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Influence of magnetic-field-induced spin-density-wave motion and finite temperature on the
guantum Hall effect in quasi-one-dimensional conductors: A quantum field theory
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We derive the effective action for a moving magnetic-field-induced spin-density W8®W) in quasi-
one-dimensional conductors at zero and nonzero temperatures by taking the functional integral over the elec-
tron field. The effective action consists of tfieo plus ong-dimensional(2+1)D] Chern-Simons term and
the (1+1)D chiral anomaly term, both written for a sum of the electromagnetic field and the chiral field
associated with the FISDW phase. The calculated frequency dependence of Hall conductivity interpolates
between the quantum Hall effect at low frequencies and zero Hall effect at high frequencies, where the
counterflow of FISDW cancels the Hall current. The calculated temperature dependence of the Hall conduc-
tivity is interpreted within the two-fluid picture, by analogy with the BCS theory of superconductivity.
[S0163-182¢08)03140-3

[. INTRODUCTION then switches to another value, and so on. Thus, the system
exhibits a cascade of the FISDW phase transitions when the
Organic metals of the (TMTSEX family, where TMTSF ~ magnetic field changes. The theory of FISDW was initiated
is tetramethyltetraselenafulvalene aXdepresents an inor- by Gorkov and Lebed’, further developed in Refs. 5-13,
ganic anion such as ClOor PF;, are highly anisotropic, @nd reviewed in Refs. 14 and 15. o
quasi-one-dimension#Q1D) crystals that consist of parallel ~ Within each FISDW phase, the Hall conductivity per one
conducting chaingsee Refs. 1 and)2The electron wave layer o, has an integer quantized value at zero temperature:
functions overlap and the electric conductivity are the high- INe?
est in the direction of the chainghe a direction and are Txy= (1.3
much smaller in thé direction perpendicular to the chains.
In this paper, we neglect coupling between the chains iwhereN is the same integer that appears in Efl) and
the third,c direction, which is weaker than in thedirection, ~ characterizes FISDWThe factor 2 in Eq(1.3) comes from
and model (TMTSE)X as a system of uncoupled two- the two orientations of the eIectron_ sdl_m gap in the en- .
dimensional2D) layers parallel to the-b plane, each of the €9y spectrum of the electrons, which is a necessary condi-

layers having a strong Q1D anisotropy. We choose the coofion for the quantum Hall effectQHE), is supplied by

: : : ; ; FISDW. The theory of QHE in the FISDW state of Q1D
dinat I the ch d the axi dicular t ;
trlgacﬁg)ri?(v;tﬁ?nga Iz;eralns and the ayiperpendicuiarto conductors was developed in Refs. 16-(48e also Refs. 15

A moderate magnetic field of the order of several Tesla, and 19. The theory assumes that FISDW is pinned and acts

. . . n electrons as a static periodic potential, so that (E®)
applied perpendicular to the layers, induces the so-calle bpresents QHERef. 20 in a 2D periodic potential pro-

magnetic-field-induced spin-density wavEISDW) in the duced by FISDW and the chains
system(see Ref. B In the FISDW state, the electron-spin * o he other hand, under certain conditions, a density
density is periodically modulated along the chains with the,5ve in a Q1D conductor can movsee, for example, Ref.
wave vector 21). It is interesting to find out how this motion would affect
QHE. Since the density-wave condensate can move only
Qx=2kg—NG, (1D along the chains, at first sight, this purely 1D motion cannot

hereke is the Eermi tor of the electroni contribute to the Hall effect, which is essentially a 2D effect.
WRETEXE 1S (N€ Fermi wave vector of Ine eleclroms|S an - neyertheless, we show in this paper that in the case of

integer that characterizes FISDW, and FISDW, unlike in the case of a regular charge- or spin-
density wave(CDW/SDW), a nonstationarymotion of the
FISDW condensate does produce a nontrivial contribution to
the Hall conductivity. In an ideal system, where FISDW is
not pinned or damped, this additional contribution due to the
is a characteristic wave vector of the magnetic field. In EqFISDW motion(the so-called Fiialich conductivity*) would
(1.2, eis the electron chargeé, =h/27 is the Planck con- exactly cancel the bare QHE, so that the resultant Hall con-
stant,c is the speed of light, anldis the distance between the ductivity would be zero. In real systems, this effect should
chains. The longitudinal wave vector of FISDW.1) is not  result in vanishing of the ac Hall conductivity at high enough
equal to X [as it would in a purely one-dimensiondlD)  frequencies, where the dynamics of FISDW is dominated by
casd, but deviates by an integer multiple of the magneticinertia, and pinning and damping can be neglected. Because
wave vectoiG. When the magnetic field changes, the integerwe study an interplay between QHE and thée Hiiah con-

N stays constant within a certain range of the magnetic fieldductivity, our theory has some common ideas with the so-

_ebH

iy (1.2
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called topological superconductivity thedi,which also  calculate the Hall effect, let us apply an electric fiedgl
seems to contain these ingredients. Frequency dependenceggfrpendicular to the chains. The electron Hamiltoriiacan
the Hall conductivity in a FISDW system was studied theo-be written as

retically in Ref. 23. However, because this theory fails to

produce QHE at zero frequency, it is unsatisfactory. Some

2 2
unsuccessful attempts to derive an effective action for a he a9
i ; =—-——+ +
moving FISDW and QHE were made in Ref. 24. H 2m gy 24 c03Q,x+0)
Another interesting question is how the Hall conductivity
in the FISDW state depends on temperaflireOur calcula- +2t,cogkyb—Gx+Qy1), 2.

tions show that thermal excitations across the FISDW energy

gap partially destroy QHE, and,,(T) interpolates between wherek, is the electron wave vector perpendicular to the
the quantized valuél.3) at zero temperature and zero value chains. In the right-hand sidehs) of Eq. (2.1), the first term

at the transition temperatufg,, where FISDW disappears. represents the kinetic energy of the electron motion along the
We find thato,,(T) has a temperature dependence similar tochains with the effective mass. The second term describes
that of the superfluid density in the BCS theory of superconthe periodic potential produced by FISDW. The FISDW po-
ductivity. Thus, at a finite temperature, one might think of atential is characterized by the longitudinal wave ved@r
two-fluid picture of QHE, where the Hall conductivity of the (1.1, an amplitudeA, and a phas@®. The third term de-
condensate is quantized, but the condensate fraction of th\%_(lbes _the elgctrqn tunnellng between the nearest-
total electron density decreases with increasing temperatur8€ighboring chain with the amplitudg. In the gaugeA,

An attempt to calculate the Hall conductivity in the FISDW = HX—c&t and¢=A,=A,=0, the magnetic and the trans-
state at a finite temperature was made in Ref. 23, but it faile erse electric fields appear in the third term of Hamiltonian

to produce QHE at zero temperature. 2.1) via the Peierls-Onsager substitutiep—k,—eA /ct,

Some of our results were briefly reported in Ref. 25. TheyWhere 1y=ebé,/#, andG is given by Eq.(1.2. Strictly

were also presented on a heuristic, semiphenomenologicgpeakmg’ a complete theory of FISDW requires us to take

. mto account the transverse componé&yf of the FISDW
level in Ref. 19. In the current paper, we present a systematic )
Wave vector and the electron tunneling between the next-

derivation of these results within the quantum-ﬁeId-theorynearest_neighboring chains with the amplitwgea‘9 How-

formalism. In Sec. I, we heuristically derive the effective ever, whilet! andQ, are very important for determining the
Lagrangian of a moving FISDW and the corresponding ac’ ' . ~® Y
grang g P g roperties of FISDW, such @¢, A, andT., t; andQ, are

Hall conductivity. In Sec. Ill, as a warm-up exercise, we P

formally derive the effective action of @+1)D CDW/SDW not essen.tial for the theory of .QHE’ so we set them at Z€ro in
in order to demonstrate that our method reproduces WeIIQrder to simplify the presentation. We do not pay attention to

known results in this case. In the quantum-field theory, thisthe spin structure of the density-wave order parameter in Eq.

effective action is usually associated with the so-called chirafz'l)’ because it is immaterial for our study, which focuses

anomaly?®-28 Our method of derivation is close to that of on the orbital effect of the magnetic field. To simplify pre-
Ref. 29. In Sec. IV, we generalize the method of Sec. IlI goSENtation, we study the case of CDW, but the results for
the case of2+1)D FISDW and derive the effective action SDW are the same. .. . .

for a moving FISDW. We find that, in addition to the In_the presence of the magnetic f|d+d_, the 'F‘te'fc“a'”
(1+1)D chiral-anomaly term, the effective action contains '°PPiNg term in Eq(2.1) acts as a potential, periodic along

the (2+1)D Chern-Simons term, written for a combination of the chains with the wave vect® prqpo_rtional toH. In th_e
electromagnetic potentials and gradients of the FISDwPresence of the transverse electric figld, this _potentlal
phase. This modified Chern-Simons term describes both th#'0Ves along the chains with the velocify,/G=c&,/H

QHE of a static FISDW and the effect of FISDW motion. Proportional toé&,. This velocity is nothing but the drift
The results are consistent with the heuristic derivation of/€loCity in crossed electric and magnetic fields. The FISDW

Sec. II. In Sec. V, we rederive the results of Sec. IV using arPOtential may also move along the chains, in which case its
alternative method, which then is straightforwardly generalPh@se® depends on timg and the velocity of the motion is
ized to a finite temperature in Sec. VI. The results for a finiteproportional to the time derivativ®. We are interested in a
temperature are obtained heuristically in Sec. VI A and for-spatially homogeneous motion of FISDW, so let us assume
mally in Sec. VI B. Experimental implications of our theory that ® depends only on timé¢ and not on the coordinates
are discussed in Sec. VII. Conclusions are given in Sec. VIlIx andy. We also assume that both potentials move very
slowly, adiabatically, which is the case when the electric
field is sufficiently weak.
Il. SEMIPHENOMENOLOGICAL APPROACH TO QHE Let us calculate the current along the chains produced by
AND MOTION OF FISDW the motion of the potentials. Since there is an energy gap at
the Fermi level, following the arguments of Laugifirwe
can say that an integer number of electrdhsis transferred
We consider a 2D system where electrons are confined ttsom one end of a chain to another when the FISDW poten-
the chains parallel to theaxis, and the spacing between the tial shifts by its period ;=2#%/Q,. The same is true for the
chains along thg axis is equal tdb. A magnetic fieldH is ~ motion of the interchain hopping potential with an intefygr
applied along the axis perpendicular to thex(y) plane. The and the period,=27/G. Suppose that the first potential
system is in the FISDW state at zero temperature. In order tehifts by an infinitesimal displacemethk; and the second by

A. Frohlich current and Hall current



10 650 VICTOR M. YAKOVENKO AND HSI-SHENG GOAN PRB 58

dx,. The total transferred charglke would be the sum of the the metric tensor of the Minkowski spacegijzg”
prorated amounts df; andN: =diag(1-1,—1). & is the antisymmetric tensor with
eo912=1. The potentialsA' and the corresponding fields
2 (2.2) &, &, and’H, represent an infinitesimal external electro-
P magnetic field. These potentials do not include the vector
Botential of the bare magnetic fiekdl, which is incorporated
into the Hamiltonian of the system via the tei@&x in Eq.
(2.1) with G given by Eq.(1.2).
Lagrangian density2.6) should be supplemented with the
dg=ep dx, (2.3  kinetic energy of the FISDW condensake The FISDW
potential itself has no inertia, because it is produced by the
wherep=4kg/2m is the concentration of electrons. Equating instantaneous Coulomb interaction between electrong so
(2.2 and (2.3) and substituting the expressions foy 11, originates completely from the kinetic energy of the elec-
andl,, we find the following Diophantine-type equatiéh:  trons confined under the FISDW energy gap. ThUs pro-
portional to the square of the average electron velocity,
4ke=N1(Zke =NG) +N,G. (2.4 which, in turn, is proportional to the electric current along
Since kg /G is, in general, an irrational number, the only the chains:
solution of Eq.(2.4) for the integersN; andN, isN;=2 and
N,=N,N=2N. Ko b 2 2.7
Dividing Eq. (2.2) by a time incremendt and the inter- 4y p€? x: '
chain distancéb, we find the density of current along the ) _ ) o
chains,j,. Taking into account that according to E@.1)  Wherevg=7kg/m is the Fermi velocity. Substituting Eq.
the displacements of the potentials are related to their phasé@-5 into Eq.(2.7), exgandlng, and omitting an unimportant
dx; = —d®/Q, anddx,=Q,dt/G, we find the final expres- term proportional to€y, we obtain the second part of the

dxq dxo
1

Now, suppose that both potentials are shifted by the sam
displacementix=dx;=dXx,. This corresponds to a transla-
tion of the system as a whole, so we can write that

sion forj,: Lagrangian density of the system:
_ e - 2Né _ b, eN .
Ix=~ %®+ h &y (2.9 L2_47Tbl)|:® 27Tv,:gy' 28

The first term in Eq(2.5) represents the contribution of the The firsttermin Eq(2.8) is the same as the kinetic energy of
FISDW motion, the so-called Entich conductivity?® This @ Purely 1D density wae and is not specific to FISDW.
term vanishes when the FISDW is pinned and does not mothe most important is the second term, which describes the

o i i . interaction of the FISDW motion and the electric field per-
ggrgg%.e;thaitieéalfS;erm in Eq2.5 describes QHE, in yengicular to the chains. This term is allowed by symmetry

in the considered system and has the structure of a mixed

vector-scalar product:
B. Effective Lagrangian

To complete the solution of the problem, it is necessary to VIEXH]. 2.9

find how ® depends or€,. For this purpose, we need the Here,v is the velocity of the FISDW, which is proportional
equation of motion for®, which can be derived once we to ® and is directed along the chains, that is, along xhe
know the Lagrangian density of the systtmTwo terms in  axis. The magnetic fielth is directed along the axis, thus

L can be readily recovered taking into account that the curallowing the electric field€ to enter only through the com-
rent densityj,, given by Eq.(2.5), is the variational deriva- ponent&, . Comparing Eq.(2.9) with the last term in Eq.
tive of the Lagrangian density with respect to the electro(2.8), one should take into account that the magnetic field
magnetic vector potentiad,: j,=céL/5A,. Written ina  enters the last term implicitly, through the intedér which
gauge-invariant form, the recovered part of the Lagrangiarlepends o and changes sign whet changes sign.

density is equal to Varying the total Lagrangiah=L,+L,, given by Egs.
" (2.6) and(2.9), with respect toA,, we find the current den-
_ Ne? . A‘i— i®g 2.6 sity across the chains:
Y7 2mhc Tk axj  wh ¢ '
_ 2N¢€? eN ..
where the first term is the so-called Chern-Simons term re- ly=— TEX— 2mvr (2.10

sponsible for QHE and the second term describes the in-
teraction of the density-wave condensate with the electridn the rhs of Eq(2.10), the first term describes the quantum
field along the chainst,=—dA,/cit—adlix.?* In Eq. Hall current, whereas the second term, proportional to the
(2.6), we use the relativistic notatidh with the indices accelerationof the FISDW condensate, comes from the sec-
(i,j,k) taking the values (0,1,2) and the implied summationond term in Eq.(2.8) and reflects the contribution of the
over repeated indice_°’§.The contravariant vectors have the FISDW motion along the chains to the electric current across
superscript indicesA'=(¢,A,,Ay) and x'=(ct,x,y). The the chains.

covariant vectors have subscript indices=(ct,—x,—Y), Setting the variational derivative afwith respect tdd to

and are obtained from the contravariant vectors by applyingero, we find the equation of motion f@r:
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2evg eNb.
= T X Tgy. (2.1])

In Eq. (2.11), the first-two terms constitute the standard 1D
equation of motion of the density wakle whereas the last
term, proportional to the time derivative 6§, which origi-
nated from the last term in E§2.8), describes the influence

of the electric field across the chains on the motion of

FISDW.

C. Hall conductivity
In order to see the influence of the FISDW motion on the

Hall effect, let us consider the two cases, where the electric

field is applied either perpendicular or parallel to the chains
In the first case&,=0, so integrating Eq2.11) in time, we
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FIG. 1. Absolute value of the Hall conductivity in the FISDW
state as a function of the frequeney normalized to the pinning

find that ® =eNhe, /7. Substituting this equation into Eq. frequencywo, as given by Eq(2.13 with wer=2.

(2.5), we see that the first terithe Frdnlich conductivity of

FISDW) precisely cancels the second teifthe quantum The absolute value of the Hall conductiviltyxy| computed

Hall curren}, sothe resulting Hall current is equal to zero

from Eq.(2.13 is plotted in Fig. 1 as a function @$/ w, for

This result could have been obtained without calculations bywo7=2. As we can see in the figure, the Hall conductivity is

taking into account that the time dependei®g@) is deter-
mined by the principle of minimal action. The relevant part
of the action is given, in this case, by Hg.7), which attains
the minimal value at zero currerjt;=0. We can say that if

quantized at zero frequency and has a resonance at the pin-
ning frequency. At the higher frequencies, where pinning

and damping can be neglected and the system effectively
behaves as an ideal, purely inertial system considered in this

FISDW is free to move it adjusts its velocity to compensatesection, the Hall conductivity does decrease toward zero.

the external electric field, and to keep zero Hall current. In
the second case, where the electric fi€lds directed along

In this section, the derivation of results was heuristic. In
the following sections, we calculate the effective action of a

the chains, it accelerates the density wave according to th@oving FISDW systematically, within the functional-

equation of motion(2.11): ®=—2ev:& /A. Substituting
this equation into Eq(2.10, we find again that the Hall
current vanishes.

It is clear, however, that in stationary dc measurements,

the acceleration of the FISDW, discussed in the previou
paragraph, cannot last forever. Any friction or dissipation
will inevitably stabilize the motion of the density wave to a

steady flow with zero acceleration. In this steady state, thEC" Simplicity,

second term in E2.10 vanishes, and the currejjt recov-
ers its quantum Hall value. The same is true in the cas

where the electric field is perpendicular to the chains. In tha

T

case, dissipation eventually stops the FISDW motion alon
the chains and restor¢g, given by Eq.(2.5), to the quantum

Hall value. The conclusion is that the contribution of the
moving FISDW condensate to the Hall conductivity is essen

tially nonstationary and cannot be observed in dc measurex

ments.

On the other hand, the effect can be seen in ac exper
ments. To be realistic, let us add damping and pinfling
the equation of motion of FISDW2.11):

eNb.
TR TR G
where 7 is the relaxation time ana, is the pinning fre-
qguency. Solving Eq(2.12 via the Fourier transformation
from the timet to the frequencyw and substituting the result
into Egs.(2.5 and(2.10), we find the Hall conductivity as a
function of frequency:

- 2N€?

ny(w)_ h

ZeUF

ol
0+ -0 +0i0= (2.12

wi—iolT
2

(2.13

wg—(o —iwlT

integral formalism.

Ill. EFFECTIVE ACTION FOR A (1+1)D DENSITY WAVE

As a warm-up exercise, let us derive the effective action
or a regular CDW/SDW in th€1+1)D case, where 11
represents the space coordinatand the time coordinate
we consider the case of CDW; results for
SDW are the same. Summation over the spin indices of elec-

trons is assumed everywhere, which generates a factor of 2

{n traces over the fermions.

Let us considef1+1)D fermions, described by a Grass-
ann field¥ (t,x), in the presence a density-wave potential
2Acog2kex+0(t,x)] and an infinitesimal external electro-
magnetic field, described by the scala(t,x) and vector
(t,x) potentials. The action of the system is

- S[\If,,qS,AX]:fdtdx\If* (ih%—egb)
1/ 9 e \?
_%(_Iﬁﬁ_EAX
+ep—2A cog2kex+0) |V, (3.1
Let us introduce the doublet of fermion fields
i (1,X)
Pt x)= :,bj(t,x) (3.2

with the momenta close ta kg :
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W(t,x) =t (t,X)e P+ y_(t,x)e KX, (3.3

Substituting Eq(3.3) into Eq.(3.1) and neglecting the terms
with the higher derivativeg?y. /9x? and the terms where
the fast-oscillating factors exp(2kex) do not cancel out, we
rewrite the action of the system in the matrix form

S[z/x,@,g{),Ax]:Trf dtdxy™ L[0,¢,Ady (3.9

with
) 9 e
L[O,d,A]=T9 Iﬁa—ed) + T,UE Iﬁﬁ_X+EAX
. e?
—rAe” 70— 1y A>2< . (3.5
mc?

In Eq.(3.9), 74, 7y, 7., andr, are the 2<2 Pauli matrices
and the unit matrix acting on the doublet of fermion fields
(3.2. In Eq. (3.4), the trace(Tr) is taken over thex com-
ponents of the fermion field3.2) and the implied spin indi-
ces of the fermions.

It is convenient to rewrite Eq3.5) in a pseudorelativistic
notation:

- F ine
£[®’AM]_'ﬁUFTﬂE_e?TﬂA”—TXAe i
RN (3.6
— , |
%ome
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7.0,A4=Tr J dtdxi o (310
where
L=Lo+ Ly+ Lo, (3.12)
LOZithTM@ A, (3.12
VE P
Elz—e?ruB y (313
L € p (3.14
=—T . .
2 0 mC2 X
In Eq. (3.13,
B“=Ak+a*, (3.15
ﬂ_hc W&@ a1
a =2e¢ P (3.19

wheree*” is the antisymmetric tensor with®*=1. The chi-
ral transformation (3.9) eliminates the phase factor
exp(—ir,0) of the order parametek from Eq.(3.5), so that
Lagrangian(3.12 acquires a simple form. As a tradeoff, La-

where the indexu takes the values 0 and 1, and summationgrangian(3.13 subjects fermions to the effective potential
over repeated indices is implied. The contravariant vector8*=A*+a* (3.19, which combines the original electro-

are defined as follows:

XF=(vgt,x), A¢=

3¢,Ax), = (10.7y). (3.7
Ur

The covariant vectors are obtained by applying the metric

tensor.g,,=g*"=diag(1,-1).

We wish to find the effective action of the system
S[®,A*] by carrying out the functional integral over the
fermion fields ¢ in the partition function with the action

S ¢, 0,A*]:

f Dd/+ Dl// eiS[L/I,@,A”‘]/ﬁ
eiS[Q“),A”’]/fi:

(3.9
f Dl!er Dl/f eiS[ 4,0,0]/h

The functional integra(3.8) with action (3.4) is difficult to
treat, because the pha&yx*) in Eg. (3.5 is space-time

magnetic potentialA* and the gradients of the pha&e
(3.16:

fic 00O

fic 90
2eU;: ot '

" 2e ox’

0 1_

(3.1

Because the external electromagnetic potentdtsand
the gradients ofd are assumed to be small, the effective
potentialsB# are also small and can be treated perturba-
tively. Changingy to % andSto S in Eq. (3.8), we can
calculate the effective actidsj ®,A*] by making a diagram-
matic expansion in powers d8*. Expanding to the first
power of Lagrangiari3.13 and averaging over the fermions,
we obtain the contributiors, that is nominally of the first
order inB*. Expansion to the second power(8f13 and the
first power 0of(3.14) gives us the contributions, and S5 of
the second order iB* and A,. First we calculates, =S5
+57 in Sec. lll A and then obtaif; in Sec. Il B.

dependent. In order to eliminate this problem, let us change

the integration variables to a new variable) via a chiral
transformation characterized by a unitary matrix
U[e(x#]:3

P(x#) =ULO (x*)] P(x+) =202 (x#). (3.9

Written in terms of the new fielfz?/, action(3.4) becomes

A. The second-order terms of the effective action

The two second-order contributions to the effective ac-
tion, S, and S5, are given by the two Feynman diagrams
shown in Fig. 2, where the wavy lines represBritand the
solid lines represent the bare Green functigns the fermi-
ons:
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WP

(@) (b)

FIG. 2. Two Feynman diagrams determining the second-order

contribution to the effective actiof,. The solid lines represent the
fermion Green function$3.19. The wavy lines in panegla) repre-
sent the effective potentiaB* (3.15, which interact with the fer-
mions via Eq.(3.13. The wavy lines in panel(b) represent the
electromagnetic potentidl, , which interacts with the fermions via
Eq. (3.14.

Gx =X =)= = (08" (X 1),

dkdo . " ,
:f (277)“2) e|k(x—x )—iw(t—t )g(k,w).

(3.18

The Green functior{3.18 is obtained by averaging the fer-
mion fields using actior®, (3.10 with the LagrangianC,
(3.12:

ei €w

Gk, w)= Tohw— TuphkK— 1, A+iTpe sgN w) '’

(3.19

wheree>0 is infinitesimal. Becaus¢ and ™ in Eq. (3.19
are two-component field&.2), the Green functiorgj is a 2
X2 matrix. The factore's® in Eq. (3.19 ensures that the
integral inw of the Green functior{3.19),

dw 2i
| Somtrgkon= 30, 0-n (0], (320

gives the difference in the occupation numbarsk) and
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Assuming that the gradients &, are small, we expand
P#”(p,Q) in powers ofp and () and keep only the zeroth-
order term, effectively setting=Q=0 in Eq.(3.23. Thus,
we need to calculate the following three integrals:

o ifi [ dk do
P00~ | i ) w0tk o))
(3.29
it [ dkdw
P (0,0)—?f (Zw)zTr[ng(k,w)TZQ(k,w)],
(3.29
o ifi [ dk do
P*(0,0)= ?f WTr[TZQ(k,w)TOQ(k,w)].
(3.26
Using Eq.(3.19 and the identity
9G=—G(aG "G, (3.2

where d represents a derivative @ with respect to any
parameter thag depends upon, we can rewrite E¢3.24)—
(3.26) in the following form:

i [ dk dow dG(k,w)
P00<10>:_§f (277)2Tr 0@ ™ g4 } (3.28
1y ] J’ dk dw IG(k,w)
2ve) (2m)? M =2

In condensed-matter physics, we integrate over the frequency
o first and than integrate over the wave vedtoiTaking the
integral overw in Eq. (3.28, we find that being an integral

of a full derivative ofG(k,w) with respect tow the integral
vanishes becausg(k, =) vanishes:

n_(k) of the = fermions. The fermion occupation numtrer (3.30
is equal to 1 and O at the energies deeply below and high
above the Fermi energy, correspondingly. This statement ag2n the other hand, according to E§.20, the integral over
plies to the electron energies much greater than the energy in Eg. (3.29 gives
gapA. The factor 2 in Eq(3.20 comes from the two orien-
tations of the electron spin.

Introducing the Fourier transforms of the potentials

Po0=p10=0,

1 f In.(k—-n_(k)] 1
2mhvug ak  whog
(3.3)
We took into account in Eq3.31) that the fermion occupa-
tion numbern is equal to 1 and O at the energies deeply
we find an analytical expression for the diagram shown irbelow and high above the Fermi energy, correspondingly.

Pll:

B#(k,w)=fdtdx g kxHielg (t,x),  (3.21)

Fig. 2a) Substituting Eqs(3.30 and (3.3 into Eq. (3.22, we
find
S ezv’%fdpdﬂpﬂ( 0)B,(p,Q)B,(—p,~ Q) 2
92= "(p, P, WP, —82), e
2 e ) 2m? g Sp= UFJ dtdx(B1)2
(3.22 mhe
where evafdtd (A e 00)\2 332
= X| Ay— — .
2 X 2evg ot
prr(p,0) = [ Lm0 Gk Lo )] e N
4 1 =5 r L v ’ . - . . . .
P 2J (2m)? ) T P The analytical expression for the diagram shown in Fig.

(323 2(b)is
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Sp(t,x)= (Y (t+ 6t,x+ %)

eZ
SH:_ 2 + -
2 2m02f A X ATHY (10704 (0], X{U [ 80 (t+ 8t,x+ 8X)]

(3.33

Taking into account that the last factor in E§.33 is noth-
ing but the average electron density 4kg/27, we find

XU[60(t,x)]—1}(1,X)). (3.39

Expanding the matriced in §0 and replacing the average
of the fermions fields by the Green function, we find from

Eq. (3.38:
1" eZvF 2
Si=— J dtdx A . (3.39 3
mhe 3p(t,x) == 5 Tr{r[ 60 (t+ ot x-+ 5x) = 3O(t,)]
Combining Egs.(3.32 and (3.34, we find the total X G(— ox,— ot)}. (3.39

- ' ioh=55+55: o ,
second-order part of the effective actio=>5; +5; The second line in Eq3.39 can be represented in terms of

R the Fourier transforms af® andg (see Sec. 19 of Ref. 35

S,[0,AH]= s f dt dx[(B)2—(A)?] (3.39 dk do dp dQ
whc? J . _zeipx—iszt—ikaxﬂwat
(2m)° (2m)
B [ e 40 i [00)\? X[G(k+p,w+Q)—G(K,0)]50(p,Q).
‘fdtdx__EAXE“LMUF(W) } (3.40

(3.36
Substituting Eq.(3.40 into Eq. (3.39 and taking the limit

oX=6t=0, we find

—fdtd-e(“)(gAer ho[90)2
B X_R gt Amug\ ot ) |’ %

dp dQ
(3.37 5p(t,><)=—§f ==

eipriﬂté(p,ﬂ)

(2m)?
In going from Eq.(3.36 to Eq.(3.37), we integrated by parts dk d
assuming periodic or zero boundary conditions@oandA'. XTr Tzf _w[g(k+ p,w+Q)—G(K w)].
Notice that theA2 terms coming from Eqg3.32 and(3.34) (2m)?
cancel out exactly, so Eq3.37) does not violate gauge in- (3.41)

variance in the absence &. When® #0, it is necessary to ) ) ) _
add the tern®,, calculated in the next section, in order to Taking the integral inw and the trace as in E¢3.20, we
obtain a gauge-invariant effective action. find the following expression for the last line of E@.41):
i [dk
B. The “first-order” term of the effective action gf —[ni(k+p)=n.(k)—n_(k+p)+n_(k)]

In the beginning of Sec. I, we started with a mod&l5), . .
where the density-wave phaé¥(t,x) is space-time depen- _ P dka[m(k)—n,(k)] =_ 2|_p (3.42
dent. By doing the chiral transformatidB.9) of the fermi- mh ok mh
ons, we made the density-wave phase constaqual to  oyginarily, by changing the variable of integratiért p to
zerg in Eq. (3.12 at the expense of modifying the gauge i gne might conclude that integréd.42 vanishes. How-
potentials(3.195. The chiral transformatiori3.9) produces ever, because the fermion occupation nuniiés) have dif-
not only a pefturbative effect due to the modification of theforent values above and below the Fermi energy, changing
gauge potentials, but also changes the ground state of thge yariable of integration does change the integral, so the
system(the “vacuum’ in the quantum-field-theory terminol- agit is not zero. To find the value, we expand E342 in
ogy). Specificallly, t_he chiral transfo_rmation changes theg geries in powers qf and take the integral ovér. Only the
number of fermions in the system, which we calculate belowfirst term of the series gives a nonzero result, as shown in the

Formally, the number of fermions in mod@.10 is infi-  gecond line of Eq(3.42. Substituting the result into Eq.

nite because of the linearization of the electron dispersiora3_4]) and performing the Fourier transform, we find the
law near the Fermi energy. Nevertheless,thgationof the | 4iation of the fermion density: '

fermion number is finite and can be calculated unam-

biguously, but we need to introduce some sort of ultraviolet 1 9

regularization to do this. When calculating the fer- p(t,x)=—— 50(t,x). (3.43
mion density, let us consider the fermion fields at two points

split by a small amount §x,8t): p(t,x)=(4*(t+6t,x  While the local fermion concentratio(8.43 changes, the
+ 6x) ¥(t,x)). The time splitting is necessary anyway to gettotal fermion number remains constant:

the proper time ordering. Now let us calculate how the fer- 1 5
{P;?]r;fgrgabtgdc;%;ges when we make an infinitesimal chiral f dx Sp(t,x) = ;J dx&5(t,x)=0, (3.44)
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if we assume that the values 6f(t,x) atx=* are equal. of a rigid displacement of the density wave. The second term

More generally, Eq(3.43 follows from Egs.(3.2) and(3.3), represents the energy change caused by compression or

if we notice that a spatial gradient 6f redefines the value of stretching of the density wave. The third term describes in-

the Fermi momentunk: and thus changes the number of teraction of the density wave with the electric field.

particles in the Fermi sea. Varying L (3.50 with respect to the scalar and vector
The variation of the fermion density contributes to the potentials¢ and A, we find the electric-charge densipyg

effective action in the following way. By averaging and current density, per chain:

Egs. (3.4 and (3.5 with respect tay,, we find that the elec-

tric potential ¢ produces the first-order contribution __i_gﬂ (3.51)
— fdtdx ep(t,x)p(t,x) to the effective action. A chiral Pe™ " 56w ax’ '
transformation varies the fermion concentrati®43, as

well as replaces) by the effective potentiaB® (3.15. Thus, . coL e 90

an infinitesimal chiral transformation results in the following Ix= 5A, I T (3.52

addition to the effective action: _ _ _ _
Varying Eq.(3.50 with respect td, we find the equation of

v motion for®:
551=—e§f dt dx B(t,x) 8p(t,x)
PO "0 2evg (3.53
-0 = - Cy « .
L T i (3.45 a2 " ox? o
T C X

These results are consistent with the standard description
of CDW/SDW?! Lagrangian(3.49 is often associated with
the so-called(1+1)D chiral anomaly in the quantum-field
theory®? (see also Ref. 28 Our method of derivation is
close to that of Ref. 29.

Because the effective potentiBP (3.15 itself depends on
O, we need to take a variational integral of £g§.45 over
80 in order to recoveb; :

e 90 fug/d0)\?
IV. EFFECTIVE ACTION FOR (2+1)D FISDW
e 4 hv
¢ ot (3.46 Now let us derive the effective action for FISDW, which

J— —_ + _]
T ¢ ox 4w\ ox
= f dx dt —@5— 7
m ™ is (2+1) dimensional. We generalize the pseudorelativistic
Action (3.46 can be also written in a form similar to Eq. notation(3.7) to the(2+1)D case as follows:

(3.35:

90\ ?
ax

. - [c
e, X'=(vet,X,y), A'=(;¢,AX,Ay), 4.

5.[0,A*]=— fdtdx[(Bo)z—(AO)z]. (3.47

7Tﬁ02 ii .
gij=9"=diag1,—-1,-1).
As we see in Eq(3.47), the actions; is actually quadratic in ] o )
B?, so this action can be called the “first-order” term only e will use roman indices, such asto denote thé2+1)D

nominally. One can easily check explicitly that our point- Vectors and greek indices, suchasto denote th¢1+1)D

splitting method produces zero contributidj, to another ~ VECLOrs.

“first-order” term originating from Eq.(3.13 and involving Itis convenient to Fourier-transform the fields ¢, and
BLSj,. A, over the transversg@iscrete coordinatey. In this repre-

sentation, the action of the system is

C. The total effective action

. dk, dp
Equations(3.35), (3.37), (3.46), and(3.47) together give S[tﬁ,@,A']:Trf y—zdthW(t,X,ker py)
the total gauge-invariant effective action for tlig+1)D b(2m)
denS|ty-Wave system: Xﬁ[@(t,X,y),Ai(t,X,py)] ¢(t.X,ky).
4.2
S[@,A“]:SZJrSl:f dtdx L ®,A"], (3.48
wherek, andp, are the wave vectors along tlyeaxis, and
where
L0, A=ivpr,— e 7 At 7 Ae NG O)
eva ! UF Mo'?X'u c m X
L=— [(A,+a,)(A+ak)—A A (3.49
whc? 2 eb
-7 A — 12t CO{kb—GX——A).
_h[00)2 fue(10|2 e “ame’* TP fic™”
“amopl o) " Am\ax]  a0% (350 4.3

is the total effective Lagrangian density of the system. In theThe (2+1)D Lagrangian(4.3) agrees with Eq(2.1) and dif-
rhs of Eq.(3.50), the first term represents the kinetic energyfers from the(1+1)D Lagrangian(3.5 by the last line rep-
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resenting the electron tunneling between the chains. Alsajeglected terms are not important, because the oscillatory

the FISDW potential has the additional ph&$€x, because factors cos{b—Gx) would average them to zero.

the wave vector of FISDW iQ,=2kr— NG, not 2k as in In the second line of Eq4.7), we expand the interchain

Sec. lll. The potential&*(t,x,py) in Egs.(4.2) and(4.3) are  hopping term into the Fourier series:

the Fourier transforms oA*(t,x,y) overy, except for the

quadraticternAf, which represents the Fourier transform of ex;{ir Aty sin ):Z 3 ( 4ty
2 . z ¢ n

the squareAZ(t,x,y), not the square of the Fourier trans- fiveG n hveG

form. We select the gaugeA,/dy=0, soA, does not de- whereo= .

. . p=kyb—Gx—(eb/ic)A,, andJ,(4t,/hiveG) is the
pend _ony._leen that 6 may depend ory, the factor Bessel function of the integer order and the argument
exp(—ir,0) in Eq. (4_.3) sy_mbollcally represents the Fourier 4t, IfiveG. We neglect all terms except the term with
transform/ dy exy —ipyy—i70(txy)] =N in series(4.8), because only this term, when substituted

_ _ into Eq.(4.7), does not have oscillatory dependencexamd
A. Transformation of Lagrangian opens an energy gap at the Fermi level. This is the so-called

In this section, we perform two chiral transformations of Single-gap approximation, well-known in the theory of
the fermion fields that convert tHe+1)D Lagrangian(4.3 ~ FISDW2*2!7In this way we obtain the following approxi-
into the effective(1+1)D form (3.11)—(3.14). Because the Mate expression for Lagrangia.?):
transformations will depend on the transverse wave vector 5
ky, let us derive a useful formula for such transformations. / i1 __UF _ e 2
Syuppose we make a unitary transformation of the fermion £ [®’A]~IﬁUFT“E °C AT mCZAX
field ¢(ky), and the transformation involves a functibfk,) o
that depends ok, : — 7 A e TANBLKy~ (e/h0)A |~ O} (4.9

el"e (4.9

2

ok, =€ (k,). (4.4) where A=AJy(4t,/hveG). The transformed Lagrangian
y y (4.9) of the (2+1)D FISDW is the same as Lagrangi&®5)
Then, a typical term in the Lagrangian transforms in theof the (1+1)D density wave with the replacemefit—A and
following way: ©—0 where

o (ky+py) d(py) k) =Y (ky+py) ®=0+Nb[(e/fic)Ay—k,]. (4.10
- of(ky) ~ .
x|1-ip, aky }(ﬁ(py) U(k,). Now e make the second transformation of the
y fermions:
(4.5 T4 e ~
Here we substituted E@4.4) into Eq. (4.5 and expanded to 4 =exp{ ! 5{_ Nb( ky— ﬁ_CAV)H g (411

the first power of the small wave vectpy,.
First, we make the following transformation of the fer-
mion field ¢ in Egs.(4.2) and (4.3):

This chiral transformation eliminates the phase of the
FISDW potential in the last term of E¢4.9), and the trans-
formed action becomes:

_ . 2tb il kb—G ebA
y=ex |szsm yb— X_ﬁ_c y

Written in terms of the fermion field/’, the Lagrangian of
the system becomes

V. 49 §90 A=, T [ dtaxayi EG, @12

whereZ has the(1+1)D form (3.11)—(3.14 with A—A and
the new effective potentials

: 1%
! EST ——e— d ~ Nb .. dA;
L [@yA] |ﬁUFTM ax” e Cc T;/,A Bl=AM+ gt — > Ml iJ, (413
X
- AeiTZ{NGX—®+(4tb/hv,:G)sin[kyb—Gx—(eb/hc)Ay]} J
X

- c fic 9® Nb

2 BO=—¢+ ——+—5H (4.14
e 2
-7 AZ. 4. Ve 2e dx 2
OZmC2 X ( 7)
_ ) ) BloA hc (?®+Nbcg il
As we see in the second line of E@.7), transformation AT Do ot T 20 (4.1

(4.6) transfers the interchain hopping term to the FISDW
phase. Transformatiof@.6) also generates several terms pro-The potentialg4.14) and(4.195 differ from the correspond-
portional to the gradients o&' and multiplied by the oscil- ing (1+1)D expressiong3.15 by the extra terms propor-
latory factor cofkb—Gx—(elbzc)A ], which are not shown tional to the integeN and the electromagnetic fields,

in Eq. (4.7). These terms would be necessary to consider if= dA,/Ix— dA,/dy and&y=— dA,/cit—dpldy. The terms
we wanted to keep the terms proportional tfii\(/&xj)2 in dAyldx and dA,/dt appear in Eqs(4.14 and (4.15 when

the effective action. However, since we keep only the termshe differential operator in Ed4.9) is applied to transforma-
with the first derivatives ofA' in the effective action, the tion (4.11). The termsd¢/dy and dA,/Jy appear when we
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apply Eq. (4.5 to transformation(4.1) with f(k,)=
—Nbk,7,/2 and convertp,A“(p,) into JA*/dy. It was pos-
sible to reduce th€2+1)D Lagrangian(4.3) into the effec-
tively (1+1)D one only because the magnetic figtdsup-
pressed the fermion-energy dispersiorkjn which made the
system effectively(1+1)D.

B. Effective action

The “second-order” part of the effective action for
FISDW is obtained immediately by substituting E4.15
into Eq. (3.35:

eveb BIN2_ (Aly2
S,= 2] dtdx dyf (BY)“—(AY)“] (4.16
he
—fdtd g o [90\%2 e  9A,
- X A7veb gt 7bc ot
Ne 40 Ne2A :, it
- 2mve Y at (4.17

We neglected the term proportional (ﬂﬁ, in Eq. (4.17).
To determine the “first-order” part of the effective ac-

tion, we need to find the variation of the fermion density

associated with transformatior{4.6) and (4.11) following

the method of Sec. Ill B. We neglect the contribution from

the first transformatiord.6) because of the oscillatory factor
cosk,b—Gx). From Eq.(3.45 we find that the second trans-
formation (4.11) gives the following contribution to the ef-
fective action:

- 1fdtd L[ 799, Nebash,
17 b xdy & ax ke ax

Because transformatiof®.11) depends on the two param-
eters® andA,, Eg. (4.18 contains the variations of both.
SubstitutingB, from Eq.(4.14) into Eq.(4.18 and taking the
variational integral overs® and 6A,, we get the “first-
order” part of the action:

. (418

—Jdtd 4 e®a¢ fivg (002

- XD T0" ox  4mb
_ Nevg_ 90 NeZ 9o
—H,—+——A,—|, (4.19
27C ox  ahc Y ox

where we neglected the term proportional #JA, /ox.
Equation(4.19 can be written in the form

S,= (B%)?- (A°)2+—¢

Nbc aA}

dtdxd
whc?b J Y

(4.20

with B® given by Eq.(4.14. Eq. (4.20 is similar to the
(1+1)D Eq. (3.47), but contains the extra last term.

Equationg4.17) and(4.19 together give the total gauge-
invariant effective action of FISDW:

S[,AM]=52+sl=f dtdx dy [®,A*], (4.21)

wherée”’
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i [00\2 hue[d0\? e
= | ——| == ——=0¢&
Aveb) ot 47b\ ox b
e?

- Z—M(¢H2_Ax5y+Ay5x)
Ne 00 Nevg 0O 42
2avg Y ot 2mc P ax’ (4.22

In Eq. (4.22, the first line is the same as the Lagrangian
density of a purely1+1)D density wavg3.50 (save for the
overall factor 1) and, unlike the next two lines, is not spe-
cific to FISDW. The second line represents the Chern-
Simons term responsible for QHE in the FISDW state. The
last line describes the interaction of the FISDW motion and
compression with the transverse electric figlg and the
magnetic fieldH, .

When® does not depend on the coordinatethe effec-
tive Lagrangian(4.22 coincides with the Lagrangiah
=L,+L,, derived semiphenomenologically in Sec[Hgs.
(2.6) and (2.8)]. When the FISDW is pinned and immobile,
so that® is not a dynamical variable, E¢4.22 reduces to
only the Chern-Simons term:

Ne?

(OAK
LCSZMSHKA

o, (4.23

We can reintroduce the dynamics of FISDW by replacing the
electromagnetic potentials' in Eq. (4.23 with the effective
potentialsA'+a', wherea* are given by Eq(3.16), and the
third component is zer@?=0. Adding also the Lagrangian
(3.49 of the (1+1)D density wave, we recover the Lagrang-
ian (4.22 of the (2+1)D FISDW in the following form:

Ne?
2 mhC

(Ak+ a  e%e
IX; whcb

X[(A,+a,)(A¥+ar)—A,AH],

sljk(AI

(4.29

Thus, the effective action of FISDW is given simply by the
(2+1)D Chern-Simons term and th&+1)D chiral anomaly
written for the combined electromagnetic potentials and the
FISDW phase gradien&'+a'. The effective Lagrangian of
FISDW (4.22 can be also written in &+1)D form resem-
bling Eq. (3.49:

e?vg Nbc dA,

M o
B,B“—A,A o Py |

(4.2

whc?b

where the effective potentiaR* are given by Eq(4.13.
By varying Eq.(4.22 with respect tap, A,, andA,, we

find the electric-charge densipy and the current densitigg

along the chains ang, perpendicular to the chains:

e &+ Ne &2®+2Ne2H 4o
Pe=b ox " 2mop ayat T he [ (429
. e d® Nevg 7’0 +2Ne25 45
bET o 2w ayax T h v (42D
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2N e? Ne 520 Nevp 520 which changes the density-wave phase not to zero, but to a
- (4.28 constant, space-time-independent vatug

In Eq. (5.2), we expandS, given by Egs.(4.12, to the
The equation of motion oP is obtained by varying Eq. first order inB* and find the following expression in the

Iy= h & 27uE 9t2 "o ax2’

(4.22 with respect to0: momentum representation:
%0 9°0 2evr  eNbd& ve [ dpcdp, dQ
_ 2 - _ c - Qe _a F [ I B (— _ _
atz vFaXZ h "’X+ h at 55 e c (277)3 H (pX’Q)B/J,( le py' Q)
eNvzb oH 0
F z (4.29 X 60 (py,py 1), (5.9
hc  Ix
where
When ® does not depend on the coordinakeandy, Egs. _
(4.27—(4.29 coincide with the corresponding Eq&2.5), inA [ dk dw Cire
(2.10, and(2.11) derived semiphenomenologically in Sec. HM:TJ (2m)?2 rfrye 7"
II. WhenN=0, Egs.(4.26), (4.27), and(4.29 coincide with
the corresponding Eq$§3.51)—(3.53 for the (1+1)D density XG(k,w)™G(k+p,0+Q)] (5.5
wave.
with G defined by Eq.(3.19 with A—Aexp(-ir,0®,). Ex-
V. ALTERNATIVE DERIVATION panding Eq.(5.5 to the first order inp and (), we rewrite
OF THE EFFECTIVE ACTION Eq. (5.4) as follows:
In this section, we briefly outline an alternative derivation ve [ dp,dp, dQ i,
of the effective action for the considered systems. This deri- 6S=eF —ng”” bVB“(_ Px,— Py, — Q)
vation will be straightforwardly generalized to finite tem- (2m) .

peratures in the next section. ~
We noticed in Sec. IV that after transformati¢h6) La- X 30 (px.Py. ), (5.6

grangian(4.9) of the (2+1)D FISDW is the same as La- wherep,=Q/vg, p;=—py, and

grangian(3.5) of the (1+1)D density wave with the replace-

mentA—A and ® —®, where® is given by Eq.(4.10. ~ , (dkdo
While, in principle, the chiral transformatiai.6) may bring Q*'=Amh UFJ Py,
some contribution to the effective action of FISDW, this (2m)
contribution is not essential in practice, because of the oscil- XTr7,e” 220Gk, ) T#G(K, ) 7G(K,»)].
latory factor cos,b—Gx), as we observed in Sec. IV. Thus,
to find the effective action for FISDW, as well as for(h 6.7
action for Lagrangiart4.9). _ o show that the tensd®*” is antisymmetric:
Instead of calculating the effective actibrirectly, let us
calculate its variation with respect to a variatié® of phase ) 1 )
(4.10: 2
SL - The constant in Eq. (5.8) is an integer-topological invari-
f Dy' " Dy’ 1//'+ 50 y' 'SV . O1h ant, the Chern number:
5= = - 6 dk dw dO®g_ (9G~ 3G~ 9G~1
D'+ Dy’ S ¥ 0llh :f 0 ~ o cl—_

J vy c A2 i 900~ dw - K ~ 2

The advantage of Eq5.1) is that, after we make transfor- (5.9

mation (4.11), the anomalous terms cancel out in numerator Eq. (5.9, the fermion Green functiog (3.19 with A
and denominator, so it is sufficient to calculate only a per- e '

turbative contribution todS. Using the explicit form ofL’ ; ﬁg;ﬁg;{;q'fgzlésp?};igc“o?hoef itr?trsgrgla(r)i\?:gmhaks, Sggﬂ
4.9) and taking the variation in Eq5.1), we find: sl 0 0
4.9 g variation in E5.1), we fi added in Eq(5.9) because the result does not depend on the

55 _ value of ®. Integral (5.9) is calculated in the Appendix.

i :<,/,'+37-ye*ifz® e :<;L'+ZTye7iTz®0h,/‘/>~s_ The value 2 comes from the two orientations of the electron

00 spin. Substituting Eq45.8) and(5.9) into Eq.(5.6) and Fou-
(5.2 rier transforming to the real space, we find

Instead of transformatiof#.11), we made a slightly different o 260 (x.y.1)
transformation g _ UFJ wrE Sl AN
05 —b dtdx dys*”B,(X,y,t) P .

Y =¢ TZ((T)—@O)/Z@, (5.3 (5.10



PRB 58 INFLUENCE OF MAGNETIC-FIELD-INDUCED SPIN- ... 10 659
Taking the variational integral oved® in Eq. (5.10, we 107
recover the effective actio.22. f
087
VI. TEMPERATURE DEPENDENCE
OF THE HALL EFFECT 06

The Hall conductivity at a finite temperature is not quan-
tized because of the presence of thermally excited quasipar-
ticles above the energy gap. It is interesting to find how the 0.4r
Hall conductivity evolves with the temperature. Because
QHE at zero temperature is generated by the collective mo- 02t
tion of electrons in the FISDW condensate, the issue here is ' A
the temperature dependence of the condensate current. One ——
would expect that the condensate current must gradually de- O,OO 2 4 6 8 1'0 T

crease with increasing temperature and vanish at the transi-

tion temperatur@ ., where the FISDW order parameter dis-
appears. This behavior is qualitatively similar to the

FIG. 3. The reduction factdrof the Hall conductivity, given by
Eq. (6.5 and shown as a function of the ratio of the energy gap at

temperature evolution of the superconducting condensat@e rermi leveli to temperaturd .
density and the inverse penetration depth of magnetic field in

superconductors.

We start our consideration from the transformed Lagrang
ian (4.9 of the (2+1)D FISDW, which is the same as La-
grangian(3.5) of the (1+1)D density wave with the effective

phase® (4.10 instead of®. A time dependence dd gen-
erates the Fiidich current along the chains:

e 90

mb ot

Ix=

6.

In the presence of a transverse electric fi€ld we have
Ay=—c&t in Eq. (4.10, then Eq.(6.1) reproduces Eq.

(2.5). If FISDW is pinned @ =0), then Eq.(6.1) describes
QHE. So, the quantum Hall conductivity is the Rligh con-

ductivity associated with the combined pha€e (4.10).

Thus, only a fraction of all electrons is carried along the
chains by the moving periodic potential, which reduces the
Hall/Frohlich current by the last term in E46.4).

The functionf (6.4) depends only on the ratio of the en-

ergy gap at the Fermi levél and the temperaturg. Intro-
ducing the new variable of integratighinstead ofk via the

equation Zvck=A sinh, we can rewrite Eq.(6.4) as
follows: %339

r( A
" tan

ﬁcoshg)
JO d¢ (6.5

Thus, the temperature dependence of QHE must be the same

as the temperature dependence of thenkich conductivity.

cosif¢
The functionf(A/T) is plotted in Fig. 3. It is equal to 1 at

The latter issue was studied in the theory of a regulagero temperature, where E@.3) gives QHE, gradually de-

CDW/SDW33|t was found that, at a finite temperatufe
the Frdnlich current carried by the CDW/SDW condensate is
reduced with respect to the zero-temperature védub by a
factor f(T):

(6.2

We conclude that the same facfdiT) reduces the Hall con-
ductivity of a pinned FISDW:

2Ne?
ny(T): f(T) “h -

(6.3
In Egs.(6.2) and(6.3), the functionf(T) is
= dk [9E\?[ an(Ey)
f(T)=1—f_wﬁ—vF((9—kk) [— ﬂEkk . (6.9

where k, is relabeled ask, E,=\(fvgk)2+A? is the
electron-dispersion law in the FISDW state, ande)

creases with increasinf, and vanishes whefi>A. Taking
into account that the FISDW order parameteritself de-
pends onT and vanishes at the FISDW transition tempera-
ture T, it is clear thatf(T) and oy, (T) vanish atT—T,,
where oy (T)<f(T)xA(T)xyT,—T. Assuming that the
temperature dependendgT) is given by the BCS theor,
we plot the temperature dependence of the Hall conductivity,
0xy(T), in Fig. 47°

The function f(T) (6.4) is qualitatively similar to the
functionf(T) that describes the temperature reduction of the
superconducting condensate density in the London case.
Both functions approach 1 at zero temperature, but igar
the superconducting function behaves differentfy(T)
«A%(T)xT,—T. As explained in Sec. VI B, this is due to
the difference between the static and dynamic limits of the
response function.

In next Sec. VI A, we give a simple, semiphenomenologi-
cal derivation of Eqs(6.2) and(6.4) based on the ideas of
Refs. 38 and 41 and analogous to the standard derivation of
the superfluid densitysee Sec. 27 of Ref. 35After that, in

=(e“T+1) ! is the Fermi-distribution function. At a finite Sec. VI B, we give a formal diagrammatic derivation Egs.
temperature, normal quasiparticles thermally excited abové.2) and (6.4). We also derive the effective action of
the energy gap equilibrate with the immobile crystal lattice.FISDW at a finite temperature.
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Ejc =|ui |A = E+ (ke +k)v]
+|wi [ ZEx+A(—ke+K)v]. (6.9

The electric current carried by the electrons is equal to

dk — ke+k v
= - + =12 v
| 2eﬁ§ jzwn(Ek) |uk|( - +h)
Lo —ketk v
+|Wk|2( : +g) , 6.10

.0 . . . . where the factor 2 comes from the spin. Substituting Eq.
0.0 0.2 04 06 08 1.0 € (6.9 into Eq. (6.10 and keeping the terms linear in we
find two contributions td. The first contribution) ;, is ob-

FIG. 4. Hall conductivity in the FISDW state;,,, as a function . L= . .
of temperatureT normalized to the FISDW transition temperature t&ined by replacings, with +E, in Eq. (6.10, that is, by
T.. omitting v in Eq. (6.9). This term represents the current pro-

duced by all electrons moving with the velocity
A. Semiphenomenological derivation

Let us consider a 1D electron system where a CDW/SDW l1=2evkg /. (6.1

of an amplitudeA moves with a small velocity. Let us o )
The second contributioh, comes from expansion of the

calculate the Fralich current, proportional t@, at a finite - o _ s
Fermi function in Eq(6.10 in v and represents reduction of

temperaturer . X . ; .
We find the electron wave functions in the referencetn® current due to thermally excited quasiparticles staying
behind the collective motion:

frame moving with the density wave and then Galileo trans-
form them to the laboratory franfe:

dk dn(*=E,)
it (1,x) = Uit @i (ke ko mo)x—ike + kot iE/A '2:28””2 2w 0B
+Wtei(—k,:+k+mv)x—i(—kF+k)vt1iEkt/h Kk 2
‘ | x| oe(lug? = wic B+ (g P+ wit )]
(6.6 m
where we keep only the terms lineardn In Eq. (6.6) and (6.12

below, the index+ refers to the states above and below the.

The second term in the brackets in .12 is small com-
CDW/SDW ener apnot to the states neat-kr. The . "
coefficients of sugirgoggiou andw, are given byFthe fol- pared to the first term and may be neglected. Substituting
lowing expressions: K K Egs.(6.7) and(6.8) into Eq.(6.12 and expressing the CDW/

SDW velocity in terms of the CDW/SDW phase derivative
A2 in time, v = —0/2k, we find the temperature-dependent ex-

lug|?=|wy |P=50———, (6.7  pression for the Fidich current:
2EW(Ex— &)
B~ & I =11+1,=—f(T e 70 6.1
Wi P =l = 6.8 “htle= I 5 613
where g&=fivek and E.=\&+A? are the electron- &\ an(Ep)
dispersion laws in the absence and in the presence of the f(T):l_f dé EJ | 9B | (6.14

CDWI/SDW energy gap.

By analogy with the standard derivation of the superfluidequation(6.14) is the same as E¢6.4). Dividing the current
interaction with impurities, phonons, etc., the electron quasithe density of current per unit lengtp, (6.1).

particles are in thermal equilibrium with the crystal in the

laboratory reference frame, so their distribution function is _ _ o

the equilibrium Fermi functiom(E,). However, it is not B. Diagrammatic derivation

straightforward to apply the Fermi function, because the two |n order to obtain the effective action for FISDW, we
components of the eigenfuncti¢6.6), which have the same repeat the derivation of Sec. V at a finite temperature. Tech-
energy in the reference frame of the moving CDW/SDW,nijcally, this means that we need to calculBké in Eq. (5.5
have different energies in the laboratory frame. Let us makgiith ®,=0 at the Matsubara frequencielw,=i(2n

a reasonable assumption that a st@®) is populated ac-  +1)#T/#, then make an analytic continuation to the real
cording to itsaverageenergyE, : frequencies and substitute the result into Ex4):
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X = dk ers of small gradients, we would like to take the limit pf
m4(p,iQy)=— BJ pye —0 andQ—0 in f(T,p,Q). However, at a finite tempera-
R ture, the result depends on the order of limits. In the dynamic
limit, O>hvep, where we take the limip—0 before ()
X > T 7,G(K,iw,) T*G(K+p,iw,+iQm)], —0, the intraband clustégthe third line of Eq.(6.19] gives
n no contribution, while the interband clustgéhe second ling

(6.15  gives
where the electron Green function is fa(T)=Ilim limf(T,p,Q)
Q—0p—0
Toihwn+ T vk + T A _
dkiwg)=———""F = (616 = [K\1-2n(Ey
(ifiwn)=—Ej :f dég E— E— (6.20
—o0 k k
Substituting Eq(6.16) into Eq. (6.15 and taking the trace,
we find > &\’ an(Ey)
=1—f déy =~ e | (6.21)
ip, - k k

IMA(T,p,iQy)=—e*"—1(T,p,iQ), (6.17)

b The integral of the first term in Eq6.20 gives 1 in Eq.
(6.21), and the second term in E(.20), integrated by parts,
gives the second term in E¢6.21). The functionfy(T) in
£(T,p,i Q) the dynamical limit(6.21) is the same as the functidi{T)

(6.14 derived semiphenomenologically in Sec. VI A. The

wherep,=(iQ,/ve,—py), and

[ dynamic limit is appropriate for calculating electric conduc-
ZZAZI d&T tivity, including the Hall conductivity, when the electric field
o and FISDW are strictly homogeneous in spape=(Q), but
1 may be time-dependenf)#0). Thus, the ac Hall conduc-
) tivity at a finite temperature is given by E@®.13 and Fig. 1
v [(ihwn)?—EF[(ihon+ihQm)?—EZ, ] multiplied by f(T)=1f 4(T).
(6.18 The functionf(T) in the static limit,Q<<%vgp, is ob-

i ) . i tained fromfy(T) (6.21) by adding the intraband contribu-
The sum(6.18) is converted into an integral in the complex tjgn:

plane ofw along a contour encircling the imaginary axis in

the counterclockwise direction with the function f(T)=lim lim f(T,p,Q)

—#IT(27i)(e"'T+1) multiplying the integrand in Eq. p—00-0

(6.18. The integral is taken by deforming the contour of . 3\2 an(Ey)
integration into four contours encircling the four poles, :fd(T)_f dgk(—) [_ s 6.22
+Ey/f and—iQ = Ey. /%, in the clockwise direction and —» \ Ex =

evaluating the residues. After that, we analytically continu%ornbining the second term in E¢6.21) with the last term
the external Matsubara frequenidy, to the real frequency: in Eq. (6.22), we find '

iQ,—Q+i68, whereé=e sign((), and find

A? [N(Eysp)+N(E)—1 fs(T)=1—f:d§k (6.23

1 )
f(T.p.0)= EJ,wdgk ExErpl A+ 10— Ey— e

an(Ey)
JE. |’

The functionfy(T) in the static limit is the same as the
N(Exsp)+n(E)—1 N(Exsp) —N(EY) functign that determines th(_a temperature reduction of the su-
AQ+10+E T Esp AQ+TI0+EEysp perfluid 4(2:ond_ensate density in London superconductors,
ps(T)/ p.” This quantity controls the Meissner effect and,
N(Eyx;p) —N(EY) thus, determines the temperature dependence of the
T RQEis— ExtExipl’ (6.19 magnetic-field penetration depth in superconductors. It also
. i . controls the charge-density response to a static deformation
The second line in E(6.19 contains the sur, +Eyp N 4 the CDW phaseg®/dx.%83° The static limit is appropri-
the denominators and describes the mte;\rband electron trae in these cases, because the CDW phase or the magnetic
sitions involving the energy greater thalh 20n the other field in the Meissner effect are stationa2 £0), but vary
hand, the fourth line in Eq(6.19 contains the difference in space p#0). Different, but equivalent expressions for
Ex—Ek+p in the denominators and describes the intraband ,(T) andf(T) were obtained in Ref. 39 by integrating over
electron transitions within the same energy band. the internal momentum of the lodpin Eq. (6.19 first.
Substituting Eq(6.17) into Eq.(5.4) and taking the varia- Comparing the definitior(6.17) of the functionf with
tional integral overs®, we find that the effective action of Egs.(5.5), (5.6), and(5.8), we find that at zero temperature
FISDW at a finite temperature has the fortd.21) and f=—C/2, whereC is the Chern number. At zero tempera-
(4.22, Fourier transformed fromt(x) to (p,Q2) and multi- ture, the last terms in Eq$6.21) and (6.23 vanish, so that
plied by the temperature-dependent fadt6f,p,Q) (6.19. f4(T=0)=f4(T=0)=1, which agrees with the value -2 of
Since Lagrangiat4.22 represents an expansion in the pow-the Chern numbe(5.9). We may think of—2f(T) as a gen-
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eralization of the Chern number to a finite temperatureof &, . In other words, the main effect of the dc FISDW

where it is not an integer topological invariant any more,sjiding would be a nonlinear increasedn, and, possibly, in

because of discrete summation, instead of integration, OV&f,, via increasing the number of excited nonequilibrium

the frequencyw. quasiparticles, but we would expect no major effeciogy.
The dependence of the functié(T,p,(2) on the order of  Nevertheless, the dc FISDW sliding would affect the experi-

limits indicates that the function is not analytic at sngtind  mentally measured Hall resistivity, becaysg depends on

Q. Thus, atT#0, the effective Lagrangian of the system a|l components of the conductivity tensor.

cannot be written in a local form in the coordinate space as On a more subtle level, in the presence of a magnetic

E\n expansr:on.in POWdefS of gradignts for anharbitrary relatiorfield, one could phenomenologically add a term proportional

etween the time and space gradients, so the momentum rep- . .
resentation should be pused? For the finite-temperat@re t Ey o0 Eq. (2.12 and a term proportional t® to Eq.

: : . . 2.10. These terms would directly modify,, for the dc
+1)D Chern-Simons theory this was emphasized in Refs. 4{% - Xy ;
and 44. Another finite-temperature effect is dissipation,s'IIdIng of FISDW. Because these terms violate the time-

; X . ; ; reversal symmetry of the equations, their nature must be dis-

\;Vhlzgrmangiiti ltself ?ﬁisthfa:]rgzgmﬁa% piirt tgrri’ pln{alt)ln sipative. Thus, they cannot be derived within the Lagrangian

PP 9 SUEP. o MpINg, ONGINANNG ¢ lism, employed in this paper, and should be obtained
from the intraband electron transitions, is also known in th

8 - Srom the Boltzmann equation, where the time-reversal sym-
theory of COW/SDW® and superconductivity? metry is already broken. The steady motion of the density-

wave condensate itself does not contribute to the Hall effect;
VIl. EXPERIMENTAL IMPLICATIONS however, this motion influences the thermally excited normal

carriers and, in this way, affects the Hall voltage. This pic-

In this paper, we predict two specific functions that can bet . . . .
. ; ure is complimentary to our theory, which studies only the
measured experimentally. One is the frequency dependen%%ndensate contribution. Because the normal carriers need to
(Fig. 1) and another is the temperature dependefrig. 4) '

of the Hall conductivit be thermally excited across the FISDW energy gap, we ex-
The temperature gépendence of the Hatbistivity in pect these dissipative terms to be exponentially small and

(TMTSF), PR, was measured in experimeiifst” However, negligible at low temperatures.

) . The influence of steady sliding of a regular CDW on the
to compare.the experimental results with our 363.3)7(5'5). Hall conductivity was studied theoretically in Ref. 54 along
for o,,(T), itis necessary to convert the Hall resistivity into

the Hall conductivity which requires experimental knowl- the lines explained in the preceding paragraph. Since the
Y 9 > €XP bare value of the Hall conductivity in a regular CDW/SDW
edge of all components of the resistivity tensor. Only the

tem i termin the normal carriers only, the st
temperature dependencesf andp,,, but notp,,, were SYs s dete ed by the normal carriers only, the steady

motion of the density wave produces a considerable, of the

measured in Refs. 46 and 47. Measuring the temperatuig o, of unity, effect on the Hall conductivity, which was

dependences of all three components of the resistivity tens%rbserved experimentalfy.On the other hand, in the case of
and reconstructing,(T) would play the same role for QHE

ing the t ture d d £ th tthe FISDW, where the big quantum contribution from the
as measuring the temperature dependences of the MagneliGa .ons pelow the gap dominates the Hall conductivity, the
field penetration depth for superconductors.

._contribution of the thermally excited normal carriers to the

The freql_Jency dependence of the Hall conductmt_y Nyall conductivity should be negligible at low temperatures.
regular semiconductor QHE systems was measured using the

technique of crossed wave guid®4® Unfortunately, no
such measurements were performed in the FISDW systems.
These measurements would be very interesting, because they
would reveal the Competition between the FISDW motion In this paper, we have derived the effective Lagrangian
and QHE. The required frequency should exceed the FlSDWA]_ZZ), equiva|ent|y represented by E(1424), for free
pinning frequencyw, and the damping rate 4/ To give @  FISDW. The effective Lagrangiat#.24) consists of the2
crude estimate of the required frequency range, we quote the 1)D Chern-Simons term and thd+1)D chiral-anomaly
value of the pinning frequencywo~3 GHz~0.1 K term, both written for the effective field +a', whereA! is
~10 cm for a regular SDW (not FISDW in  an external electromagnetic field, aatis the chiral field
(TMTSF),PF;.>° One would expect a smaller value for (3.17) associated with the gradients of FISDW. When
FISDW. FISDW is pinned, this effective Lagrangian produces QHE.
FISDW can be depinned not only by an ac electric field,0n the other hand, in the ideal case where FISDW is free, the
but also by a strong dc electric field. The FISDW depinningcounterflow of FISDW precisely cancels the quantum Hall
and the influence of steady FISDW sliding on the Hall effectcurrent, so the resultant Hall conductivity is zero. The ac
were observed experimentally in Refs. 51-53. Because thgall conductivity oxy(w) (2.13 interpolates between these
steady sliding of a density wave is controlled by dissipationiwo limits at low and high frequencies, as shown in Fig. 1.
it is difficult to interpret these experiments quantitatively At a finite temperature, the effective Lagrangi@m2 or
within a microscopic theory. According to our theory, in the (4.24) should be multiplied by the functiof(T,p,Q) given
dc case, the nontrivial terms that couple thandy direc-  py Eq.(6.19, which has the dynamic and static limitg(T)
tions along and across the chaiftbe last terms in Eqs. (6.21) and f4(T) (6.23. The dynamic limit determines the
(2.10 and(2.12 proportional to® and&,] vanish. Thus, the temperature dependence of the Hall conductivity, which is
only effect of the FISDW sliding is an additional Fich  given by Egs.(6.3—(6.5 and shown in Fig. 4. By analogy
current along the chaind j,, which is a nonlinear function with the BCS theory of superconductivity, this temperature

VIIl. CONCLUSIONS
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dependence can be interpreted within the two-fluid picture ofyhereg is given by Eq.(3.19 with A—A. Substituting Eq.
QHE, where the Hall conductivity of the condensate is quan{a2) into Eq. (A1) and taking into account thatG ~/dw

tized, but the condensate fraction of the total electron density- 4 e find

decreases with increasing temperature.

Experimentalists are urged to measure the frequency and

temperature dependences@f, in the FISDW state of the
(TMTSF),X materials.
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APPENDIX

In this appendix we calculate the Chern numi®®e):

J‘dkdwd@o 0Got 9Got Gt
Tr
472

'$/ C C
Y Y Yo /-
0,70 do 7% gk T°

(A1)

In Eqg. (A1) we added the index 0 to the Green functighs
in order to remind that they depend on the constant plgse

via the substitutiolA — Aexp(—i7,0,) in Eq.(3.19. Now let

us make a unitary transformation that eliminates the phase

®, from the Green functions:

U+gouzg’ U:ei 7'2@0/2, (AZ)

oG 1

O

CZﬁJ K Y-
(A3)

Since G does not depend oy, we need to differentiate
only the matricedU andU™* in Eq. (A3), which gives the

Tr( 7,G 7'Z> .

(Ad)
The second term in EqA4) is proportional toP® (3.24
and vanishes according to E@.30, whereas the first term

is proportional toP! (3.29. Using Egs.(3.27 and (3.20),
we find the value ofC:

,ﬁjdkdw 96
=3 o

TI’( TZ%

N, (k)—n_(k)]
dk K =
For spinless fermions, the number in E45) would be
-1

LA(UGTUY)
90,

dk dw dO,
———’1ju ugg

472

following two terms:

Gt
ok

g1t
K 9

gg

__hjdkdwd@o
2 72

= -2. (A5)
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