square and the triangular
in the second quantized form becomes lattice. However, in contrast with the NN or NNN tight-
binding model, a periodicity with respect to the flux does not
exist in our model. Instead, the duality betweemand 1t
does exist.

As an example of an irregular lattice, we study a honey-
comb lattice potential numerically. A honeycomb lattice can
, (1)  be regarded as a sum of two triangular lattices. This property

causes the following eigenvalue equation att 2
where = (flux per hexagon)Yb,=q/p:

VJ I S ol () s m(Plexd — (P )
0 ) vz (277) Tq fgtm 2t

Tq

+in

27 .m
Pyx— Trq —i T(py+ n)
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FIG. 1. Energy spectra of the periodic short-range potential for
(a) the square lattices ar®) the triangular lattices. The horizontal
variablet is the flux per unit cell in the flux unit, is the strength
of the potential.

whereD; andD, are defined by

Since bothD]D,; and D1D, are positive definite, the zero
modes must satisfy bot®,¢=0 andD,¢=0. If q—2p
>0, the zero modes exist and the LLL splits intp 8ub-
bands and one flat band. Otherwise, the LLL splits igto
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FIG. 2. Energy spectra of Fig.(d are deformed to show the
duality clearly. The vertical variable &E/V, for t<1 andE/V,
otherwise. The horizontal variable is-2Lt for t>1 andt other-
wise. As a result, the spectrum becomes symmetric with respect to
t=1.

similar to that of the regular lattice. The numerical result of
the spectrum is shown in Fig. 3. The spectrum also has a
Hofstadter-type structure and a large gap above the flat
bands.

Next we study the possibility of observing the band struc-
ture obtained above. The gap above the flat bands may be
observed in the magnetoresistance experifiaiie assume

that the antidot potential has a heig~m and an area of the
baser3. Vo in Eq. (5) is related toV, and r, as a?V,
=r2V,. The magnitude of the large gap above the flat bands
is of the order ofV, and the correction of the finite size
effect of the antidot to the energy is estimated/g®(r,/b),
whereb is a lattice constant of the antidot array. Therefore,
the gap above the flat bands should be observed<tb. In

the current experimenfsy,/b~0.25, which is enough to

HONEYCOMB LATTICE

subbands. This system does not satisfy the duality relation FIG. 3. Energy spectra for the honeycomb lattices. The horizon-
(10). However, the asymptotic behavior of the one-particletal variablet is the flux per half of the hexagon in the flux unitg

energy spectrum is also given by Ed.5) from arguments

is the strength of the potential.
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observe the gap. Taking the Landau level mixing into condems in the LLL using a momentum representation of the
sideration, the eigenvalue equation for the potential of Eqvon Neumann lattice. In a periodic array of short-range po-

(5) has the form tentials, the energy spectrum has three remarkable structures.
(i) The spectrum has a Hofstadter-type structure, which is
2 E|5“,+\QD<|>TD(|'> l!/(w):ﬂb(l)' (18 commonly seen in the periodic potential problems in a mag-
| q netic field.(ii) The duality relation exists for a regular lattice

potential of Eq.(5). A honeycomb lattice is an irregular lat-

Landau band has a flat band with the eneEgy Therefore, tice and obeys a duality relation asymptoticallyi.) There is
the flat bands remain flat in the presence of the Landau levé} 1arge gap above flat barfdshat comes from zero modes of
mixing effect in the short-range periodic potential problem.the matrixD of Eq. (8). These structures are universal in the

The correction of the Landau level mixing to the energyperiodic short-range potential problem in the LLL. The con-

above the large gap is estimated by the second-order pertufitions for the observation of these structures were obtained.
bative calculation a& | ~(Vo)?/fw.. FromV,>E, , we In addition, the equivalence between two problems of a
obtain the conditiorﬁwc>vo(r0/a)2 for the gap to survive. square lattice of short-range potentials and a tight-binding

Using the realistic valuéé m=0.07m, and V0=0.3 meV, model with a inverse flux was shown.

this condition becomes 2%42/mr5>V,. This is satisfied in This work was partially supported by the special Grant-
the current experiments. So far, conditions for observatiorin-Aid for Promotion of Education and Science in Hokkaido
are satisfied. However, the parametein current experi- University provided by the Ministry of Education, Science,
ments, e.g.B=5 T, b=200 nm, and~50, is too large to Sports and Culture; the Grant-in-Aid for Scientific Research
observe the large gap, the Hofstadter-type bands, and tH&rant No. 07640522 and the Grant-in-Aid for Interna-
critical behavior neat=1. Thus we hope that the experi- tional Scientific Research(Joint Research Grant No.
ment will be made in a finer lattice of the antidot array. 07044048 from the Ministry of Education, Science, Sports
In summary, we solved various periodic potential prob-and Culture, Japan.

Because of thej—p zero modes oD (") for p<q, thelth
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