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Applying voltage sources to a Luttinger liquid with arbitrary transmission

Reinhold Egger and Hermann Grabert
Fakultät für Physik, Albert-Ludwigs-Universita¨t, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany

~Received 19 May 1998!

The Landauer approach to transport in mesoscopic conductors has been generalized to allow for strong
electronic correlations in a single-channel quantum wire. We describe in detail how to account for external
voltage sources in adiabatic contact with a quantum wire containing a backscatterer of arbitrary strength.
Assuming that the quantum wire is in the Luttinger liquid state, voltage sources lead to radiative boundary
conditions applied to the displacement field employed in the bosonization scheme. We present the exact
solution of the transport problem for arbitrary backscattering strength at the special Coulomb interaction
parameterg51/2. @S0163-1829~98!01340-X#
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I. INTRODUCTION

One-dimensional~1D! materials have received much a
tention in the past few years. The discovery of novel
conductors and the failure to model these according
Fermi-liquid theory have raised many interesting questio
The generic behavior of electrons in a 1D conductor is
scribed by the Luttinger liquid~LL ! model,1,2 when one con-
siders externally screened short-range interactions. Exp
mental realizations of the phenomena predicted by the
model could be based on carbon nanotubes,3,4 quantum wires
in semiconductor heterostructures operated in the sin
channel limit,5 long chain molecules,6 or edge states in a
fractional quantum Hall bar.7

In this paper, we study electrical transport in 1D condu
tors and incorporate external voltage sources adiabatic
connected to the quantum wire. We focus on the simp
case of a spinless LL described by the standard interac
parameterg<1, whereg51 is the noninteracting limit and a
small value ofg equals strong correlations. The extension
spin-12 electrons or to nanotubes is then straightforward. T
ing into account backscattering effects due to impurities,
generic behavior at low-energy scales can be studied by
sidering a pointlike scatterer of arbitrary strengthl. Then
l50 corresponds to a clean conductor, whilel→` is the
limit of perfect reflection. Again the extension to a mo
complicated situation, e.g., several impurities, is straightf
ward and not further discussed here.

This underlying geometry is shown in Fig. 1. For clarit
we discuss the case of a gated single-channel quantum
~QW! extending from2L/2,x,L/2. The screening back
gate is responsible for short-range interactions within
QW, and in the single-channel limit under considerati
here, a LL is formed.8,9 Possibly with minor modifications
however, the theory applies to all 1D correlated electron s
tems.

At the ends of the QW, reservoirs are assumed to be a
batically connected. We consider ideal reservoirs as in
standard Landauer approach for Fermi-liquid conductors.10,11

The reservoirs are held at chemical potentialsm1,2, and since
one has good screening in the~2D or 3D Fermi liquid! res-
ervoirs, the differenceU5(m12m2)/e is the applied two-
terminal voltage. For simplicity, we consider only tim
PRB 580163-1829/98/58~16!/10761~8!/$15.00
o
s.
-

ri-
L

e-

-
lly
st
n

-
e
n-

r-

ire

e

s-

ia-
e

independent voltages in this paper. It is shown in Sec. III t
the presence of the voltage sources leads to boundary co
tions, which in turn allow for the application of powerfu
theoretical techniques, e.g., bosonization,1 refermionization,2

or boundary conformal field theory.12

Other work has also dealt with similar questions as
ones addressed here.~1! There have been attempts to d
scribe the effects of a reservoir by a 1D LL withg51, both
for the clean case13 and allowing for impurity
backscattering.14 Albeit such calculations can explain the e
perimentally observed absence of a conductance renor
ization in a perfectly clean system,5 it remains unclear
whether this approach can properly account for ideal re
voirs. Furthermore, calculations become bulky if one
cludes the impurity backscattering.~2! Other studies have
simply assumed a local voltage drop at the impurity.15 As
discussed in Sec. III, this assumption is justified only if t
impurity backscattering is effectively very strong.~3! In the
clean case, Kubo-formula-based theories have b
presented16 to explain the perfect conductanceG52e2/h.
~4! Yet another approach for a clean system models re
voirs by charges conjugate to the chemical potentials of
voltage sources.17

We believe that our approach may offer the simplest a
most general answer to the question of how to incorpor
external voltage sources. It is the natural extension of La
auer’s original approach designed for uncorrela
electrons10 to a strongly correlated situation. The theory a
plies for arbitrary interaction strengthg and impurity back-

FIG. 1. Gated quantum wire as a model of the Luttinger liqu
Reservoirs held at chemical potentialm1,25eU1,2 are adiabatically
connected to the 1D conductor atx57L/2. A backscatterer of
strengthl ~indicated by the filled circle! is located atx50. The
screening gate is responsible for externally screened interac
within the quantum wire.
10 761 © 1998 The American Physical Society
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10 762 PRB 58REINHOLD EGGER AND HERMANN GRABERT
scatteringl. In particular, as an example of experimen
relevance, we determine the full crossover from perfect c
ductance quantization in a clean wire to the anomal
power-law conductance suppression in a disturbed wire15 as
the impurity strength is varied.

The structure of this paper is as follows. In Sec. II the
concept is introduced using the gated QW as an example
Sec. III, boundary conditions describing the applied volta
sources are presented. Several general consequences
voltage sources are collected in Sec. IV. In Sec. V, the
transport problem for arbitrary backscattering strengthl is
solved for the special LL parameterg51/2. Finally, some
conclusions can be found in Sec. VI. A brief account of so
results presented in Secs. III and IV has been given befor
Ref. 18.

II. LUTTINGER LIQUID

We start by summarizing the Luttinger-liquid concep
which allows for a convenient description of 1D conducto
Due to Coulomb repulsion, the electrons in a 1D quant
wire have a tendency to occupy states on a Wigner lattice
familiar from lattice excitations, the electronic configuratio
can be described in terms of a ‘‘displacement field’’u(x).
Remarkably, as far as the low-energy physics is concer
one can always find a one-to-one transmutation relating
1D interacting fermion system to an equivalent bosonic s
tem described by this displacement field~‘‘bosonization’’!.
In the bosonization scheme, the right- and left-moving co
ponent (p5R/L56) of the electron operator is expressed
terms of the displacement field,2

cp~x!5~2pa!21/2exp@2 ipkFx2 ipApu~x!2 iApf~x!#,
~2.1!

wherea'1/kF corresponds to the lattice spacing of the a
sociated Wigner lattice andkF is the Fermi momentum. The
dual fieldf(x) obeys the commutation relation

@f~x!,u~x8!#252~ i /2!sgn~x2x8!. ~2.2!

At low-energy scales, any particular dispersion relation c
be linearized around the Fermi energy, and the kinetic
ergy is then formally given by a massless Dirac Hamiltoni
Applying Eq. ~2.1! then yields

H05
\vF

2 E dx@~]xf!21~]xu!2#, ~2.3!

with the Fermi velocityvF . The low-energy excitations ar
simply harmonic charge-density wave oscillations.

In the LL model, one considers externally screened sh
ranged interactions which, for the purpose of a low-ene
theory, can be represented by the interaction potentialUc(x
2x8)5u0d(x2x8). On length scales larger than the scree
ing length imposed by the gate, the interaction potential a
ing in the QW will always take this form. The standard L
parameterg is then given by

g5~11u0 /p\vF!21/2, ~2.4!

and the interaction Hamiltonian reads
l
-
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HI5
u0

2 E dx r2~x!. ~2.5!

Here r(x) is the total density relative to the zero-voltag
equilibrium valuer5kF /p. Including the mixed compo-
nents of the density operator, e.g.,cR

†cL , in Eq. ~2.5! corre-
sponds to retaining the electron-electron backscattering.
lowing standard arguments,2 this is an irrelevant perturbation
which can be taken into account by a simple renormalizat
of the LL parameters. The densityr(x) enteringHI is then
only due to the densitiesrR/L of right- and left-moving fer-
mions, r5rR1rL , for which Eq. ~2.1! yields r(x)
5]xu(x)/Ap. Thereby the LL Hamiltonian emerges,

HLL5
\v
2 E

2L/2

L/2

dx@g~]xf!21g21~]xu!2#. ~2.6!

For simplicity, we assume full translation invariance in t
QW such that the sound velocityv5vF /g. Remarkably, the
low-energy excitations of the interacting system are still h
monic oscillations, and thereforeHLL allows for an exact
solution.

Next consider a scatterer sitting at, say,x50. The impor-
tant backscattering19 comes from the mixed component o
the density operator,H imp;cR

†(0)cL(0)1H.c., which, ex-
pressed in terms of the displacement field, leads to

H imp5l cos@A4pu~0!#. ~2.7!

The energyl is a measure of the impurity backscatterin
strength. The HamiltonianH5HLL1H imp has been subjec
of intense theoretical effort in the past few years. The p
pose of our paper is to clarify how this strongly correlat
model should incorporate applied voltage sources.

For the gated QW in Fig. 1, the interaction contributio
HI in Eq. ~2.5! can be interpreted as the charging ener
(e2/2c)*dx r2(x) of the gate-QW capacitor, wherec
5e2/u0 is the capacitance per unit length. The electrosta
potentialw(x) in the QW then follows by comparison with

HI5~e/2!E dx r~x!w~x! ~2.8!

as

ew~x!5u0r~x!. ~2.9!

Since we have an effectively short-ranged interaction,
Poisson equation is replaced by Eq.~2.9! here. The electro-
static potential directly gives the local potential drop b
tween the QW and the screening backgate. The noninter
ing limit u050 (g51) then implies that the backgate
located within the wire. The electrostatic potential is th
zero everywhere. In contrast, if no gate is present, i.e., in
limit of unscreened Coulomb interactions, we can putg→0
in the long-wavelength limit.

Suppose now that the densitiesrR
0 and rL

0 of right- or
left-moving electrons are injected into the QW. This w
charge the gate-QW capacitor and imply a voltage drop
cording to Eq.~2.9!. The electrostatic potential~2.9! shifts
the band bottom by2ew(x). With the density of states
1/p\vF this implies a shift of the total density b
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2ew(x)/p\vF . Therefore the actual density in the QW h
to be self-consistently determined from Eq.~2.9! and the
relation

r5rR1rL5rR
01rL

02ew/p\vF . ~2.10!

Using Eq.~2.4! the solution is

r~x!5rR~x!1rL~x!5g2@rR
0~x!1rL

0~x!#. ~2.11!

Since the electrostatic potential is only linked to the to
density via Eq.~2.9!, the difference of theR/L moving den-
sities stays invariant,

rR2rL5rR
02rL

0 . ~2.12!

This difference determines the current flowing through
QW,

I 5evF~rR2rL!, ~2.13!

which can be computed at any pointx due to the continuity
equation. We note in passing that for the ac case, a displ
ment current has to be added to Eq.~2.13!.

III. VOLTAGE SOURCES

Next we wish to include the adiabatically connected e
ternal voltage sources indicated in Fig. 1. The left reserv
held at chemical potentialm15eU1 injects the bare density

rR
0~2L/2!5eU1/2p\vF ~3.1!

of right-movers into the left end of the QW. Similarly, th
right reservoir withm25eU2 injects a bare density

rL
0~L/2!5eU2/2p\vF ~3.2!

of left-movers into the right end. These bare injected den
ties cannot depend on the intrinsic properties of the QW
particular, they must be independent of the LL parameteg
and of the backscattering strengthl. With the density of
states 1/p\vF , and noting that a factor 1/2 arises becau
only the left- or right-moving density is injected, Eqs.~3.1!
and ~3.2! readily follow. The outgoing particle densities a
not fixed by the reservoirs. Outgoing particles are assume
enter ideal reservoirs without reflection at the interface
tween QW and reservoir.

According to Eqs.~2.11! and ~2.12!, we can express the
bare injected densities in terms of the true right- and le
moving densities,

rR
0~x!5

g2211

2
rR~x!1

g2221

2
rL~x!, ~3.3!

rL
0~x!5

g2221

2
rR~x!1

g2211

2
rL~x!. ~3.4!

From these relations and Eqs.~3.1! and ~3.2!, it is immedi-
ately clear that the external reservoirs can be completely
scribed in terms of boundary conditions for the asympto
true right- and left-moving densitiesrR/L in the QW. These
boundary conditions should be imposed for the~ground-state
l

e
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e
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e-
c

or thermal! expectation value of the densities. As a sho
hand notation, however, the appropriate^•••& brackets are
mostly omitted in the sequel.

Employing Eq.~2.1!, the densitiesrR andrL can now be
expressed in terms of the displacement fieldu(x,t),

rR1rL5
1

Ap
]xu, ~3.5!

rR2rL5
1

ApvF

] tu. ~3.6!

Thereby we arrive atradiative boundary conditionsfor the
displacement field,

S 1

g2
]x1

1

vF
] tD ^u~x52L/2,t !&5

eU1

Ap\vF

, ~3.7!

S 1

g2
]x2

1

vF
] tD ^u~x5L/2,t !&5

eU2

Ap\vF

, ~3.8!

which have to be fulfilled at all timest in the stationary
nonequilibrium state. They hold provided ideal reservoirs
adiabatically connected to the QW and one is in thelow-
energy regime, where both the applied voltageU5U12U2
and the temperature are very small compared to the ba
width. The latter is of the order of the Fermi energyEF
'\vFkF . The consequences of the boundary conditio
~3.7! and ~3.8! are investigated in the next two sections.
the remainder of this section, we focus on the two limiti
cases of perfect transmission and perfect reflection.

Starting with theclean case, l50, we first observe tha
all densities arex independent along the QW. From Eq
~2.11! and ~2.12!, the true right- and left-moving densitie
are given by

rR5 1
2 ~rR

02rL
0!1

g2

2
~rR

01rL
0!, ~3.9!

rL5 1
2 ~rL

02rR
0 !1

g2

2
~rR

01rL
0!. ~3.10!

Even if no left movers are injected (U250), the shift of the
band bottom due to the charging of the gate-QW capac
will induce a change in the densityrL of left movers. These
relations directly imply from Eq.~2.13! the current

I 5~e2/h!U, ~3.11!

which is the perfect conductance quantization obser
experimentally.5 There is no renormalization of the d.c. co
ductance of a clean QW by the electron-electr
interaction.13,16–18

The excess densityr5rR1rL charging the gate-QW ca
pacitor is given by

r5
g2e~U11U2!

2p\vF
, ~3.12!

and the electrostatic potential drop between the QW and
backgate is then found from Eq.~2.9!,
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w5~12g2!
U11U2

2
. ~3.13!

The rather incomplete screening in one dimension9 implies
that only a fraction (12g2) of the average potential shif
(U11U2)/2 is compensated by the backgate, leaving a fr
tion g2 of the bare density as true charge density. Fo
long-ranged 1/r interaction, one hasg→0 in the long-
wavelength limit, and perfect electroneutrality (r50) is re-
covered. In that case, the electrostatic potential follows
chemical potential,ew5m. On the other hand, for the non
interacting caseg51, the electrostatic potential vanishe
and the density is fully given by the injected density. W
note that for anyg, there is no electric field acting along th
QW since the electrostatic potential is constant. The cur
flowing through the QW is of purely chemical origin.

Next we turn to the case ofperfect reflection, l→`.
Since no current can flow, we haverR(x)5rL(x), and Eqs.
~2.11! and ~2.12! then yield

r~x,0!5g2eU1 /p\vF ,

r~x.0!5g2eU2 /p\vF .

The density drop across the insulating barrier is then gi
by

Dr5r~x,0!2r~x.0!5g2eU/p\vF . ~3.14!

From Eq.~2.9! we find the electrostatic voltage drop acro
the barrier,

Dw5~12g2!U, ~3.15!

which is the applied two-terminal voltage reduced by t
characteristic underscreening factor (12g2). Note that the
potential drop between the QW and the gate is (12g2)U1
for x,0, and (12g2)U2 for x.0, respectively. This yields
again Eq.~3.15!. Of course, Eq.~3.14! can be decompose
into a chemical potential part and an electrostatic part,

Dr5
Dm2eDw

p\vF
, ~3.16!

where Dm5m12m25eU. Electroneutrality is recovered
only for g50, with Dw5U. Finally, for g51, there is no
electrostatic potential drop across the barrier.

IV. GENERAL EFFECTS OF THE VOLTAGE SOURCES

Next we discuss general consequences of the applied
ageU5U12U2 for the system depicted in Fig. 1. Extendin
the reasoning of Ref. 18 to the real-time case, we introdu
new field q5A4pu(0) by means of a Lagrange multiplie
field h. This has the advantage of rendering theu(x) degree
of freedom in a Gaussian form, and the nonlinearity due
H imp affects onlyq. We shall employ a path-integral repre
sentation in the following.

Since it is convenient to integrate out theu field, all fields
have to be defined on the Keldysh contourC extending from
time z52` to z5` ~forward path! and back fromz5` to
z52` ~backward path!. For instance, the fieldq(z) consists
of a forward pathqf(t) and a backward pathqb(t), where
-
a

e

nt

n

lt-

a

o

the time variablet now runs from2` to `. The action then
reads

S5E
C
dz L@u~z!,q~z!,h~z!#, ~4.1!

with the Lagrange function

L5
\v
2gE dxF 1

v2
~]zu!22~]xu!2G2l cosq~z!

2h~z!@q~z!2A4pu~0,z!#. ~4.2!

The u(x) field can now be eliminated by Gaussian integ
tion subject to the radiative boundary conditions~3.7! and
~3.8!. This is achieved by solving the Euler-Lagrange equ
tion,

S 1

v2
]z

22]x
2D u~x,z!5A4ph~z!g2d~x!/\vF . ~4.3!

The solution to this equation can always be decomposed
a particular solutionup subject to the boundary condition
plus the homogeneous solution obtained forU15U250. The
latter is in fact well known, see Ref. 15. A particular solutio
obeying both Eq.~4.3! and the boundary conditions~3.7! and
~3.8! is

up~x,z!5
g2e@~U11U2!x2Vuxu#

A4p\vF

1
e~U2V!z

A4p\
,

~4.4!

for both the forward and the backward path. The quantityV
appears as the zero mode of the Lagrange multiplier fi
h(z). The physical meaning ofV is thefour-terminal voltage
as becomes clear from the following discussion.

Since the expectation value of the density operatorr(x) at
uxu@a is determined by the particular solution alone,18 we
obtain fromr(x)5]xu/Ap the result

^r~x!&5
g2e~U11U2!

2p\vF
2

g2eV

2p\vF
sgnx. ~4.5!

The first term is just Eq.~3.12! describing the change in th
overall charge density. It can be trivially gauged to zero
choosingU152U25U/2. The second term is more interes
ing. It gives the asymmetric charge density in the presenc
an applied voltage. The density drop across the barrier is

Dr5g2eV/p\vF , ~4.6!

such that there is an associated drop in the effective chem
potential of sizeDm5g2eV. Equation~2.9! then yields the
electrostatic potential drop atx50,

Dw5~12g2!V. ~4.7!

In a measurement of the four-terminal voltage,20 the ob-
served voltage drop isDm/e1Dw, which is justV. There-
fore V is indeed the four-terminal voltage. SinceV is intro-
duced via the Lagrange multiplier fieldh, it is in general a
fluctuating quantity.

The ensuing steps are rather straightforward. Since
technical details18,21 are of no interest here, we will only
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sketch the analysis. Solving Eq.~4.3! for the homogeneous
solutionuh and insertingu5up1uh back intoS, one is left
with a Gaussian average over the Lagrange multiplier fi
@except of the zero modeV, over which we average sepa
rately#. Carrying out this Gaussian integration, we obtain
effective action for averaging the local degree of freed
q(z) and the four-terminal voltageV,

Seff5 iF@q~z!#2lE
C
dzcos@q~z!1e~U2V!z/\#

2~eV/2p!E
C
dz q~z!. ~4.8!

The effects of the external voltage sources are containe
the second and the third term. The first term can be writte

F5E
C
dzE

z.z8
dz8q~z!L~z2z8!q~z8!1

iA

2 E
C
dz q2~z!,

~4.9!

where L(z) has the same form as the heat bath kerne
dissipative quantum mechanics,22

L~z!5
\

pE0

`

dv J~v!
cosh@v~2 iz1\b/2!#

sinh@v\b/2#
~4.10!

with b51/kBT. The spectral densityJ(v) is of Ohmic form,

J~v!5
v

2pg
exp@2\v/EF#, ~4.11!

where an exponential bandwidth cutoff has been chosen
nally, the quantityA in Eq. ~4.9! is given by

A5
2\

p E
0

`

dv J~v!/v. ~4.12!

The dissipation acting onq(z) effectively comes from the
eliminated degrees of freedom away from the scatterer.15

The effects of the applied voltage can now be read
from Eq. ~4.8!. The last term inSeff is avoltage dropcontri-
bution obtained by making the assumption that there i
local voltage dropV at the impurity. Under this assumption
one can include the coupling to the voltage sources by a
ing the term

H̃5eVu~0!/Ap ~4.13!

to the Hamiltonian. Notably, it is in general not the exte
nally applied two-terminal voltage but the fluctuating fou
terminal voltage that determines this part. The second ef
is a Josephson-like time dependence in the argument o
second term in Eq.~4.8!. Most importantly, because of thi
term one cannot describe all effects of the applied voltage
simply adding terms like Eq.~4.13! to the Hamiltonian. In
general, one has to solve the problem under the radia
boundary conditions~3.7! and ~3.8!.

Let us now briefly discuss the four-terminal voltageV. In
the clean case,l50, the fieldq describes a massless partic
such thatV50 results from the associated infrared dive
gence. This is of course in accordance with Eq.~4.6!, since
there is no density drop if there is no barrier. In the limit
d

e

in
as

n

i-

ff

a

d-

ct
he

y

ve

perfect reflection,l→`, the four-terminal voltage isV
5U, as enforced by the rapidly oscillating impurity contr
bution in Eq.~4.8!. This value can also be obtained by com
paring Eqs.~3.14! and ~4.6!. As a function ofl, the four-
terminal voltage thus exhibits a crossover fromV50 at l
50 to V5U for l→`. Contrary to the Fermi-liquid case
this crossover now sensitively depends on the energy sc
kBT andeU under consideration, see Sec. V.

The effective action~4.8! may serve as starting point fo
further calculations, e.g., of the current-voltage characte
tics. We shall not pursue this approach here but inst
present an exact solution for the special interaction stren
g51/2.

V. EXACT SOLUTION

In this section we present the exact solution of the tra
port problem depicted in Fig. 1 for the special LL parame
g51/2. This value has been discussed previously,12,15,23–25

essentially by assuming a local voltage drop term, i.e.,
using the effective action~4.8! under the assumptionV
5U. However, this assumption is only justified for a stro
scatterer or at extremely low-energy scales, and one ca
recover the perfect conductanceG5e2/h of a clean QW
using that approach. Our exact solution for arbitrary tra
mission reported below does not make the voltage drop
sumption but instead uses the boundary conditions~3.1! and
~3.2! to describe the coupling to the reservoirs. Thereby
full crossover between the perfect conductance quantiza
and the asymptotic low-energy localization due to the imp
rity is obtained.

To start, we introduce the chiral boson fields

wR~x!5ApF 1

Ag
u~x!1Agf~x!G , ~5.1!

wL~x!5ApF2
1

Ag
u~x!1Agf~x!G . ~5.2!

According to Eq.~2.2!, they obey the algebra (p5R,L5
6)

@wp~x!,wp8~x8!#252 ippdpp8 sgn~x2x8!. ~5.3!

The right- and left-moving densities in the QW are

rR,L~x!56
Ag

2p
]xwR,L~x!, ~5.4!

and the HamiltonianH5HLL1H imp reads

H5
\v
8pE dx$~]xwR!21~]xwL!2%

1l cos$Ag@wR~0!2wL~0!#%. ~5.5!

Next we incorporate the applied voltage sources acco
ing to the boundary conditions~3.1! and ~3.2!. Using the
relations~3.3! and ~3.4!, they lead to the conditions
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~g2211!rR~2L/2!1~g2221!rL~2L/2!5
eU1

p\vF
,

~5.6!

~g2221!rR~L/2!1~g2211!rL~L/2!5
eU2

p\vF
.

It is then of advantage to switch to new chiral right-movi
fields defined by

fp56~x!5
1

A2
@wR~x!7wL~2x!#, ~5.7!

subject to the algebra

@fp~x!,fp8~x8!#252 ipdpp8 sgn~x2x8!. ~5.8!

They define the densities

r̃6~x!5
1

2p
]xf6~x!5

1

A2g
$rR~x!7rL~2x!%. ~5.9!

Thereby the boundary conditions~5.6! become conditions
for the new chiral densities~5.9!. Specializing ong51/2,
and taking the sum and difference of the emerging equati
we obtain

5r̃2~2L/2!13r̃2~L/2!5e~U11U2!/p\vF ,
~5.10!

5r̃1~2L/2!23r̃1~L/2!5eU/p\vF . ~5.11!

The Hamiltonian~5.5! expressed in terms of the new chir
fields for g51/2 is

H5
\v
8pE dx$~]xf1!21~]xf2!2%1l cos@f1~0!#.

~5.12!

It is now apparent that thef6 fields are completely decou
pled. The impurity term in the Hamiltonian~5.12! couples
only to f1 , and the applied voltageU also leads to a bound
ary condition only in the (1) sector, see Eq.~5.11!. Thef2

field is associated with the shift in the total density arisi
for U1Þ2U2 . Since there is no backscattering in the (2)
sector, the densityr̃2(x) stays constant along the QW, an
according to Eq.~5.10!, we again obtain the excess dens
~3.12! injected by the reservoirs. This shift in the overa
density does not lead to interesting physical effects. Put
U152U25U/2, we only keep thef1 field in what follows.

By means of refermionization,15,23–25we can then obtain
an exact solution. For that purpose, we first introduce n
fermion operators

c̃~x!5~2pa!21/2exp@ if1~x!#. ~5.13!

Following Matveev,25 it is convenient to switch in a secon
step to the fermion operatorsc defined by

c̃~x!5~c1c†!c~x!, ~5.14!

wherec is an auxiliary fermion. Expressed in terms of the
fermion operators, the (1) sector of the Hamiltonian~5.12!
reads
s,

g

w

H52 i\vE dx c†~x!]xc~x!

1~\vlB/2!1/2~c1c†!@c~0!2c†~0!#, ~5.15!

with the effective impurity strength

lB5pal2/\v. ~5.16!

Remarkably, in the refermionized version~5.15! the Hamil-
tonian attains a very simple form, which can be diagonaliz
by, e.g., the equation-of-motion method.24 Switching to Fou-
rier space,

c~x,t !5
1

L(
k

exp@ ik~vt2x!#3H ak ~x,0!

bk ~x.0!,
~5.17!

wherek runs over integer multiples of 2p/L andak ,bk de-
note fermion operators, the equations of motion dictate24,26

bk5 1
2 ~11eiak!ak1 1

2 ~12e2 iak!a2k
† , ~5.18!

where the scattering phase shiftak is defined by

eiak5e2 ia2k5
i\vk2lB

i\vk1lB
. ~5.19!

So far the analysis has closely followed previous wo
see, e.g., Ref. 24. Now we have to take into account
boundary condition~5.11! in order to incorporate the applie
voltage U. First we note that the density operatorr̃1(x)
defined in Eq.~5.9! can equivalently be expressed in terms
the new fermion operatorc(x),

r̃1~x!5c†~x!c~x!. ~5.20!

Employing Eq.~5.17!, the boundary condition~5.11! then
leads to

1

L(
k

$5^ak
†ak&823^bk

†bk&8%5eU/p\vF . ~5.21!

The brackets indicate a stationary nonequilibrium avera
and the prime stands for normal ordering with respect to
U50 equilibrium state. Since theak correspond to free fer-
mions, they must obey the Fermi distribution function,

^ak
†ak&[nk~k* !5@11exp$\bv~k2k* !%#21, ~5.22!

wherek* has to be determined self-consistently. Using E
~5.18!, we obtain

^bk
†bk&5 1

2 ~11cosak!nk~k* !1 1
2 ~12cosak!nk~2k* !,

~5.23!

whence Eq.~5.21! with the scattering phase shift~5.19!
yields

k* 1
6p

L (
k

@11~\vk/lB!2#21$nk~k* !2nk~0!%5
eU

\vF
.

~5.24!
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In the remainder, we focus on the case of a very long Q
L→`, such that sums can be converted into integr
(2p/L)(k→*dk. Carrying out the resulting integration, th
condition ~5.24! reads

k* 1
3lB

\v
Im cS 1

2
1

lB1 i\vk*

2pkBT D5eU/\vF , ~5.25!

wherec(z) is the digamma function. ForlB50, this gives
k* 5eU/\vF , while in the opposite limit of a strong sca
terer,lB→`, we obtaink* 5eU/4\vF . These two extreme
values hold in fact for any value of the temperatureT or the
length L. The crossover as a function oflB between these
two limits strongly depends on the energy scaleskBT and
eU. Clearly, for lB@eU, we could effectively use the
strong-coupling valuek* 5eU/4\vF . This amounts to mak-
ing the above-mentioned voltage drop assumption. In
general case, one first has to solve fork* according to Eq.
~5.25! before further calculations.

Let us now study the connection to thefour-terminal volt-
age Vdiscussed in the previous section. It can be obtai
from the density dropDr5r(x,0)2r(x.0) at x50. Us-
ing Eq. ~5.9!, we have

Dr5 r̃1~x,0!2 r̃1~x.0!5Dr̃1 , ~5.26!

which yields

Dr5E dk

2p
^@ak

†ak2bk
†bk#&8

5E dk

2p
~12cosak!$nk~k* !2nk~0!%

5
lB

p\v
Im cS 1

2
1

lB1 i\vk*

2pkBT D . ~5.27!

Comparing with the general result~4.6!, the four-terminal
voltageV follows,

eV52lB Im cS 1

2
1

lB1 i\vk*

2pkBT D . ~5.28!

The generalization to finite lengthL is straightforward. From
our exact solution, one can in principle also compute
fluctuationsof the four-terminal voltage. When comparin
with experiments, however, one may have to include
strong Friedel oscillation contribution.20

In the limit of a clean wire, from Eq.~5.28! we find V
50, in accordance with the general result for arbitraryg. In
the opposite case,lB→`, we obtainV5U from Eqs.~5.25!
and ~5.28!, again in accordance with the general result. T
connection betweenk* andV can now be read off,

k* 5e@U23V/4#/\vF . ~5.29!

We stress that this relation holds for anyT andL. Inserting
Eq. ~5.29! into Eq. ~5.28!, we can eliminatek* and obtain a
self-consistent equation for the four-terminal voltage,

eV/2lB5Im cS 1

2
1

lB12ieU23ieV/2

2pkBT D . ~5.30!

At zero temperature, this becomes
,
,

e

d

e

e

e

eV/2lB5tan21$@2eU23eV/2#/lB%. ~5.31!

The relation~5.30! explicitly exhibitsscalingwith the effec-
tive impurity strength~5.16! acting as the energy scale, i.e
the energieskBT, eU, andeV can be turned into dimension
less quantities by measuring them in units oflB . Therefore
the boundary conditions preserve the important scaling pr
erty. For smalllB , the four-terminal voltageV vanishes, and
by increasinglB , a crossover to the strong-coupling valu
V5U is observed.

Finally, we come to thecurrent-voltage characteristics.
The current flowing through the QW is computed from E
~2.13!,

I 5evF^r̃1~0!&5
evF

4 E dk

2p
^~ak

†1bk
†!~ak1bk!&8.

Straightforward algebra yields the general result

I ~U !5
e2

h
~U2V!, ~5.32!

with the four-terminal voltage V5V(U,T,lB) self-
consistently given in Eq.~5.30!. Therefore the knowledge o
the four-terminal voltage is sufficient to obtain the full no
linear current-voltage characteristics. In the limit of a cle
QW, V50, and we indeed obtain the conductance quant
G5e2/h. In the limit of very small applied voltage,eU
!lB , and at zero temperature, the voltage drop assump
is correct, and the previous results12,15,23,24are recovered.

The exact current-voltage characteristics is plotted in F
2 for various temperatures. Clearly, one has a perfect z
bias anomaly atT50, with the conductance vanishing;U2

as predicted by Kane and Fisher.15 Notably, Eq.~5.32! gives
the full crossover behavior up to the perfect conductanceG
5e2/h of a clean QW.

VI. CONCLUSIONS

In this paper, the inclusion of external voltage sources
a one-dimensional single-channel quantum wire with ar
trary transmission has been discussed. This system is a
totypical example for a Luttinger liquid. By deriving radia
tive boundary conditions, we have demonstrated that

FIG. 2. Current-voltage characteristics for several temperatu
T. The current has been normalized toI 05(e2/h)U. Note the very
slow approach towardsI 5I 0 as temperature is raised.
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Landauer approach to mesoscopic transport can be exte
to the case of strongly correlated systems. The exact solu
of the transport problem at the special valueg51/2 reveals
that both the previous ‘‘voltage drop’’ results~which hold at
sufficiently low voltage and temperature! and the perfect
conductance quantization in a clean system can be recov
within a unified approach.

An obvious and interesting generalization concerns the
case. Considering a situation whereU15U cos(vt) and U2
50, the boundary condition at the left end of the wire wou
read

rR
05

eU1 cos~vt2vx/v !

2p\vF
. ~6.1!
,

. J

.

ed
on

red

c

The consequences of time-dependent boundary condit
have not been studied so far except in the clean case.27 Our
boundary condition approach also allows for a considera
of more complicated geometries. For instance, the prob
of crossed Luttinger liquids allows for an elegant solution
employing this approach.28
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