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Influence of magnetic-field-induced spin-density-wave motion and finite temperature on the
quantum Hall effect in quasi-one-dimensional conductors: A quantum field theory

Victor M. Yakovenko* and Hsi-Sheng Goan†

Department of Physics and Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742
~Received 13 April 1998!

We derive the effective action for a moving magnetic-field-induced spin-density wave~FISDW! in quasi-
one-dimensional conductors at zero and nonzero temperatures by taking the functional integral over the elec-
tron field. The effective action consists of the~two plus one!-dimensional@~211!D# Chern-Simons term and
the ~111!D chiral anomaly term, both written for a sum of the electromagnetic field and the chiral field
associated with the FISDW phase. The calculated frequency dependence of Hall conductivity interpolates
between the quantum Hall effect at low frequencies and zero Hall effect at high frequencies, where the
counterflow of FISDW cancels the Hall current. The calculated temperature dependence of the Hall conduc-
tivity is interpreted within the two-fluid picture, by analogy with the BCS theory of superconductivity.
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I. INTRODUCTION

Organic metals of the (TMTSF)2X family, where TMTSF
is tetramethyltetraselenafulvalene andX represents an inor
ganic anion such as ClO4 or PF6 , are highly anisotropic,
quasi-one-dimensional~Q1D! crystals that consist of paralle
conducting chains~see Refs. 1 and 2!. The electron wave
functions overlap and the electric conductivity are the hig
est in the direction of the chains~the a direction! and are
much smaller in theb direction perpendicular to the chain
In this paper, we neglect coupling between the chains
the third,c direction, which is weaker than in theb direction,
and model (TMTSF)2X as a system of uncoupled two
dimensional~2D! layers parallel to thea-b plane, each of the
layers having a strong Q1D anisotropy. We choose the c
dinate axisx along the chains and the axisy perpendicular to
the chains within a layer.

A moderate magnetic fieldH of the order of several Tesla
applied perpendicular to the layers, induces the so-ca
magnetic-field-induced spin-density wave~FISDW! in the
system~see Ref. 3!. In the FISDW state, the electron-sp
density is periodically modulated along the chains with
wave vector

Qx52kF2NG, ~1.1!

wherekF is the Fermi wave vector of the electrons,N is an
integer that characterizes FISDW, and

G5
ebH

\c
~1.2!

is a characteristic wave vector of the magnetic field. In E
~1.2!, e is the electron charge,\5h/2p is the Planck con-
stant,c is the speed of light, andb is the distance between th
chains. The longitudinal wave vector of FISDW~1.1! is not
equal to 2kF @as it would in a purely one-dimensional~1D!
case#, but deviates by an integer multiple of the magne
wave vectorG. When the magnetic field changes, the integ
N stays constant within a certain range of the magnetic fi
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then switches to another value, and so on. Thus, the sys
exhibits a cascade of the FISDW phase transitions when
magnetic field changes. The theory of FISDW was initiat
by Gor’kov and Lebed’,4 further developed in Refs. 5–13
and reviewed in Refs. 14 and 15.

Within each FISDW phase, the Hall conductivity per o
layersxy has an integer quantized value at zero temperat

sxy5
2Ne2

h
, ~1.3!

where N is the same integer that appears in Eq.~1.1! and
characterizes FISDW.@The factor 2 in Eq.~1.3! comes from
the two orientations of the electron spin.# A gap in the en-
ergy spectrum of the electrons, which is a necessary co
tion for the quantum Hall effect~QHE!, is supplied by
FISDW. The theory of QHE in the FISDW state of Q1
conductors was developed in Refs. 16–18~see also Refs. 15
and 19!. The theory assumes that FISDW is pinned and a
on electrons as a static periodic potential, so that Eq.~1.3!
represents QHE~Ref. 20! in a 2D periodic potential pro-
duced by FISDW and the chains.

On the other hand, under certain conditions, a den
wave in a Q1D conductor can move~see, for example, Ref
21!. It is interesting to find out how this motion would affec
QHE. Since the density-wave condensate can move o
along the chains, at first sight, this purely 1D motion can
contribute to the Hall effect, which is essentially a 2D effe
Nevertheless, we show in this paper that in the case
FISDW, unlike in the case of a regular charge- or sp
density wave~CDW/SDW!, a nonstationarymotion of the
FISDW condensate does produce a nontrivial contribution
the Hall conductivity. In an ideal system, where FISDW
not pinned or damped, this additional contribution due to
FISDW motion~the so-called Fro¨hlich conductivity21! would
exactly cancel the bare QHE, so that the resultant Hall c
ductivity would be zero. In real systems, this effect shou
result in vanishing of the ac Hall conductivity at high enou
frequencies, where the dynamics of FISDW is dominated
inertia, and pinning and damping can be neglected. Beca
we study an interplay between QHE and the Fro¨hlich con-
ductivity, our theory has some common ideas with the
10 648 © 1998 The American Physical Society
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called topological superconductivity theory,22 which also
seems to contain these ingredients. Frequency dependen
the Hall conductivity in a FISDW system was studied the
retically in Ref. 23. However, because this theory fails
produce QHE at zero frequency, it is unsatisfactory. So
unsuccessful attempts to derive an effective action fo
moving FISDW and QHE were made in Ref. 24.

Another interesting question is how the Hall conductiv
in the FISDW state depends on temperatureT. Our calcula-
tions show that thermal excitations across the FISDW ene
gap partially destroy QHE, andsxy(T) interpolates between
the quantized value~1.3! at zero temperature and zero val
at the transition temperatureTc , where FISDW disappears
We find thatsxy(T) has a temperature dependence simila
that of the superfluid density in the BCS theory of superc
ductivity. Thus, at a finite temperature, one might think o
two-fluid picture of QHE, where the Hall conductivity of th
condensate is quantized, but the condensate fraction o
total electron density decreases with increasing tempera
An attempt to calculate the Hall conductivity in the FISD
state at a finite temperature was made in Ref. 23, but it fa
to produce QHE at zero temperature.

Some of our results were briefly reported in Ref. 25. Th
were also presented on a heuristic, semiphenomenolog
level in Ref. 19. In the current paper, we present a system
derivation of these results within the quantum-field-theo
formalism. In Sec. II, we heuristically derive the effectiv
Lagrangian of a moving FISDW and the corresponding
Hall conductivity. In Sec. III, as a warm-up exercise, w
formally derive the effective action of a~111!D CDW/SDW
in order to demonstrate that our method reproduces w
known results in this case. In the quantum-field theory, t
effective action is usually associated with the so-called ch
anomaly.26–28 Our method of derivation is close to that o
Ref. 29. In Sec. IV, we generalize the method of Sec. III
the case of~211!D FISDW and derive the effective actio
for a moving FISDW. We find that, in addition to th
~111!D chiral-anomaly term, the effective action contai
the~211!D Chern-Simons term, written for a combination
electromagnetic potentials and gradients of the FISD
phase. This modified Chern-Simons term describes both
QHE of a static FISDW and the effect of FISDW motio
The results are consistent with the heuristic derivation
Sec. II. In Sec. V, we rederive the results of Sec. IV using
alternative method, which then is straightforwardly gener
ized to a finite temperature in Sec. VI. The results for a fin
temperature are obtained heuristically in Sec. VI A and f
mally in Sec. VI B. Experimental implications of our theo
are discussed in Sec. VII. Conclusions are given in Sec. V

II. SEMIPHENOMENOLOGICAL APPROACH TO QHE
AND MOTION OF FISDW

A. Fröhlich current and Hall current

We consider a 2D system where electrons are confine
the chains parallel to thex axis, and the spacing between th
chains along they axis is equal tob. A magnetic fieldH is
applied along thez axis perpendicular to the (x,y) plane. The
system is in the FISDW state at zero temperature. In orde
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calculate the Hall effect, let us apply an electric fieldEy
perpendicular to the chains. The electron HamiltonianH can
be written as

H52
\2

2m

]2

]x2
12D cos~Qxx1Q!

12tbcos~kyb2Gx1Vyt !, ~2.1!

where ky is the electron wave vector perpendicular to t
chains. In the right-hand side~rhs! of Eq. ~2.1!, the first term
represents the kinetic energy of the electron motion along
chains with the effective massm. The second term describe
the periodic potential produced by FISDW. The FISDW p
tential is characterized by the longitudinal wave vectorQx
~1.1!, an amplitudeD, and a phaseQ. The third term de-
scribes the electron tunneling between the near
neighboring chain with the amplitudetb . In the gaugeAy
5Hx2cEyt andf5Ax5Az50, the magnetic and the trans
verse electric fields appear in the third term of Hamiltoni
~2.1! via the Peierls-Onsager substitutionky→ky2eAy /c\,
where Vy5ebEy /\, and G is given by Eq.~1.2!. Strictly
speaking, a complete theory of FISDW requires us to ta
into account the transverse componentQy of the FISDW
wave vector and the electron tunneling between the n
nearest-neighboring chains with the amplitudetb8 .6–9 How-
ever, whiletb8 andQy are very important for determining th
properties of FISDW, such asN, D, andTc , tb8 andQy are
not essential for the theory of QHE, so we set them at zer
order to simplify the presentation. We do not pay attention
the spin structure of the density-wave order parameter in
~2.1!, because it is immaterial for our study, which focus
on the orbital effect of the magnetic field. To simplify pre
sentation, we study the case of CDW, but the results
SDW are the same.

In the presence of the magnetic fieldH, the interchain
hopping term in Eq.~2.1! acts as a potential, periodic alon
the chains with the wave vectorG proportional toH. In the
presence of the transverse electric fieldEy , this potential
moves along the chains with the velocityVy /G5cEy /H
proportional toEy . This velocity is nothing but the drift
velocity in crossed electric and magnetic fields. The FISD
potential may also move along the chains, in which case
phaseQ depends on timet, and the velocity of the motion is

proportional to the time derivativeQ̇. We are interested in a
spatially homogeneous motion of FISDW, so let us assu
that Q depends only on timet and not on the coordinate
x and y. We also assume that both potentials move v
slowly, adiabatically, which is the case when the elect
field is sufficiently weak.

Let us calculate the current along the chains produced
the motion of the potentials. Since there is an energy ga
the Fermi level, following the arguments of Laughlin30 we
can say that an integer number of electronsN1 is transferred
from one end of a chain to another when the FISDW pot
tial shifts by its periodl 152p/Qx . The same is true for the
motion of the interchain hopping potential with an integerN2
and the periodl 252p/G. Suppose that the first potentia
shifts by an infinitesimal displacementdx1 and the second by



m
-

g

ly

e

s

e

o

t

e
e

u

ro

ia

re
in
tr

ion
e

in

s
o-
tor

e

the
o
c-

ity,
g

.
nt
e

of
.
the
r-
try
ixed

l

e

-

eld

m
the
c-

e
oss

10 650 PRB 58VICTOR M. YAKOVENKO AND HSI-SHENG GOAN
dx2 . The total transferred chargedq would be the sum of the
prorated amounts ofN1 andN2 :

dq5eN1

dx1

l 1
1eN2

dx2

l 2
. ~2.2!

Now, suppose that both potentials are shifted by the sa
displacementdx5dx15dx2 . This corresponds to a transla
tion of the system as a whole, so we can write that

dq5er dx, ~2.3!

wherer54kF/2p is the concentration of electrons. Equatin
~2.2! and ~2.3! and substituting the expressions forr, l 1 ,
and l 2 , we find the following Diophantine-type equation:31

4kF5N1~2kF2NG!1N2G. ~2.4!

Since kF /G is, in general, an irrational number, the on
solution of Eq.~2.4! for the integersN1 andN2 is N152 and
N25N1N52N.

Dividing Eq. ~2.2! by a time incrementdt and the inter-
chain distanceb, we find the density of current along th
chains, j x . Taking into account that according to Eq.~2.1!
the displacements of the potentials are related to their pha
dx152dQ/Qx anddx25Vydt/G, we find the final expres-
sion for j x :

j x52
e

pb
Q̇1

2Ne2

h
Ey . ~2.5!

The first term in Eq.~2.5! represents the contribution of th
FISDW motion, the so-called Fro¨hlich conductivity.21 This
term vanishes when the FISDW is pinned and does not m

(Q̇50). The second term in Eq.~2.5! describes QHE, in
agreement with Eq.~1.3!.

B. Effective Lagrangian

To complete the solution of the problem, it is necessary

find how Q̇ depends onEy . For this purpose, we need th
equation of motion forQ, which can be derived once w
know the Lagrangian density of the systemL. Two terms in
L can be readily recovered taking into account that the c
rent densityj x , given by Eq.~2.5!, is the variational deriva-
tive of the Lagrangian density with respect to the elect
magnetic vector potentialAx : j x5cdL/dAx . Written in a
gauge-invariant form, the recovered part of the Lagrang
density is equal to

L15
Ne2

2p\c
« i jkAi

]Ak

]xj
2

e

pb
QEx , ~2.6!

where the first term is the so-called Chern-Simons term
sponsible for QHE,17 and the second term describes the
teraction of the density-wave condensate with the elec
field along the chainsEx52]Ax /c]t2]f/]x.21 In Eq.
~2.6!, we use the relativistic notation32 with the indices
( i , j ,k) taking the values (0,1,2) and the implied summat
over repeated indices.33 The contravariant vectors have th
superscript indices:Ai5(f,Ax ,Ay) and xj5(ct,x,y). The
covariant vectors have subscript indices:xj5(ct,2x,2y),
and are obtained from the contravariant vectors by apply
e

es:

ve

o

r-

-

n

-
-
ic

g

the metric tensor of the Minkowski space:gi j 5gi j

5diag(1,21,21). « i jk is the antisymmetric tensor with
«01251. The potentialsAi and the corresponding field
Ex , Ey , andHz represent an infinitesimal external electr
magnetic field. These potentials do not include the vec
potential of the bare magnetic fieldH, which is incorporated
into the Hamiltonian of the system via the termGx in Eq.
~2.1! with G given by Eq.~1.2!.

Lagrangian density~2.6! should be supplemented with th
kinetic energy of the FISDW condensateK. The FISDW
potential itself has no inertia, because it is produced by
instantaneous Coulomb interaction between electrons, sK
originates completely from the kinetic energy of the ele
trons confined under the FISDW energy gap. Thus,K is pro-
portional to the square of the average electron veloc
which, in turn, is proportional to the electric current alon
the chains:

K5
p\b

4vFe2
j x
2 , ~2.7!

where vF5\kF /m is the Fermi velocity. Substituting Eq
~2.5! into Eq. ~2.7!, expanding, and omitting an unimporta
term proportional toE y

2 , we obtain the second part of th
Lagrangian density of the system:

L25
\

4pbvF
Q̇22

eN

2pvF
Q̇Ey . ~2.8!

The first term in Eq.~2.8! is the same as the kinetic energy
a purely 1D density wave21 and is not specific to FISDW
The most important is the second term, which describes
interaction of the FISDW motion and the electric field pe
pendicular to the chains. This term is allowed by symme
in the considered system and has the structure of a m
vector-scalar product:

v@E3H#. ~2.9!

Here,v is the velocity of the FISDW, which is proportiona

to Q̇ and is directed along the chains, that is, along thx
axis. The magnetic fieldH is directed along thez axis, thus
allowing the electric fieldE to enter only through the com
ponentEy . Comparing Eq.~2.9! with the last term in Eq.
~2.8!, one should take into account that the magnetic fi
enters the last term implicitly, through the integerN, which
depends onH and changes sign whenH changes sign.

Varying the total LagrangianL5L11L2 , given by Eqs.
~2.6! and ~2.8!, with respect toAy , we find the current den-
sity across the chains:

j y52
2Ne2

h
Ex2

eN

2pvF
Q̈. ~2.10!

In the rhs of Eq.~2.10!, the first term describes the quantu
Hall current, whereas the second term, proportional to
accelerationof the FISDW condensate, comes from the se
ond term in Eq.~2.8! and reflects the contribution of th
FISDW motion along the chains to the electric current acr
the chains.

Setting the variational derivative ofL with respect toQ to
zero, we find the equation of motion forQ:
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Q̈52
2evF

\
Ex1

eNb

\
Ėy . ~2.11!

In Eq. ~2.11!, the first-two terms constitute the standard 1
equation of motion of the density wave21, whereas the las
term, proportional to the time derivative ofEy , which origi-
nated from the last term in Eq.~2.8!, describes the influenc
of the electric field across the chains on the motion
FISDW.

C. Hall conductivity

In order to see the influence of the FISDW motion on t
Hall effect, let us consider the two cases, where the elec
field is applied either perpendicular or parallel to the chai
In the first case,Ex50, so integrating Eq.~2.11! in time, we

find that Q̇5eNbEy /\. Substituting this equation into Eq
~2.5!, we see that the first term~the Fröhlich conductivity of
FISDW! precisely cancels the second term~the quantum
Hall current!, so the resulting Hall current is equal to zero.
This result could have been obtained without calculations
taking into account that the time dependenceQ(t) is deter-
mined by the principle of minimal action. The relevant pa
of the action is given, in this case, by Eq.~2.7!, which attains
the minimal value at zero current:j x50. We can say that if
FISDW is free to move it adjusts its velocity to compens
the external electric fieldEy and to keep zero Hall current. I
the second case, where the electric fieldEx is directed along
the chains, it accelerates the density wave according to
equation of motion~2.11!: Q̈522evFEx /\. Substituting
this equation into Eq.~2.10!, we find again that the Hal
current vanishes.

It is clear, however, that in stationary dc measureme
the acceleration of the FISDW, discussed in the previ
paragraph, cannot last forever. Any friction or dissipati
will inevitably stabilize the motion of the density wave to
steady flow with zero acceleration. In this steady state,
second term in Eq.~2.10! vanishes, and the currentj y recov-
ers its quantum Hall value. The same is true in the c
where the electric field is perpendicular to the chains. In t
case, dissipation eventually stops the FISDW motion alo
the chains and restoresj x , given by Eq.~2.5!, to the quantum
Hall value. The conclusion is that the contribution of t
moving FISDW condensate to the Hall conductivity is ess
tially nonstationary and cannot be observed in dc meas
ments.

On the other hand, the effect can be seen in ac exp
ments. To be realistic, let us add damping and pinning21 to
the equation of motion of FISDW~2.11!:

Q̈1
1

t
Q̇1v0

2Q52
2evF

\
Ex1

eNb

\
Ėy , ~2.12!

where t is the relaxation time andv0 is the pinning fre-
quency. Solving Eq.~2.12! via the Fourier transformation
from the timet to the frequencyv and substituting the resu
into Eqs.~2.5! and~2.10!, we find the Hall conductivity as a
function of frequency:

sxy~v!5
2Ne2

h

v0
22 iv/t

v0
22v22 iv/t

. ~2.13!
f

ic
.
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t

e

he
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s

e

e
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g

-
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The absolute value of the Hall conductivityusxyu computed
from Eq.~2.13! is plotted in Fig. 1 as a function ofv/v0 for
v0t52. As we can see in the figure, the Hall conductivity
quantized at zero frequency and has a resonance at the
ning frequency. At the higher frequencies, where pinn
and damping can be neglected and the system effecti
behaves as an ideal, purely inertial system considered in
section, the Hall conductivity does decrease toward zero

In this section, the derivation of results was heuristic.
the following sections, we calculate the effective action o
moving FISDW systematically, within the functiona
integral formalism.

III. EFFECTIVE ACTION FOR A „111…D DENSITY WAVE

As a warm-up exercise, let us derive the effective act
for a regular CDW/SDW in the~111!D case, where 111
represents the space coordinatex and the time coordinatet.
For simplicity, we consider the case of CDW; results f
SDW are the same. Summation over the spin indices of e
trons is assumed everywhere, which generates a factor
in traces over the fermions.

Let us consider~111!D fermions, described by a Grass
mann fieldC(t,x), in the presence a density-wave potent
2Dcos@2kFx1Q(t,x)# and an infinitesimal external electro
magnetic field, described by the scalarf(t,x) and vector
Ax(t,x) potentials. The action of the system is

S@C,Q,f,Ax#5E dt dxC1F S i\
]

]t
2ef D

2
1

2mS 2 i\
]

]x
2

e

c
AxD 2

1«F22D cos~2kFx1Q!GC. ~3.1!

Let us introduce the doublet of fermion fields

c~ t,x!5Fc1~ t,x!

c2~ t,x!
G ~3.2!

with the momenta close to6kF :

FIG. 1. Absolute value of the Hall conductivity in the FISDW
state as a function of the frequencyv normalized to the pinning
frequencyv0 , as given by Eq.~2.13! with v0t52.
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C~ t,x!5c1~ t,x!eikFx1c2~ t,x!e2 ikFx. ~3.3!

Substituting Eq.~3.3! into Eq.~3.1! and neglecting the term
with the higher derivatives]2c6 /]x2 and the terms where
the fast-oscillating factors exp(6i2kFx) do not cancel out, we
rewrite the action of the system in the matrix form

S@c,Q,f,Ax#5TrE dt dxc1L@Q,f,Ax#c ~3.4!

with

L@Q,f,Ax#5t0S i\
]

]t
2ef D1tzvFS i\

]

]x
1

e

c
AxD

2txDe2 i tzQ2t0

e2

2mc2
Ax

2 . ~3.5!

In Eq. ~3.5!, tx , ty , tz , andt0 are the 232 Pauli matrices
and the unit matrix acting on the doublet of fermion fiel
~3.2!. In Eq. ~3.4!, the trace~Tr! is taken over the6 com-
ponents of the fermion field~3.2! and the implied spin indi-
ces of the fermions.

It is convenient to rewrite Eq.~3.5! in a pseudorelativistic
notation:

L@Q,Am#5 i\vFtm

]

]xm
2e

vF

c
tmAm2txDe2 i tzQ

2t0

e2

2mc2
Ax

2 , ~3.6!

where the indexm takes the values 0 and 1, and summat
over repeated indices is implied. The contravariant vec
are defined as follows:

xm5~vFt,x!, Am5S c

vF
f,AxD , tm5~t0 ,tz!. ~3.7!

The covariant vectors are obtained by applying the me
tensor:gmn5gmn5diag(1,21).

We wish to find the effective action of the syste
S@Q,Am# by carrying out the functional integral over th
fermion fields c in the partition function with the action
S@c,Q,Am#:

eiS[Q,Am]/\5

E Dc1 Dc eiS[c,Q,Am]/\

E Dc1 Dc eiS[c,0,0]/\

. ~3.8!

The functional integral~3.8! with action ~3.4! is difficult to
treat, because the phaseQ(xm) in Eq. ~3.5! is space-time
dependent. In order to eliminate this problem, let us cha
the integration variablec to a new variablec̃ via a chiral
transformation characterized by a unitary mat
U@Q(xm)#:34

c~xm!5U@Q~xm!# c̃~xm!5ei tzQ~xm!/2 c̃~xm!. ~3.9!

Written in terms of the new fieldc̃, action~3.4! becomes
n
rs

ic

e

S̃@c̃,Q,Am#5Tr E dt dx c̃1L̃c̃, ~3.10!

where

L̃5L01L11L2 , ~3.11!

L05 i\vFtm

]

]xm
2txD, ~3.12!

L152e
vF

c
tmBm, ~3.13!

L252t0

e2

2mc2
Ax

2 . ~3.14!

In Eq. ~3.13!,

Bm5Am1am, ~3.15!

am5
\c

2e
«mn

]Q

]xn
, ~3.16!

where«mn is the antisymmetric tensor with«0151. The chi-
ral transformation ~3.9! eliminates the phase facto
exp(2itzQ) of the order parameterD from Eq. ~3.5!, so that
Lagrangian~3.12! acquires a simple form. As a tradeoff, La
grangian~3.13! subjects fermions to the effective potenti
Bm5Am1am ~3.15!, which combines the original electro
magnetic potentialsAm and the gradients of the phaseQ
~3.16!:

a05
\c

2e

]Q

]x
, a152

\c

2evF

]Q

]t
. ~3.17!

Because the external electromagnetic potentialsAm and
the gradients ofQ are assumed to be small, the effecti
potentialsBm are also small and can be treated pertur
tively. Changingc to c̃ and S to S̃ in Eq. ~3.8!, we can
calculate the effective actionS@Q,Am# by making a diagram-
matic expansion in powers ofBm. Expanding to the first
power of Lagrangian~3.13! and averaging over the fermions
we obtain the contributionS1 that is nominally of the first
order inBm. Expansion to the second power of~3.13! and the
first power of~3.14! gives us the contributionsS28 andS29 of
the second order inBm and Ax . First we calculateS25S28
1S29 in Sec. III A and then obtainS1 in Sec. III B.

A. The second-order terms of the effective action

The two second-order contributions to the effective a
tion, S28 and S29 , are given by the two Feynman diagram
shown in Fig. 2, where the wavy lines representBm and the
solid lines represent the bare Green functionsG of the fermi-
ons:
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G~x2x8,t2t8!52
i

\
^c~ t,x!c1~x8,t8!& S̃0

5E dk dv

~2p!2
eik~x2x8!2 iv~ t2t8!G~k,v!.

~3.18!

The Green function~3.18! is obtained by averaging the fe
mion fields using actionS̃0 ~3.10! with the LagrangianL0
~3.12!:

G~k,v!5
ei ev

t0\v2tzvF\k2txD1 i t0e sgn~v!
,

~3.19!

wheree.0 is infinitesimal. Becausec andc1 in Eq. ~3.18!
are two-component fields~3.2!, the Green functionG is a 2
32 matrix. The factorei ev in Eq. ~3.19! ensures that the
integral inv of the Green function~3.19!,

E dv

2p
Tr@tzG~k,v!#5

2i

\
@n1~k!2n2~k!#, ~3.20!

gives the difference in the occupation numbersn1(k) and
n2(k) of the6 fermions. The fermion occupation numbern
is equal to 1 and 0 at the energies deeply below and h
above the Fermi energy, correspondingly. This statement
plies to the electron energies much greater than the en
gapD. The factor 2 in Eq.~3.20! comes from the two orien
tations of the electron spin.

Introducing the Fourier transforms of the potentials

Bm~k,v!5E dt dx e2 ikx1 ivtBm~ t,x!, ~3.21!

we find an analytical expression for the diagram shown
Fig. 2~a!

S285
e2vF

2

c2 E dp dV

~2p!2
Pmn~p,V!Bm~p,V!Bn~2p,2V!,

~3.22!

where

Pmn~p,V!5
i\

2 E dk dv

~2p!2
Tr@tmG~k,v!tnG~k1p,v1V!#.

~3.23!

FIG. 2. Two Feynman diagrams determining the second-o
contribution to the effective action,S2 . The solid lines represent th
fermion Green functions~3.19!. The wavy lines in panel~a! repre-
sent the effective potentialsBm ~3.15!, which interact with the fer-
mions via Eq.~3.13!. The wavy lines in panel~b! represent the
electromagnetic potentialAx , which interacts with the fermions via
Eq. ~3.14!.
h
p-
gy

n

Assuming that the gradients ofBm are small, we expand
Pmn(p,V) in powers ofp andV and keep only the zeroth
order term, effectively settingp5V50 in Eq. ~3.23!. Thus,
we need to calculate the following three integrals:

P00~0,0!5
i\

2 E dk dv

~2p!2
Tr@t0G~k,v!t0G~k,v!#,

~3.24!

P11~0,0!5
i\

2 E dk dv

~2p!2
Tr@tzG~k,v!tzG~k,v!#,

~3.25!

P10~0,0!5
i\

2 E dk dv

~2p!2
Tr@tzG~k,v!t0G~k,v!#.

~3.26!

Using Eq.~3.19! and the identity

]G52G~]G21!G, ~3.27!

where ] represents a derivative ofG with respect to any
parameter thatG depends upon, we can rewrite Eqs.~3.24!–
~3.26! in the following form:

P00~10!52
i

2E dk dv

~2p!2
TrFt0~z!

]G~k,v!

]v G , ~3.28!

P115
i

2vF
E dk dv

~2p!2
TrFtz

]G~k,v!

]k G . ~3.29!

In condensed-matter physics, we integrate over the freque
v first and than integrate over the wave vectork. Taking the
integral overv in Eq. ~3.28!, we find that being an integra
of a full derivative ofG(k,v) with respect tov the integral
vanishes becauseG(k,6`) vanishes:

P005P1050. ~3.30!

On the other hand, according to Eq.~3.20!, the integral over
v in Eq. ~3.29! gives

P1152
1

2p\vF
E dk

]@n1~k!2n2~k!#

]k
5

1

p\vF
.

~3.31!

We took into account in Eq.~3.31! that the fermion occupa
tion numbern is equal to 1 and 0 at the energies deep
below and high above the Fermi energy, correspondingly

Substituting Eqs.~3.30! and ~3.31! into Eq. ~3.22!, we
find

S285
e2vF

p\c2E dt dx~B1!2

5
e2vF

p\c2E dt dx S Ax2
\c

2evF

]Q

]t D 2

. ~3.32!

The analytical expression for the diagram shown in F
2~b! is

er
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S2952
e2

2mc2E dt dx Ax
2 Tr^c1~ t,x!t0c~ t,x!& S̃0

.

~3.33!

Taking into account that the last factor in Eq.~3.33! is noth-
ing but the average electron densityr54kF/2p, we find

S2952
e2vF

p\c2E dt dx Ax
2 . ~3.34!

Combining Eqs.~3.32! and ~3.34!, we find the total
second-order part of the effective action,S25S281S29 :

S2@Q,Am#5
e2vF

p\c2E dt dx@~B1!22~A1!2# ~3.35!

5E dt dxF2
e

cp
Ax

]Q

]t
1

\

4pvF
S ]Q

]t D 2G
~3.36!

5E dt dxF e

pc
Q

]Ax

]t
1

\

4pvF
S ]Q

]t D 2G .
~3.37!

In going from Eq.~3.36! to Eq.~3.37!, we integrated by parts
assuming periodic or zero boundary conditions forQ andAi .
Notice that theAx

2 terms coming from Eqs.~3.32! and~3.34!
cancel out exactly, so Eq.~3.37! does not violate gauge in
variance in the absence ofQ. WhenQÞ0, it is necessary to
add the termS1 , calculated in the next section, in order
obtain a gauge-invariant effective action.

B. The ‘‘first-order’’ term of the effective action

In the beginning of Sec. III, we started with a model~3.5!,
where the density-wave phaseQ(t,x) is space-time depen
dent. By doing the chiral transformation~3.9! of the fermi-
ons, we made the density-wave phase constant~equal to
zero! in Eq. ~3.12! at the expense of modifying the gaug
potentials~3.15!. The chiral transformation~3.9! produces
not only a perturbative effect due to the modification of t
gauge potentials, but also changes the ground state o
system~the ‘‘vacuum’’ in the quantum-field-theory termino
ogy!. Specifically, the chiral transformation changes t
number of fermions in the system, which we calculate belo

Formally, the number of fermions in model~3.10! is infi-
nite because of the linearization of the electron dispers
law near the Fermi energy. Nevertheless, thevariation of the
fermion number is finite and can be calculated una
biguously, but we need to introduce some sort of ultravio
regularization to do this. When calculating the fe
mion density, let us consider the fermion fields at two poi
split by a small amount (dx,dt): r(t,x)5^c1(t1dt,x
1dx)c(t,x)&. The time splitting is necessary anyway to g
the proper time ordering. Now let us calculate how the f
mion number changes when we make an infinitesimal ch
transformation~3.9!:
he

.

n

-
t

s

t
-
al

dr~ t,x!5^c̃1~ t1dt,x1dx!

3$U1@dQ~ t1dt,x1dx!#

3U@dQ~ t,x!#21%c̃~ t,x!&. ~3.38!

Expanding the matricesU in dQ and replacing the averag
of the fermions fields by the Green function, we find fro
Eq. ~3.38!:

dr~ t,x!52
\

2
Tr $tz@dQ~ t1dt,x1dx!2dQ~ t,x!#

3G~2dx,2dt !%. ~3.39!

The second line in Eq.~3.39! can be represented in terms
the Fourier transforms ofdQ andG ~see Sec. 19 of Ref. 35!:

E dk dv

~2p!2

dp dV

~2p!2
eipx2 iVt2 ikdx1 ivdt

3@G~k1p,v1V!2G~k,v!#dQ~p,V!.

~3.40!

Substituting Eq.~3.40! into Eq. ~3.39! and taking the limit
dx5dt50, we find

dr~ t,x!52
\

2E dp dV

~2p!2
eipx2 iVtdQ~p,V!

3Tr tzE dk dv

~2p!2
@G~k1p,v1V!2G~k,v!#.

~3.41!

Taking the integral inv and the trace as in Eq.~3.20!, we
find the following expression for the last line of Eq.~3.41!:

i

\E dk

p
@n1~k1p!2n1~k!2n2~k1p!1n2~k!#

5
ip

p\E dk
]@n1~k!2n2~k!#

]k
52

2ip

p\
. ~3.42!

Ordinarily, by changing the variable of integrationk1p to
k, one might conclude that integral~3.42! vanishes. How-
ever, because the fermion occupation numbern(k) have dif-
ferent values above and below the Fermi energy, chang
the variable of integration does change the integral, so
result is not zero. To find the value, we expand Eq.~3.42! in
a series in powers ofp and take the integral overk. Only the
first term of the series gives a nonzero result, as shown in
second line of Eq.~3.42!. Substituting the result into Eq
~3.41! and performing the Fourier transform, we find th
variation of the fermion density:

dr~ t,x!5
1

p

]

]x
dQ~ t,x!. ~3.43!

While the local fermion concentration~3.43! changes, the
total fermion number remains constant:

E dx dr~ t,x!5
1

pE dx
]

]x
dQ~ t,x!50, ~3.44!
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if we assume that the values ofQ(t,x) at x56` are equal.
More generally, Eq.~3.43! follows from Eqs.~3.2! and~3.3!,
if we notice that a spatial gradient ofQ redefines the value o
the Fermi momentumkF and thus changes the number
particles in the Fermi sea.

The variation of the fermion density contributes to t
effective action in the following way. By averagin
Eqs.~3.4! and~3.5! with respect toc, we find that the elec-
tric potential f produces the first-order contributio
2*dt dx ef(t,x)r(t,x) to the effective action. A chira
transformation varies the fermion concentration~3.43!, as
well as replacesf by the effective potentialB0 ~3.15!. Thus,
an infinitesimal chiral transformation results in the followin
addition to the effective action:

dS152e
vF

c E dt dx B0~ t,x! dr~ t,x!

52
e

p

vF

c E dt dx B0
]dQ

]x
. ~3.45!

Because the effective potentialB0 ~3.15! itself depends on
Q, we need to take a variational integral of Eq.~3.45! over
dQ in order to recoverS1 :

S152E dt dxF e

p
f

]Q

]x
1

\vF

4p S ]Q

]x D 2G
5E dx dtF e

p
Q

]f

]x
2

\vF

4p S ]Q

]x D 2G . ~3.46!

Action ~3.46! can be also written in a form similar to Eq
~3.35!:

S1@Q,Am#52
e2vF

p\c2E dt dx@~B0!22~A0!2#. ~3.47!

As we see in Eq.~3.47!, the actionS1 is actually quadratic in
B0, so this action can be called the ‘‘first-order’’ term on
nominally. One can easily check explicitly that our poin
splitting method produces zero contributiond j x to another
‘‘first-order’’ term originating from Eq.~3.13! and involving
B1d j x .

C. The total effective action

Equations~3.35!, ~3.37!, ~3.46!, and ~3.47! together give
the total gauge-invariant effective action for the~111!D
density-wave system:

S@Q,Am#5S21S15E dt dx L@Q,Am#, ~3.48!

where

L52
e2vF

p\c2
@~Am1am!~Am1am!2AmAm# ~3.49!

5
\

4pvF
S ]Q

]t D 2

2
\vF

4p S ]Q

]x D 2

2
e

p
QEx ~3.50!

is the total effective Lagrangian density of the system. In
rhs of Eq.~3.50!, the first term represents the kinetic ener
e

of a rigid displacement of the density wave. The second te
represents the energy change caused by compressio
stretching of the density wave. The third term describes
teraction of the density wave with the electric field.

Varying L ~3.50! with respect to the scalar and vect
potentialsf and Ax we find the electric-charge densityre
and current densityj x per chain:

re52
dL

df
5

e

p

]Q

]x
, ~3.51!

j x5
cdL

dAx
52

e

p

]Q

]t
. ~3.52!

Varying Eq.~3.50! with respect toQ, we find the equation of
motion for Q:

]2Q

]t2
2vF

2 ]2Q

]x2
52

2evF

\
Ex . ~3.53!

These results are consistent with the standard descrip
of CDW/SDW.21 Lagrangian~3.49! is often associated with
the so-called~111!D chiral anomaly in the quantum-field
theory26,27 ~see also Ref. 28!. Our method of derivation is
close to that of Ref. 29.

IV. EFFECTIVE ACTION FOR „211…D FISDW

Now let us derive the effective action for FISDW, whic
is ~211! dimensional. We generalize the pseudorelativis
notation~3.7! to the ~211!D case as follows:

xi5~vFt,x,y!, Ai5S c

vF
f,Ax ,AyD , ~4.1!

gi j 5gi j 5diag~1,21,21!.

We will use roman indices, such asi , to denote the~211!D
vectors and greek indices, such asm, to denote the~111!D
vectors.

It is convenient to Fourier-transform the fieldsc, f, and
Ax over the transverse~discrete! coordinatey. In this repre-
sentation, the action of the system is

S@c,Q,Ai #5TrE dky dpy

b~2p!2
dt dxc1~ t,x,ky1py!

3L@Q~ t,x,y!,Ai~ t,x,py!# c~ t,x,ky!,

~4.2!

whereky andpy are the wave vectors along they axis, and

L@Q,Ai #5 i\vFtm

]

]xm
2e

vF

c
tmAm2txDei tz~NGx2Q!

2t0

e2

2mc2
Ax

22t02tbcosS kyb2Gx2
eb

\c
AyD .

~4.3!

The ~211!D Lagrangian~4.3! agrees with Eq.~2.1! and dif-
fers from the~111!D Lagrangian~3.5! by the last line rep-
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resenting the electron tunneling between the chains. A
the FISDW potential has the additional phaseNGx, because
the wave vector of FISDW isQx52kF2NG, not 2kF as in
Sec. III. The potentialsAm(t,x,py) in Eqs.~4.2! and~4.3! are
the Fourier transforms ofAm(t,x,y) over y, except for the
quadratic termAx

2 , which represents the Fourier transform
the squareAx

2(t,x,y), not the square of the Fourier tran
form. We select the gauge]Ay /]y50, so Ay does not de-
pend on y. Given that Q may depend ony, the factor
exp(2itzQ) in Eq. ~4.3! symbolically represents the Fourie
transform*dy exp@2ipyy2itzQ(t,x,y)#.

A. Transformation of Lagrangian

In this section, we perform two chiral transformations
the fermion fields that convert the~211!D Lagrangian~4.3!
into the effective~111!D form ~3.11!–~3.14!. Because the
transformations will depend on the transverse wave ve
ky , let us derive a useful formula for such transformatio
Suppose we make a unitary transformation of the ferm
field c(ky), and the transformation involves a functionf (ky)
that depends onky :

c~ky!5ei f ~ky!c̃~ky!. ~4.4!

Then, a typical term in the Lagrangian transforms in t
following way:

c1~ky1py!f~py!c~ky!'c̃1~ky1py!

3F12 ipy

] f ~ky!

]ky
Gf~py!c̃~ky!.

~4.5!

Here we substituted Eq.~4.4! into Eq. ~4.5! and expanded to
the first power of the small wave vectorpy .

First, we make the following transformation of the fe
mion field c in Eqs.~4.2! and ~4.3!:

c5expF i tz

2tb

\vFG
sinS kyb2Gx2

eb

\c
AyD Gc8. ~4.6!

Written in terms of the fermion fieldc8, the Lagrangian of
the system becomes

L8@Q,Ai #' i\vFtm

]

]xm
2e

vF

c
tmAm

2txDei tz$NGx2Q1~4tb /\vFG!sin[kyb2Gx2~eb/\c!Ay] %

2t0

e2

2mc2
Ax

2 . ~4.7!

As we see in the second line of Eq.~4.7!, transformation
~4.6! transfers the interchain hopping term to the FISD
phase. Transformation~4.6! also generates several terms pr
portional to the gradients ofAi and multiplied by the oscil-
latory factor cos@kyb2Gx2(eb/\c)Ay#, which are not shown
in Eq. ~4.7!. These terms would be necessary to conside
we wanted to keep the terms proportional to (]Ai /]xj )

2 in
the effective action. However, since we keep only the ter
with the first derivatives ofAi in the effective action, the
o,

f

or
.
n

e

-

if

s

neglected terms are not important, because the oscilla
factors cos(kyb2Gx) would average them to zero.

In the second line of Eq.~4.7!, we expand the interchain
hopping term into the Fourier series:

expS i tz

4tb

\vFG
sinw D5(

n
JnS 4tb

\vFGDei tznw, ~4.8!

wherew5kyb2Gx2(eb/\c)Ay , andJn(4tb /\vFG) is the
Bessel function of the integer ordern and the argumen
4tb /\vFG. We neglect all terms except the term withn
5N in series~4.8!, because only this term, when substitut
into Eq.~4.7!, does not have oscillatory dependence onx and
opens an energy gap at the Fermi level. This is the so-ca
single-gap approximation, well-known in the theory
FISDW.8,12,17 In this way we obtain the following approxi
mate expression for Lagrangian~4.7!:

L8@Q,Ai #' i\vFtm

]

]xm
2e

vF

c
tmAm2t0

e2

2mc2
Ax

2

2txD̃ei tz$Nb[ky2~e/\c!Ay] 2Q%, ~4.9!

where D̃5DJN(4tb /\vFG). The transformed Lagrangia
~4.9! of the ~211!D FISDW is the same as Lagrangian~3.5!
of the~111!D density wave with the replacementD→D̃ and
Q→Q̃, where

Q̃5Q1Nb@~e/\c!Ay2ky#. ~4.10!

Now we make the second transformation of t
fermions:36

c85expH i
tz

2 FQ2NbS ky2
e

\c
AyD G J c̃. ~4.11!

This chiral transformation eliminates the phase of t
FISDW potential in the last term of Eq.~4.9!, and the trans-
formed action becomes:

S̃@c̃,Q,Am#5
1

b
TrE dt dx dyc̃1L̃c̃, ~4.12!

whereL̃ has the~111!D form ~3.11!–~3.14! with D→D̃ and
the new effective potentials

B̃m5Am1am2
Nb

2
«m i j

]Aj

]xi
, ~4.13!

B̃05
c

vF
f1

\c

2e

]Q

]x
1

Nb

2
Hz , ~4.14!

B̃15Ax2
\c

2evF

]Q

]t
1

Nbc

2vF
Ey . ~4.15!

The potentials~4.14! and ~4.15! differ from the correspond-
ing ~111!D expressions~3.15! by the extra terms propor
tional to the integerN and the electromagnetic fieldsHz
5]Ay /]x2]Ax /]y andEy52]Ay /c]t2]f/]y. The terms
]Ay /]x and ]Ay /]t appear in Eqs.~4.14! and ~4.15! when
the differential operator in Eq.~4.9! is applied to transforma-
tion ~4.11!. The terms]f/]y and ]Ax /]y appear when we
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apply Eq. ~4.5! to transformation ~4.11! with f (ky)5
2Nbkytz/2 and convertipyA

m(py) into ]Am/]y. It was pos-
sible to reduce the~211!D Lagrangian~4.3! into the effec-
tively ~111!D one only because the magnetic fieldH sup-
pressed the fermion-energy dispersion inky , which made the
system effectively~111!D.

B. Effective action

The ‘‘second-order’’ part of the effective action fo
FISDW is obtained immediately by substituting Eq.~4.15!
into Eq. ~3.35!:

S25
e2vFb

p\c2 E dt dx dy@~B̃1!22~A1!2# ~4.16!

5E dt dx dyF \

4pvFbS ]Q

]t D 2

1
e

pbc
Q

]Ax

]t

2
Ne

2pvF
Ey

]Q

]t
1

Ne2

p\c
AxEyG . ~4.17!

We neglected the term proportional toE y
2 in Eq. ~4.17!.

To determine the ‘‘first-order’’ part of the effective ac
tion, we need to find the variation of the fermion dens
associated with transformations~4.6! and ~4.11! following
the method of Sec. III B. We neglect the contribution fro
the first transformation~4.6! because of the oscillatory facto
cos(kyb2Gx). From Eq.~3.45! we find that the second trans
formation ~4.11! gives the following contribution to the ef
fective action:

dS15
1

pbE dt dx dy B̃tS ]dQ

]x
1

Neb

\c

]dAy

]x D . ~4.18!

Because transformation~4.11! depends on the two param
etersQ and Ay , Eq. ~4.18! contains the variations of both
SubstitutingB̃t from Eq.~4.14! into Eq.~4.18! and taking the
variational integral overdQ and dAy , we get the ‘‘first-
order’’ part of the action:

S15E dt dx dyF e

pb
Q

]f

]x
2

\vF

4pbS ]Q

]x D 2

2
NevF

2pc
Hz

]Q

]x
1

Ne2

p\c
Ay

]f

]x G , ~4.19!

where we neglected the term proportional toHz]Ay /]x.
Equation~4.19! can be written in the form

S152
e2vF

p\c2b
E dt dx dyF ~B̃0!22~A0!21

Nbc

vF
f

]Ax

]y G
~4.20!

with B̃0 given by Eq. ~4.14!. Eq. ~4.20! is similar to the
~111!D Eq. ~3.47!, but contains the extra last term.

Equations~4.17! and~4.19! together give the total gauge
invariant effective action of FISDW:

S@Q,Am#5S21S15E dt dx dy L@Q,Am#, ~4.21!

where37
L5
\

4pvFbS ]Q

]t D 2

2
\vF

4pbS ]Q

]x D 2

2
e

pb
QEx

2
Ne2

2p\c
~fHz2AxEy1AyEx!

2
Ne

2pvF
Ey

]Q

]t
2

NevF

2pc
Hz

]Q

]x
. ~4.22!

In Eq. ~4.22!, the first line is the same as the Lagrangi
density of a purely~111!D density wave~3.50! ~save for the
overall factor 1/b) and, unlike the next two lines, is not spe
cific to FISDW. The second line represents the Che
Simons term responsible for QHE in the FISDW state. T
last line describes the interaction of the FISDW motion a
compression with the transverse electric fieldEy and the
magnetic fieldHz .

WhenQ does not depend on the coordinatex, the effec-
tive Lagrangian~4.22! coincides with the LagrangianL
5L11L2 , derived semiphenomenologically in Sec. II@Eqs.
~2.6! and ~2.8!#. When the FISDW is pinned and immobile
so thatQ is not a dynamical variable, Eq.~4.22! reduces to
only the Chern-Simons term:

LCS5
Ne2

2p\c
« i jkAi

]Ak

]xj
. ~4.23!

We can reintroduce the dynamics of FISDW by replacing
electromagnetic potentialsAi in Eq. ~4.23! with the effective
potentialsAi1ai , wheream are given by Eq.~3.16!, and the
third component is zero:a250. Adding also the Lagrangian
~3.49! of the ~111!D density wave, we recover the Lagran
ian ~4.22! of the ~211!D FISDW in the following form:

L5
Ne2

2p\c
« i jk~Ai1ai !

]~Ak1ak!

]xj
2

e2vF

p\c2b

3@~Am1am!~Am1am!2AmAm#. ~4.24!

Thus, the effective action of FISDW is given simply by th
~211!D Chern-Simons term and the~111!D chiral anomaly
written for the combined electromagnetic potentials and
FISDW phase gradientsAi1ai . The effective Lagrangian o
FISDW ~4.22! can be also written in a~111!D form resem-
bling Eq. ~3.49!:

L52
e2vF

p\c2b
S B̃mB̃m2AmAm1

Nbc

vF
f

]Ax

]y D , ~4.25!

where the effective potentialsB̃m are given by Eq.~4.13!.
By varying Eq.~4.22! with respect tof, Ax , andAy , we

find the electric-charge densityre and the current densitiesj x
along the chains andj y perpendicular to the chains:

re5
e

pb

]Q

]x
1

Ne

2pvF

]2Q

]y]t
1

2Ne2

hc
Hz , ~4.26!

j x52
e

pb

]Q

]t
2

NevF

2p

]2Q

]y]x
1

2Ne2

h
Ey , ~4.27!
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j y52
2Ne2

h
Ex2

Ne

2pvF

]2Q

]t2
1

NevF

2p

]2Q

]x2
. ~4.28!

The equation of motion ofQ is obtained by varying Eq
~4.22! with respect toQ:

]2Q

]t2
2vF

2]2Q

]x2
52

2evF

\
Ex1

eNb

\

]Ey

]t

1
eNvF

2b

\c

]Hz

]x
. ~4.29!

When Q does not depend on the coordinatesx and y, Eqs.
~4.27!–~4.29! coincide with the corresponding Eqs.~2.5!,
~2.10!, and ~2.11! derived semiphenomenologically in Se
II. When N50, Eqs.~4.26!, ~4.27!, and~4.29! coincide with
the corresponding Eqs.~3.51!–~3.53! for the ~111!D density
wave.

V. ALTERNATIVE DERIVATION
OF THE EFFECTIVE ACTION

In this section, we briefly outline an alternative derivati
of the effective action for the considered systems. This d
vation will be straightforwardly generalized to finite tem
peratures in the next section.

We noticed in Sec. IV that after transformation~4.6! La-
grangian~4.9! of the ~211!D FISDW is the same as La
grangian~3.5! of the ~111!D density wave with the replace
ment D→D̃ and Q→Q̃, whereQ̃ is given by Eq.~4.10!.
While, in principle, the chiral transformation~4.6! may bring
some contribution to the effective action of FISDW, th
contribution is not essential in practice, because of the os
latory factor cos(kyb2Gx), as we observed in Sec. IV. Thu
to find the effective action for FISDW, as well as for a~1
11!D density wave, it is sufficient to calculate the effecti
action for Lagrangian~4.9!.

Instead of calculating the effective actionS directly, let us
calculate its variation with respect to a variationdQ̃ of phase
~4.10!:

dS5

E Dc81 Dc8 c81
dL8

dQ̃
dQ̃c8eiS8[c8,Q̃]/\

E Dc81 Dc8eiS8[c8,Q̃]/\

. ~5.1!

The advantage of Eq.~5.1! is that, after we make transfor
mation ~4.11!, the anomalous terms cancel out in numera
and denominator, so it is sufficient to calculate only a p
turbative contribution todS. Using the explicit form ofL8
~4.9! and taking the variation in Eq.~5.1!, we find:

dS

dQ̃
5^c81D̃tye

2 i tzQ̃c8&S85^c̃1D̃tye
2 i tzQ0c̃& S̃ .

~5.2!

Instead of transformation~4.11!, we made a slightly differen
transformation

c85ei tz~Q̃2Q0!/2c̃, ~5.3!
i-

il-

r
-

which changes the density-wave phase not to zero, but
constant, space-time-independent valueQ0 .

In Eq. ~5.2!, we expandS̃, given by Eqs.~4.12!, to the
first order in B̃m and find the following expression in th
momentum representation:

dS52e
vF

c E dpx dpy dV

~2p!3
Pm~px ,V!B̃m~2px ,2py ,2V!

3dQ̃~px ,py ,V!, ~5.4!

where

Pm5
i\D̃

b E dk dv

~2p!2
Tr @tye

2 i tzQ0

3G~k,v!tmG~k1p,v1V!# ~5.5!

with G defined by Eq.~3.19! with D→D̃exp(2itzQ0). Ex-
panding Eq.~5.5! to the first order inp and V, we rewrite
Eq. ~5.4! as follows:

dS5e
vF

c E dpx dpy dV

~2p!3
Qmn

ipn

pb
B̃m~2px ,2py ,2V!

3dQ̃~px ,py ,V!, ~5.6!

wherep05V/vF , p152px , and

Qmn5D̃p\2vFE dk dv

~2p!2

3Tr @tye
2 i tzQ0G~k,v!tmG~k,v!tnG~k,v!#.

~5.7!

Manipulating thet matrices in Eq.~5.7!, it is possible to
show that the tensorQmn is antisymmetric:

Qmn52
1

2
C«mn. ~5.8!

The constantC in Eq. ~5.8! is an integer-topological invari-
ant, the Chern number:

C5E dk dv dQ0

4p2
TrS ]G21

]Q0
G

]G21

]v
G

]G21

]k
GD522.

~5.9!

In Eq. ~5.9!, the fermion Green functionG ~3.19! with D

→D̃exp(2itzQ0) is a function of three variables:v, k, and
the density-wave phaseQ0 . The integral overQ0 has been
added in Eq.~5.9! because the result does not depend on
value of Q0 . Integral ~5.9! is calculated in the Appendix
The value 2 comes from the two orientations of the elect
spin. Substituting Eqs.~5.8! and~5.9! into Eq.~5.6! and Fou-
rier transforming to the real space, we find

dS52
evF

pcbE dt dx dy«mn B̃m~x,y,t !
]dQ̃~x,y,t !

]xn
.

~5.10!
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Taking the variational integral overdQ̃ in Eq. ~5.10!, we
recover the effective action~4.22!.

VI. TEMPERATURE DEPENDENCE
OF THE HALL EFFECT

The Hall conductivity at a finite temperature is not qua
tized because of the presence of thermally excited quas
ticles above the energy gap. It is interesting to find how
Hall conductivity evolves with the temperature. Becau
QHE at zero temperature is generated by the collective
tion of electrons in the FISDW condensate, the issue her
the temperature dependence of the condensate current.
would expect that the condensate current must gradually
crease with increasing temperature and vanish at the tra
tion temperatureTc , where the FISDW order parameter di
appears. This behavior is qualitatively similar to t
temperature evolution of the superconducting conden
density and the inverse penetration depth of magnetic fiel
superconductors.

We start our consideration from the transformed Lagra
ian ~4.9! of the ~211!D FISDW, which is the same as La
grangian~3.5! of the~111!D density wave with the effective
phaseQ̃ ~4.10! instead ofQ. A time dependence ofQ̃ gen-
erates the Fro¨hlich current along the chains:

j x52
e

pb

]Q̃

]t
. ~6.1!

In the presence of a transverse electric fieldEy , we have
Ay52cEyt in Eq. ~4.10!, then Eq. ~6.1! reproduces Eq.

~2.5!. If FISDW is pinned (Q̇50), then Eq.~6.1! describes
QHE. So, the quantum Hall conductivity is the Fro¨hlich con-
ductivity associated with the combined phaseQ̃ ~4.10!.
Thus, the temperature dependence of QHE must be the s
as the temperature dependence of the Fro¨hlich conductivity.
The latter issue was studied in the theory of a regu
CDW/SDW.38,39 It was found that, at a finite temperatureT,
the Fröhlich current carried by the CDW/SDW condensate
reduced with respect to the zero-temperature value~6.1! by a
factor f (T):

j x52 f ~T!
e

pb

]Q̃

]t
. ~6.2!

We conclude that the same factorf (T) reduces the Hall con
ductivity of a pinned FISDW:

sxy~T!5 f ~T!
2Ne2

h
. ~6.3!

In Eqs.~6.2! and ~6.3!, the functionf (T) is

f ~T!512E
2`

` dk

\vF
S ]Ek

]k D 2F2
]n~Ek!

]Ek
G , ~6.4!

where kx is relabeled ask, Ek5A(\vFk)21D̃2 is the
electron-dispersion law in the FISDW state, andn(e)
5(ee/T11)21 is the Fermi-distribution function. At a finite
temperature, normal quasiparticles thermally excited ab
the energy gap equilibrate with the immobile crystal lattic
-
ar-
e
e
o-
is
ne

e-
si-

te
in

-

me

r

e
.

Thus, only a fraction of all electrons is carried along t
chains by the moving periodic potential, which reduces
Hall/Fröhlich current by the last term in Eq.~6.4!.

The functionf ~6.4! depends only on the ratio of the en
ergy gap at the Fermi levelD̃ and the temperatureT. Intro-
ducing the new variable of integrationz instead ofk via the
equation \vFk5D̃ sinhz, we can rewrite Eq.~6.4! as
follows:23,39

f S D̃

T
D 5E

0

`

dz

tanhS D̃

2T
coshz D

cosh2z
. ~6.5!

The functionf (D̃/T) is plotted in Fig. 3. It is equal to 1 a
zero temperature, where Eq.~6.3! gives QHE, gradually de-
creases with increasingT, and vanishes whenT@D̃. Taking
into account that the FISDW order parameterD itself de-
pends onT and vanishes at the FISDW transition tempe
ture Tc , it is clear thatf (T) and sxy(T) vanish atT→Tc ,
where sxy(T)} f (T)}D(T)}ATc2T. Assuming that the
temperature dependenceD̃(T) is given by the BCS theory,8

we plot the temperature dependence of the Hall conductiv
sxy(T), in Fig. 4.40

The function f (T) ~6.4! is qualitatively similar to the
function f s(T) that describes the temperature reduction of
superconducting condensate density in the London c
Both functions approach 1 at zero temperature, but neaTc
the superconducting function behaves differently:f s(T)
}D2(T)}Tc2T. As explained in Sec. VI B, this is due t
the difference between the static and dynamic limits of
response function.

In next Sec. VI A, we give a simple, semiphenomenolo
cal derivation of Eqs.~6.2! and ~6.4! based on the ideas o
Refs. 38 and 41 and analogous to the standard derivatio
the superfluid density~see Sec. 27 of Ref. 35!. After that, in
Sec. VI B, we give a formal diagrammatic derivation Eq
~6.2! and ~6.4!. We also derive the effective action o
FISDW at a finite temperature.

FIG. 3. The reduction factorf of the Hall conductivity, given by
Eq. ~6.5! and shown as a function of the ratio of the energy gap

the Fermi levelD̃ to temperatureT.
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A. Semiphenomenological derivation

Let us consider a 1D electron system where a CDW/SD
of an amplitudeD moves with a small velocityv. Let us
calculate the Fro¨hlich current, proportional tov, at a finite
temperatureT.

We find the electron wave functions in the referen
frame moving with the density wave and then Galileo tra
form them to the laboratory frame:41

ck
6~ t,x!5uk

6ei ~kF1k1mv !x2 i ~kF1k!vt7 iEkt/\

1wk
6ei ~2kF1k1mv !x2 i ~2kF1k!vt7 iEkt/\,

~6.6!

where we keep only the terms linear inv. In Eq. ~6.6! and
below, the index6 refers to the states above and below t
CDW/SDW energy gap,not to the states near6kF . The
coefficients of superpositionuk andwk are given by the fol-
lowing expressions:

uuk
1u25uwk

2u25
D2

2Ek~Ek2jk!
, ~6.7!

uwk
1u25uuk

2u25
Ek2jk

2Ek
, ~6.8!

where jk5\vFk and Ek5Ajk
21D2 are the electron-

dispersion laws in the absence and in the presence of
CDW/SDW energy gap.

By analogy with the standard derivation of the superflu
density~Sec. 27 of Ref. 35!, let us assume that, because
interaction with impurities, phonons, etc., the electron qua
particles are in thermal equilibrium with the crystal in th
laboratory reference frame, so their distribution function
the equilibrium Fermi functionn(Ek). However, it is not
straightforward to apply the Fermi function, because the t
components of the eigenfunction~6.6!, which have the same
energy in the reference frame of the moving CDW/SD
have different energies in the laboratory frame. Let us m
a reasonable assumption that a state~6.6! is populated ac-
cording to itsaverageenergyĒk

6 :

FIG. 4. Hall conductivity in the FISDW state,sxy , as a function
of temperatureT normalized to the FISDW transition temperatu
Tc .
-

he

f
i-

s

o

,
e

Ēk
65uuk

6u2@6Ek1\~kF1k!v#

1uwk
6u@6Ek1\~2kF1k!v#. ~6.9!

The electric currentI carried by the electrons is equal to

I 52e\(
6

E dk

2p
n~Ēk

6!F uuk
6u2S kF1k

m
1

v
\ D

1uwk
6u2S 2kF1k

m
1

v
\ D G , ~6.10!

where the factor 2 comes from the spin. Substituting E
~6.9! into Eq. ~6.10! and keeping the terms linear inv, we
find two contributions toI . The first contribution,I 1 , is ob-
tained by replacingĒk

6 with 6Ek in Eq. ~6.10!, that is, by
omitting v in Eq. ~6.9!. This term represents the current pr
duced by all electrons moving with the velocityv:

I 152evkF /p. ~6.11!

The second contributionI 2 comes from expansion of th
Fermi function in Eq.~6.10! in v and represents reduction o
the current due to thermally excited quasiparticles stay
behind the collective motion:

I 252emv(
6

E dk

2p

]n~6Ek!

]Ek

3FvF~ uuk
6u22uwk

6u2!1
\k

m
~ uuk

6u21uwk
6u2!G2

.

~6.12!

The second term in the brackets in Eq.~6.12! is small com-
pared to the first term and may be neglected. Substitu
Eqs.~6.7! and~6.8! into Eq.~6.12! and expressing the CDW
SDW velocity in terms of the CDW/SDW phase derivativ
in time,v52QP /2kF , we find the temperature-dependent e
pression for the Fro¨hlich current:

I 5I 11I 252 f ~T!
e

p

]Q̃

]t
, ~6.13!

f ~T!512E djkS jk

Ek
D 2F2

]n~Ek!

]Ek
G . ~6.14!

Equation~6.14! is the same as Eq.~6.4!. Dividing the current
per one chain,I ~6.13!, by the interchain distanceb, we get
the density of current per unit length,j x ~6.1!.

B. Diagrammatic derivation

In order to obtain the effective action for FISDW, w
repeat the derivation of Sec. V at a finite temperature. Te
nically, this means that we need to calculatePm in Eq. ~5.5!
with Q050 at the Matsubara frequenciesivn5 i (2n
11)pT/\, then make an analytic continuation to the re
frequencies and substitute the result into Eq.~5.4!:
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Pm~p,iVm!52
D̃

bE2`

` dk

2p
T

3(
n

Tr@tyG~k,ivn!tmG~k1p,ivn1 iVm!#,

~6.15!

where the electron Green function is

G~k,ivn!5
t0i\vn1tz\vFk1txD̃

~ i\vn!22Ek
2

. ~6.16!

Substituting Eq.~6.16! into Eq. ~6.15! and taking the trace
we find

Pm~T,p,iVm!52«mn
ipn

pb
f ~T,p,iVm!, ~6.17!

wherepn5( iVm /vF ,2px), and

f ~T,p,iVm!

52D̃2E
2`

`

djkT

3(
n

1

@~ i\vn!22Ek
2#@~ i\vn1 i\Vm!22Ek1p

2 #
.

~6.18!

The sum~6.18! is converted into an integral in the comple
plane ofv along a contour encircling the imaginary axis
the counterclockwise direction with the functio
2\/T(2p i )(e\v/T11) multiplying the integrand in Eq
~6.18!. The integral is taken by deforming the contour
integration into four contours encircling the four pole
6Ek /\ and2 iVm6Ek1p /\, in the clockwise direction and
evaluating the residues. After that, we analytically contin
the external Matsubara frequencyiVm to the real frequency
iVm→V1 id, whered5e sign(V), and find

f ~T,p,V!5
1

2E2`

`

djk

D̃2

EkEk1p
Fn~Ek1p!1n~Ek!21

\V1 id2Ek2Ek1p

2
n~Ek1p!1n~Ek!21

\V1 id1Ek1Ek1p
1

n~Ek1p!2n~Ek!

\V1 id1Ek2Ek1p

2
n~Ek1p!2n~Ek!

\V1 id2Ek1Ek1p
G . ~6.19!

The second line in Eq.~6.19! contains the sumEk1Ek1p in
the denominators and describes the interband electron
sitions involving the energy greater than 2D̃. On the other
hand, the fourth line in Eq.~6.19! contains the difference
Ek2Ek1p in the denominators and describes the intraba
electron transitions within the same energy band.

Substituting Eq.~6.17! into Eq.~5.4! and taking the varia-
tional integral overdQ̃, we find that the effective action o
FISDW at a finite temperature has the form~4.21! and
~4.22!, Fourier transformed from (t,x) to (p,V) and multi-
plied by the temperature-dependent factorf (T,p,V) ~6.19!.
Since Lagrangian~4.22! represents an expansion in the po
,

e

n-

d

ers of small gradients, we would like to take the limit ofp
→0 andV→0 in f (T,p,V). However, at a finite tempera
ture, the result depends on the order of limits. In the dyna
limit, V@\vFp, where we take the limitp→0 beforeV
→0, the intraband cluster@the third line of Eq.~6.19!# gives
no contribution, while the interband cluster~the second line!
gives

f d~T!5 lim
V→0

lim
p→0

f ~T,p,V!

5E
2`

`

djkS D̃

Ek
D 2

122n~Ek!

Ek
~6.20!

512E
2`

`

djkS jk

Ek
D 2F2

]n~Ek!

]Ek
G . ~6.21!

The integral of the first term in Eq.~6.20! gives 1 in Eq.
~6.21!, and the second term in Eq.~6.20!, integrated by parts
gives the second term in Eq.~6.21!. The functionf d(T) in
the dynamical limit~6.21! is the same as the functionf (T)
~6.14! derived semiphenomenologically in Sec. VI A. Th
dynamic limit is appropriate for calculating electric condu
tivity, including the Hall conductivity, when the electric fiel
and FISDW are strictly homogeneous in space (p50), but
may be time-dependent (VÞ0). Thus, the ac Hall conduc
tivity at a finite temperature is given by Eq.~2.13! and Fig. 1
multiplied by f (T)5 f d(T).

The function f s(T) in the static limit,V!\vFp, is ob-
tained from f d(T) ~6.21! by adding the intraband contribu
tion:

f s~T!5 lim
p→0

lim
V→0

f ~T,p,V!

5 f d~T!2E
2`

`

djkS D̃

Ek
D 2F2

]n~Ek!

]Ek
G . ~6.22!

Combining the second term in Eq.~6.21! with the last term
in Eq. ~6.22!, we find

f s~T!512E
2`

`

djkF2
]n~Ek!

]Ek
G . ~6.23!

The function f s(T) in the static limit is the same as th
function that determines the temperature reduction of the
perfluid condensate density in London superconduct
rs(T)/r.42 This quantity controls the Meissner effect an
thus, determines the temperature dependence of
magnetic-field penetration depth in superconductors. It a
controls the charge-density response to a static deforma
of the CDW phase,]Q/]x.38,39 The static limit is appropri-
ate in these cases, because the CDW phase or the mag
field in the Meissner effect are stationary (V50), but vary
in space (pÞ0). Different, but equivalent expressions fo
f d(T) and f s(T) were obtained in Ref. 39 by integrating ove
the internal momentum of the loopk in Eq. ~6.19! first.

Comparing the definition~6.17! of the function f with
Eqs.~5.5!, ~5.6!, and~5.8!, we find that at zero temperatur
f 52C/2, whereC is the Chern number. At zero temper
ture, the last terms in Eqs.~6.21! and ~6.23! vanish, so that
f d(T50)5 f s(T50)51, which agrees with the value –2 o
the Chern number~5.9!. We may think of22 f (T) as a gen-
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eralization of the Chern number to a finite temperatu
where it is not an integer topological invariant any mo
because of discrete summation, instead of integration, o
the frequencyv.

The dependence of the functionf (T,p,V) on the order of
limits indicates that the function is not analytic at smallp and
V. Thus, atTÞ0, the effective Lagrangian of the syste
cannot be written in a local form in the coordinate space
an expansion in powers of gradients for an arbitrary relat
between the time and space gradients, so the momentum
resentation should be used. For the finite-temperature~2
11!D Chern-Simons theory this was emphasized in Refs
and 44. Another finite-temperature effect is dissipati
which manifests itself as the imaginary part off (T,p,V)
appearing atV<vFp. This Landau damping, originatin
from the intraband electron transitions, is also known in
theory of CDW/SDW28 and superconductivity.45

VII. EXPERIMENTAL IMPLICATIONS

In this paper, we predict two specific functions that can
measured experimentally. One is the frequency depend
~Fig. 1! and another is the temperature dependence~Fig. 4!
of the Hall conductivity.

The temperature dependence of the Hallresistivity in
(TMTSF)2 PF6 was measured in experiments.46,47 However,
to compare the experimental results with our Eqs.~6.3!–~6.5!
for sxy(T), it is necessary to convert the Hall resistivity in
the Hall conductivity, which requires experimental know
edge of all components of the resistivity tensor. Only t
temperature dependences ofrxx andrxy , but notryy , were
measured in Refs. 46 and 47. Measuring the tempera
dependences of all three components of the resistivity te
and reconstructingsxy(T) would play the same role for QHE
as measuring the temperature dependences of the mag
field penetration depth for superconductors.

The frequency dependence of the Hall conductivity
regular semiconductor QHE systems was measured usin
technique of crossed wave guides.48,49 Unfortunately, no
such measurements were performed in the FISDW syste
These measurements would be very interesting, because
would reveal the competition between the FISDW moti
and QHE. The required frequency should exceed the FIS
pinning frequencyv0 and the damping rate 1/t. To give a
crude estimate of the required frequency range, we quote
value of the pinning frequencyv0;3 GHz;0.1 K
;10 cm for a regular SDW ~not FISDW! in
(TMTSF)2PF6 .50 One would expect a smaller value fo
FISDW.

FISDW can be depinned not only by an ac electric fie
but also by a strong dc electric field. The FISDW depinni
and the influence of steady FISDW sliding on the Hall effe
were observed experimentally in Refs. 51–53. Because
steady sliding of a density wave is controlled by dissipati
it is difficult to interpret these experiments quantitative
within a microscopic theory. According to our theory, in th
dc case, the nontrivial terms that couple thex and y direc-
tions along and across the chains@the last terms in Eqs
~2.10! and~2.12! proportional toQ̈ andĖy] vanish. Thus, the
only effect of the FISDW sliding is an additional Fro¨hlich
current along the chains,D j x , which is a nonlinear function
,
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of Ex . In other words, the main effect of the dc FISDW
sliding would be a nonlinear increase insxx and, possibly, in
syy via increasing the number of excited nonequilibriu
quasiparticles, but we would expect no major effect onsxy .
Nevertheless, the dc FISDW sliding would affect the expe
mentally measured Hall resistivity, becauserxy depends on
all components of the conductivity tensor.

On a more subtle level, in the presence of a magn
field, one could phenomenologically add a term proportio

to Ey to Eq. ~2.12! and a term proportional toQ̇ to Eq.
~2.10!. These terms would directly modifysxy for the dc
sliding of FISDW. Because these terms violate the tim
reversal symmetry of the equations, their nature must be
sipative. Thus, they cannot be derived within the Lagrang
formalism, employed in this paper, and should be obtain
from the Boltzmann equation, where the time-reversal sy
metry is already broken. The steady motion of the dens
wave condensate itself does not contribute to the Hall eff
however, this motion influences the thermally excited norm
carriers and, in this way, affects the Hall voltage. This p
ture is complimentary to our theory, which studies only t
condensate contribution. Because the normal carriers nee
be thermally excited across the FISDW energy gap, we
pect these dissipative terms to be exponentially small
negligible at low temperatures.

The influence of steady sliding of a regular CDW on t
Hall conductivity was studied theoretically in Ref. 54 alon
the lines explained in the preceding paragraph. Since
bare value of the Hall conductivity in a regular CDW/SDW
system is determined by the normal carriers only, the ste
motion of the density wave produces a considerable, of
order of unity, effect on the Hall conductivity, which wa
observed experimentally.55 On the other hand, in the case o
the FISDW, where the big quantum contribution from t
electrons below the gap dominates the Hall conductivity,
contribution of the thermally excited normal carriers to t
Hall conductivity should be negligible at low temperature

VIII. CONCLUSIONS

In this paper, we have derived the effective Lagrang
~4.22!, equivalently represented by Eq.~4.24!, for free
FISDW. The effective Lagrangian~4.24! consists of the~2
11!D Chern-Simons term and the~111!D chiral-anomaly
term, both written for the effective fieldAi1ai , whereAi is
an external electromagnetic field, andai is the chiral field
~3.17! associated with the gradients of FISDW. Whe
FISDW is pinned, this effective Lagrangian produces QH
On the other hand, in the ideal case where FISDW is free,
counterflow of FISDW precisely cancels the quantum H
current, so the resultant Hall conductivity is zero. The
Hall conductivity sxy(v) ~2.13! interpolates between thes
two limits at low and high frequencies, as shown in Fig.

At a finite temperature, the effective Lagrangian~4.22! or
~4.24! should be multiplied by the functionf (T,p,V) given
by Eq.~6.19!, which has the dynamic and static limitsf d(T)
~6.21! and f s(T) ~6.23!. The dynamic limit determines the
temperature dependence of the Hall conductivity, which
given by Eqs.~6.3!–~6.5! and shown in Fig. 4. By analogy
with the BCS theory of superconductivity, this temperatu
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dependence can be interpreted within the two-fluid picture
QHE, where the Hall conductivity of the condensate is qu
tized, but the condensate fraction of the total electron den
decreases with increasing temperature.

Experimentalists are urged to measure the frequency
temperature dependences ofsxy in the FISDW state of the
(TMTSF)2X materials.
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APPENDIX

In this appendix we calculate the Chern number~5.9!:

C5E dk dv dQ0

4p2
TrS ]G 0

21

]Q0
G0

]G 0
21

]v
G0

]G 0
21

]k
G0D .

~A1!

In Eq. ~A1! we added the index 0 to the Green functionsG0
in order to remind that they depend on the constant phaseQ0

via the substitutionD→D̃exp(2itzQ0) in Eq. ~3.19!. Now let
us make a unitary transformation that eliminates the ph
Q0 from the Green functions:

U1G0U5G, U5ei tzQ0/2, ~A2!
J

.

f
-
ty

nd

-
y

e

whereG is given by Eq.~3.19! with D→D̃. Substituting Eq.
~A2! into Eq. ~A1! and taking into account that]G21/]v
5\, we find

C5\E dk dv dQ0

4p2
TrFU1

]~UG21U1!

]Q0
UGG

]G21

]k
GG .

~A3!

SinceG does not depend onQ0 , we need to differentiate
only the matricesU and U1 in Eq. ~A3!, which gives the
following two terms:

C5 i
\

2E dk dv dQ0

4p2
TrS tzG

]G21

]k
G2GG

]G21

]k
tzD .

~A4!

The second term in Eq.~A4! is proportional toP00 ~3.24!
and vanishes according to Eq.~3.30!, whereas the first term
is proportional toP11 ~3.29!. Using Eqs.~3.27! and ~3.20!,
we find the value ofC:

C52 i
\

2E dk dv

2p
TrS tz

]G
]k D

5E dk
]@n1~k!2n2~k!#

]k
522. ~A5!

For spinless fermions, the number in Eq.~A5! would be
21.
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