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Duality relation among periodic-potential problems in the lowest Landau level

K. Ishikawa, N. Maeda, T. Ochiai, and H. Suzuki
Department of Physics, Hokkaido University, Sapporo 060, Japan

~Received 2 April 1997; revised manuscript received 29 January 1998!

Using a momentum representation of a magnetic von Neumann lattice, we study a two-dimensional electron
in a uniform magnetic field and obtain one-particle spectra of various periodic short-range potential problems
in the lowest Landau level. We find that the energy spectra satisfy a duality relation between a period of the
potential and a magnetic length. The energy spectra consist of the Hofstadter-type bands and flat bands. We
also study the connection between a periodic short-range potential problem and a tight-binding model.
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A physical system sometimes shows a peculiar fra
structure of the spectrum if the system has two scales
periods. In the nearest-neighbor~NN! tight-binding model
with a magnetic flux, Hofstadter obtained one-particle sp
tra of butterfly shape and discovered a multifractal structu1

Experimentally, it may be a challenging theme to observe
spectrum of the fractal structure. Actually, interesting ph
nomena have been observed in experiments of lat
superlattices.2–4 The system with the cosine potential h
been well studied theoretically.5 In the case of the antido
array, however, the potential term includes a large numbe
cosine functions with different wavelengths.6 The steeper the
potential of the antidot, the harder it is to solve the eige
value problem. Silberbauer7 and Kühn et al.8 studied a steep
antidot potential problem. Huanget al.9 solved the periodic
short-range potential problem in a finite system numerica
Analytic properties of the problem are unknown.

In the present paper, we study eigenvalue problems of
two-dimensional electron systems defined on an infin
plane with the periodic short-range potentials in the low
Landau level~LLL ! analytically and numerically. We find
Hofstadter-type bands and flat bands. The former bands
isfy a duality relation. Namely, the spectrum at one value
t is connected with that of 1/t, where t is the flux F pen-
etrating the unit cell of the periodic potential normalized
the unit flux F0, i.e., t5F/F0. Our duality is concerned
with flux and is different from Aubry and Andre’s duality,10

which is concerned with hopping strengths in the NN tig
binding model. We also study the connection between a
riodic short-range potential problem and a tight-bindi
model.

The magnetic von Neumann lattice11,12 is a representation
of the quantum system in a uniform magnetic field and
quite useful properties in studying the system with perio
potentials. In particular, its lattice structure varies and we
select the suitable one in accordance with the potential
tice. Using a momentum representation of the von Neum
lattice,13 we give a proof of the duality and show energ
spectra in the periodic potential problems.

In a two-dimensional system under a uniform magne
field B, the von Neumann lattice basis is formed by the dir
product of harmonic oscillator eigenfunctionsu f l& of relative
coordinates (j,h) and coherent statesuamn& of guiding cen-
ter coordinates (X,Y). The coherent states are defined by
PRB 580163-1829/98/58~3!/1088~4!/$15.00
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~X1 iY!uamn&5azmnuamn&, ~1!

where a5A2p\/eB, zmn5mvx1nvy (m,nPZ), and
vx ,vy are complex numbers that satisfy Im@vx* vy#51.14

For our purpose, it is convenient to use the Fourier tra
formed basis as

u l ,p&5
1

b~p! (
m,n

eipxm1 ipynu f l ^ amn&, ~2!

whereb(p) is a normalization factor defined by

b~p!5~2 Im t!1/4ei ~t/4p!py
2
q1S px1tpy

2p Ut D ~3!

and t52vx /vy . For t5 i , the von Neumann lattice be
comes a square lattice. Fort5ei2p/3, it becomes a triangula
lattice. The Fourier transformed basis is an orthonormal
of extended states and obeys a nontrivial boundary condi

u l ,p12pN&5e2 if~p,N!u l ,p&, ~4!

wheref(p,N)5p(Nx1Ny)2Nypx .
If the magnetic von Neumann lattice has a periodic

commensurate with the periodicity of the external poten
V(x), the one-body potential problem becomes easy to tr
This happens whent is equal toq/p with relatively prime
integersp,q. Let us consider an arbitrary regular lattice
short-range potentials oft5q/p:

V~x!5a2V0(
N

d~2!S z1aNxqvx1a
Ny

p
vyD . ~5!

The matrix element of the potential in the LLL is given b
1088 © 1998 The American Physical Society
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^0,puV~x!u0,p8&5
V0

q (
r p ,r q ,N

bS px22p
r p

p
,pyD

3b* S px22pS r p

p
1

r q

q D ,pyD ~2p!2

3dS px82px12pS r q

q
1NxD D

3d~py82py12pNy!eif~p8,N!, ~6!

where r p50,1, . . . ,p21 and r q50,1, . . . ,q21. Here we
study the eigenvalue equations in the LLL. The eigenva
equation becomes

D†Dc5ec, ~7!

where ap3q matrix D is defined by

@D~p!# r pr q
5b* S px22pS r p

p
1

r q

q D ,pyD ~8!

and D†D is a q3q Hermitian matrix. The magnetic Bril-
louin zone~MBZ! is the region whereupxu,p/q and upyu
,p. Each band has ap-fold degeneracy. Consequently, th
fundamental region of the MBZ is the region whereupxu
,p/pq and upyu,p.

We should note that the rank ofD†D is generally
min(p,q). If p,q, the band splits intop subbands and on
flat band, which corresponds to the zero modes ofD. The
number of zero modes isq2p. By a linear transformation
c85Dc, the eigenvalue equation~7! becomes

DD†c85ec8. ~9!

DD† is a p3p Hermitian matrix. Equation~7! is equivalent
to Eq. ~9! except for the zero modes. Apparently, Eq.~9! is
obtained by taking the complex conjugate and interchang
p andq of Eq. ~7!. Therefore, there exists a duality relatio
between two problems oft5q/p.1 and t5p/q,1. Actu-
ally, the energy spectraE obey the relation

E~ t !5
1

t
ES 1

t D , ~10!

except for the flat bands. Ifp.q, Eq. ~10! is also obtained.
Thus the duality relation is proved in an arbitrary regu
lattice of short-range potentials. The self-dual point ist51
and the physical quantity has critical behavior near the po

Before solving the eigenvalue problems numerically,
clarify the connection between a periodic short-range po
tial problem and a tight-binding model in the LLL. Let u
suppose a square lattice potentialV(x)5V0 exp@2pi(mx
1ny)/b#, wheret5(b/a)25q/p. The potential energy term
in the second quantized form becomes

V0E
MBZ

d2p

~2p!2(
r q

cr q

† ~p!cr q1m~p!expF2
p

2t
~m21n2!

1 inS px2
2p

t
r qD2 i

m

t
~py1pn!G , ~11!

where
e

g

r

t.
e
n-

cr q
~p!5b0S px1p22p

p

q
r q ,pyDe2 ip~p/q!r q ~12!

and bl(p) is the annihilation operator of the stateu l ,p&.
Equation~11! is equivalent to the tight-binding Hamiltonia
with the hopping term

Vhop5V0expS 2
p

2t
@~m22m1!21~n22n1!2#

1 i
p

t
~m21m1!~n22n1! D , ~13!

wherem22m15m andn22n15n. This hopping term has a
flux per unit cell of a square lattice 2p/t and the hopping
strength varies witht. If ( m,n)5(61,0),(0,61), Eq. ~11!
becomes the NN tight-binding Hamiltonian. In a square l
tice of short-range potentials, the summation is taken ove
(m,n) with an equal weight. Therefore, the result become
tight-binding Hamiltonian with finite-range hopping terms

1

t (m,n
c†~m2 ,n2!Vhop~m2 ,n2 ;m1 ,n1!c~m1 ,n1!. ~14!

The hopping range is aboutAt and the number of relevan
terms increases linearly witht.

In a regular lattice, the one-particle spectrum is given
the solution of Eq.~7!. Since the matrix element ofD†D is
given in the analytic form, it is easy to solve numerical
Figure 1 shows the spectra for the square and triangular
tices. The points atE50 correspond to the original LLL.
There are two marked structures in these figures: Hofstad
type bands and a large gap above the flat bands int.1. The
origin of the large gap is easily understood in a dilute pot
tial limit t→`. In this limit, the potential approaches on
short-range potential. Its spectrum consists of a bound s
trapped at the potential and a flat band. The bound state
the energyE5V0 and the flat band has the energyE50. In
a dense potential limitt→0, the potential approaches con
stantV0 /t. Therefore, the asymptotic form of the spectrum
t→0 andt→` except for the zero modes is given by

E~ t !;V0S 11
1

t D , ~15!

which satisfies the duality relation~10!.
To check the duality, we replaceE with Et for t,1 and

replacet with 221/t otherwise in Fig. 1. Then the figure
become symmetric with respect tot51 owing to the duality.
The results for the square lattice are shown in Fig. 2. T
duality is clear in this figure. The patterns in Figs. 1 and 2
very similar to that of the NN and next-nearest-neighb
~NNN! tight-binding model on the square and the triangu
lattice. However, in contrast with the NN or NNN tigh
binding model, a periodicity with respect to the flux does n
exist in our model. Instead, the duality betweent and 1/t
does exist.

As an example of an irregular lattice, we study a hone
comb lattice potential numerically. A honeycomb lattice c
be regarded as a sum of two triangular lattices. This prop
causes the following eigenvalue equation att
5(flux per hexagon)/F05q/p:
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~D1
†D11D2

†D2!c5ec, ~16!

whereD1 andD2 are defined by

D15D~px ,py!, D25DS px2
2p

3p
,py1

2pq

3 D . ~17!

Since bothD1
†D1 and D2

†D2 are positive definite, the zer
modes must satisfy bothD1c50 and D2c50. If q22p
.0, the zero modes exist and the LLL splits into 2p sub-
bands and one flat band. Otherwise, the LLL splits intoq
subbands. This system does not satisfy the duality rela
~10!. However, the asymptotic behavior of the one-parti
energy spectrum is also given by Eq.~15! from arguments

FIG. 1. Energy spectra of the periodic short-range potential
~a! the square lattices and~b! the triangular lattices. The horizonta
variablet is the flux per unit cell in the flux unit.V0 is the strength
of the potential.
n

similar to that of the regular lattice. The numerical result
the spectrum is shown in Fig. 3. The spectrum also ha
Hofstadter-type structure and a large gap above the
bands.

Next we study the possibility of observing the band stru
ture obtained above. The gap above the flat bands ma
observed in the magnetoresistance experiment.4 We assume
that the antidot potential has a heightṼ0 and an area of the
base r 0

2. V0 in Eq. ~5! is related toṼ0 and r 0 as a2V0

5r 0
2Ṽ0. The magnitude of the large gap above the flat ba

is of the order ofV0 and the correction of the finite siz
effect of the antidot to the energy is estimated asV0O(r 0 /b),
whereb is a lattice constant of the antidot array. Therefo
the gap above the flat bands should be observed inr 0!b. In
the current experiments,3 r 0 /b'0.25, which is enough to

r

FIG. 2. Energy spectra of Fig. 1~a! are deformed to show the
duality clearly. The vertical variable istE/V0 for t,1 andE/V0

otherwise. The horizontal variable is 221/t for t.1 and t other-
wise. As a result, the spectrum becomes symmetric with respe
t51.

FIG. 3. Energy spectra for the honeycomb lattices. The horiz
tal variablet is the flux per half of the hexagon in the flux unit.V0

is the strength of the potential.
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observe the gap. Taking the Landau level mixing into co
sideration, the eigenvalue equation for the potential of
~5! has the form

(
l 8

FEld l l 81
V0

q
D ~ l !†D ~ l 8!Gc~ l 8!5ec~ l !. ~18!

Because of theq2p zero modes ofD ( l ) for p,q, the l th
Landau band has a flat band with the energyEl . Therefore,
the flat bands remain flat in the presence of the Landau l
mixing effect in the short-range periodic potential proble
The correction of the Landau level mixing to the ener
above the large gap is estimated by the second-order pe
bative calculation asELL'(V0)2/\vc . From V0@ELL , we
obtain the condition\vc@Ṽ0(r 0 /a)2 for the gap to survive.
Using the realistic values2,4 m50.07me and Ṽ050.3 meV,
this condition becomes 2p\2/mr0

2@Ṽ0. This is satisfied in
the current experiments. So far, conditions for observa
are satisfied. However, the parametert in current experi-
ments, e.g.,B55 T, b5200 nm, andt'50, is too large to
observe the large gap, the Hofstadter-type bands, and
critical behavior neart51. Thus we hope that the exper
ment will be made in a finer lattice of the antidot array.

In summary, we solved various periodic potential pro
tt
,

et
-
.

el
.
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lems in the LLL using a momentum representation of t
von Neumann lattice. In a periodic array of short-range p
tentials, the energy spectrum has three remarkable struct
~i! The spectrum has a Hofstadter-type structure, which
commonly seen in the periodic potential problems in a m
netic field.~ii ! The duality relation exists for a regular lattic
potential of Eq.~5!. A honeycomb lattice is an irregular lat
tice and obeys a duality relation asymptotically.~iii ! There is
a large gap above flat bands15 that comes from zero modes o
the matrixD of Eq. ~8!. These structures are universal in th
periodic short-range potential problem in the LLL. The co
ditions for the observation of these structures were obtain
In addition, the equivalence between two problems o
square lattice of short-range potentials and a tight-bind
model with a inverse flux was shown.
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