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Skyrmion lattice melting in the quantum Hall system
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The melting and magnetic disordering of the Skyrmion lattice in the quantum Hall system at filling factor
n'1 are studied. A Berezinskii-Kosterlitz-Thouless renormalization-group theory is employed to describe the
coupled magnetic and translational degrees of freedom. The nontrivial magnetic properties of the Skyrmion
system stem from the in-plane components of the noncollinear magnetization in the vicinity of Skyrmions,
which are described by an antiferromagneticXY model. In a Coulomb gas formulation the ‘‘particles’’ are the
topological defects of theXY model ~vortices! and of the lattice~dislocations and disclinations!. The latter
frustrate the antiferromagnetic order and acquire fractional vorticity in order to minimize their energy. We find
a number of melting/disordering scenarios for various lattice types. While these results do not depend on a
particular model, we also consider a simple classical model for the Skyrmion system. It results in a richT
50 phase diagram. We propose that the triangular and square Skyrmion lattices are generically separated by
a centered rectangular phase in the quantum Hall system.@S0163-1829~98!01740-8#
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I. INTRODUCTION

A. General remarks and motivation

For nearly two decades the study of the quantum H
effect has been one of the most productive fields
condensed-matter physics.1–5 Recently, quantum Hall sys
tems with additional degrees of freedom have received c
siderable attention.6–13 In the simplest case this degree
freedom is the electron spin. Ideas developed for this sys
can be adapted for other multicomponent quantum Hall s
tems such as coupled layers, wide quantum wells, and q
tum wells in semiconductors with several degener
conduction-band minima.13

Here, we study the effect of the electron spins. We
motivated by recent nuclear-magnetic resonance14 and spe-
cific heat15 measurements exhibiting interesting finite te
perature spin physics. At the Landau level filling fact
n51/m, wherem is an odd integer, the ground state of t
two-dimensional electron gas is a strong ferromagnet,16,13,17

i.e., the electronic spins are completely aligned even in
limit of vanishing Zeeman coupling. Perhaps surprising
the effective Zeeman field in this system is rather small
cause of band-structure effects. In the following we consi
the casen;1. The low-energy excitations of the system
n51 are spin waves gapped at the Zeeman energy. H
ever, the quantum Hall ferromagnet also has topologic
nontrivial excitations, which are~not strictly correctly! re-
ferred to asSkyrmions18,16,10 in analogy with the Skyrme
model in nuclear physics.19–21They can be thermally create
in pairs of vanishing topological charge, similar to vortic
in two-dimensional superfluids. Skyrmions are in fact a
present in conventional itinerant ferromagnets such as
but do not seem to have any observable consequences a
temperatures. What makes them crucial for quantum H
ferromagnets is that the vanishing diagonal conductiv
sxx50 together with the finite Hall conductivitysxy
PRB 580163-1829/98/58~16!/10634~14!/$15.00
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5ne2/h makes the Skyrmions carry a quantized electri
charge of 6ne.16,10 As a result, Skyrmions~or anti-
Skyrmions! are present even in the ground state if we mo
slightly away fromn51.22,23 ~For our purposes Skyrmion
and anti-Skyrmions behave identically and we refer to b
as ‘‘Skyrmions.’’!

If one dopes electrons or holes into the two-dimensio
electron gas atn51, they enter the system as Skyrmio
with charge7e but with more than one flipped spin. Thi
effect can be seen in measurements of the magnetization
function of filling factor.14 The result is a noncollinea
ground state since the magnetization in the vicinity of t
Skyrmion centers has components perpendicular to the m
netic field, which have a vortex-like configuration. In a co
linear magnet the SO~3! spin symmetry is broken to a SO~2!
symmetry with respect to rotations around the magnetic-fi
direction. It has one Goldstone mode, which is gapped at
Zeeman energy in the presence of a magnetic field. I
noncollinear magnet the SO~2! symmetry is further broken
and there are two Goldstone modes, only one of which
gapped. The other gapless mode corresponds to rotatio
the noncollinear spin configuration around the magnetic-fi
axis. Thus, noncollinearity leads to the appearance of a
low-energy SO~2!;U~1! degree of freedom. In the long
wavelength limit the orientation of the in-plane compone
of the magnetization of a Skyrmion can be described b
single U~1! phase factoreif or by the anglef.

Moving further away fromn51, more and more Skyrmi-
ons are present and their interaction becomes important.
Skyrmion interaction contains a repulsive, long-range C
lomb part and a short-range contribution related to the U~1!
degree of freedom. The latter term, which we here call
magnetic interaction, favors antiparallel alignment of th
U~1! ‘‘spins.’’ Brey et al.23 recognized that the magneti
interaction could lead to a square lattice of Skyrmions
stead of the usual triangular~hexagonal! lattice since the
10 634 © 1998 The American Physical Society
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square lattice allows Ne´el order of the U~1! degree of free-
dom whereas magnetic order is frustrated on the triang
lattice. Since the magnetic interaction is of short range,
Coulomb interaction dominates for small Skyrmion densit
and one expects a triangular crystal. The U~1! degree of free-
dom is then frustrated, with neighboring anglesf differing
by 6120°. On the other hand, if the density is sufficien
high, the energy gained from Ne´el ordering on the squar
lattice may outweigh the lost Coulomb energy. Further l
tice types may also be possible, e.g., a centered rectan
lattice, i.e., a square lattice stretched along the (11) direct
with Néel order. In Sec. II we employ a simple classic
model of the Skyrmion system to illustrate which latti
types and structural transitions may be expected. We fin
surprisingly rich phase diagram for the classical ground st
The classical ground state has also been investigated by
et al.24 and Abolfath and Ejtehadi,25 employing a nonlinear
sigma model, and by Greenet al.,26 who also study the lat-
tice dynamics; see Sec. II below.

If the Skyrmion positions were fixed to the ideal lattice
all temperatures, the long-wavelength physics, in particu
the critical properties, would be well described by an antif
romagnetic latticeXY model. We would then expect
Berezinskii-Kosterlitz-Thouless~BKT! transition,27,28 which
separates a low-temperature phase of bound pairs of loga
mically interacting vortices and antivortices from a hig
temperature phase where large pairs are broken in the s
that their interaction is completely screened. These bro
pairs, which essentially consist of free vortices and antiv
tices, destroy quasi-long-range order. In the Skyrmion
tice, however, the positions are not fixed and the lattice it
can melt.

The critical properties of a two-dimensional lattice wit
out any internal degree of freedom have been success
described by Nelson and Halperin29 and by Young30 apply-
ing the BKT theory to dislocations and disclinations of t
lattice. Melting of the triangular and square lattices proce
in two steps, both well described by the BKT theory,29 unless
one or both of these transitions is preempted by a first-o
melting transition. At the lower transition bound pairs
dislocations with opposite Burgers vector decouple, lead
to a liquid-crystal phase with short-range translational or
but persisting quasi-long-range orientational order
nearest-neighbor bonds. Note that dislocations are, like
tices, topological defects with logarithmic bare interactio
For the triangular lattice, the liquid-crystal phase is cal
hexaticbecause is shows quasi-long-range order with res
to a sixfold rotational symmetry, whereas for the square
tice it is calledtetratic ~fourfold symmetry!.29 However, the
square lattice is unstable in a system with Coulomb repuls
as the only interaction. At the higher transition temperatu
pairs of disclinations, i.e., defects in the bond orientat
field, unbind, leading to an isotropic fluid. Thebare discli-
nation interaction is confining but the presence of free dis
cations above the lower melting temperature leads to a lo
rithmic interaction.29

For the Skyrmion lattice, the U~1! degree of freedom may
not only stabilize the square lattice structure,23 we also ex-
pect the short-range magnetic interaction to be strongly
fected by lattice deformations, leading to the coupling
magnetic and lattice degrees of freedom. There are two
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pects to this coupling: First, the low-energy collective mod
(XY spin waves and lattice vibrations! may be coupled.
From general arguments31,17,32 the dispersion of the lattice
vibration mode, usually calledmagnetophononmode, close
to the Brillouin-zone center is expected to have the formv
}k3/2. Côté et al.17 have performed time-dependent Hartre
Fock calculations for the collective-mode spectrum of squ
Skyrmion crystals. The authors indeed find two distinct lo
energy branches. One is linear ink and is interpreted as th
gaplessXY spin-wave mode, whereas the other has thek3/2

magnetophonon dispersion. There is no sign of mixing
these two modes at smallk. In Sec. II C we briefly show tha
the classical Skyrmion model reproduces these features.

Second, despite the fact that the collective modes
largely decoupled, the topological excitations~vortices, dis-
locations, and disclinations! may be coupled, leading to a
interplay of the magnetic BKT transition and the BKT me
ing transitions. That something nontrivial happens is ea
seen from Fig. 1: A dislocation in a square lattice leads t
phase mismatch of6p in the U~1! degree of freedom since
the nearest-neighbor coupling is antiferromagnetic. Naiv
one could expect that this mismatch along the dashed lin
Fig. 1 leads to a linear, confining term in the interaction o
dislocation pair. However, the magnetization can relax so
to minimize the mismatch energy, as shown in Fig. 1~b!. In
this relaxed configuration, the dislocation has acquiredhalf a
U~1! vortex and the dislocation interaction is again logari
mic. The main objective of this paper is to illustrate th
point further and to explore its consequences for melting
magnetic disordering of various Skyrmion lattice types.

FIG. 1. Sketch of a dislocation in a square Skyrmion lattice. T
arrows denote the internal U~1! degree of freedom. As seen in~a!,
dislocations lead to a phase mismatch of6p in the U~1! degree of
freedom. In~b! the U~1! angles have been allowed to relax and t
dislocation has acquired half a vortex.
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The vorticity acquired by dislocations can be derived
ing a gauge theory of elasticity following ideas of Cardyet
al.,33 who have studied a soft square lattice of antiferrom
netically coupled Ising spins. Dislocations frustrate the a
ferromagnetic order in this system as well. In Sec. I B
sketch the gauge theory for the case of a square Skyrm
lattice.

Experimentally, the situation is less clear. The presenc
Skyrmions forn'1 but nÞ1 is firmly established by mag
netization measurements by Barrettet al.,14 using optically
pumped nuclear magnetic resonance~NMR! techniques.
Less certain, the very large nuclear relaxation rateT1

21 seen
in this regime14 is interpreted in terms of the gaplessXY
magnon mode.17 This mode couples strongly to the nucle
spins because of its largeSx,y components and its gaples
ness. This coupling opens a channel for rapid spin-lat
relaxation of nuclear spins. In these experiments14 the Skyr-
mions are probably usually in a liquid state. Nevertheless
gaplessXY mode is presumably still present as an ov
damped mode.

Bayotet al.15 find a strongly enhanced specific heatC for
n'1, which suggests strong coupling between electronic
nuclear spins so that the large specific heat of the nuc
spins is in fact measured. Again, a plausible coupling mec
nism is provided by the gaplessXY magnons. The filling
factor dependence ofC is consistent with this picture.15 The
temperature dependence ofC shows a sharp peak at very lo
T. This peak may indicate a Skyrmion lattice melting tra
sition. Our so far quite speculative interpretation is the f
lowing: Neglecting the Skyrmions for a moment, the Zeem
energy of nuclear spins within the quantum well contain
the two-dimensional electron gas is~Knight! shifted because
of their coupling to the polarized electron gas. Outside of
quantum well there is no such Knight shift and the misma
in the Zeeman energy prevents the spins within and out
of the well from coming into thermal equilibrium. If Skyr
mions are present in a liquid state they move around, lead
to motional narrowing and an averaged, but still fini
Knight shift within the well. In a lattice state, however, the
are regions around the Skyrmions where the electronic m
netization is perpendicular to the external field and
Knight shift vanishes. The nuclear spins outside of the w
can come into equilibrium with the nuclei in these region
Hence, specific heat measurements suddenly see the n
outside of the quantum well when a Skyrmion lattice form
Below the transition the apparent specific heat drops
again, which may indicate that the coupling is strong only
the vicinity of the transition where critical slowing dow
causes the electronic motion time scale to pass through
NMR time scale. To our knowledge, these experiments15 are
the only ones showing signs of a finite-temperature ph
transition in a single-layer quantum Hall system. Recent
periments using resonant inelastic light scattering offdouble-
layer systems11 also show signs of a finite-temperatu
transition.11,12

The objective of this paper is to illustrate several of t
points raised above, in particular we wish to explore
consequences of the vorticity acquired by lattice defects
the melting and magnetic disordering transitions of Sk
mion lattices. In Sec. III we study these transitions for s
eral possible lattice types. We introduce a generalized B
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renormalization-group theory for a Coulomb gas with mo
than one species of particle carrying more than one kind
charge. The specific lattice types we study are motivated
the possible ground states of the simple classical Skyrm
model of Sec. II. It should be kept in mind, however, that t
BKT theory does not depend on any particular model.

B. Gauge theory of elasticity for the Skyrmion lattice

Following Cardy et al.33 we here formulate a gaug
theory for the magnetic and elastic energy of a square S
mion lattice, i.e., a soft square lattice with anXY degree of
freedom. Other Skyrmion lattice types can be treated si
larly. Let S(R)[eif(R) be theXY spin field, whereR is a
lattice vector. We define a magnetic order parameter

F~R![S~R!eip~r x1r y!/a, ~1!

wherer (R) is the actual position of the Skyrmion belongin
to the ideal lattice vectorR anda is the lattice constant. This
picture breaks down in the presence of free disclinations,
above the upper melting transition, because then thex andy
components of the position vectorr are no longer well de-
fined. The additional phase factor turns the spins on
sublattice throughp, thereby mapping the antiferromagn
onto a ferromagnet. In the presence of dislocations this is
possible: The phase factor is no longer unique andF(R)
cannot be both continuous and single valued. Using a c
tinuum notation, the exchange energy is

Hex5E d2R r~“F!* ~“F!. ~2!

Next, we define two translational order parameters

Cx~R![ei2pr x /a, ~3!

Cy~R![ei2pr y /a. ~4!

Although r (R) is not continuous and single valued in th
presence of dislocations, the fieldsCx,y are. Continuum-
elastic theory yields the elastic energy of a square lattice34

Hel5E d2RS mui j ui j 1
l

2
uii uj j 1nuxxuyyD ~5!

where summation over repeated indices is implied and

ui j [
1

2S ]r i

]Rj
1

]r j

]Ri
D . ~6!

The last term in the elastic energy would be absent fo
triangular crystal or an isotropic medium.34 Expressing the
ui j in terms of derivatives of the fieldsCx,y and integrating
by parts, the elastic energy becomes
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Hel5E d2R
a2

8p2
$m~“C i !* ~“C i !

1~m1l!@~]xCx!* ~]xCx!

1~]yCy!* ~]yCy!#

1~m1l1n! @Cx~]xCx!* Cy* ~]yCy!

1Cy~]yCy!* Cx* ~]xCx!#%. ~7!

The long-range Coulomb repulsion in the Skyrmion latt
drives the Lame´ coefficient l to infinity—the lattice is
incompressible.35,36 Thus, only the first term on the right
hand side of Eq.~7! is relevant~the other terms may intro
duce constraints onCx,y , which we ignore in the following
since they do not affect our argument!.

A translation in thex (y) direction leads to phase facto
in Cx (Cy) and inF. A spin rotation leads to a phase fact
in F alone. We can express the symmetries under transla
and spin rotation asgauge symmetries: We introduce three
two-component gauge fieldsA0 , Ax , andAy and write the
energyH[Hex1Hel as

H5E d2R FrUS“2 iA02
i

2
Ax2

i

2
AyDFU2

1
a2m

8p2U~“2 iAx!CxU21
a2m

8p2U~“2 iAy!CyU2G .

~8!

This Hamiltonian is invariant under gauge transformatio
with respect to any of the three gauge fields:

A0→A01“u0 , F→eiu0F, ~9!

Ax→Ax1“ux , F→eiux/2F, Cx→eiuxCx , ~10!

Ay→Ay1“uy , F→eiuy/2F, Cy→eiuyCy . ~11!

These three transformations correspond to spin rotat
translation in thex direction, and translation in they direc-
tion, respectively. Thematter fieldsF, Cx , andCy in the
Hamiltonian, Eq.~8!, are only coupled through the gaug
fields.

We now discuss the topological defects in this theo
Magnetic vortices, i.e., vortices inF, are threaded by one
flux quantum with regard toA0 . Dislocations correspond to
topological defects inCx or Cy , depending on the Burger
vector orientation. The elementary defect in, say,Cx is a unit
vortex. It is threaded by one flux quantum inAx . This seems
to make the fieldF multivalued since its phase changes byp
if one moves around the vortex. However, if theXY spin part
S in F itself containshalf a vortex~or antivortex! the order
parameterF is again singlevalued and continuous. This c
responds to61/2 flux quanta inA0 . Thus, we reobtain the
result already discussed in Sec. I A: Dislocations each
quire 61/2 magnetic vortex.
on
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n,

.

-
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II. CLASSICAL MODEL
FOR THE SKYRMION LATTICE

In the present section we formulate a simple class
model for the interacting Skyrmion system. We use t
model to obtain~a! the classical ground state of the Sky
mion lattice for a wide range of values of the Skyrmio
density and the magnetic interaction strength, and~b! the
spectrum of low-lying collective excitations. This mod
should represent the physics of the real Skyrmion lattice
least qualitatively, and even quantitatively at low densi
This section is meant to illustrate some of the properties
be expected for the Skyrmion lattice without introducing
relevant technical complications. Furthermore, we wish
motivate the choice of lattice types studied on a more gen
level in Sec. III.

A. Model

The main idea is to take the correct limit of the tw
Skyrmion interaction at large distances and treat the Sk
mion system as a classical gas of point particles having
interaction at all separations. We thus keep only the resp
tive leading-order terms for large separations of both the
teraction contribution independent of theXY degree of free-
dom and of the contribution depending on this degree
freedom, and we neglect three-, four-, etc., body interactio
This model should be valid at low Skyrmion densities.

We start from the classical nonlinear sigma model for
magnetization,37,38 which has been successfully applied
quantum Hall ferromagnets.16,10 Abolfath et al.39 have re-
cently discussed the applicability of this classical field theo
and compared its predictions with microscopic results. T
magnetization is represented by a normalized thr
component vector fieldm(r ). The relevant terms in the La
grangian read

L5
\

4p l 2E d2rA@m#•] tm2
rs

2 E d2r ~] imm!~] imm!

1
rg* mBB

2 E d2rm3~r !

2
e2

2eE d2r d2r 8dr~r !
1

ur2r 8u
dr~r 8!, ~12!

whereA@m# is the vector potential of a magnetic monopo
at the origin in spin~m! space,13 ] t is a time derivative, and

dr[2
1

8p
e i j m•~] im3] jm! ~13!

is the topological~Pontryagin! density. Greek indices alway
run over three values and latin ones over two. The first te
is the usual Berry phase, and the other three stem from
change, Zeeman, and Coulomb interaction, respectively.
Coulomb term reflects the fact that Skyrmions carry elec
cal charge.

In the absence of Zeeman and Coulomb interactions,
ground-state solution for a single Skyrmion is know
analytically.20 It is scale invariant and for large distancesr
5ur u from the Skyrmion center the in-plane components
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m fall off as mj}r j /r 2. Rotation around thez axis gives a
differentground-state solution, reflecting the completely b
ken SO~3! symmetry.

Switching on the Zeeman interaction, scale invariance
broken since the Zeeman term prefers a small Skyrmion.
away from the Skyrmion center we can expand the excha
and Zeeman terms in the Lagrangian, Eq.~12!, up to second
order in the small in-plane componentsmj of the
magnetization,32

E>E d2r Frs

2
~] imj !~] imj !1

rg* mBB

2
mjmj G . ~14!

The resulting Euler-Lagrange equation

2] i] imj1
rg* mBB

2
mj50 ~15!

has a vortex solution with32

mj}
r j

r 3/2
e2kr ~16!

for j 51,2. This expression is valid forr @1/k, wherek2

5rg* mBB/2rs . Again, the in-plane components can be r
tated through any anglef. By insertingm into Eq.~12! it is
seen that the energy-density contributions of both the
change and the Zeeman term fall off asr 21e22kr . Taking
the Coulomb interaction into account, its leading-order c
tribution to the energy density also behaves liker 21e22kr .
Thus, all three energy contributions are equally relevan
large r and Coulomb interaction does not destroy the fu
tional form of Eq.~16! but does change the value ofk.

In calculating the interaction energy we assume that
two-Skyrmion state with one Skyrmion at the origin and t
other ats is well described by

mj~r !5mj
single~r !1Rjk~f!mk

single~r2s! ~17!

for j 51,2. The componentm3 is determined byumu51. This
ansatz only gives errors of higher order ine2ks for large
separations. Here,

Rjk~f!5S cosf sinf

2sinf cosf D ~18!

rotates the in-planem components of one of the Skyrmion
through an anglef. We find the interaction potential b
inserting m into the potential energy part of Eq.~12! and
subtracting the energies of two isolated Skyrmions. We
interested in the limiting form for large separationss.

The exchange contribution to the interaction is the o
one depending on the anglef. Using a multipole expansion
and integrating overr we find, to leading order, the exchang
contribution Eexch}cosfe2ks/As, where the coefficient of
proportionality is positive. The contribution from the Ze
man term does not depend onf and is exponentially smal
for large separations. We neglect it compared to the C
lomb interaction, below, since we only keep the lead
f-dependent and the leadingf-independent term. Forn
51 the leading contribution from the Coulomb interaction
e2/es, where e is the dielectric constant of the materia
-

is
ar
ge
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There are higher multipole terms, which fall off at least
1/s3 and are neglected compared to the 1/s term.

B. Ground states

As long as the Skyrmion density is small, we expect t
interaction to be dominated by the two-particle larg
separation terms found above. Our approximation for the
ergy per Skyrmion of a Skyrmion lattice is

E5EC1EXY ~19!

with

EC5
e2

2e (
RÞ0

1

R
2E0 , ~20!

EXY5
gXY

2 (
RÞ0

cos~fR2f0!
e2R/jXY

AR
, ~21!

whereR runs over all Skyrmion positions in the lattice e
cept R50, E0 is an infinite constant from the Coulomb in
teraction with the neutralizing background,gXY.0 denotes
the strength of the magnetic interaction,fR is the angle of
rotation of the Skyrmion atR, andjXY[1/k is the range of
the magnetic interaction.

The long-range Coulomb interaction is not easy to s
over. The main idea of how to make this summation w
behaved is due to Ewald40 and has been successfully applie
to two-dimensional crystals:41,36,42 The lattice sum is split
into a rapidly converging part and a long-range part, which
mapped onto a rapidly converging sum over the recipro
lattice. Here, we quote a more general result,41,42 which will
be useful later: If theR are summed over a two-dimension
Bravais lattice then

eik•s(
R

e2 ik•~R1s!

uR1su
2

1

s
5An(

G
ei ~G1k!•sFS uG1ku2

4pn D
1An (

RÞ0
e2 ik•RF~pnuR1su2!

1AnF~pns2!2
1

s
, ~22!

whereG are the reciprocal lattice vectors,n is the number
density, andF(x)[Ap/x erfc(Ax) with the complementary
error function erfc.43 Equation~22! only works for a Bravais
lattice, lattices with a basis need special consideration.
magnetic structure is irrelevant here, since the Coulomb
teraction does not depend onfR .

The simple sum over Coulomb interactions is obtained
the limit s→0, k→0, where the two sums on the right-han
side can be cast into one,

EC5
e2

e (
RÞ0

erfc~ApnR!

R
2

2e2An

e
. ~23!

Now all lattice sums are rapidly converging and we can c
culate the energy accurately. We write the energy per Sk
mion in a dimensionless form,
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Ẽ[
E

e2e21An

5(
rÞ0

erfc~Apr !

r
22

1
1

2a (
rÞ0

cos~f r2f0!
e2r /b

Ar
~24!

with

r[AnR, ~25!

a[e2n1/4/egXY , ~26!

b[AnjXY , ~27!

which are all dimensionless. Note thatb2 is the density in
units derived from the range of the magnetic interaction a
b/a25jXYgXY

2 e2/e4 is a measure of the relative strength
the magnetic interaction and does not depend on density.
expect this model to be quantitatively correct for small de
sities,b2!1.

The classical ground state for givena, b is determined by
minimizing the energy~24!. Thus we have to compareẼ for
all reasonable two-dimensional lattice structures, taking
magnetic order into account. Besides the triangular lat
with frustrated antiferromagnetic order and the square lat
with Néel order23 we have also obtained ground-state en
gies for the simple rectangular, the centered rectangular,
the oblique lattice, thereby covering all two-dimension
Bravais lattices,41 all with Néel order, and the honeycom
lattice, which is also bipartite but is not a Bravais lattice. W
cannot strictly exclude the possibility of more complicat
ground states but have not found any other likely candid
In the cases of the rectangular and oblique lattices, the la
is characterized by one and two, respectively, continuous
rameters in addition to its space group~Bravais-lattice type!.
For example, the simple rectangular lattice has the ani
ropy h, defined as the ratio of the lattice constants in
(10) and (01) directions, as an additional parameter. To
the ground state, these parameters have to be optimized

Equation~23! is not applicable to the honeycomb lattic
since it is not a Bravais lattice. However, its Coulomb ene
EC

H can be expressed in terms of the triangular-lattice C
lomb energy EC

T .44 Taking the different densities into

account, we find the dimensionless energyẼC
H5(1

1A3)/(2A2)ẼC
T . The Coulomb energies of the paramete

free lattices areẼC
S521.950 13 for the square lattice,ẼC

T

521.960 52 for the triangular lattice, andẼC
H521.893 71

for the honeycomb lattice. The first two were also found
Ref. 41.

We map out the ground-state phase diagram in Fig. 2
following the various transition lines, i.e., lines of equal e
ergy of two lattice types.44 We then discard lines that do no
separate two regions with differentground states. The thin
lines denote continuous transitions, whereas the heavy l
d
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show first-order transitions.44 Recall that our approximation
becomes doubtful forb2;1, i.e., towards the right edge o
the diagram.

The phase diagram, Fig. 2, is quite rich. For examp
there is a region where the ground state is a honeyco
lattice. In its region of stability, it is even less frustrated th
the square lattice for our model interaction. In the upper-
corner we find a very anisotropic ground state consisting
widely separated chains of Skyrmions. Another interest
feature is the critical point on the square–simple rectang
line. Probably more relevant for real systems is the appe
ance of a centered rectangular phase~a square lattice
stretched along the diagonal! everywhere between the trian
gular and square lattices. It should be possible to experim
tally see this two-step transition upon varryingn. Real Skyr-
mion systems probably live in the lower part of the pha
diagram since the magnetic interaction cannot be made a
trarily large in experiment. The parameterb/a2 can be in-
creased by reducing the Zeeman interaction and thereby
creasing the Skyrmion sizejXY . Experimentally, this can be
done by applying hydrodynamic pressure. It is easier to
crease the Zeeman interaction, reducingb/a2, by applying
an in-plane magnetic field component. We roughly estim
thatb/a2 is smaller than unity in real systems. The transiti
lines show an upturn to larger magnetic interactions at
right edge of the phase diagram, Fig. 2. Although this m
be an artifact of our approximationb2!1, it is interesting to
note that a similar reentrance of a triangular phase is foun
Ref. 24.

The phase diagram is rather robust against changes in
exact form of the magnetic interaction. For example,
phase diagram for a simple exponential magnetic interac
is qualitatively identical to Fig. 2. This robustness indica
that the errors made by neglecting higher-order terms in
magnetic interaction are typically small.

Rao et al.24 use a variational classical nonlinear sigm

FIG. 2. Classical Skyrmion lattice phase diagram atT50. Thin
solid lines are continuous phase transitions, whereas heavy line
first-order transitions. The honeycomb phase is denoted by ‘‘h’’ and
the centered rectangular phase by ‘‘cr.’’ The dotted lines in the
simple rectangular phase are lines of constant anisotropyh<1. The
employed model is quantitatively correct forb2!1. Also, real sys-
tems are expected to haveb/a2&1.
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model approach to find the classical ground states of
Skyrmion lattice. They only consider the square and trian
lar lattices and consequently do not find the other phase
particular the centered rectangular lattice. Their method
the advantage that the Skyrmion size is optimized for giv
density and lattice type. The single Skyrmion magnetizat
used in Ref. 24 does not approach the correct limit at la
distances but according to the above argument this sh
not change the results qualitatively. However, at low den
a ferromagnetically ordered triangular lattice is found,24

which appears to be inconsistent with the large separa
limit of the exchange interaction, Eq.~21!.

C. Dynamics

We now briefly turn to the low-energy collective excit
tions of the Skyrmion lattice. As noted above, the U~1! de-
gree of freedom leads to the appearance of a gaplessXY
spin-wave mode, whereas displacements of the Skyrm
lead to a magnetophonon mode. The usual ferromagn
spin wave mode is gapped at the Zeeman energy. This m
is expected to mix with theXY mode, except atk50. This
effect cannot be reproduced by the present model where
Sz spin components are completely integrated out. Thus,
magnon dispersion is only reliable for the long-wavelen
acoustical modes.

We denote the displacements of Skyrmions from th
ground-state positions byu5(u1 ,u2) and the deviation of
the anglef from its ground state byu0 . Then we expand the
potential energy Eq.~19! up to second order inum . To de-
scribe dynamics we also have to know the leading tim
derivative terms in the Lagrangian. The term for displa
ments can be derived from the original Lagrangian, E
~12!.45,32 In the limit of vanishing Landau-level mixing th
Skyrmion mass vanishes so that the Berry-phase term is
only relevant one. One does not normally find a second-o
time derivative term in spin dynamics, but Hartree-Fo
calculations17 clearly show thatu0 obtains a mass, or rather
moment of inertiaI . This can be understood as arising fro
having integrated out all the short-wavelength spin fluct
tions in order to obtain an effective action for the collecti
coordinateu0 . There is also a Berry-phase term associa
with u0 but it is a total time derivative and thus irrelevant
the classical level. The kinetic terms in the Lagrangian th
contain a second-order time derivative foru0 but only a first-
order derivative of the spatial componentsu1,2,

T5
I

2(R,n
u̇0

n~R!u̇0
n~R!1

h

2(
R,n

e i j ui
n~R!u̇ j

n~R!. ~28!

Here,R is a Bravais-lattice vector of themagneticlattice, the
superscriptn50,1, . . . selects one Skyrmion of the lattic
basis,I is the moment of inertia ofu0

n(R), and the coefficient
h is45,32 h5e* B, wheree* 56e is the Skyrmion charge
Deriving the Euler-Lagrange equations and making a pla
wave ansatz,

um
n ~R!5Am

n e2 i ~k•R2vt !, ~29!

we find the equations of motion44
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05H Iv2A0
n for m50

2 ihvem jAj
n for mÞ0J 2(

n8
@Kmn

nn8~0!An
n

2Kmn
nn8~k!An

n8# ~30!

with the dynamical matrix

Kmn
nn8~k![(

R
e2 ik•R

]2

]sm]sn

3E~R1cn2cn81s,fn2fn81s0!us50,s050 .

~31!

Here, E is the potential energy per Skyrmion, Eq.~19!, cn

denotes the position of Skyrmionn within the unit cell, and
fn is its XY angle.

We can now address the question of mixing of mag
tophonon andXY magnon modes. Matrix elements mixin
displacements and rotations of theXY angle (m50 andn
Þ0 or vice versa! stem from the magnetic interaction alon
and contain a first-order derivative of cos(fn2f0), i.e.,
sin(fn2f0), as a factor. Thus, for any lattice withfn

P$0,p% ~square, rectangular, oblique, honeycomb! these ma-
trix elements vanish. Of the lattices considered above, o
the triangular shows any mixing ofXY magnons and mag
netophonons in our model.

Here we only show results for the square lattice. The c
tribution from the magnetic interaction can be summed
rectly, whereas for the Coulomb interaction we need the s
ond derivatives of Eq.~22!. The magnetophonon andXY
magnon dispersions forb250.1 and b/a251 are shown
along directions of high symmetry in the magnetic Brillou
zone in Fig. 3. There are only two instead of four magn
tophonon modes in the magnetic~folded-back! zone sinceu1

n

and u2
n are canonically conjugate and thus do not lead

independent modes. The dispersion of the lower mag
tophonon mode for smallk is indeed of the formv}k3/2,
whereas the magnon mode is linear. Note that the opt
magnetophonon branch shows a minimum at the zone ce
a feature previously seen in Hartree-Fock calculations.17,46

We see that our simple model reproduces the main qua
tive features of the collective-mode spectrum and concl
that it captures the essential physics.

The dispersion relations can be used to reintroduce
least part of the quantum effects into our model by taking
zero-point energy\v/2 for all modes into account.41 This
additional energy may favor certain lattice types and th
shift the transition lines. It may also lead to quantum me
ing. Furthermore, we could extract low-temperature therm
dynamic properties, such as the free energy, and with its h
study structural phase transitions at finite temperatures.
harmonic approximation is, in principle, inconsistent wi
the description of melting, be it quantum or thermal, which
intrinsically nonlinear. Nevertheless, estimates of melt
temperatures could be found by calculating the amplitude
vibrations in this approximation and using a Lindemann-ty
criterion.42 In particular, we expect quantum melting due
soft modes in the vicinity of the continuous transition line
e.g., the one between square and centered rectangula
tices.
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The magnon and magnetophonon dispersions have
been studied by Greenet al.26 This work is not easily com-
parable to real systems since the authors assume tha
Skyrmion shape is little affected by Zeeman and Coulo
interactions, which yields an incorrect expression for the
teraction at large distances. Furthermore, they introduc
mass term into the displacement equation of motion and t
magnetophonon frequencies are inversely proportional to
mass, which seems doubtful since the mass vanishes for
ishing Landau-level mixing so that the physics is domina
by the Berry-phase term. Two lattice types are considere
Ref. 26: what we call the square lattice and the cente
rectangular lattice, the latter with the angle between pri
tive lattice vectors fixed top/3. The latter is structurally
identical to the triangular lattice but has only two magne
sublattices. The authors dispute the existence of a frustr
triangular phase23 but since they do not consider a triangul
lattice with a three-Skyrmion basis it is clear that they can
find it.

If we go to higher temperatures, the harmonic approxim
tion breaks down. In particular, topological excitations b
come important. They are believed to lead to the ultim
melting of the Skyrmion crystal. In the following section w
describe possible scenarios of melting.

III. BEREZINSKII-KOSTERLITZ-THOULESS THEORY
FOR SKYRMION LATTICE MELTING

In the present section, the central one of this paper,
discuss the melting transitions and intermediate phase
the lattice types discussed above. We use the framew
of a suitably generalized BKT renormalization-grou

FIG. 3. Dispersion of magnetophonons andXY magnons along
high-symmetry directions in the magnetic Brillouin zone of t
square Skyrmion lattice. The calculation was done forb250.1 and
b/a251.
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theory27,28,47since this theory is known to work well for th
simpler problems of~i! an XY model on a rigid lattice and
~ii ! a soft lattice without additional degrees of freedom.29,30

More specifically, we employ a Coulomb gas language. B
theory is astatic theory so that the unconventional kinet
terms in the Skyrmion Lagrangian, see, e.g., Eq.~28!, do not
affect the results. We stress that this approach does not m
reference to any special model for the interacting Skyrm
system. There is one important caveat: The theory of R
29 and 30 describes the system wellif it shows BKT melting
but does not say whether it actually does. The upper or b
BKT melting transitions may be preempted by a first-ord
transition.

A. Multiple-charge Coulomb gas

We first introduce a general model, which contains
relevant Skyrmion lattices as special cases. This model
two-dimensional continuum Coulomb gas with more th
one species of particles carrying more than one charge.
dislocations and vortices are treated as classical point
ticles with logarithmic interactions. From continuum
elasticity theory one finds that for the triangular lattice t
interaction between two dislocations with Burgers vectorsb1
andb2 and separation vectorr is proportional to48,29,30,36

2b1•b2 ln
ur u
t

1
~b1•r !~b2•r !

r2
, ~32!

where the length scalet is given by the lattice spacing. Fo
less symmetric lattice types this expression is not stric
correct but the leading, logarithmic term is always presen30

We here only keep the logarithmic term. The qualitative b
havior and the universal jump in the stiffness are known
be unaffected by this.29,30 @However, the temperature depe
dence of the correlation length above the dislocation unbi
ing transition changes for the triangular lattice as a resul
both the subleading term in Eq.~32! and the appearance o
triplets of dislocations with vanishing total Burge
vector.29,30#

As discussed in the Introduction, dislocations attract p
tial vortices to minimize the energy resulting from the m
match in the antiferromagnetic order. In a Coulomb-gas l
guage we have three charges: the vortex strength and tx
and y components of the dislocation Burgers vector. The
three charges correspond to the three gauge fields discu
in Sec. I B. A similar description can be used for the possi
upper melting transition from a liquid crystal to an isotrop
fluid. This transition is thought to be due to unbinding pa
of disclinations, which may again bind partial vortices.

The model is defined as follows: There areN species of
particles, counted byn51, . . . ,N, which carryM charges
qn

1 , . . . ,qn
M . Each particle has an antiparticle with a

charges inverted,qn̄
m

52qn
m , where we use the notationn̄

for the species of the antiparticle. The charges interact
the two-dimensional logarithmic Coulomb potential. The i
teraction between two particles of speciesn andn8 at posi-
tions r and r 8 is then

V52 (
m51

M

qn
mqn8

m ln
ur2r 8u

t
. ~33!
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The charges have units of a square root of energy—
strength of the interaction is contained inqn

m . Furthermore,
we assume~i! that only a particle and its antiparticle ca
form a pair that is neutral with respect toall charges and~ii !
that the whole system is neutral with respect to all charg
The number ofn particles andn̄ antiparticles is then equa
Restriction~i! is in fact not crucial but simplifies the argu
mentation.

The usual Coulomb-gas model for vortices in theXY
model or a superfluid film is the caseN51, M51. Melting
of a square lattice without additional degrees of freedom
be described by anN52, M52 Coulomb gas, which re
duces to two independent, identicalN51, M51 models
since dislocations with Burgers vectors along thex and y
axes, respectively, do not interact. Tupitsynet al.49 have con-
sidered anN52, M52 model for merons in a double-laye
quantum Hall system, but with a 1/r interaction for one of
the charges.

For the square Skyrmion lattice we haveM53 charges
and N55 particle species. The charges correspond to
vortex strength (qn

1), thex component of the Burgers vecto
(qn

2), and itsy component (qn
3). The charges of the particle

are given in Table I. This table reflects the fact that dislo
tions bind11/2 or 21/2 vortex.

We apply Kosterlitz’s renormalization-grou
formulation28 of BKT theory to the generalN, M model.
This approach has the advantage of being more rigorous
mathematically more transparent than, e.g., the original s
consistent screening approach.27,47 The renormalization pro-
cedure of Ref. 28 consists of two steps: First, the smal
neutral pair is integrated out, and then the length scalet, the
size of the smallest pairs, is rescaled. The procedure for
multiple-charge Coulomb gas is similar to the original cas28

and is not given in detail.
The main approximation of the original theory28 is that

the two particles with smallest separation are assume
alwaysform a neutral pair. This is reasonable since two p
ticles that do not form a neutral pair have the same cha
and thus repel each other. In our case this is not gene
true: two particles that are not a neutral pair can even att
each other and form a non-neutral bound state. However,
arrangement will attract other particles until it is totally ne
tral. The approximation that the smallest pair is neutra
thus equivalent to neglecting neutral arrangements of m
than two particles. The same problem arises for the triang
lattice withoutXY degree of freedom, where three eleme
tary dislocations can have vanishing total Burgers vecto30

Depending on theqn
m there can be neutral triplets, e.g

(12̄3) in the above example, whereas in theN51 case the

TABLE I. Coulomb gas charges of the square Skyrmion latti
qv is the vortex charge andqd is the dislocation charge.

n qn
1 qn

2 qn
3

1 qv 0 0
2 qv/2 qd 0
3 2qv/2 qd 0
4 qv/2 0 qd

5 2qv/2 0 qd
e

s.
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simplest neutral arrangements except for pairs are quar
Therefore the first neglected term in the renormalizatio
group equations is of fourth order in the particle fugacit
for both theXY model on a rigid lattice50 and the melting
square lattice withoutXY degree of freedom, whereas it is o
third order for the square Skyrmion lattice.

The grand canonical partition function of the multipl
charge Coulomb gas is

Z5 (
N1 , . . . ,NN

)
n51

N F 1

~Nn! !2S yn

t2D 2NnG E
D1~t!

d2r 1¯

3E
D2N~t!

d2r 2N expS 1
b

2 (
iÞ j

(
m51

M

qni

mqnj

m ln
ur i2r j u

t D ,

~34!

whereNn is the number of particles of speciesn ~there is the
same number ofn̄ antiparticles!, N5(nNn , the yn are
fugacities, the ranges of integrationDi(t) comprise the
whole plane but exclude configurations with two particl
closer thant, and the double sum( iÞ j runs over all 2N
particles and antiparticles. Pairs of size in@t,t1dt) are in-
tegrated out according to

)
i 51

2N E
Di ~t!

d2r i>)
i 51

2N E
Di ~t1dt!

d2r i

1
1

2 (
iÞ j

)
kÞ i , j

E
Dk~t1dt!

d2r kE
D8

d2r j

3E
t<ur i2r j u,t1dt

d2r idni ,n̄ j
. ~35!

Here, D8 consists of the whole plane except for disks
radiust centered at all particleskÞ i , j . The only approxi-
mation here is contained in the symboldni ,n̄ j

, which states
that only neutral pairs are integrated out. Applying this p
scription to Eq.~34! and rescalingt we obtain~cf. Ref. 28!

Z>Z0 (
N1 , . . . ,NN

)
n51

N H 1

~Nn! !2F yn

~t1dt!2G 2Nn

3F11F22b/2(
m51

M

~qn
m!2Gdt

t G2NnJ
3)

i 51

2N E
Di ~t1dt!

d2r i expS 1
b

2(
iÞ j

F (
m51

M

qni

mqnj

m

22p2(
n51

N

yn
2 dt

t
bS (

m51

M

qni

mqn
mD

3S (
m51

M

qn
mqnj

m D G ln
ur i2r j u
t1dt D . ~36!

Except for the irrelevant constantZ0 , this partition function
is identical to the original one if we replace

yn→H 11F22
b

2 (
m51

M

~qn
m!2Gdt

t J yn , ~37!

.
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(
m51

M

qn
mqn8

m→(
m51

M

qn
mqn8

m
22p2 (

n951

N

yn9
2 b

3S (
m51

M

qn
mqn9

m D S (
m51

M

qn9
m qn8

m D dt

t
. ~38!

If we define a~symmetric! stiffness tensor

Knn8[

b(
m

qn
mqn8

m

2p
~39!

and express the scaling relations foryn andKnn8 by differ-
ential equations, we obtain the generalized renormalizat
group equations

dyn
2

dl
52~22pKnn! yn

2 , ~40!

dKnn8
dl

524p3 (
n951

N

yn9
2 Knn9Kn9n8 , ~41!

where l 5 ln r/t is the logarithmic length scale. The initia
conditions for these equations are

yn
2~ l 50!5Cn

2e22bEn
core

, ~42!

Knn8~ l 50!5

b(
m

qn
m~0!qn8

m
~0!

2p
, ~43!

whereCn are constants of the order of unity andEn
coreare the

core energies of onen particle. Note that the generalize
Kosterlitz equations and the initial conditions reduce to
standard BKT expressions forN51, M51.

B. Skyrmion lattices

We first consider the square Skyrmion lattice (N55, M
53). At first glance this problem looks rather complicate
since it involves coupled differential equations in 5 fuga
ties and 15 stiffness constants, taking the symmetry ofKnn8
into account. However, we can simplify the problem cons
erably by looking for further symmetries. In a first step w
consider the symmetries ofyn and Knn8 at the minimum
length scalel 50 and check which of these survive for th
renormalized quantities atl .0. From Table I and the obser
vation that the core energies of all species of dislocati
should be equal, we see that atl 50 there are at most seve
independent quantities,

yv[y1 ,

yd[y25y35y45y5 ,

Kv[K11,

Kd[K225K335K445K55, ~44!

Kvd[K1252K135K1452K15,
n-

e

,
-

-

s

Kdd[K235K45,

Kdd8 [K2452K2552K345K35.

The equations for these quantities can be read off from E
~40! and ~41!. It is easy to see that two quantities that a
equal by symmetry atl 50 remain equal to each other as w
integrate away froml 50. Hence, the problem can be re
duced to seven coupled equations,

dyv
2/dl52~22pKv!yv

2 ,

dyd
2/dl52~22pKd!yd

2 ,

dKv /dl524p3yv
2Kv

2216p3yd
2Kvd

2 ,

dKd /dl524p3yv
2Kvd

2 24p3yd
2~Kd

21Kdd
2 12Kdd82!,

~45!

dKvd /dl524p3yv
2KvKvd24p3yd

2~KdKvd2KddKvd

12Kdd8 Kvd!,

dKdd /dl514p3yv
2Kvd

2 28p3yd
2~KdKdd2Kdd82!,

dKdd8 /dl524p3yv
2Kvd

2 28p3yd
2~KdKdd8 2KddKdd8 !.

In a second step we make an ansatz for the remainingK to
reduce the number of independent quantities further.
guessthat the renormalization of the interactions can be
scribed in terms of independent screening of the two char
qv and qd alone~we will see below that this assumption
not correct for all lattice types!. If it were true there would be
only two independent stiffness constantsJv and Jd , which
we choose so that

Jv~0!5
bqv

2~0!

2p
, Jd~0!5

bqd
2~0!

2p
. ~46!

Since our ansatz has to work atl 50 we have

Kv5Jv ,

Kd5Jd1Jv/4,

Kvd5Jv/2, ~47!

Kdd5Jd2Jv/4,

Kdd8 5Jv/4.

Inserting this ansatz into Eqs.~45! we obtain four indepen-
dent equations,

dyv
2/dl52~22pJv!yv

2 , ~48!

dyd
2/dl52~22pJd2pJv/4!yd

2 ,
~49!

dJv /dl524p3yv
2Jv

224p3yd
2Jv

2 ,
~50!

dJd /dl528p3yd
2Jd

2 , ~51!

and three that are linear combinations of these. Thus
ansatz is indeed correct. Of course, we could have made
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ansatz directly for theKnn8 without the step in between. W
repeat that the leading neglected terms in Eqs.~48!–~51! are
of third order inyv,d .

From Eqs.~50! and ~51! we see immediately that if the
dislocations proliferate, liml→`yd

25`, both stiffness con-
stantsJv andJd go to zero forl→`. This result reflects the
fact that free dislocations do not only screen the disloca
interaction but also the vortex interaction since they ca
vorticity. On the other hand, free vortices (liml→`yv

25`)
only lead toJv→0 since vortices do not have a nonze
Burgers vector, and, consequently, Eq.~51! does not contain
yv

2 . We now discuss the possible scenarios.
Decoupled transitions, Fig. 4~a!: We start from low tem-

peratures. At some temperatureTv , vortices unbind and
Jv( l→`) shows a universal jump from 2/p to zero. ~We
now omit the l argument when we refer to the limitl
→`.) At the same temperature theeffectivestiffness of the
dislocation interaction,Jd1Jv/4, also shows a jump but a
the high-temperature sideTv

1 of the jump we still haveJd

1Jv/45Jd.2/p. There is no jump inJd alone. AboveTv
the system has only short-range magnetic order but
quasi-long-range translational order. At some higher te
peratureTd the dislocations unbind andJd jumps from 2/p
to zero. Both transitions show BKT finite size scaling47

Jv,d( l ,Tv,d)>2/p@111/(2l )#.
Vortex-driven simultaneous transitions, Fig. 4~b!: At Tv

vortices unbind:Jv jumps from 2/p to zero. At Tv
2 , the

effective dislocation stiffness isJd1Jv/4.2/p, while Jd

FIG. 4. The three possible scenarios close to the lower-mel
transition of the square Skyrmion lattice:~a! decoupled transitions
~b! vortex-driven simultaneous transitions, and~c! dislocation-
driven simultaneous transitions; see text. The vortex stiffnessJv
and the effective dislocation stiffnessJd1Jv/4 are plotted as func-
tions of temperature. The graphs have not been obtained by a
integration but are rather sketches meant to emphasize the univ
features.
n
y

ill
-

alone is smaller than 2/p. With Jv jumping to zero, we ap-
pear to haveJd1Jv/45Jd,2/p at Tv

1 , see the cross in Fig
4~b!. However, from Eq.~49! we see that then liml→`yd
5`, dislocations also proliferate, andJd jumps to zero. The
physical reason is that with the vortex interaction scree
the remaining dislocation interaction is suddenly too weak
bind dislocation pairs so thatTd5Tv . We expect BKT scal-
ing only in Jv .

Dislocation-driven simultaneous transitions, Fig. 4~c!: At
Td dislocations unbind; the effective stiffnessJd1Jv/4
jumps from 2/p to zero. The vortex stiffness is still large a
Td

2 , Jv(Td
2).2/p so that vortices would unbind at a highe

temperature. However, sinceJd1Jv/4 vanishes atTd
1 , so

doesJv so thatTv5Td . Physically, the vortex interaction i
suddenly screened since the proliferating dislocations c
vorticity. For this reason the magnetic transition can ne
take place at a higher temperature than the melting. Th
can be lattice order without magnetic order but not v
versa. We expect BKT scaling inJd1Jv/4 and also find
similar scaling inJv andJd separately but with a nonuniver
sal value ofJv,d(Td

2)Þ2/p.
Above the dislocation unbinding transition atTd the sys-

tem still shows orientational quasi-long-range order, wher
translational and magnetic order are of short range. Thi
the tetratic phase mentioned in the Introduction.29 It is char-
acterized by free dislocations, which are in fact bound pa
of disclinations.29 For the square lattice elementarybaredis-
clinations do not carry vorticity, as can be seen from Fig.
Disclinations dress with free dislocations, leading to a log
rithmic interaction.29 This screening cloud of dislocations
expected to have vanishing total Burgers vector and van
ing total vorticity in order to minimize its energy. Thus
dressed disclinations still have zero Burgers vector and v
tex strength and the disclination unbinding transition cor
sponds to anN51, M51 model with the dressed fivefold
disclination as the particle and the dressed threefold dis
nation as its antiparticle. At a temperatureTdisc.Td disclina-
tion pairs unbind and the system becomes an isotropic fl

We now turn to the other lattice types. The triangu
lattice has dislocations with Burgers vectors along any
three axes. Dislocations lead to a phase mismatch of62p/3

g

ual
sal

FIG. 5. Sketch of a threefold disclination in the square Sk
mion lattice. The disclination does not frustrate the antiferrom
netic order of theXY spins~arrows!.
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in the frustrated (120°) magnetic order and thus attract61/3
vortex. Consequently, there are six species of dislocatio
three directions of Burgers vectors and two signs of the v
ticity. Dislocations with Burgers vectors in different dire
tions now interact; the interaction is proportional to the c
sine of the angle between them,29 cf. Eq. ~32!. The charges
are given in Table II. All species of dislocations are equiv
lent and the final equations are

dyv
2/dl52~22pJv! yv

2 , ~52!

dyd
2/dl52~22pJd2pJv/9! yd

2 ,
~53!

dJv /dl524p3yv
2Jv

22~8/3!p3yd
2Jv

2 ,
~54!

dJd /dl5212p3yd
2Jd

2 . ~55!

Note that there are no neutral triplets in the triangular Sk
mion lattice, as opposed to the usual triangular lattice. Th
the first omitted terms are of fourth order in the fugacities51

Equations~52!–~55! differ from the square lattice case on
in the coefficients. The possible melting regimes are t
qualitatively the same. The liquid-crystal phase is hexati29

Bare disclinations do carry vorticity (61/3) but this fact is
irrelevant for the upper transition since the vorticity part
the disclination interaction is totally screened by free vo
ces and dislocations.

The centered rectangular lattice can be generated from
square lattice by tilting the angleu between the primitive
lattice vectors away fromu5p/2 but keeping their lengths
fixed. This tilting leads to an interaction between dislocatio
with Burgers vectors along different primitive vectors. How
ever, all elementary dislocations still have the same fuga
and effective interaction with their respective antipartic
since they are related by reflection symmetry. The char
are given in Table III. Foru5p/2 we recover the squar
lattice. Our usual ansatz, which assumes that the system

TABLE II. Charges for the triangular lattice.

n qn
1 qn

2 qn
3

1 qv 0 0
2 qv/3 qd 0
3 2qv/3 qd 0
4 qv/3 cos(2p/3)qd sin(2p/3)qd

5 2qv/3 cos(2p/3)qd sin(2p/3)qd

6 qv/3 cos(2p/3)qd 2sin(2p/3)qd

7 2qv/3 cos(2p/3)qd 2sin(2p/3)qd

TABLE III. Charges for the centered rectangular lattice.

n qn
1 qn

2 qn
3

1 qv 0 0
2 qv/2 qd 0
3 2qv/2 qd 0
4 qv/2 cos(u)qd sin(u)qd

5 2qv/2 cos(u)qd sin(u)qd
s:
r-

-

-

-
s,

s

f
-

he

s

ty
s
es

an

be described in terms of screening ofqv andqd alone, fails
here. We cannot reduce the problem to four coupled eq
tions for general values off but need five:

dyv
2/dl52~22pJv!yv

2 , ~56!

dyd
2/dl52~22pJ1/22pJ2/22pJv/4!yd

2 , ~57!

dJv /dl524p3yv
2Jv

224p3yd
2Jv

2 , ~58!

dJ6 /dl528p3yd
2J6

2 ~59!

with the initial conditions for theJ

Jv~0!5bqv
2~0!/2p, ~60!

J6~0!5~16cosf! bqd
2~0!/2p.

~61!

Nevertheless, there can be at most two transitions~apart from
disclination unbinding! since there are only two fugacities
The possible regimes are the same as for the square latt
we replaceJd by (J11J2)/2. Above the lower melting tran-
sition the system is in a liquid-crystal phase with quasi-lon
range orientational order with respect to atwofoldsymmetry.
This is a two-dimensionalnematicphase. Elementary discli
nations do not carry vorticity so that the upper melting tra
sition is simple.

The simple rectangular lattice is generated from
square lattice by stretching it in the (10) direction. Disloc
tions with Burgers vectors in thex and y direction, respec-
tively, now have different energies, increasing the numbe
independent variables. Dislocations still bind61/2 vortex.
There are againN55 particles andM53 charges. The fina
renormalization-group equations are

dyv
2/dl52~22pJv!yv

2 , ~62!

dyd1
2 /dl52~22pJd12pJv/4!yd1

2 , ~63!

dyd2
2 /dl52~22pJd22pJv/4!yd2

2 , ~64!

dJv /dl524p3yv
2Jv

222p3yd1
2 Jv

222p3yd2
2 Jv

2 , ~65!

dJd1 /dl528p3yd1
2 Jd1

2 , ~66!

dJd2 /dl528p3yd2
2 Jd2

2 . ~67!

Since the dislocation energies are different, there are
distinct dislocation unbinding transitions atTd1 andTd2 ex-
cept if they are driven by vortex unbinding. If there are tw
structural transitions, the phase between them has tran
tional quasi-long-range order in, say, thex direction, but
short-range order in they direction. It is thus a two-
dimensionalsmecticphase. There are five possible scenari
which follow from our considerations for the square latti
and are not discussed here. ForT.max(Td1,Td2) we again
have a nematic phase~twofold rotational symmetry!. El-
ementary disclinations do not carry vorticity and the upp
melting transition is simple.

The lower melting transition of the honeycomb lattice
trivial in this context since its dislocations do not carry vo
ticity: The structural lattice has the same basis as the m
netic lattice so that dislocations~with any Burgers vector!
cannot lead to a phase mismatch. Thus antiferromagn
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quasi-long-range order could persist in the liquid crys
phase above the dislocation unbinding transition, which
expected to have unique properties.44 Disclinations carry
61/2 vortex and any remaining magnetic order is destro
at the upper melting transition.

Finally, we stress again that these considerations can
yield the possible sequence ofBKT transitionsfor any lattice
type. This approach cannot describe other transitions
rectly, such as first-order melting transitions29 or first- or
second-order structural transitions. Structural transitions
particular could take place since magnetic disordering le
to a reduced effective magnetic interaction between Skyr
ons, affecting the stability of the various lattice types in d
ferent ways.

In fact, the question arises of whether the square Sk
mion lattice can be stable at all above the magnetic disor
ing transition. The answer is affirmative since the magne
part of the interaction is of short range: As long as the m
netic BKT correlation length jv , which for T*Tc
satisfies27,47

jv~T!

t
>expS b

AT2Tc
D , ~68!

is much larger than the range of the magnetic interac
jXY , the effect of magnetic disordering on the lattice en
gies is negligible. Only when, at a higher temperature,jv
becomes comparable tojXY , frustration becomes importan
In this case we expect the magnetic interaction to be ef
tively reduced so that eventually the triangular lattice b
comes favorable. If atT5Td still jv*jXY , the square lattice
melts and forms a tetratic phase before a structural trans
takes place. It can even exhibit the upper melting transit
without any structural transition taking place, depending
the nonuniversal constantb in Eq. ~68!. The same kind of
argument holds for other lattice and liquid-crystal structur

IV. CONCLUSIONS

As noted above, the lattice types relevant for pres
quantum Hall systems are the triangular, centered recta
lar, and square lattices. A rough estimate of the actual c
energies and interactions in the real quantum Hall sys
using the model of Sec. II A and results of Ref. 36 indica
that the low-density, triangular lattice typically shows deco
pled magnetic and melting transitions, cf. Fig. 4~a!. The
magnetic Skyrmion interaction, and thus the magnetic s
ness and the vortex energies, are small since a strong m
netic interaction would make the triangular lattice unstab
The effective magnetic stiffness is further reduced by fr
tration.

On the other hand, the centered rectangular and sq
lattices usually show simultaneous transitions, i.e., magn
order persists up to the lower-melting temperature. Exp
mentally, the two possible scenarios of Figs. 4~b! and 4~c!
are probably not easy to distinguish. Note also that vor
l
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driven simultaneous transitions, Fig. 4~b!, require fine tuning
of magnetic and structural stiffnesses so that this scenar
probably rare.

Quantum fluctuations can affect these results. As no
above they are expected to lead to quantum melting in
vicinity of the classical square-centered rectangular li
They should also destroy magnetic order in the triangu
lattice at sufficiently low densities, where the magnetic int
action becomes exponentially small. More experiments
needed to test the predictions of this paper. Sharp struct
in the Knight shift, nuclear relaxation rates, or specific h
as functions of temperature would be indications for ph
transitions of the Skyrmion system. Particularly valuab
would be experiments on the electronic susceptibi
x(q,v) as a function of temperature and filling factor.

In conclusion, we have performed a Berezinsk
Kosterlitz-Thouless renormalization group study of melti
and magnetic disordering in various lattice geometries in
der to understand the behavior of the Skyrmion lattice
quantum Hall ferromagnets at finite temperatures. The
havior of the Skyrmion system is determined by the tw
facts that Skyrmions~i! are noncollinear magnetic defec
and ~ii ! carry electrical charge. In the long-wavelength lim
the in-plane magnetization components can be describe
a U~1! (XY) degree of freedom associated with each Sk
mion. TheXY ‘‘spins’’ couple antiferromagnetically and ca
lead to antiferromagnetic quasi-long-range order. Dislo
tions in most Skyrmion lattice types lead to a mismatch
the XY degree of freedom, which makes the dislocatio
bind fractional vortices and leads to coupling of translatio
and magnetic excitations. For most lattice types there
three distinct scenarios for the lower melting transition:~i! a
BKT magnetic disordering transition at a lower temperatu
than BKT melting,~ii ! simultaneous transitions where th
magnetic stiffness shows a universal BKT jump, and~iii !
simultaneous transitions where the effective dislocation s
ness shows a universal jump.

The lattice types we have studied are motivated by
possible ground states of a simple classical model of
Skyrmion system, which uses the large-separation limit
their interaction. It shows a surprisingly richT50 phase
diagram, which suggests that upon increasing the Skyrm
density a frustrated triangular ground state first gives way
a centered rectangular lattice with Ne´el order and only at
higher density to a square lattice. Quantum melting is
pected to take place in the vicinity of the latter transition.
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22H.A. Fertig, L. Brey, R. Coˆté, and A.H. MacDonald, Phys. Rev

B 50, 11 018 ~1994!; A.H. MacDonald, H.A. Fertig, and L.
Brey, Phys. Rev. Lett.76, 2153~1996!; H.A. Fertig, L. Brey, R.
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