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The melting and magnetic disordering of the Skyrmion lattice in the quantum Hall system at filling factor
v~1 are studied. A Berezinskii-Kosterlitz-Thouless renormalization-group theory is employed to describe the
coupled magnetic and translational degrees of freedom. The nontrivial magnetic properties of the Skyrmion
system stem from the in-plane components of the noncollinear magnetization in the vicinity of Skyrmions,
which are described by an antiferromagne¢i¢ model. In a Coulomb gas formulation the “particles” are the
topological defects of th&XY model (vorticeg and of the lattice(dislocations and disclinationsThe latter
frustrate the antiferromagnetic order and acquire fractional vorticity in order to minimize their energy. We find
a number of melting/disordering scenarios for various lattice types. While these results do not depend on a
particular model, we also consider a simple classical model for the Skyrmion system. It results inTa rich
=0 phase diagram. We propose that the triangular and square Skyrmion lattices are generically separated by
a centered rectangular phase in the quantum Hall sy$®01.63-182@08)01740-§

[. INTRODUCTION =ve?/h makes the Skyrmions carry a quantized electrical
charge of +ve.1®1® As a result, Skyrmions(or anti-
Skyrmiong are present even in the ground state if we move
For nearly two decades the study of the quantum Halkjightly away fromv= 12223 (For our purposes Skyrmions

effect has been one of the most productive fields ofand anti-Skyrmions behave identically and we refer to both
condensed-matter physits. Recently, quantum Hall sys- as “Skyrmions.”)

tems with additional degrees of freedom have received con- |f one dopes electrons or holes into the two-dimensional
siderable attentiof.® In the simplest case this degree of electron gas atv=1, they enter the system as Skyrmions
freedom is the electron spin. Ideas developed for this systemith charge=e but with more than one flipped spin. This
can be adapted for other multicomponent quantum Hall syseffect can be seen in measurements of the magnetization as a
tems such as coupled layers, wide quantum wells, and quafunction of filling factor’* The result is a noncollinear
tum wells in semiconductors with several degenerateground state since the magnetization in the vicinity of the
conduction-band minim& Skyrmion centers has components perpendicular to the mag-
Here, we study the effect of the electron spins. We arenetic field, which have a vortex-like configuration. In a col-
motivated by recent nuclear-magnetic resondhe@ed spe- linear magnet the S@) spin symmetry is broken to a $2)
cific heat® measurements exhibiting interesting finite tem-symmetry with respect to rotations around the magnetic-field
perature spin physics. At the Landau level filling factor direction. It has one Goldstone mode, which is gapped at the
v=1/m, wherem is an odd integer, the ground state of the Zeeman energy in the presence of a magnetic field. In a
two-dimensional electron gas is a strong ferromadh&t}”  noncollinear magnet the $2) symmetry is further broken
i.e., the electronic spins are completely aligned even in thand there are two Goldstone modes, only one of which is
limit of vanishing Zeeman coupling. Perhaps surprisingly,gapped. The other gapless mode corresponds to rotation of
the effective Zeeman field in this system is rather small bethe noncollinear spin configuration around the magnetic-field
cause of band-structure effects. In the following we consideaxis. Thus, noncollinearity leads to the appearance of a new
the casev~1. The low-energy excitations of the system atlow-energy S@)~U(1) degree of freedom. In the long-
v=1 are spin waves gapped at the Zeeman energy. Howwavelength limit the orientation of the in-plane components
ever, the quantum Hall ferromagnet also has topologicallyf the magnetization of a Skyrmion can be described by a
nontrivial excitations, which arénot strictly correctly re-  single U1) phase factoe'® or by the anglep.
ferred to asSkyrmion&%1%in analogy with the Skyrme Moving further away fromv= 1, more and more Skyrmi-
model in nuclear physicS 2! They can be thermally created ons are present and their interaction becomes important. The
in pairs of vanishing topological charge, similar to vortices Skyrmion interaction contains a repulsive, long-range Cou-
in two-dimensional superfluids. Skyrmions are in fact alsolomb part and a short-range contribution related to tlit) U
present in conventional itinerant ferromagnets such as irodegree of freedom. The latter term, which we here call the
but do not seem to have any observable consequences at lomagnetic interaction, favors antiparallel alignment of the
temperatures. What makes them crucial for quantum HalU(1) “spins.” Brey et al?® recognized that the magnetic
ferromagnets is that the vanishing diagonal conductivityinteraction could lead to a square lattice of Skyrmions in-
ox=0 together with the finite Hall conductivityo,, stead of the usual trianguldhexagonal lattice since the

A. General remarks and motivation
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square lattice allows Mg order of the W1) degree of free- , . : : :
dom whereas magnetic order is frustrated on the triangular : \ ____ \ \ ......... \‘ ........ \\
lattice. Since the magnetic interaction is of short range, the \ """""" : :
Coulomb interaction dominates for small Skyrmion densities : : .
and one expects a triangular crystal. The\Wegree of free- \ \ """""" N - :
dom is then frustrated, with neighboring angkéddiffering : § \\\ \
by +£120°. On the other hand, if the density is sufficiently \ »»»»»»» \ ,,,, \ ‘‘‘‘‘‘‘ ' 5
high, the energy gained from ‘Keordering on the square \\
lattice may outweigh the lost Coulomb energy. Further lat- \ ...... \ ....... o \
tice types may also be possible, e.g., a centered rectangular : : \ )
lattice, j.e., a square lattice stretched along the (11) direction, (a)

with Neel order. In Sec. Il we employ a simple classical

model of the Skyrmion system to illustrate which lattice

types and structural transitions may be expected. We find a : : : .
surprisingly rich phase diagram for the classical ground state. e e e \ ' :
The classical ground state has also been investigated by Rao : : : :
et al?* and Abolfath and Ejtehadr, employing a nonlinear : o \\ N
sigma model, and by Greest al.?® who also study the lat- T \\ i \
tice dynamics; see Sec. Il below. \ """"" N o
If the Skyrmion positions were fixed to the ideal lattice at gt A ; . \
all temperatures, the long-wavelength physics, in particular : : S \ -----------
the critical properties, would be well described by an antifer- TS A / ......... f i
romagnetic latticeXY model. We would then expect a 5 5 i b } ----- \ --------------
Berezinskii-Kosterlitz-ThouleséBKT) transition?”-?8 which (b) :

separates a low-temperature phase of bound pairs of logarith-

mically interacting vortices and antivortices from a high- g, 1. Sketch of a dislocation in a square Skyrmion lattice. The
temperature phase where large pairs are broken in the seng@ows denote the internal(l) degree of freedom. As seen (a),
that their interaction is completely screened. These brokegjsiocations lead to a phase mismatchtofr in the U1) degree of
pairs, which essentially consist of free vortices and antivorfreedom. In(b) the U1) angles have been allowed to relax and the
tices, destroy quasi-long-range order. In the Skyrmion latdislocation has acquired half a vortex.
tice, however, the positions are not fixed and the lattice itself
can melt. pects to this coupling: First, the low-energy collective modes

The critical properties of a two-dimensional lattice with- (XY spin waves and lattice vibrationsnay be coupled.
out any internal degree of freedom have been successfullyrom general argumerifs'’*?the dispersion of the lattice
described by Nelson and Halpetirand by Yound® apply-  vibration mode, usually callethagnetophonomode, close
ing the BKT theory to dislocations and disclinations of theto the Brillouin-zone center is expected to have the fesm
lattice. Melting of the triangular and square lattices proceedsk®2 Cate et al!” have performed time-dependent Hartree-
in two steps, both well described by the BKT thedtyinless  Fock calculations for the collective-mode spectrum of square
one or both of these transitions is preempted by a first-ordeBkyrmion crystals. The authors indeed find two distinct low-
melting transition. At the lower transition bound pairs of energy branches. One is linearknand is interpreted as the
dislocations with opposite Burgers vector decouple, leadingaplessXY spin-wave mode, whereas the other haskf{e
to a liquid-crystal phase with short-range translational ordemagnetophonon dispersion. There is no sign of mixing of
but persisting quasi-long-range orientational order ofthese two modes at smdll In Sec. Il C we briefly show that
nearest-neighbor bonds. Note that dislocations are, like voithe classical Skyrmion model reproduces these features.
tices, topological defects with logarithmic bare interaction. Second, despite the fact that the collective modes are
For the triangular lattice, the liquid-crystal phase is calledlargely decoupled, the topological excitatiofvertices, dis-
hexaticbecause is shows quasi-long-range order with respedbcations, and disclinationsnay be coupled, leading to an
to a sixfold rotational symmetry, whereas for the square latinterplay of the magnetic BKT transition and the BKT melt-
tice it is calledtetratic (fourfold symmetry.?® However, the ing transitions. That something nontrivial happens is easily
square lattice is unstable in a system with Coulomb repulsioseen from Fig. 1: A dislocation in a square lattice leads to a
as the only interaction. At the higher transition temperaturephase mismatch of 7 in the U1) degree of freedom since
pairs of disclinations, i.e., defects in the bond orientationthe nearest-neighbor coupling is antiferromagnetic. Naively
field, unbind, leading to an isotropic fluid. THrare discli-  one could expect that this mismatch along the dashed line in
nation interaction is confining but the presence of free dislo+ig. 1 leads to a linear, confining term in the interaction of a
cations above the lower melting temperature leads to a logadislocation pair. However, the magnetization can relax so as
rithmic interactior?® to minimize the mismatch energy, as shown in Figh)1In

For the Skyrmion lattice, the (1) degree of freedom may this relaxed configuration, the dislocation has acquivalda
not only stabilize the square lattice struct@faye also ex- U(1) vortex and the dislocation interaction is again logarith-
pect the short-range magnetic interaction to be strongly afmic. The main objective of this paper is to illustrate this
fected by lattice deformations, leading to the coupling ofpoint further and to explore its consequences for melting and
magnetic and lattice degrees of freedom. There are two asnagnetic disordering of various Skyrmion lattice types.
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The vorticity acquired by dislocations can be derived us+enormalization-group theory for a Coulomb gas with more
ing a gauge theory of elasticity following ideas of Camly than one species of particle carrying more than one kind of
al. > who have studied a soft square lattice of antiferromagcharge. The specific lattice types we study are motivated by
netically coupled Ising spins. Dislocations frustrate the antithe possible ground states of the simple classical Skyrmion
ferromagnetic order in this system as well. In Sec. | B wemodel of Sec. Il. It should be kept in mind, however, that the
sketch the gauge theory for the case of a square SkyrmioRKT theory does not depend on any particular model.
lattice.

Experimentally, the situation is less clear. The presence of
Skyrmions forv~1 but v#1 is firmly established by mag-
netization measurements by Barrettal,'* using optically Following Cardy et al®* we here formulate a gauge
pumped nuclear magnetic resonan@éMR) techniques. theory for the magnetic and elastic energy of a square Skyr-
Less certain, the very large nuclear relaxation f&fé seen ~ Mion lattice, i.e., a soft square lattice with XY degree of
in this regimé? is interpreted in terms of the gapleXsy freedom. Other Skyrmion lattice types_can be treat_ed simi-
magnon modé’ This mode couples strongly to the nuclear larly. Let S(R)=e'*® be theXY spin field, whereR is a
spins because of its largg“Y components and its gapless- lattice vector. We define a magnetic order parameter
ness. This coupling opens a channel for rapid spin-lattice
re_Iaxation of nuclear spins.'ln thgsg experim&htise Skyr- d(R)=S(R)e "Ix* Ty, 1)
mions are probably usually in a liquid state. Nevertheless the

gaplessXY mode is presumably still present as an over- . . . .
damped mode. wherer (R) is the actual position of the Skyrmion belonging

Bayotet al 35 find a strongly enhanced specific heafor {0 the ideal lattice vectdR anda is the lattice constant. This

v~ 1, which suggests strong coupling between electronic an@icture breaks down ir_1 the presence of free disclinations, i.e.,
nuclear spins so that the large specific heat of the nucleg?0ve the upper melting transition, because therxtaedy
spins is in fact measured. Again, a plausible coupling mechacomponents of the position vectorare no longer well de-
nism is provided by the gapleséY magnons. The filling fined. _The additional phase factor_ turns the_splns on one
factor dependence @ is consistent with this pictur®. The ~ Sublattice throughwr, thereby mapping the antiferromagnet
temperature dependence®Bhows a sharp peak at very low onto a ferromagnet. In the presence of d|sloc§t|ons this is not
T. This peak may indicate a Skyrmion lattice melting tran-POSSible: The phase factor is no longer unique dn®)
sition. Our so far quite speculative interpretation is the fol-c@nnot be both continuous and single valued. Using a con-
lowing: Neglecting the Skyrmions for a moment, the Zeemarfinuum notation, the exchange energy is

energy of nuclear spins within the quantum well containing

the two-dimensional electron gas(i§night) shifted because

of their coupling to the polarized electron gas. Outside of the Hex= f d’Rp(VD)* (VD). 2
guantum well there is no such Knight shift and the mismatch

in the Zeeman energy prevents the spins within and outside ] )

of the well from coming into thermal equilibrium. If Skyr- Next, we define two translational order parameters

mions are present in a liquid state they move around, leading

to motional narrowing and an averaged, but still finite, ¥ (R)=e27x/2, @)
Knight shift within the well. In a lattice state, however, there

are regions around the Skyrmions where the electronic mag-

netization is perpendicular to the external field and the qu(R)Eei2”fy’a_ (4)
Knight shift vanishes. The nuclear spins outside of the well
can come into equilibrium with the nuclei in these reglons.Although r(R) is not continuous and single valued in the
Henpe, specific heat measurements sudde_nly see the nucﬂ)'?r'esence of dislocations, the fields, , are. Continuum-
g:tksj'\(,jve tﬁfeﬂ:rear?gi?igﬁjTh\(leveelxlpv;\)lgre;n? Sspkgcrméor;]é?:'cd%g;m;gastic theory yields the elastic energy of a square latfice,
again, which may indicate that the coupling is strong only in

the vicinity of the transition where critical slowing down )

causes the electronic motion time scale to pass through the He|=J d R(Muiiuii + Uil Vuxxuyy) )
NMR time scale. To our knowledge, these experimErase

the only ones showing signs of a finite-temperature phase . o o

transition in a single-layer quantum Hall system. Recent exVhere summation over repeated indices is implied and
periments using resonant inelastic light scatteringdofiible-

B. Gauge theory of elasticity for the Skyrmion lattice

layer system$' also show signs of a finite-temperature 1/ ori or
transitiont*12 ujj= E( &?' &_Rj) _ (6)
The objective of this paper is to illustrate several of the i i

points raised above, in particular we wish to explore the

consequences of the vorticity acquired by lattice defects folrhe last term in the elastic energy would be absent for a
the melting and magnetic disordering transitions of Skyr-triangular crystal or an isotropic mediuth Expressing the
mion lattices. In Sec. Il we study these transitions for sev-;; in terms of derivatives of the field¥, , and integrating
eral possible lattice types. We introduce a generalized BKTby parts, the elastic energy becomes
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a2 Il. CLASSICAL MODEL
He|=f dZRﬁ{M(qui)*(V\[/i) FOR THE SKYRMION LATTICE
In the present section we formulate a simple classical
T (N[0T ,)* (V) model for the interacting Skyrmion system. We use this
(AW (G model to obtain(a) the classical ground state of the Skyr-
(9yWy)* (9 Wy)] mion lattice for a wide range of values of the Skyrmion
(AN 0) [V, (AW ) F TE (2,0 density and the magnetic interaction strength, andthe
spectrum of low-lying collective excitations. This model
W (9T )Y (0P} (7) should represent the physics of the real Skyrmion lattice at

least qualitatively, and even quantitatively at low density.
The long-range Coulomb repulsion in the Skyrmion lattice This section is meant to illustrate some of the properties to
drives the Lamecoefficient A to infinity—the lattice is e expected for the Skyrmion lattice without introducing ir-
incompressiblé>® Thus, only the first term on the right- relevant technical complications. Furthermore, we wish to
hand side of Eq(7) is relevant(the other terms may intro- motivgte the choice of lattice types studied on a more general
duce constraints o, ,, which we ignore in the following level in Sec. III.
since they do not affect our argumgnt
A translation in thex (y) direction leads to phase factors A. Model
in W, (V) and in®. A spin rotation leads to a phase factor  he main idea is to take the correct limit of the two-
in & alone. We can express the symmetries under translatiogyyrmion interaction at large distances and treat the Skyr-
and spin rotation agauge symmetriesVe introduce three  mion system as a classical gas of point particles having this
two-component gauge fields,, Ay, andAy and write the jneraction at all separations. We thus keep only the respec-
energyH=He,+ He as tive leading-order terms for large separations of both the in-
teraction contribution independent of ter degree of free-

i i 2 dom and of the contribution depending on this degree of
H= J d’R p‘ ( V—iAg— EAX_ EAV) [} freedom, and we neglect three-, four-, etc., body interactions.
This model should be valid at low Skyrmion densities.
22 22 We start from the classical nonlinear sigma model for the
+ ZE viagw 2 ZE (v —ia)w |2 magnetizatiorf,*® which has been successfully applied to
8m? 872 ey quantum Hall ferromagnet§:!° Abolfath et al® have re-

) cently discussed the applicability of this classical field theory

and compared its predictions with microscopic results. The
This Hamiltonian is invariant under gauge transformationsmagm'mz"Jltlon IS 'represented by a norma|.|zed three-
with respect to any of the three gauge fields: component vector fieldn(r). The relevant terms in the La-

grangian read

Ag—Ay+VEl,, ®—eld, 9) Z
L:

P
477I2f d2rA[m]~ﬁtm—§f d?r(g;m,)(d;m,,)
A—A+VE, PP, T, —eP, (10 .
P9 meB [,
. . + | drms(r)
Ay—A+VE, e, W el . (11)

2
e
These three transformations correspond to spin rotation, —ZJ d?r d®r’ Sp(r) op(r’), (12

translation in thex direction, and translation in the direc-

tion, respectively. Thenatter fields®, W, and¥y inthe  \yhereA[m] is the vector potential of a magnetic monopole
Fla}(rjmltoman, Eq.(8), are only coupled through the gauge 4 the origin in spiim) space? 4, is a time derivative, and
ields.

We now discuss the topological defects in this theory.
Magnetic vortices, i.e., vortices i, are threaded by one op=— geijm-(ﬁimx d;m) (13
flux qguantum with regard té\,. Dislocations correspond to
topological defects inV, or ¥, depending on the Burgers is the topologicalPontryagin density. Greek indices always
vector orientation. The elementary defect in, slty,is a unit  run over three values and latin ones over two. The first term
vortex. It is threaded by one flux quantumAgy . This seems is the usual Berry phase, and the other three stem from ex-
to make the fieldb multivalued since its phase changes®y change, Zeeman, and Coulomb interaction, respectively. The
if one moves around the vortex. However, if t& spin part  Coulomb term reflects the fact that Skyrmions carry electri-
Sin @ itself containshalf a vortex(or antivortey the order cal charge.
parameter is again singlevalued and continuous. This cor- In the absence of Zeeman and Coulomb interactions, the
responds tat 1/2 flux quanta inA,. Thus, we reobtain the ground-state solution for a single Skyrmion is known
result already discussed in Sec. | A: Dislocations each acanalytically? It is scale invariant and for large distances
quire *1/2 magnetic vortex. =|r| from the Skyrmion center the in-plane components of

[r=r'|
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m fall off as mjocrj/r2_ Rotation around the axis gives a  There are higher multipole terms, which fall off at least as
differentground-state solution, reflecting the completely bro-1/s® and are neglected compared to ths thrm.
ken S@3) symmetry.

Switching on the Zeeman interaction, scale invariance is B. Ground states
broken since the Zeeman term prefers a small Skyrmion. Far As | the Skvrmion density i I t th
away from the Skyrmion center we can expand the exchange S long as the skyrmion density IS smafl, we expect the

and Zeeman terms in the Lagrangian, Et®), up to second |nteract|_0n to be dominated by the tV\/_o—pa}rtche large-
) . separation terms found above. Our approximation for the en-
order in the small in-plane componentsy of the

ergy per Skyrmion of a Skyrmion lattice is

magnetizatiori?
E= EC+ EXY (19)
[ o |Ps pg* 1gB
E=f der E(aimj)(éimj)+ ijmj . (19 with
The resulting Euler-Lagrange equation e? 1
pg” ugB T Rzo RS0 20
_ﬁié’imj‘Fij:O (15)
gXY eleng
has a vortex solution with EXY:TR;O cos pr— bg) R (21
m; o Le—xr (16) whereR runs over all Skyrmion positions in the lattice ex-
Iy ceptR=0, E, is an infinite constant from the Coulomb in-

teraction with the neutralizing backgroungl,v>0 denotes

. / i the in-ol b the strength of the magnetic interactiapg is the angle of
=pg” ugB/2ps. Again, the in-plane components can be ro- oa1i0n of the Skyrmion aR, and&xy=1/k is the range of
tated through any angl¢. By insertingm into Eq.(12) it is the magnetic interaction.

seen that the energy-density contributions of both the ex- The long-range Coulomb interaction is not easy to sum

ola—2kr H
change and the Zeeman term fall off ase “. Taking over. The main idea of how to make this summation well
the Coulomb interaction into account, its leading-order conyapaved is due to Ewdldiand has been successfully applied
tribution to the energy density also behaves likee <. | "\ 0 4o nsional crysta-342 The lattice sum is split

Thus, all three energy contributions are equally relevant afi, 5 rapidly converging part and a long-range part, which is

larger and Coulomb interaction does not destroy the func'mapped onto a rapidly converging sum over the reciprocal
tional form of Eq.(16) but does change the value of

lattice. Here, we quote a more general re$tf which will

In calculating the interaction energy we assume that theys isefyl later: If theR are summed over a two-dimensional
two-Skyrmion state with one Skyrmion at the origin and theg 4y ais lattice then

other ats is well described by

for j=1,2. This expression is valid far>1/«, where «?

m_(r):msingle(r)+R_ (¢)msing|e(r_s) 17 ik~sz e ik-(R+9) 1_\/_2 k-5 |G+k|?
] ] jk k e 2 W— s- n 2 e Zn
for j=1,2. The componenn; is determined bym|=1. This
ansatz only gives errors of higher order én“s for large —ik-R 2
separations. Here, + \/ﬁéo e R (7n|R+d?)
cos¢ sing 1
Ru(d)=| 18 +Vn®(7ns?)— =, (22)
ik(¢) (—sm¢> cos¢>) (18) s

rotates the in-planen components of one of the Skyrmions whereG are the reciprocal lattice vectors,is the number

through an anglep. We find the interaction potential by density, andb (x) = \/x/x erfc(yx) with the complementary

insertingm into the potential energy part of E¢L2) and  error function erfc*® Equation(22) only works for a Bravais

subtracting the energies of two isolated Skyrmions. We ardattice, lattices with a basis need special consideration. The

interested in the limiting form for large separations magnetic structure is irrelevant here, since the Coulomb in-
The exchange contribution to the interaction is the onlyteraction does not depend @ .

one depending on the angle Using a multipole expansion The simple sum over Coulomb interactions is obtained in

and integrating over we find, to leading order, the exchange the limit s—0, k—0, where the two sums on the right-hand

contribution E,gccosge “%/\/s, where the coefficient of side can be cast into one,

proportionality is positive. The contribution from the Zee-

man term does not depend @nand is exponentially small € erfa\'7nR)  2e?\n

for large separations. We neglect it compared to the Cou- EC_? & R T e

lomb interaction, below, since we only keep the leading

¢-dependent and the leading-independent term. Fovp Now all lattice sums are rapidly converging and we can cal-

=1 the leading contribution from the Coulomb interaction isculate the energy accurately. We write the energy per Skyr-

e?/es, where € is the dielectric constant of the material. mion in a dimensionless form,

(23
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10°
10° | -—gimplerectangular ... ]
rfo( \/— r) el
= -2
r#0
10'
1 efr/ B o
5o 2 cos i o) (24 a
a r+0 \/F 10°
. square
Wi » triangular
10
r=nR, (25
10_2 3 ‘_2 \_1 0
10 10 10 10
a=e’n"egyy, (26) "

p= \/ﬁg 27 FIG. 2. Classical Skyrmion lattice phase diagranT at0. Thin

B XY solid lines are continuous phase transitions, whereas heavy lines are
first-order transitions. The honeycomb phase is denotedtiyahd

which are all dimensionless. Note thaf is the density in  the centered rectangular phase byr** The dotted lines in the

units derived from the range of the magnetic interaction andimple rectangular phase are lines of constant anisotrepg. The

Bla? —§XYgXYe /e* is a measure of the relative strength of employed model is quantitatively correct f6f<1. Also, real sys-

the magnetic interaction and does not depend on density. Wems are expected to haga?®<1.

expect this model to be quantitatively correct for small den-

sities, B%<1. show first-order transitior§ Recall that our approximation
The classical ground state for given g is determined by  pecomes doubtful fop2~1, i.e., towards the right edge of
minimizing the energy24). Thus we have to compatefor  the diagram.
all reasonable two-dimensional lattice structures, taking the The phase diagram, Fig. 2, is quite rich. For example,
magnetic order into account. Besides the triangular latticghere is a region where the ground state is a honeycomb
with frustrated antiferromagnetic order and the square latticéattice. In its region of stability, it is even less frustrated than
with Neel ordef® we have also obtained ground-state enerthe square lattice for our model interaction. In the upper-left
gies for the simple rectangular, the centered rectangular, arebrner we find a very anisotropic ground state consisting of
the oblique lattice, thereby covering all two-dimensionalwidely separated chains of Skyrmions. Another interesting
Bravais lattice$! all with Neel order, and the honeycomb feature is the critical point on the square—simple rectangular
lattice, which is also bipartite but is not a Bravais lattice. Weline. Probably more relevant for real systems is the appear-
cannot strictly exclude the possibility of more complicatedance of a centered rectangular phase square lattice
ground states but have not found any other likely candidatestretched along the diagonaverywhere between the trian-
In the cases of the rectangular and oblique lattices, the latticgular and square lattices. It should be possible to experimen-
is characterized by one and two, respectively, continuous paally see this two-step transition upon varryingReal Skyr-
rameters in addition to its space gro{Bravais-lattice typg ~ mion systems probably live in the lower part of the phase
For example, the simple rectangular lattice has the anisodiagram since the magnetic interaction cannot be made arbi-
ropy 7, defined as the ratio of the lattice constants in thetrarily large in experiment. The paramet@fa? can be in-
(10) and (01) directions, as an additional parameter. To findreased by reducing the Zeeman interaction and thereby in-
the ground state, these parameters have to be optimized. creasing the Skyrmion siz&« . Experimentally, this can be
Equation(23) is not applicable to the honeycomb lattice done by applying hydrodynamic pressure. It is easier to in-
since it is not a Bravais lattice. However, its Coulomb energycrease the Zeeman interaction, reducig?, by applying
EE can be expressed in terms of the triangular-lattice Couan in-plane magnetic field component. We roughly estimate
lomb energy E_.** Taking the different densities into thatg/a?is smaller than unity in real systems. The transition

account. we find the dimensionless energﬁﬁcz(l lines show an upturn to larger magnetic interactions at the

~71 . right edge of the phase diagram, Fig. 2. Although this may
* \/§)/(2\/§)EC. The Coulomb energies of the parameter-be an artifact of our approximatig8®<1, it is interesting to

free lattices areEZ=—1.95013 for the square lattic&C  note that a similar reentrance of a triangular phase is found in

=—1.96052 for the triangular lattice, arefl=—1.89371 Ref. 24.

for the honeycomb lattice. The first two were also found in  The phase diagram is rather robust against changes in the

Ref. 41. exact form of the magnetic interaction. For example, the
We map out the ground-state phase diagram in Fig. 2 byhase diagram for a simple exponential magnetic interaction

following the various transition lines, i.e., lines of equal en-is qualitatively identical to Fig. 2. This robustness indicates

ergy of two lattice type$? We then discard lines that do not that the errors made by neglecting higher-order terms in the

separate two regions with differegtound states. The thin magnetic interaction are typically small.

lines denote continuous transitions, whereas the heavy lines Rao et al?* use a variational classical nonlinear sigma
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model approach to find the classical ground states of the | w2AN for u=0

. . . . 0 M ,
Skyrmion lattice. They only consider the square and triangu- 0=3 | N -> [KIS (0)A]
lar lattices and consequently do not find the other phases, in TInwey A for u#0 n’

particular the centered rectangular lattice. Their method has
the advantage that the Skyrmion size is optimized for given

density and lattice type. The single Skyrmion magnetizatioqN
used in Ref. 24 does not approach the correct limit at large

—K (K)AY] (30)

ith the dynamical matrix

distances but according to the above argument this should 2

not change the results qualitatively. However, at low density K”“'(k)zz e ikR______
. . : : Hy ds,,0s

a ferromagnetically ordered triangular lattice is fourfd, R w0y

which appears to be inconsistent with the large separation

n_ ~n’ n_ 4n’
limit of the exchange interaction, E1). XE(R+C"=C" +5,¢" =" +0)|s-05)-0-

(31)

C.D i . . .
ynamics Here, E is the potential energy per Skyrmion, Ed.9), c"

We now briefly turn to the low-energy collective excita- denotes the position of Skyrmianwithin the unit cell, and
tions of the Skyrmion lattice. As noted above, théllJde-  ¢n js jts XY angle.
gree of freedom leads to the appearance of a gapless We can now address the question of mixing of magne-
spin-wave mode, whereas displacements of the Skyrmiongphonon and<Y magnon modes. Matrix elements mixing
lead to a magnetophonon mode. The usual ferromagnetigisplacements and rotations of the¥ angle (w=0 and »
spin wave mode is gapped at the Zeeman energy. This modeg or vice versastem from the magnetic interaction alone
is expected to mix with th&Y mode, except ak=0. This  and contain a first-order derivative of cef( ¢, i.e.,
effect cannot be reproduced by the present model where trgqn((/,n_(ﬁo), as a factor. Thus, for any lattice wit"
S’ spin components are completely integrated out. Thus, the {0,7} (square, rectangular, oblique, honeyconitese ma-
magnon dispersion is only reliable for the long-wavelengthrix elements vanish. Of the lattices considered above, only
acoustical modes. _ _the triangular shows any mixing ofY magnons and mag-

We denote the displacements of Skyrmions from theifetophonons in our model.
ground-state positions by=(uy,u,) and the deviation of  Here we only show results for the square lattice. The con-
the angleg from its ground state by,. Then we expand the tribution from the magnetic interaction can be summed di-
potential energy Eq(19) up to second order in,. To de-  rectly, whereas for the Coulomb interaction we need the sec-
scribe dynamiCS we also have to know the Ieading time'ond derivatives of Eq(22) The magnetophonon andY
derivative terms in the Lagrangian. The term for displacemagnon dispersions fog2=0.1 and 8/a?=1 are shown
ments can be derived from the original Lagrangian, Edglong directions of high symmetry in the magnetic Brillouin
(12).%>%21n the limit of vanishing Landau-level mixing the zone in Fig. 3. There are only two instead of four magne-
Skyrmion mass vanishes so that the Berry-phase term is thgsnonon modes in the magnetiolded-back zone sincel]
only relevant one. One does not normally find a second-ordet  \n 4re canonically conjugate and thus do not lead to
time derivative term in spin dynamics, but Hartree'FOCkindep(Zandent modes. The dispersion of the lower magne-
calculationd’ clearly show thatiy obtains a mass, or rather a tophonon mode for émalt is indeed of the formm k32
moment of inertid. This can be understood as arising from whereas the magnon mode is linear. Note that the o,ptical
having integrated out all the short-wavelength spin ﬂucwa’magnetophonon branch shows a minimum at the zone center
tions in order to obtain an effective action for the collective feature previously seen in Hartree-Fock calculatigHs. ’
coordinateuy. There is also a Berry-phase term associateqe;\,e see that our simple model reproduces the main qualita-

with up but it is a total time derivative and thus irrelevant at ;o features of the collective-mode spectrum and conclude
the classical level. The kinetic terms in the Lagrangian thugy o+ it captures the essential physics.

contain a second-order time derivative fgybut only a first- The dispersion relations can be used to reintroduce at

order derivative of the spatial components, least part of the quantum effects into our model by taking the
zero-point energyi /2 for all modes into accourit. This
I : . 7 . additional energy may favor certain lattice types and thus
T= 5; ug(R)ug(R) + 5;1 Ul (RIU(R).  (28)  ghift the transition lines. It may also lead to quantum melt-
' ' ing. Furthermore, we could extract low-temperature thermo-
dynamic properties, such as the free energy, and with its help
study structural phase transitions at finite temperatures. The
o L - harmonic approximation is, in principle, inconsistent with
k:;a?slfé!;;;ieerrgm\?v?]te(:;E*ezli ??S(Tr)]'eagsytrﬁgﬁegﬂggg _the_de_scription of melting, be it quantum or thermal, which is
Deriving the EuIér-Lagrange ;quations and making a pla'nelptrlnsmally nonlinear. Nevertheless, estimates of meltmg
temperatures could be found by calculating the amplitude of
wave ansatz, vibrations in this approximation and using a Lindemann-type
_ criterion®? In particular, we expect quantum melting due to
Up(R)=AjeRel), (29)  soft modes in the vicinity of the continuous transition lines,
e.g., the one between square and centered rectangular lat-
we find the equations of motiéh tices.

Here,R is a Bravais-lattice vector of thrmagnetidattice, the
superscripn=0,1, . .. selects one Skyrmion of the lattice
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theory”?84"since this theory is known to work well for the
simpler problems ofi) an XY model on a rigid lattice and
(i) a soft lattice without additional degrees of freed®n°
More specifically, we employ a Coulomb gas language. BKT
theory is astatic theory so that the unconventional kinetic
terms in the Skyrmion Lagrangian, see, e.g., 28), do not
affect the results. We stress that this approach does not make
reference to any special model for the interacting Skyrmion
system. There is one important caveat: The theory of Refs.
29 and 30 describes the system welt shows BKT melting
magnetophonons but does not say whether it actually does. The upper or both
BKT melting transitions may be preempted by a first-order
transition.

1.5

noe/e’n™®

0.5

o
=3

] A. Multiple-charge Coulomb gas

°

1/4
N2 12 114 'h2 3/2

We first introduce a general model, which contains all
relevant Skyrmion lattices as special cases. This model is a
two-dimensional continuum Coulomb gas with more than
one species of particles carrying more than one charge. The
dislocations and vortices are treated as classical point par-
ticles with logarithmic interactions. From continuum-
elasticity theory one finds that for the triangular lattice the

r X M r interaction between two dislocations with Burgers vechrs

FIG. 3. Dispersion of magnetophonons ax¥ magnons along andb, and separation vectaris proportional g°:29:%0:3
high-symmetry directions in the magnetic Brillouin zone of the
square Skyrmion lattice. The calculation was donegé# 0.1 and —by-b, |nm + (by-r)(0y-1)
Bla?=1. T 2 '

172
we /en
(=]

102
I

XY magnons

0.0

(32
"

ﬁv(v)here the length scale is given by the lattice spacing. For
been studied by Greeet al2® This work is not easily com- ess symmetric lattice types this expression is not strictly

parable to real systems since the authors assume that tﬁgrrect but the leading, logarithmic term is always pres&nt.

Skyrmion shape is little affected by Zeeman and Coulombn e here only keep the logarithmic term. The qualitative be-

interactions, which yields an incorrect expression for the in- avior and the universal jump in the stiffness are known to
: Y P be unaffected by thi€*°[However, the temperature depen-

teraction at large distances. Furthermore, they introduce : . ! . .
) ; : , ence of the correlation length above the dislocation unbind-
mass term into the displacement equation of motion and thelt

. ; . Ing transition changes for the triangular lattice as a result of
magnetophonon frequencies are inversely proportional to thgoth the subleading term in E¢82) and the appearance of
mass, which seems doubtful since the mass vanishes for va

ishing Landau-level mixing so that the physics is dominate \:Ie[llgrszggg{ dislocations - with - vanishing  total - Burgers

by the Berry-phase term. Two lattice types are considered in As discussed in the Introduction, dislocations attract par-

Ref. 26: what we call the square lattice and the centere? . I . .
. . ~_~Tal vortices to minimize the energy resulting from the mis-
rectangular lattice, the latter with the angle between primi-

tive lattice vectors fixed tomr/3. The latter is structurally muagcz 'VT/ethﬁ a?/g“{ﬁrr;%nl?]%?eggﬂ;dee:} 0'2 e?(ifc)rglr?n:r? -gr?; I;:g
identical to the triangular lattice but has only two magneticg 9 ges. g

sublattices. The authors dispute the existence of a frustrat "ﬁ'dy components of the dislocation Burgers vector. These
. ) . P . . SHree charges correspond to the three gauge fields discussed
triangular phase but since they do not consider a triangular ;

X . ; L n Sec. | B. A similar description can be used for the possible
Fiir:gci(te with a three-Skyrmion basis it is clear that they canno pper melting transition from a liquid crystal to an isotropic

If we go to higher temperatures, the harmonic approximaflu'd' This transition is thought to be due to unbinding pairs

tion breaks down. In particular, topological excitations be—Of disclinations, which may again bind partial vortices.
) - NP ", topolog . The model is defined as follows: There alespecies of
come important. They are believed to lead to the ultimate_ _ . - .

) ; . ; particles, counted byp=1, ... N, which carryM charges
melting of the Skyrmion crystal. In the following section we ™; Each particle has an antiparticle with all
describe possible scenarios of melting. n: e "?'n : m P P T

charges mvertedqﬁz—qnm, where we use the notatiom
for the species of the antiparticle. The charges interact via
lll. BEREZINSKII-KOSTERLITZ-THOULESS THEORY the two-dimensional logarithmic Coulomb potential. The in-
FOR SKYRMION LATTICE MELTING teraction between two particles of specireandn’ at posi-

is then

The magnon and magnetophonon dispersions have al

In the present section, the central one of this paper, wdonsr andr’
discuss the melting transitions and intermediate phases of M
the lattice types discussed above. We use the framework V=— 2 q™g™ In
of a suitably generalized BKT renormalization-group m=1 "

r=r']

(33
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TABLE I. Coulomb gas charges of the square Skyrmion lattice.simplest neutral arrangements except for pairs are quartets.

g, is the vortex charge angy is the dislocation charge. Therefore the first neglected term in the renormalization-
1 . S group equations is of fourth order in the particle fugacities
n On Un Un for both theXY model on a rigid lattic® and the melting
1 square lattice withouXY degree of freedom, whereas it is of
5 a,/2 a4 0 third order for the square Skyrmlon Iatt'lce. '
3 —q,/2 a 0 The grand canonlc_al partition function of the multiple-
4 a./2 0 a charge Coulomb gas is
5 -q,/2 0 dq N 1 ynzN,1 ,
‘ N, 2 My nljl (Nn')z( 7'2) fDl(T)d '

The charges have units of a square root of energy—the 8 M | |

strength of the interaction is containeddff. Furthermore, 2 P m_my T

we assumg(i) that only a particle and its antiparticle can % DZMT)d rZNexp( * 2 E: CIn; Gy N )

form a pair that is neutral with respectadl charges andii)

that the whole system is neutral with respect to all charges. (34)

The number of particles anch antiparticles is then equal. where\, is the number of particles of speciesthere is the

Restriction(i) is in fact not crucial but simplifies the argu- same number oh antiparticley, N=3,N,, the y, are

mentation. fugacities, the ranges of integration;(7) comprise the
The usual Coulomb-gas model for vortices in tX¢  whole plane but exclude configurations with two particles

model or a superfluid film is the casé=1, M=1. Melting  closer thanr, and the double sur;.; runs over all 2V’

of a square lattice without additional degrees of freedom caparticles and antiparticles. Pairs of sizg inr+d7) are in-

be described by aiN=2, M=2 Coulomb gas, which re- tegrated out according to

duces to two independent, identichll=1, M=1 models

since dislocations with Burgers vectors along thandy 2N ) 2N 5

axes, respectively, do not interact. Tupitstral.*® have con- Iﬂl D_(T)d ri:i:].—.[l D-(T+dr)d Fi

sidered arN=2, M =2 model for merons in a double-layer ' '

quantum Hall system, but with arlinteraction for one of 1 J I f 42
+ = r r

the charges. 27 k#ij Joyr+dn “Jorm

For the square Skyrmion lattice we haWk=3 charges
and N=5 particle species. The charges correspond to the ) _
vortex strength qjﬁ), the x component of the Burgers vector X fﬂrsrvr~|<r+d7d Fin, e (35
(qﬁ), and itsy componentqﬁ). The charges of the particles L
are given in Table I. This table reflects the fact that dislocaHiere, D' consists of the whole plane except for disks of
tions bind+ 1/2 or — 1/2 vortex. radius 7 centered at all particlek#i,j. The only approxi-
We app|y Kosterlitz's renorma"za’[ion-group mation here is contained in the Symbﬁ-li 'Fj’ which states
formulatiorf® of BKT theory to the generaN, M model. that only neutral pairs are integrated out. Applying this pre-
This approach has the advantage of being more rigorous arstription to Eq.(34) and rescaling- we obtain(cf. Ref. 28
mathematically more transparent than, e.g., the original self-

consistent screening approact’ The renormalization pro- . N [ 1 yo PV
cedure of Ref. 28 consists of two steps: First, the smallest =%o 2 2
S Np, .. Ny n=1 ! +d

neutral pair is integrated out, and then the length seatbe ' N (ML (r+d7)
size of the smallest pairs, is rescaled. The procedure for the M dr|
multiple-charge Coulomb gas is similar to the original éase X|1+[2-B122, (qM?|—
and is not given in detail. m=1 T

The main approximation of the original thed?yis that 2N M
the two particles with smallest separation are assumed to % f d2r, exp( +’§2 > gmqm
alwaysform a neutral pair. This is reasonable since two par- i=1 JDj(r+dn) 2{Zj |m=1 N

ticles that do not form a neutral pair have the same charge N M
and thus repel each other. In our case this is not generally _27722 y2d_TB< E qmqm)
true: two particles that are not a neutral pair can even attract =" r =y N
each other and form a non-neutral bound state. However, this "
arrangement will attract other particles until it is totally neu- S T

tral. The approximation that the smallest pair is neutral is < Ann,

thus equivalent to neglecting neutral arrangements of more

than two particles. The same problem arises for the trianguldexcept for the irrelevant constady, this partition function
lattice withoutXY degree of freedom, where three elemen-is identical to the original one if we replace

tary dislocations can have vanishing total Burgers vettor.
Depending on theq;' there can be neutral triplets, e.g.,

(153) in the above example, whereas in tHe=1 case the

|ri_rj|

X —
7+dr

In . (36)

T

v d
2-53 (@ T]yn, 37

yn_)[ 1+
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M M N Kaa=Kz3=Kys,
> dndm— 2 dndn =27 2 Y8
m=1 m=1 n'=1 Kaa=Kas= = Kas= — K34=Kgs.
v mm v m m|d7 The equations for these quantities can be read off from Egs.
X m2:1 An 9y mZ:l Andn/ T (38) (40) and (41). It is easy to see that two quantities that are
equal by symmetry dt=0 remain equal to each other as we
If we define a(symmetrig stiffness tensor integrate away from =0. Hence, the problem can be re-
duced to seven coupled equations,
m,.m
B2 anay dy2/di=2(2—7K,)y?,
Knn = 2— (39
o

dy/dI=2(2— 7Kg)y3,
and express the scaling relations fgr andK,,, by differ-
ential equations, we obtain the generalized renormalization- K, /dI=—4m%y K2 —167%y3K2,

roup equations
group eq dKg/dl= —473y2K2, - 473y 3 (K2 + K2+ 2K 2),

Vi ) (45
dl =2(2—mKyn) Yo, (40)
dKyq/dl=—4myiK, K, g~ 4m%y(KoK o~ KaoKoa
, N + 2K K pa)
dlzrlm =—47° z yﬁﬂKnn"Kn"n” (41) aolCud)
=1 dKgqg/dl= +47%y2K2,— 87y3(KyKgq— K§3),
where | =Inr/7 is the logarithmic length scale. The initial , 3 202 3 2 ) ,
conditions for these equations are dKgg/dl= =477y Kiy—8myg(KgK g~ KgaKga)-
5 5 ppgpcore In a second step we make an ansatz for the remaiing
yn(l=0)=Cre 25", (42)  reduce the number of independent quantities further. We
guessthat the renormalization of the interactions can be de-
E ™o)™ (0 scribed in terms of independent screening of the two charges
B = dn(0)ay,(0) g, andqy alone(we will see below that this assumption is
Ko (1=0)= (43 not correct for all lattice typeslf it were true there would be

2m only two independent stiffness constad{sand Jq, which

whereC,, are constants of the order of unity aBff"are the ~We choose so that
core energies of one particle. Note that the generalized

2 2
Kosterlitz equations and the initial conditions reduce to the J,(0)= £4,(0) , Jq(0)= qui(o)_ (46)
standard BKT expressions fot=1, M=1. Y 2w 2m

Since our ansatz has to worklat 0 we have
B. Skyrmion lattices

We first consider the square Skyrmion lattidé=5, M Ko=J,.,
=3). At first glance this problem looks rather complicated, Kg=Jgq+3,/4,
since it involves coupled differential equations in 5 fugaci-
ties and 15 stiffness constants, taking the symmetr of K,a=J,/2, (47)
into account. However, we can simplify the problem consid-
erably by looking for further symmetries. In a first step we Kgg=Jg9—J,/4,
consider the symmetries of, and K, at the minimum
length scald =0 and check which of these survive for the Kgg=J,/4.

renormalized quantities &t>0. From Table | and the obser-
vation that the core energies of all species of dislocation
should be equal, we see thatlatO there are at most seven
independent quantities, dy?/dl=2(2—mJ,)y?, (48)

Inserting this ansatz into Eq&5) we obtain four indepen-
Yent equations,

Yo=VY1, dya/dl=2(2—mdq— wJ,l4)y3,
(49
Ya=Y2=Y3=Y4=Ys,
dJ, /d1=—473y232— 473232
KUEK]_]_, (50)

. _a.3,272

Kg=Kz=K33=Kys=Kss, (44) dJa/dl=—87yqlg, (51)
and three that are linear combinations of these. Thus our
K,a=K1o= —K3=Ky=—Kjys, ansatz is indeed correct. Of course, we could have made this
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FIG. 5. Sketch of a threefold disclination in the square Skyr-
mion lattice. The disclination does not frustrate the antiferromag-
netic order of theXY spins(arrows.

alone is smaller than &/ With J,, jumping to zero, we ap-
pear to havely+J,/4=J4<2/m atT, , see the cross in Fig.
4(b). However, from Eqg.(49) we see that then lim,..yq4

=, dislocations also proliferate, adg jumps to zero. The

FIG. 4. The three possible scenarios close to the lower-meltingphysical reason is that with the vortex interaction screened

transition of the square Skyrmion lattic@) decoupled transitions,
(b) vortex-driven simultaneous transitions, arid dislocation-

driven simultaneous transitions; see text. The vortex stiffriigss
and the effective dislocation stiffnedg+J,/4 are plotted as func-

the remaining dislocation interaction is suddenly too weak to
bind dislocation pairs so thdy;=T,. We expect BKT scal-
ing only inJ, .

Dislocation-driven simultaneous transitiqrisig. 4(c): At

tions of temperature. The graphs have not been obtained by aCtU?FLﬂﬁndislocations unbind; the effective stiffnesk+J,/4

integration but are rather sketches meant to emphasize the univerﬁa

features.

ansatz directly for th&,,,, without the step in between. We
repeat that the leading neglected terms in E48—(51) are
of third order iny, 4.

From Egs.(50) and (51) we see immediately that if the
dislocations proliferate, Iimmy§=oo, both stiffness con-
stantsJ, andJy go to zero fol —oo. This result reflects the

ps from 27 to zero. The vortex stiffness is still large at
Ty, J,(T4)>2/7 so that vortices would unbind at a higher
temperature. However, sinck+J,/4 vanishes affj, so
doesJ, so thatT,=Ty. Physically, the vortex interaction is
suddenly screened since the proliferating dislocations carry
vorticity. For this reason the magnetic transition can never
take place at a higher temperature than the melting. There
can be lattice order without magnetic order but not vice
versa. We expect BKT scaling idy+J,/4 and also find

fact that free dislocations do not only screen the dislocationjmijar scaling inJ, andJ, separately but with a nonuniver-
interaction but also the vortex interaction since they Caryga| value ofJ d(TE) 42/
o, .

vorticity. On the other hand, free vortices (limcyf=oo)

Above the dislocation unbinding transition Bj the sys-

only lead toJ,—0 since vortices do not have a noNzero o, tjll shows orientational quasi-long-range order, whereas

Burgers vector, and, consequently, Egl) does not contain
yf. We now discuss the possible scenarios.

Decoupled transitionsFig. 4a): We start from low tem-
peratures. At some temperatufie, vortices unbind and
J,(I—) shows a universal jump from 2/to zero.(We
now omit thel argument when we refer to the limit
—00,) At the same temperature tledfectivestiffness of the
dislocation interactionJy+J,/4, also shows a jump but at
the high-temperature sid‘év+ of the jump we still havely
+J,/4=J34>2/7. There is no jump inJy alone. AboveT,

translational and magnetic order are of short range. This is
the tetratic phase mentioned in the Introductidit. is char-
acterized by free dislocations, which are in fact bound pairs
of disclinations?® For the square lattice elementadrgre dis-
clinations do not carry vorticity, as can be seen from Fig. 5.
Disclinations dress with free dislocations, leading to a loga-
rithmic interactior?® This screening cloud of dislocations is
expected to have vanishing total Burgers vector and vanish-
ing total vorticity in order to minimize its energy. Thus,
dressed disclinations still have zero Burgers vector and vor-

the system has only short-range magnetic order but stiliex strength and the disclination unbinding transition corre-
quasi-long-range translational order. At some higher temsponds to alN=1, M=1 model with the dressed fivefold

peratureTy the dislocations unbind andl, jumps from 247
to zero. Both transitions show BKT finite size scalffg,
3, a(l, Ty g)=2/a[1+1/(21)].

Vortex-driven simultaneous transitignBig. 4(b): At T,
vortices unbind:J, jumps from 2fr to zero. AtT, , the
effective dislocation stiffness igq+J,/4>2/w, while Jq

disclination as the particle and the dressed threefold discli-

nation as its antiparticle. At a temperatlrg;=> T4 disclina-

tion pairs unbind and the system becomes an isotropic fluid.
We now turn to the other lattice types. The triangular

lattice has dislocations with Burgers vectors along any of

three axes. Dislocations lead to a phase mismatch 2f/3
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TABLE II. Charges for the triangular lattice. be described in terms of screeningqf andqy alone, fails
here. We cannot reduce the problem to four coupled equa-
n as as as tions for general values ap but need five:
1 q, 0 0 dy?/dl=2(2—mJ,)y?, (56)
2 q,/3 dq 0
3 —q,/3 Qq 0 dy3/dl=2(2—7d, 12— wd_I2— =, l4)y3, (57)
4 q,/3 cos(27/3)qq sin(2m#/3)qq - -
5 -q,/3 cos(2r/3)qq sin(2m/3)qq dJ,/dl=—47%y232— 473y232, (58)
6 q,/3 cos(27/3)qy —sin(27/3)qq -
7 -q,/3 cos(27/3)qy —sin(2m/3)qq dJ. /dl=— 8773de¢ (59)
with the initial conditions for thel
in the frustrated (120°) magnetic order and thus attratt3 J,(0)=Bq%(0)/2m7, (60)
vortex. Consequently, there are six species of dislocations:
three directions of Burgers vectors and two signs of the vor- J.-(0)=(1=*cos¢) Bqﬁ(O)/Zw.
ticity. Dislocations with Burgers vectors in different direc- (61

tions now interact; the interaction is proportional to the CO-Nevertheless, there can be at most two transitiapart from

sine of the angle between théﬁhcf. Eq. (32). The charges gjscjination unbinding since there are only two fugacities.

are given in Table Il. All species of dislocations are equiva-the possible regimes are the same as for the square lattice if

lent and the final equations are we replacely by (J, +J_)/2. Above the lower melting tran-

(52) sition the system is in a liquid-crystal phase with quasi-long-
range orientational order with respect tonafold symmetry.

This is a two-dimensionatematicphase. Elementary discli-

nations do not carry vorticity so that the upper melting tran-

dyy/dl=2(2—7J,)y?,

dy2/dl=2(2— wdq— wJ,/9) y2,

53 sition is simple.
dJ, /dl= — 473y232 — (8/3) m3y2J2. The smple rectangqlar 'Ia'tt|ce is gen'eratgd frqm the
v Yol (BTG, (54) square lattice by stretching it in the (10) direction. Disloca-
tions with Burgers vectors in the andy direction, respec-
dJg/dl=— 12773y§J§. (55) tively, now have different energies, increasing the number of

independent variables. Dislocations still bindl/2 vortex.
Note that there are no neutral triplets in the triangular Skyr-There are agailN=>5 particles andV =3 charges. The final
mion lattice, as opposed to the usual triangular lattice. Thus,enormalization-group equations are
the first omitted terms are of fourth order in the fugaciffes. ) )
Equations(52)—(55) differ from the square lattice case only ~ dY,/dI=2(2—7J,)y;, (62
in the coefficients. The possible melting regimes are thus

qualitatively the same. The liquid-crystal phase is hexatic. dYgy/dI=2(2= mJay = 73, /4y, (63
Bare disclinations do carry vorticity1/3) but this fact is 2 01 _ _ 2
irrelevant for the upper transition since the vorticity part of Ayl dl=2(2=mgz = mJ,/4)Y gz, (64
the disclination interaction is totally screened by free vorti- 43 /q|= —473y232— 2732 32— 2 73y2 32 (65)
ces and dislocations. v v a1y 2%

The centered rectangular lattice can be generated from the ¢J,, /dI= — 87r3y§1J§1, (66)
square lattice by tilting the anglé between the primitive
lattice vectors away fron®= /2 but keeping their lengths ~ dJg,/dl=—87°y3,J3,. (67)

fixed. This tilting leads to an interaction between dislocation
with Burgers vectors along different primitive vectors. How- distinct dislocation unbinding transitions &g, and T, ex-

ever, all elementary dislocations still have the same fugacit\éept if they are driven by vortex unbinding. If there are two

and effective interaction with their respective antipartidesstructural transitions. the phase between them has transla-
since they are related by reflection symmetry. The charge ' P

are given in Table lll. Forg= /2 we recover the square flonal quasi-long-range order in, say, thedirection, but

lattice. Our usual ansatz, which assumes that the system Cshort-range order in thy direction. It is thus a two-
' ' y %?mensionabmectiqohase. There are five possible scenarios,

which follow from our considerations for the square lattice
and are not discussed here. FHormax(Ty;,T4) We again

SSince the dislocation energies are different, there are two

TABLE lll. Charges for the centered rectangular lattice.

1 2 3 have a nematic phasgwofold rotational symmetry El-

n Un An an Lo -
ementary disclinations do not carry vorticity and the upper

1 d, 0 0 melting transition is simple.
2 q,/2 dq 0 The lower melting transition of the honeycomb lattice is
3 —-q,/2 dq 0 trivial in this context since its dislocations do not carry vor-
4 q,/2 cos@)qy sin(6)qy ticity: The structural lattice has the same basis as the mag-
5 —q,/2 cos@)dq sin(6)ay netic lattice so that dislocationsvith any Burgers vector

cannot lead to a phase mismatch. Thus antiferromagnetic
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quasi-long-range order could persist in the liquid crystaldriven simultaneous transitions, Figb}, require fine tuning
phase above the dislocation unbinding transition, which if magnetic and structural stiffnesses so that this scenario is
expected to have unique propertfsDisclinations carry probably rare.
+1/2 vortex and any remaining magnetic order is destroyed Quantum fluctuations can affect these results. As noted
at the upper melting transition. above they are expected to lead to quantum melting in the
Finally, we stress again that these considerations can onbjicinity of the classical square-centered rectangular line.
yield the possible sequence BKT transitionsfor any lattice  They should also destroy magnetic order in the triangular
type. This approach cannot describe other transitions dikattice at sufficiently low densities, where the magnetic inter-
rectly, such as first-order melting transitidhor first- or  action becomes exponentially small. More experiments are
second-order structural transitions. Structural transitions imeeded to test the predictions of this paper. Sharp structures
particular could take place since magnetic disordering leadm the Knight shift, nuclear relaxation rates, or specific heat
to a reduced effective magnetic interaction between Skyrmias functions of temperature would be indications for phase
ons, affecting the stability of the various lattice types in dif- transitions of the Skyrmion system. Particularly valuable
ferent ways. would be experiments on the electronic susceptibility
In fact, the question arises of whether the square Skyry(qg,w) as a function of temperature and filling factor.
mion lattice can be stable at all above the magnetic disorder- In conclusion, we have performed a Berezinskii-
ing transition. The answer is affirmative since the magneti&osterlitz-Thouless renormalization group study of melting
part of the interaction is of short range: As long as the magand magnetic disordering in various lattice geometries in or-
netic BKT correlation length &,, which for T=T, der to understand the behavior of the Skyrmion lattice in
satisfied’ 4’ quantum Hall ferromagnets at finite temperatures. The be-
havior of the Skyrmion system is determined by the two
&,(T) b facts that Skyrmiongi) are noncollinear magnetic defects
;X 7./ (68)  and(ii) carry electrical charge. In the long-wavelength limit
¢ the in-plane magnetization components can be described by
is much larger than the range of the magnetic interactior U(1) (XY) degree of freedom associated with each Skyr-
éxy, the effect of magnetic disordering on the lattice ener-mion. TheXY “spins” couple antiferromagnetically and can
gies is negligible. Only when, at a higher temperatue, lead to antiferromagnetic quasi-long-range order. Disloca-
becomes comparable &y, frustration becomes important. tions in most Skyrmion lattice types lead to a mismatch in
In this case we expect the magnetic interaction to be effecthe XY degree of freedom, which makes the dislocations
tively reduced so that eventually the triangular lattice be-bind fractional vortices and leads to coupling of translational
comes favorable. If af =Ty still £,= éxy, the square lattice and magnetic excitations. For most lattice types there are
melts and forms a tetratic phase before a structural transitiothree distinct scenarios for the lower melting transitiGha
takes place. It can even exhibit the upper melting transitiorBKT magnetic disordering transition at a lower temperature
without any structural transition taking place, depending orthan BKT melting, (ii) simultaneous transitions where the
the nonuniversal constafitin Eq. (68). The same kind of magnetic stiffness shows a universal BKT jump, &iid)
argument holds for other lattice and liquid-crystal structuressimultaneous transitions where the effective dislocation stiff-
ness shows a universal jump.
IV. CONCLUSIONS The lattice types we have studied are motivated by the
i ossible ground states of a simple classical model of the
As noted above, the lattice types relevant for presengyyrmion system, which uses the large-separation limit of
guantum Hall systems are the trlang_ular, centered rectangyqeir interaction. It shows a surprisingly rich=0 phase
lar, ar)d square Iattlce_s. A _rough estimate of the actual COrBiagram, which suggests that upon increasing the Skyrmion
energies and interactions in the real quantum Hall systerjensity a frustrated triangular ground state first gives way to
using the model (_)f Sep. Il A and r_esults .of Ref. 36 indicates; centered rectangular lattice with ®leorder and only at
that the low-density, triangular lattice typically shows deco“'higher density to a square lattice. Quantum melting is ex-

pled magnetic and melting transitions, cf. Figad The  necied to take place in the vicinity of the latter transition.
magnetic Skyrmion interaction, and thus the magnetic stiff-

ness and the vortex energies, are small since a strong mag-

netic interr_:\ction woulq make the_triangular lattice unstable. ACKNOWLEDGMENTS
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