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Applying voltage sources to a Luttinger liquid with arbitrary transmission
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The Landauer approach to transport in mesoscopic conductors has been generalized to allow for strong
electronic correlations in a single-channel quantum wire. We describe in detail how to account for external
voltage sources in adiabatic contact with a quantum wire containing a backscatterer of arbitrary strength.
Assuming that the quantum wire is in the Luttinger liquid state, voltage sources lead to radiative boundary
conditions applied to the displacement field employed in the bosonization scheme. We present the exact
solution of the transport problem for arbitrary backscattering strength at the special Coulomb interaction
parameteg=1/2.[S0163-18208)01340-X

[. INTRODUCTION independent voltages in this paper. It is shown in Sec. lll that
the presence of the voltage sources leads to boundary condi-
One-dimensiona(1D) materials have received much at- tions, which in turn allow for the application of powerful
tention in the past few years. The discovery of novel 1Dtheoretical technigues, e.g., bosonizatioefermionizatiorf,
conductors and the failure to model these according t®r boundary conformal field theory.
Fermi-liquid theory have raised many interesting questions. Other work has also dealt with similar questions as the
The generic behavior of electrons in a 1D conductor is deones addressed her@l) There have been attempts to de-
scribed by the Luttinger liquidLL) model}? when one con-  scribe the effects of a reservoir by a 1D LL wigh= 1, both
siders externally screened short-range interactions. Experfor the clean casé and allowing for impurity
mental realizations of the phenomena predicted by the Llbackscattering? Albeit such calculations can explain the ex-
model could be based on carbon nanotutfeguantum wires  perimentally observed absence of a conductance renormal-
in semiconductor heterostructures operated in the singlgzation in a perfectly clean systemijt remains unclear
channel limit® long chain molecule$,or edge states in a whether this approach can properly account for ideal reser-
fractional quantum Hall bafr. voirs. Furthermore, calculations become bulky if one in-
In this paper, we study electrical transport in 1D conduc-cludes the impurity backscattering) Other studies have
tors and incorporate external voltage sources adiabaticallsimply assumed a local voltage drop at the imputityAs
connected to the quantum wire. We focus on the simplestliscussed in Sec. lll, this assumption is justified only if the
case of a spinless LL described by the standard interactioimpurity backscattering is effectively very stron@) In the
parameteg=1, whereg=1 is the noninteracting limit and a clean case, Kubo-formula-based theories have been
small value ofg equals strong correlations. The extension topresentetf to explain the perfect conductan&=2e% h.
spin+ electrons or to nanotubes is then straightforward. Tak{4) Yet another approach for a clean system models reser-
ing into account backscattering effects due to impurities, th&/oirs by charges conjugate to the chemical potentials of the
generic behavior at low-energy scales can be studied by cowoltage source¥’
sidering a pointlike scatterer of arbitrary strength Then We believe that our approach may offer the simplest and
A=0 corresponds to a clean conductor, whiles is the =~ most general answer to the question of how to incorporate
limit of perfect reflection. Again the extension to a more external voltage sources. It is the natural extension of Land-
complicated situation, e.g., several impurities, is straightforauer’s —original approach designed for uncorrelated
ward and not further discussed here. electrons’ to a strongly correlated situation. The theory ap-
This underlying geometry is shown in Fig. 1. For clarity, plies for arbitrary interaction strengthand impurity back-
we discuss the case of a gated single-channel quantum wire
(QW) extending from—L/2<x<L/2. The screening back- x=-L/2 x=L/2
gate is responsible for short-range interactions within the
QW, and in the single-channel limit under consideration U ° U
here, a LL is formed:® Possibly with minor modifications, 2
however, the theory applies to all 1D correlated electron sys-
tems.
At the ends of the QW, reservoirs are assumed to be adia- | ‘
batically connected. We consider ideal reservoirs as in the g 1. Gated quantum wire as a model of the Luttinger liquid.
standard Landauer approach for Fermi-liquid conducfots.  Reservoirs held at chemical potentja] ,=eU, , are adiabatically
The reservoirs are held at chemical potentjajs, and since  connected to the 1D conductor &t +L/2. A backscatterer of
one has good screening in tk@D or 3D Fermi liquid res-  strength\ (indicated by the filled circleis located atx=0. The
ervoirs, the differencé) =(u,;— uo)/e is the applied two-  screening gate is responsible for externally screened interactions
terminal voltage. For simplicity, we consider only time- within the quantum wire.
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scattering\. In particular, as an example of experimental Uo
relevance, we determine the full crossover from perfect con- H, =7J dx p?(x). (2.9
ductance quantization in a clean wire to the anomalous
power-law conductance suppression in a disturbed'Was  Here p(x) is the total density relative to the zero-voltage
the impurity strength is varied. equilibrium value p=kg /7. Including the mixed compo-
The structure of this paper is as follows. In Sec. Il the LL nents of the density operator, e-@:;l/fp in Eq. (2.5) corre-
concept is introduced using the gated QW as an example. I§ponds to retaining the electron-electron backscattering. Fol-
Sec. lll, boundary conditions describing the applied voltaggowing standard argumentshis is an irrelevant perturbation
sources are presented. Several general consequences of {igich can be taken into account by a simple renormalization
voltage sources are collected in Sec. IV. In Sec. V, the fullof the LL parameters. The densin(x) enterinng is then
transport problem for arbitrary backscattering strengtts  only due to the densitiesg,, of right- and left-moving fer-

solved for the special LL parametgr=1/2. Finally, some mions, p=pg+p,., for which Eq. (2.1) yields p(x)
conclusions can be found in Sec. VI. A brief account of some- . g(x)/ /. Thereby the LL Hamiltonian emerges,

results presented in Secs. Ill and IV has been given before in

Ref. 18. ﬁvfuz

Ho=—| dXg(x)2+g (5x0)%]. (2.6
2 ) n

Il. LUTTINGER LIQUID
. . o For simplicity, we assume full translation invariance in the
We start by summarizing the Luttinger-liquid concept, Qw such that the sound velocity=v/g. Remarkably, the
which allows for a convenient description of 1D conductors.|gw-energy excitations of the interacting system are still har-

Due to Coulomb repulsion, the electrons in a 1D quantumygnic oscillations, and thereford,, allows for an exact
wire have a tendency to occupy states on a Wigner lattice. Aggution.

familiar from lattice excitations, the electronic configurations  Next consider a scatterer sitting at, say: 0. The impor-

can be described in terms of a “displacement field(x).  ant backscatterif§ comes from the mixed component of
Remarkably, as far as the low-energy physics is concernegl,o density operatoi;, ~¢;(0)¢L(O)+H.c., which, ex-
one can always find a one-to-one transmutation relating thﬁressed in terms of thepdisplacement field. leads to

1D interacting fermion system to an equivalent bosonic sys- ’

tem describgd by this displacemgnt fieéld)osonizatiqn”). Himp=\ CO$ \/EH(O)]. 2.7
In the bosonization scheme, the right- and left-moving com-
ponent p=R/L= =) of the electron operator is expressed in The energyA is a measure of the impurity backscattering
terms of the displacement fiefd, strength. The Hamiltoniakl=H  +H;y,, has been subject
of intense theoretical effort in the past few years. The pur-
zpp(x)=(Zwa)‘l’zexp[—ikax—ip\/ga(x)—i \/;(ﬁ(x)], pose of our paper is to clarify how this strongly correlated
(2.2 model should incorporate applied voltage sources.

) ) For the gated QW in Fig. 1, the interaction contribution
whe_rea~ 1{k,: corregponds tp the Iattlce_ spacing of the as+H4, in Eq. (2.5 can be interpreted as the charging energy
somat_ed Wigner lattice ankk is the I_:erml m(_)mentum. The (e2/2¢) [dx p2(x) of the gate-QW capacitor, where
dual field (x) obeys the commutation relation =e?/u, is the capacitance per unit length. The electrostatic

) , , potential o(x) in the QW then follows by comparison with
[$(x),6(x")]_=—(i/2)sgr(x—x"). (2.2

At low-energy scales, any particular dispersion relation can H|=(e/2)f dx p(x)e(X) (2.8
be linearized around the Fermi energy, and the kinetic en-
ergy is then formally given by a massless Dirac Hamiltoniangs
Applying Eq. (2.1) then yields
ep(X) =Ugp(X). (2.9

hv
HO:TFJ dx[ ()% + (940)?], (2.3  Since we have an effectively short-ranged interaction, the
Poisson equation is replaced by E8.9) here. The electro-
with the Fermi velocityvr . The low-energy excitations are static potential directly gives _the local potential drc_:p be-
simply harmonic charge-density wave oscillations. tween the QW and the screening backgate. The noninteract-
{ing limit up=0 (g=1) then implies that the backgate is

In the LL model, one considers externally screened shor 07 X : oI
ranged interactions which, for the purpose of a Iow-energJocated within the wire. The electrostatic potential is thus
theory, can be represented by the interaction potebtjgk zero everywhere. In contrast, if no gate is present, i.e., in the
—x')=u8(x—x'). On length scales larger than the screenJimit of unscreened Coulomb interactions, we can gut0

ing length imposed by the gate, the interaction potential actin the long-wavelength limit.

.. O .
ing in the QW will always take this form. The standard LL SUppose now that the densitip§ and p{ of right- or

parameteq is then given by left-moving electrons are injected into the QW. This will
charge the gate-QW capacitor and imply a voltage drop ac-
9= (1+ug/mhve) 2, (2.4  cording to Eq.(2.9). The electrostatic potentidR.9) shifts

the band bottom by-e¢@(x). With the density of states
and the interaction Hamiltonian reads 1l/mhvg this implies a shift of the total density by
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—ee(x)/7hve. Therefore the actual density in the QW hasor thermal expectation value of the densities. As a short-
to be self-consistently determined from E@.9) and the hand notation, however, the appropridte -) brackets are

relation mostly omitted in the sequel.
Employing Eq.(2.1), the densitiepg andp, can now be
p=pr+pL=p2+p’—eplThug. (2.10  expressed in terms of the displacement fig{d,t),
Using Eq.(2.4) the solution is 1
prT pL="=0x0, (3.5
p(X)=pr(X)+pL(X) = G2 PR +p2(X)]. (2.1 v

Since the electrostatic potential is only linked to the total 1
density via Eq(2.9), the difference of thé&k/L moving den- PrR—PL=—=—20,0. (3.6)
sities stays invariant, Ve

Thereby we arrive atadiative boundary conditionfor the

PR=PL=PR=PL - (212 displacement field,
This difference determines the current flowing through the
QW, (ia +ia)<e(x=—|_/2t)>= °h (3.7
g2 " ve U mhoe”
Il =eve(pr—pL)s 213
which can be computed at any poitiue to the continuity (i@— — g |(a(x=LI21))= eU, , 3.9
equation. We note in passing that for the ac case, a displace- g° UF \/;ﬁvF

ment current has to be added to E2.13. which have to be fulfilled at all times in the stationary

nonequilibrium state. They hold provided ideal reservoirs are
IIl. VOLTAGE SOURCES adiabatically connected to the QW and one is in thev-

Next we wish to include the adiabatically connected ex-€N€rgy regimgwhere both the applied voltagé=U,—U,

ternal voltage sources indicated in Fig. 1. The left reservoi@Nd the temperature are very small compared to the band-

held at chemical potentiat;=eUj; injects the bare density width. The latter is of the order of the Fermi ener&xl
~hvgke. The consequences of the boundary conditions

p%(—LI2)=eUy2mhive (3.1 (3.7 and (3.9 are investigated in the next two sections. In
the remainder of this section, we focus on the two limiting
of right-movers into the left end of the QW. Similarly, the cases of perfect transmission and perfect reflection.

right reservoir withu,=eU, injects a bare density Starting with theclean case\ =0, we first observe that
all densities arex independent along the QW. From Egs.
pE(L/Z):eUZ/ZWth (3.2 (2.17) and (2.12, the true right- and left-moving densities
. . . .are given by

of left-movers into the right end. These bare injected densi-

ties cannot depend on the intrinsic properties of the QW. In Lo o 2 0. o

particular, they must be independent of the LL paramgter pr=2(Pr=PL)*+ 5 (PRTPL), (3.9

and of the backscattering strength With the density of

states 1FAhvg, and noting that a factor 1/2 arises because 92

only the left- or right-moving density is injected, Eq8.1) pL=3%(p"—p)+ ?(p?ﬁ— p?). (3.10

and (3.2 readily follow. The outgoing particle densities are

not fix_ed by the rese_zrvoir_s. Outgoing _particles are assumed tByen if no left movers are injectedU,=0), the shift of the
enter ideal reservoirs without reflection at the interface bepand bottom due to the charging of the gate-QW capacitor
tween QW and reservoir. will induce a change in the densipy of left movers. These

According to Eqs(2.11) and (2.1, we can express the relations directly imply from Eq(2.13 the current
bare injected densities in terms of the true right- and left-

moving densities, I=(e?/h)U, (3.1
g 2+1 g2 which is the perfect conductance quantization observed
pg(x)z 5 pR(X)—I—TpL(X), 3.3 experimentally’ There is no renormalization of the d.c. con-
ductance of a clean QW by the electron-electron
- - interactiont16-18
0(x)= g -1 (X)+9 +1 (x) (3.4) The excess density= pr+ p_ charging the gate-QW ca-
PL 2 PR 2 Pu ' pacitor is given by
From these relations and Eg8.1) and(3.2), it is immedi- g%e(U;+U,)
ately clear that the external reservoirs can be completely de- P mhog (3.12

scribed in terms of boundary conditions for the asymptotic
true right- and left-moving densitigsg,, in the QW. These and the electrostatic potential drop between the QW and the
boundary conditions should be imposed for {gpund-state  backgate is then found from ER.9),
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) U,+U, the time variabldg now runs from— to «. The action then
¢=(1-9— (3.13  reads
The rather incomplete screening in one dimensiomplies :J'
that only a fraction (+g?) of the average potential shift S Cdz H6(2).a(2), n(2)], “.D
(U;+U,)/2 is compensated by the backgate, leaving a frac- . hthe L f .
tion g of the bare density as true charge density. For gVith the Lagrange function
long-ranged ¥/ interaction, one hagg—0 in the long- 5 1
wavelength limit, and perfect electroneutrality<0) is re- L= v dx _2(320)2_((9)(9)2 — ) cosq(2)
covered. In that case, the electrostatic potential follows the 29 v
chemical potentiale¢= x. On the other hand, for the non-
—n(2)[a(z) - v476(0.2)]. (4.2

interacting caseg=1, the electrostatic potential vanishes,

and the density is fully given by the injected density. WeThe ¢(x) field can now be eliminated by Gaussian integra-
note that for anyg, there is no electric field acting along the tion subject to the radiative boundary conditiof®7) and

QW since the electrostatic potential is constant. The current3.g). This is achieved by solving the Euler-Lagrange equa-

flowing through the QW is of purely chemical origin. tion,
Next we turn to the case dberfect reflection A —oo.

Since no current can flow, we hapg(x)=p (X), and Egs. 1., , 5

(2.1 and(2.12) then yield 0= | 0D =NATn(D)G* 8 hve . (43

p(x<0)=g’eU, /nhve, The solution to this equation can always be decomposed into

5 a particular solutiond,, subject to the boundary conditions

p(x>0)=g°eU,/mhvE. plus the homogeneous solution obtaineddqe=U,=0. The

The density drop across the insulating barrier is then give,l‘atter_ is in fact well known, see Ref. 15. A pa_rt_icular solution
obeying both Eq(4.3) and the boundary conditiori3.7) and

b
y (3.9 is
Ap=p(x<0)—p(x>0)=g%eU/mhve. (3.14
prl f ; hp( | ? | " | hix2 g2e[(Us+Upx—V|x]] e(U-V)z
i i X,Z)= ,
From Eq.(2.9) we find the electrostatic voltage drop across b Tantior N
the barrier,
(4.9
Ae=(1-g?U, (3.19  for both the forward and the backward path. The quantity

appears as the zero mode of the Lagrange multiplier field
7(2). The physical meaning of is thefour-terminal voltage
as becomes clear from the following discussion.

Since the expectation value of the density operafa) at
|x|>a is determined by the particular solution alofieye
obtain fromp(x) = ,6// the result

which is the applied two-terminal voltage reduced by the
characteristic underscreening factor{@%). Note that the
potential drop between the QW and the gate is-¢f)U;

for x<0, and (1-g?)U, for x>0, respectively. This yields
again Eq.(3.195. Of course, Eq(3.14 can be decomposed
into a chemical potential part and an electrostatic part,

g’e(U;+U,) g%V
27TﬁU|:

The first term is just Eq(3.12 describing the change in the
overall charge density. It can be trivially gauged to zero by
choosingU;=—U,=U/2. The second term is more interest-
ing. It gives the asymmetric charge density in the presence of
an applied voltage. The density drop across the barrier is thus

Au—elo
Ap_ 7TﬁU|: '

(p(x))= (4.5

(3.16

where Au=pu;—u,=eU. Electroneutrality is recovered
only for g=0, with Ap=U. Finally, for g=1, there is no
electrostatic potential drop across the barrier.

IV. GENERAL EFFECTS OF THE VOLTAGE SOURCES
Ap=geVirhvg, (4.6

Next we discuss general consequences of the applied volt- . ) ] ] ]
ageU=U,— U, for the system depicted in Fig. 1. Extending such that ther_e is an associated dr_op in the effecfuve chemical
the reasoning of Ref. 18 to the real-time case, we introduce Botential of sizeA u=g?eV. Equation(2.9) then yields the
new field = V47 6(0) by means of a Lagrange multiplier €l€ctrostatic potential drop at=0,
field ». This has the advantage of rendering #{&) degree Ag=(1—g?)V 4.7
of freedom in a Gaussian form, and the nonlinearity due to ¢ gV '
Himp affects onlyq. We shall employ a path-integral repre- In a measurement of the four-terminal voltagethe ob-
sentation in the following. served voltage drop iA u/e+ A, which is justV. There-

Since it is convenient to integrate out thdield, all fields  fore V is indeed the four-terminal voltage. Sinweis intro-
have to be defined on the Keldysh cont6uextending from  duced via the Lagrange multiplier fielg, it is in general a
time z= —« to z=« (forward path and back fronz=« to  fluctuating quantity.
z= —« (backward path For instance, the field(z) consists The ensuing steps are rather straightforward. Since the
of a forward pathgs(t) and a backward path,(t), where technical detaif$?! are of no interest here, we will only
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sketch the analysis. Solving E@.3) for the homogeneous perfect reflection,\—c, the four-terminal voltage isv
solution 6, and insertingd= 6,+ 6, back intoS, one is left ~=U, as enforced by the rapidly oscillating impurity contri-
with a Gaussian average over the Lagrange multiplier fieldution in Eq.(4.8). This value can also be obtained by com-
[except of the zero mod¥, over which we average sepa- paring Egs.(3.14 and (4.6). As a function of\, the four-
rately]. Carrying out this Gaussian integration, we obtain theterminal voltage thus exhibits a crossover frafe=0 at A
effective action for averaging the local degree of freedom=0 to V=U for A—«. Contrary to the Fermi-liquid case,
g(z) and the four-terminal voltag¥, this crossover now sensitively depends on the energy scales
kgT andeU under consideration, see Sec. V.
s _ _ The effective actior(4.8) may serve as starting point for
Ser=1La(2)] )\Ldzcos{q(z)+e(u V)zih] further calculations, e.g., of the current-voltage characteris-
tics. We shall not pursue this approach here but instead
—(eV/Zw)j dz q(2). 4.9 gr_esltla;t an exact solution for the special interaction strength
C = .

The effects of the external voltage sources are contained in

the second and the third term. The first term can be written as V. EXACT SOLUTION

in In this section we present the exact solution of the trans-
_ / o A port problem depicted in Fig. 1 for the special LL parameter
® LdzJDZ,dz a(2)L(z=2)a(z)+ 5 fcdz (), g=1/2. This value has been discussed previolfsty;?=2°
(4.9 essentially by assuming a local voltage drop term, i.e., by
where L(z) has the same form as the heat bath kernel inUSing the effecti\_/e actior(4:8) l_mder t.he .e_lssumptioh/
dissipative quantum mechanis =U. However, this assumption is only justified for a strong
’ scatterer or at extremely low-energy scales, and one cannot
coshw(—iz+%12)] recover the perfect conductan&= ez(h of a clean QW
SN[ wh BI2] (4.10 using that approach. Our exact solution for arbitrary trans-
mission reported below does not make the voltage drop as-
with 8=1/kgT. The spectral density(w) is of Ohmic form, ~ Sumption but instead uses the boundary conditi@® and
(3.2 to describe the coupling to the reservoirs. Thereby the
) full crossover between the perfect conductance quantization
J(w)= %exd—ﬁleF], (4.1)  and the asymptotic low-energy localization due to the impu-
rity is obtained.
where an exponential bandwidth cutoff has been chosen. Fi- To start, we introduce the chiral boson fields
nally, the quantityA in Eq. (4.9) is given by

h )
L(z)= ;fo dw J()

Zﬁ ) 1
A= —j dw J(w)/w. (4.12 er(X) = 7| —=0(X)+gb(x) |, (5.9
7 Jo ]
The dissipation acting oq(z) effectively comes from the
eliminated degrees of freedom away from the scatterer. 1
The effects of the applied voltage can now be read off eL(x)=\m| - \/—ae(x)+ Vao(x) |. (5.2

from Eq. (4.8). The last term irSy; is avoltage dropcontri-
bution obtained by making the assumption that there is @ccording to Eq.(2.2), they obey the algebrapER,L=
local voltage dropV at the impurity. Under this assumption, =
one can include the coupling to the voltage sources by add-

ing the term [op(X),@p (X)]- = ~i 7Py SIX—X'). (5.3
H=eVve(0)/Jm (4.13  The right- and left-moving densities in the QW are

to the Hamiltonian. Notably, it is in general not the exter-

nally applied two-terminal voltage but the fluctuating four- (x)= +@& (x) (5.9

terminal voltage that determines this part. The second effect PRLUA= =5 OxPRLY: '

is a Josephson-like time dependence in the argument of the o
second term in Eq(4.8). Most importantly, because of this and the Hamiltoniard =H,, +Hiy, reads
term one cannot describe all effects of the applied voltage by

simply adding terms like Eq4.13 to the Hamiltonian. In v
general, one has to solve the problem under the radiative HZ@J dx{(dyxer)*+ (dxe1)?}
boundary condition$3.7) and(3.8).
Let us now briefly discuss the four-terminal voltageIn + cog Vo[ ¢r(0)— ¢, (0)]}. (5.5

the clean case, =0, the fieldq describes a massless particle

such thatV=0 results from the associated infrared diver- Next we incorporate the applied voltage sources accord-
gence. This is of course in accordance with B46), since ing to the boundary condition&3.1) and (3.2). Using the
there is no density drop if there is no barrier. In the limit of relations(3.3) and(3.4), they lead to the conditions
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-2 -2 el : t
(@ "+ Dpr(=L2)+(g "~ Dp(-LI2)= ——=, H=—iAv | dxy'(X)dxih(x)
F
eu, 9 + (hohgl2) e+ cH[Y(0) - ¢T(0)], (519
-2_ -2 _
(9 Der(L/2)H(g "+ Dpu(L/2) Thug' with the effective impurity strength
It is then of advantage to switch to new chiral right-moving _ 2
fields defined by Ne=mar/iv. (519
Remarkably, in the refermionized versi@h.15 the Hamil-
1 _ tonian attains a very simple form, which can be diagonalized
Pp==(X)= E[(PR(XH eL(=x)], 5.7 by, e.g., the equation-of-motion meth&tSwitching to Fou-
rier space,
subject to the algebra
) : , 1 a, (x<0)
[dp(X),dp(X")]-= =iy sgnx—x"). (5.8 s == exik(vt—x)]x{ "
L k bk (X>0)1
They define the densities (5.17)

~ 1 1 wherek runs over integer multiples of2/L anda,,b, de-
p=(X)= 5—0xp=(X)= \/Tg{pR(X)IPL(_X)}- (5.9  note fermion operators, the equations of motion diéfsfe
Thereby the boundary conditior(6.6) become conditions by=3(1+e“Ma+3(1—e '*al,, (5.18
for the new chiral densitie$5.9). Specializing ong=1/2, , . i
and taking the sum and difference of the emerging equationd/nere the scattering phase shiit is defined by
we obtain .
- |ﬁU k_ )\B

- - gltk=gi0k= —— = 5.1
5p_(—L/2)+3p_(LI2)=e(U,+ U,/ whoe, okt hg (5.19

(5.10
So far the analysis has closely followed previous work,
5p.(—L/2)—3p. (L/2)=eUlnhve. (5.11) See, e.g., Ref. 24. Now we have to take into account the
boundary conditior{5.11) in order to incorporate the applied

voltage U. First we note that the density operafor (x)
defined in Eq(5.9) can equivalently be expressed in terms of
the new fermion operatap(x),

The Hamiltonian(5.5) expressed in terms of the new chiral
fields forg=1/2 is

H=Z—H dX{(dxp+ )2+ (dxp_)?}+\ cod ¢, (0)]. ~
(5.12 P+ ()= () h(x). (5.20

It is now apparent that the . fields are completely decou- EMPIoying Eq.(5.17), the boundary conditiori5.11) then

pled. The impurity term in the Hamiltoniaf5.12 couples '€ads to

only to ¢, , and the applied voltage also leads to a bound- 1

ary condition only in the ¢ ) sector, see Eq5.11). The ¢ _ - 5(ala.)’ —3(bib.) Y =eU/rh 5.2
field is associated with the shift in the total density arising L; {5(@@0’ ~3(bb} mhoe. (52D
for U;# —U,. Since there is no backscattering in the)(

sector, the densitﬁ_(x) stays constant along the QW, and,
according to Eq(5.10, we again obtain the excess density
(3.12 injected by the reservoirs. This shift in the overall
density does not lead to interesting physical effects. Puttin
U,=-U,=U/2, we only keep the), field in what follows. Fon_ oy Layia-1

By means of refermionizatiol?;?>~?we can then obtain (g =ni(k*) =[1+explh fv(k—k*)}]"" (5.22

an exact solution. For that purpose, we first introduce newyherek* has to be determined self-consistently. Using Eq.

The brackets indicate a stationary nonequilibrium average,
and the prime stands for normal ordering with respect to the
U=0 equilibrium state. Since th®, correspond to free fer-
énions, they must obey the Fermi distribution function,

fermion operators (5.18, we obtain
P(x)=(2ma) Pexdid. (x)]. (5.13 (blby)=1(1+ cosa)n(k*)+ 2(1—cosay)ni(—k*),
Following Matvee\?® it is convenient to switch in a second (5.23
step to the fermion operatos defined by whence Eq.(5.21) with the scattering phase shif6.19
~ " yields
P(X)=(c+ch)g(x), (5.14

; o ; i 6 eU
wherec is an auxiliary fermion. Expressed in terms of these |« Tzk [1+ (huk/ng)2] YN (k*)—ne(0)} = o

fermion operators, the¥) sector of the Hamiltoniaf5.12 vg'
reads (5.29
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In the remainder, we focus on the case of a very long QW, 1.0
L—o, such that sums can be converted into integrals,
(27/L) 2 — [dk. Carrying out the resulting integration, the 0.8
condition(5.24) reads
o e (1 Netinokt) - o 06
+Em(ﬂ§+w =e vg, (6.29 > oal
where ¢(z) is the digamma function. Foxg=0, this gives
k* =eUlhvg, while in the opposite limit of a strong scat- 02t
terer,\g—, we obtaink* =eU/4fiv. These two extreme
values hold in fact for any value of the temperattirer the 0
lengthL. The crossover as a function af between these
two limits strongly depends on the energy scatg3 and eU/Ag
eU. Clearly, for A\g>eU, we could effectively use the
strong-coupling valu&™* =eU/4#v . This amounts to mak- FIG. 2. Current-voltage characteristics for several temperatures

ing the above-mentioned voltage drop assumption. In th&@. The current has been normalized te= (€/h)U. Note the very
general case, one first has to solve kdraccording to Eq. slow approach towards=1, as temperature is raised.
(5.25 before further calculations.

Let us now study the connection to tf@ur-terminal volt- eVi2ng=tan {[2eU—3eV/2]/\g}. (5.3)
age Vdiscussed in the previous section. It can be obtaine
from the density drof\ p=p(x<0)—p(x>0) atx=0. Us-
ing Eq. (5.9, we have

c1‘he relation(5.30 explicitly exhibitsscalingwith the effec-
tive impurity strength(5.16) acting as the energy scale, i.e.,
the energie&gT, eU, andeV can be turned into dimension-

_~ ~ A" less quantities by measuring them in unitshgf. Therefore
= <0)-— >0)= . " . -
Ap=p+(x<0)=p.(x=0)=4p., (.29 the boundary conditions preserve the important scaling prop-
which yields erty. For small\ 5, the four-terminal voltag® vanishes, and
by increasing\z, a crossover to the strong-coupling value
A :f%<[aTa —biby])’ V=U is observed.
P~ | 27 LT Pk Finally, we come to thecurrent-voltage characteristics
dk The current flowing through the QW is computed from Eg.
=fZ(l—cosak){nk(k*)—nk(o)} 213,
1 ihvk* —e0r (. (0) = 28 [ S caf+ by @t by’
A Ag+i =EvE(p =7 | 7-{(& a :
L P i R (5.27 FAP+ 4 | 2@t D (@t by
hu 2 2akgT

Straightforward algebra yields the general result
Comparing with the general resui4.6), the four-terminal

voltageV follows, 2

I(U)=%(U—V), (5.32

(528 with the four-terminal voltage V=V(U,T,\g) self-
consistently given in Eq55.30. Therefore the knowledge of
The generalization to finite lengthis straightforward. From  the four-terminal voltage is sufficient to obtain the full non-
our exact solution, one can in principle also compute theinear current-voltage characteristics. In the limit of a clean
fluctuationsof the four-terminal voltage. When Comparing QW, V=0, and we indeed obtain the conductance guantum
with experiments, however, one may have to include thes=e?/h. In the limit of very small applied voltagesU

1 Ngtifivk*
eVZZ)\Blmlﬂ E+W

strong Friedel oscillation co_ntributio’ﬁ. _ <\g, and at zero temperature, the voltage drop assumption
In the limit of a clean wire, from Eq(5.28 we findV s correct, and the previous restfts®?*2“are recovered.
=0, in accordance with the general result for arbitrgryin The exact current-voltage characteristics is plotted in Fig.

the opposite case,g—, we obtainV=U from Egs.(5.25 2 for various temperatures. Clearly, one has a perfect zero-
and (528), again in accordance with the general result. Thq)ias anoma|y at =0, with the conductance Vanishinguz

connection betweek* andV can now be read off, as predicted by Kane and FisHémotably, Eq.(5.32 gives
. the full crossover behavior up to the perfect conducta@ce
k*=e[U—3V/4]/five. (529 _e2/h of a clean QW.
We stress that this relation holds for aifyandL. Inserting
Eqg. (5.29 into Eq.(5.28, we can eliminaté&* and obtain a VI. CONCLUSIONS

self-consistent equation for the four-terminal voltage, . . _
In this paper, the inclusion of external voltage sources to

Ag+2ieU—3ieV/2 a one-dimensional single-channel quantum wire with arbi-
(5.30 trary transmission has been discussed. This system is a pro-
totypical example for a Luttinger liquid. By deriving radia-
At zero temperature, this becomes tive boundary conditions, we have demonstrated that the

1
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Landauer approach to mesoscopic transport can be extend@&tle consequences of time-dependent boundary conditions
to the case of strongly correlated systems. The exact solutidmave not been studied so far except in the clean Ta®err
of the transport problem at the special valyre 1/2 reveals  boundary condition approach also allows for a consideration
that both the previous “voltage drop” resultwhich hold at  of more complicated geometries. For instance, the problem
sufficiently low voltage and temperatdrand the perfect of crossed Luttinger liquids allows for an elegant solution by
conductance quantization in a clean system can be recover%pbying this approact
within a unified approach.

An obvious and interesting generalization concerns the ac

case. Considering a situation whegg=U cost) and U, ACKNOWLEDGMENTS
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