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ac response of bipolar double-barrier resonant-tunneling structures
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We have developed an explicit formulation of the total intrinsic admittance of bipolar double-barrier
resonant-tunneling structures. The theory includes contributions from the tunneling currents through the bar-
riers and the recombination current, as well as from the charge distribution. We have numerically solved the
problem for small ac voltage amplitudes in the framework of linear response. The calculations are fully
quantum mechanical in the Hartree approximation. In linear response, and at frequencies below the internal
frequency of the system, the susceptance is found to be entirely of a capacitive nature. We have studied both
an ordinary bipolar double-barrier resonant-tunneling structure and an optimized resonant-tunneling light emit-
ting diode. We have investigated the frequency dependence of the admittance as well as the dependence on
recombination time. In both samples ad-shaped peak in the susceptance is found in the negative differential
resistance region. However, the details of the frequency response are found to be closely related to the specific
structure under consideration.@S0163-1829~98!04739-0#
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I. INTRODUCTION

Resonant tunneling~RT! is a phenomenon utilized in
variety of electronic devices. Especially thedouble-barrier
resonant-tunneling structures~DBRTS’s! are much used for
technological applications. The unipolar DBRTS is, for i
stance, used for RT diodes, RT oscillators, switches,
bistable lasers. The bipolar DBRTS has been proposed
applications, such as the RT light emitting diode~LED!.1–4

Apart from its technological applications, the DBRTS is al
a nanostructure of rich quantum phenomena, and thus
interesting for fundamental theoretical research.

In resonant tunneling thecurrent-voltage (I-V)measure-
ment and thecapacitance-voltage (C-V)measurement are o
basic importance. The unipolar DBRTS has been a v
popular system for experimental and theoretical studies
both theI-V and theC-V characteristics of resonant tunne
ing. The dcI-V characteristics are thoroughly investigat
and well understood, while both theC-V characteristics and
the inductive behavior are still under discussion. TheC-V
characteristics of RT structures are generally strongly n
linear and show clear fingerprints of the quantum confi
ment, the so-calledquantum capacitance. The quantum ca-
pacitance was first recognized by Luryi,5 and has been
investigated in various structures with quantu
confinement,6–10 including the unipolar DBRTS.5,11–14Some
work on the inductance of the unipolar DBRTS has also b
presented,15,16 as well as general treatments
admittance.17–22

The bipolar DBRTS is a much less studied system,
PRB 580163-1829/98/58~16!/10609~10!/$15.00
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which very little theoretical work has been performed. On
recently we presented the first thorough theoretical inve
gation of the steady state properties of the bipolar DBRT4

and to our knowledge there exists no theoretical work at
on the ac properties of this structure.

The problem in calculating the ac response of RT syste
is that for semitransparent barriers one cannot unamb
ously split the system into isolated regions in order to s
stitute the charge stored there into the conventional defini
of the capacitanceC5dQ/dV. Therefore, we employ a mor
explicit approach based on an analysis of the frequency
pendence of the current across the whole system. We
consider the case when the electron and hole relaxation
in the quantum well is larger than both the ac frequency a
the tunneling and recombination rates. The electrons
holes inside the quantum well can then be described b
quasiequilibrium state. This has allowed us to write a clos
differential equation for the time dependence of the cha
stored in the well. In linear response the parameters of
equation will be calculated from a self-consistent steady s
solution of the system. After the charge inside the well
found we can determine the current across the system
thus the complex admittanceY of the DBRTS. Its textbook
definition is given byI (t)5YV(t). The currentI (t) can be
separated into one partin phasewith the applied voltageI IP

and one partout of phase, I OP. I IP corresponds to Re(Y) and
represents the conductanceG, while I OP, which is 90° out of
phase with the applied voltage, corresponds to Im(Y). The
imaginary part, or the susceptanceB, consists of the capaci
tanceC and the inductanceL, both contributing toB with
10 609 © 1998 The American Physical Society
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their specific frequency dependencies. Consequently,
can findC andL from the shape of theB(v) curve.

This approach is a generalization of our previous work
a unipolar DBRTS.17 However, for a bipolar DBRTS we
have to take into account the tunneling currents of both e
trons and holes, as well as the electron-hole recombina
process. This accounts for an extremely complicated ana
for steady-state calculations, and certainly even more for
vestigation of ac properties.

The paper is organized as follows. In Sec. II we define
system under consideration and develop the theore
model. The theory is employed for numerical studies of t
different samples in Sec. III. Finally we give some comme
in Sec. IV.

II. THEORY

A. Quantum admittance

Our system is schematically illustrated in Fig. 1. T
samplein the circuit is the DBRTS. In order to be consiste
with our earlier work on the bipolar DBRTS~Ref. 4! and our
work on the admittance of the unipolar DBRTS~Ref. 17! we
use the following conventions. The electron tunneling c
rents, I l

e and I r
e , and the current in the contacts,I ` , are

defined positive for an electron tunneling from left to righ
while the hole tunneling currents,I l

h andI r
h , are defined posi-

tive for a hole tunneling from right to left. All charges, in
cluding the hole charge in the quantum wellQw

h , are treated
as electronic charge.

FIG. 1. Schematic sketch of the bipolar DBRTS~upper part! and
a principal sketch of the ac circuit~lower part!.
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The chargeQl in the left reservoir, the currentI ` in the
left contact, and the electron and hole tunneling currentsI l

e

and I l
h through the left barrier then satisfy the equation

dQl

dt
5I `~ t !2I l

e~ t !2I l
h~ t !. ~1!

If we rewrite Eq.~1! as

I `~ t !5I l
e~ t !1I l

h~ t !1
dQl

dV

dV

dt
, ~2!

making use of the general definition of admittance and
suming an ac voltageV(t)5V sinvt it becomes

I `~ t !5I l
IP,e~ t !1I l

IP,h~ t !1I l
OP,e~ t !1I l

OP,h~ t !1
dQl

dV

dV

dt

5Re~Y!V sin vt1Im~Y!V cosvt. ~3!

The in-phasepart gives the conductance

Re~Y!5G5
I l

IP,e1I l
IP,h

V sin vt
, ~4!

while theout-of-phasecomponents give the susceptance

Im~Y!5B5vS I l
OP,e1I l

OP,h

dV/dt
1

dQl

dV D . ~5!

We have derived the above results by analyzing the c
rents at the left part of the DBRTS shown in Fig. 1. How
ever, the results should be independent of which side of
DBRTS one considers. We will therefore briefly repeat t
analyses withQr instead ofQl to demonstrate this fact
Analogous to~1! the chargeQr and the currentsI r

e , I r
h , and

I ` satisfy

dQr

dt
5I r

e~ t !1I r
h~ t !2I `~ t !, ~6!

which we rewrite as

I `~ t !5I r
IP,e~ t !1I r

IP,h~ t !1I r
OP,e~ t !1I r

OP,h~ t !2
dQr

dV

dV

dt
.

~7!

This give for the conductance

Re~Y!5G5
I r

IP,e1I r
IP,h

V sin vt
, ~8!

and for the susceptance

Im~Y!5B5vS I r
OP,e1I r

OP,h

dV/dt
2

dQr

dV D . ~9!

The two alternative expressions for the susceptances~5!
and ~9! are consistent with the conservation law

d

dV
~Qw

e 1Qw
h 1Ql1Qr !50. ~10!

To prove this we rewrite Eqs.~3! and ~7! as
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I `~ t !2I l
IP,e~ t !2I l

IP,h~ t !5
Im~Y!

v

dV

dt
,

I `~ t !2I r
IP,e~ t !2I r

IP,h~ t !5
Im~Y!

v

dV

dt
.

SinceI ` for the left is identical toI ` for the right side of the
sample, it is clear thatI l

IP,e1I l
IP,h5I r

IP,e1I r
IP,h , which is

simply the statement that the conductance of the DBR
Eqs.~4! and ~8!, is uniquely defined independent of the tw
analyses.

The electron and hole charges in the quantum well,Qw
e

andQw
h , may recombine to emit light. Hence they are rela

to the tunneling currents as

dQw
e

dt
5I l

e~ t !2I r
e~ t !2

N
t

, ~11!

2
dQw

h

dt
5I r

h~ t !2I l
h~ t !2

N
t

. ~12!

The termsN/t are due to recombination of electrons a
holes, and will be defined later in details in Eq.~16!. It has
also been studied elsewhere.4,23 The sign of Eq.~12! origi-
nates from our treatment of all charges as electronic cha
If we analyze the quantityd(Qw

e 1Qw
h )/dV, subtracting Eqs.

~11! and ~12!, and making use of Eqs.~5! and ~9! and the
uniqueness of conductance, we obtain the desired conse
tion law ~10!,

d

dV
~Qw

e 1Qw
h !5

@ I l
e~ t !1I l

h~ t !#2@ I r
e~ t !1I r

h~ t !#

dV/dt

5
@ I l

OP,e~ t !1I l
OP,h~ t !#2@ I r

OP,e~ t !1I r
OP,h~ t !#

dV/dt

52
d

dV
~Ql1Qr !.

We have then established the fact that our results are i
pendent of which side of the DBRTS one chooses to w
with.

B. Linear response

To proceed further from the formal expressions~4! and
~5! we consider the situation of a small amplitude ac volta
superimposed to a steady state dc bias,

V~ t !5V01dV~ t !5V01dV sin vt. ~13!

Since the hot electron relaxation time24 is typically less
than 10213 s, which is an order of magnitude shorter than t
lifetime of electrons and holes in the quantum well,25 we can
define the quasi-Fermi levels at steady state for electrons
holes in the well.4,17 For frequencies,v, less than the relax
ation rate this is still a valid assumption. Since the qua
Fermi levels are uniquely determined by the densities
electrons and holes, the tunneling currents are function
V(t), Qw

e (t), andQw
h (t), at the same time instant, as demo

strated elsewhere.17 We can then reformulate the differenti
equations~11! and ~12! in the closed form
,

d

e.

va-

e-
k

e

e

nd

i-
f
of
-

dQw
e

dt
5I l

e~V,Qw
e !2I r

e~V,Qw
e !

2
1

t
N~V,Qw

e ,Qw
h !, ~14!

2
dQw

h

dt
5I r

h~V,Qw
h !2I l

h~V,Qw
h !

2
1

t
N~V,Qw

e ,Qw
h !. ~15!

We notice that the equations are coupled together by
recombination termN/t, which can be written in the com
pact form4,23

N
t

5
2

tE d2kW

~2p!2
f e~kW ,V,Qw

e ! f h~kW ,V,Qw
h !. ~16!

In our approach the recombination timet is an experimen-
tally determined parameter. When not otherwise indica
we will use the valuet51 ns, which is consistent with ou
assumption of a quasiequilibrium in the well.

With dV/V0!1, and in regions whereI l /r(V) is fairly
linear in an intervaldV aroundV0, we can safely treat the
system in the framework of linear response. In this case
charges in the quantum well can be written as

Qw
e ~ t !5Qw,0

e 1dQw
e ~ t !,

,

Qw
h ~ t !5Qw,0

e 1dQw
h ~ t !,

whereQw,0
e/h is the steady-state charge. Under steady state

tunneling currents balance each other, and we have the
ditions

I l
e~V0 ,Qw,0

e !2I r
e~V0 ,Qw,0

e !5
1

t
N~V0 ,Qw,0

e ,Qw,0
h !,

I r
h~V0 ,Qw,0

h !2I l
h~V0 ,Qw,0

h !5
1

t
N~V0 ,Qw,0

e ,Qw,0
h !.

Using these conditions the differential equations~14! and
~15! are linearized as

d

dt
dQw

e 5S ]~ I l
e2I r

e!

]V
U

ss

2
1

t

]N
]VU

ss
D dV~ t !

1S ]~ I l
e2I r

e!

]Qw
e U

ss

2
1

t

]N
]Qw

eU
ss
D dQw

e ~ t !

2S 1

t

]N
]Qw

h U
ss
D dQw

h ~ t !

[AedV sin vt1BedQw
e ~ t !1CedQw

h ~ t !, ~17!

and



10 612 PRB 58KINDLIHAGEN, MAL‘SHUKOV, CHAO, AND WILLANDER
2
d

dt
dQw

h 5S ]~ I r
h2I l

h!

]V
U

ss

2
1

t

]N
]VU

ss
D dV~ t !

1S ]~ I r
h2I l

h!

]Qw
h U

ss

2
1

t

]N
]Qw

hU
ss
D dQw

h ~ t !

2S 1

t

]N
]Qw

e U
ss
D dQw

e ~ t !
e
e
n

ng
ts
s

-

ar
e
he
la
he

c

l

ha

to

er
a

[AhdV sin vt1BhdQw
h ~ t !1ChdQw

e ~ t !,

~18!

where the coefficientsAe/h , Be/h , and Ce/h are the partial
derivatives evaluated at steady state.

We are interested in the solutionsdQw
e (t) anddQw

h (t) in
response to a periodic ac voltage of frequencyv. Conse-
quently the solutions of the two coupled equations~17! and
~18! have the form
dQw
e ~ t !5H dV

~v21CeCh!21v2~Be
21Bh

2!1BeBh~BeBh22CeCh!
J $@~AeBhCeCh1AhBeBhCe2AeBeBh

22AhCe
2Ch!

2v2~AhCe1AeBe!#sin vt2@~AeCeCh1AeBh
22AhBhCe2AhBeCe!2v2Ae#v cosvt%, ~19!

for Eq. ~17! and

2dQw
h ~ t !5H dV

~v21CeCh!21v2~Be
21Bh

2!1BeBh~BeBh22CeCh!
J $@~AhBeCeCh1AeBeBhCh2AhBe

2Bh2AeCeCh
2!

2v2~AeCh1AhBh!#sin vt2@~AhCeCh1AhBe
22AeBeCh2AeBhCh!2v2Ah#v cosvt%, ~20!
in-
f
of a
t as

rms

f
d

m

at
nce
e

re

lf-
for Eq. ~18!.
To obtain the conductance~4! and the susceptance~5! we

calculate self-consistently the charge distribution, the tunn
ing currents, and the recombination current at steady stat
all voltagesV0.4 Within the linear response regime we ca
then derivedQl /dV and the coefficientsAe/h, Be/h, and
Ce/h . Consequently, we obtaindQw

e (t) anddQw
h (t) in Eqs.

~19! and ~20!, and calculate the time-dependent tunneli
currents I l

e(t) and I l
h(t). Separating out the componen

I l
IP,e/h(t) andI l

OP,e/h(t), we have then obtained all quantitie
required for calculating the conductance~4! and the suscep
tance~5!.

In our earlier work on the admittance of the unipol
DBRTS ~Ref. 17! we identified the capacitive and inductiv
contributions to the total intrinsic admittance to settle t
controversy on this subject. We will here perform a simi
analysis for the bipolar DBRTS. In the expression for t
susceptance~5! the last part,vdQl /dV, is clearly a regular
linear function of frequency, and thus contributes capa
tively to the susceptance. The more interesting part of Eq.~5!
is v(I l

OP,e1I l
OP,h)/(dV/dt). From our detailed numerica

analysis we find that this is proportional to

v1v3

~v21CeCh!21v2~Be
21Bh

2!1BeBh~BeBh22CeCh!
.

For the unipolar DBRTS the corresponding expression
the form v/(v21V2), with an easily identifiableinternal
frequencyV.17 Here the internal frequency is not so easy
identify explicitly in terms of the coefficientsBe/h andCe/h .
However, as our numerical results will show, such an int
nal frequency exists also for the bipolar DBRTS. Let us c
l-
for

r

i-

s

-
ll

it V, and then consider the low-frequency limitv!V and
the high-frequency limitv@V.

In the low-frequency limit,v!V, both terms in the ex-
pression given above contain odd positive powers ofv and
so are regular. Inductance is, however, identified with a s
gular term diverging as 1/v. Consequently, in the regime o
linear response, for low frequencies the susceptance is
purely capacitive nature. This is exactly the same resul
we found for the unipolar DBRTS.17

In the high-frequency limit,v@V, the situation is differ-
ent. We still have the regular part fromdQl /dV contributing
to capacitance. However, the two frequency-dependent te
found fromv(I l

OP,e1I l
OP,h)/(dV/dt) have to be considered

more carefully. By expanding the expression in powers ofv,
we find that the first term contains odd negative powers ov
with a leading term 1/v.3 The second term also contains od
negative powers ofv, but with a leading term 1/v. Thus, in
the high-frequency limit, we interpret the contribution fro
v(I l

OP,e1I l
OP,h)/(dV/dt) as purely inductive.

To conclude our theoretical analysis we will point out th
in the numerical work, presented in Sec. III, the conducta
is calculated asG(V,v)5G01dG, where the steady-stat
conductance is given by

G05@ I l
e~V0 ,Qw,0

e !1I l
h~V0 ,Qw,0

h !#/V0

and

dG5@dI l
IP,e~ t !1dI l

IP,h~ t !#/dV sin vt.

III. NUMERICAL RESULTS

The steady-state properties of bipolar DBRT structu
have been studied in details in our previous work4 using a
two-band model, by solving eight equations se
consistently: the Poisson equation, two Schro¨dinger equa-
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tions, four equations for quantum transport of electrons
holes, and the equation for electron-hole radiative recom
nation. All physical parameters are calculated from first pr
ciples, except the electron-hole recombination timet, which
is treated as an empirical parameter. With proper choice
the geometric structure and the chemical composition of
DBRT diode, its electroluminescence can be optimized. T
I-V curves of such optimized DBRT LED’s exhibit ex
tremely sharpnegative differential resistance~NDR!. As we
will show later that the characteristic features of the adm
tance of a DBRT diode are connected to its NDR, o
present numerical studies will be based on those bip
DBRT structures that have been investigated in Ref. 4.

We have chosen to study two different samples, sampl
and sample B, which appear as sample A and sample
Ref. 4. The structures of the samples are described in Ta
I and II, respectively. In sample A the thermally excited ele
trons and holes are tuned into simultaneous resonant tun
ing at bias voltage 1.405 V forT5300 K. Sample B reache
the threshold for simultaneous resonant tunneling at b
voltage 1.61 V forT510 K. However, the chemical compo
sition of sample B blocks the electrons and holes from t
neling out of the well because of the large band gaps in
electron and hole emitters. ConsequentlyI r

e5I l
h50 for

sample B, which is one of the requirements for an optimiz
RT LED,4 and which will have strong effect on the adm
tance of the DBRTS.

Let us first concentrate on sample A. In Fig. 2 we sh
Im(Y)/v ~solid curve! and the conductanceG ~dashed
curve! as functions of bias voltage at the frequencyv
5109 s21 and temperatureT5300 K. The kink in the con-
ductance at voltage 1.4 V marks the onset of resonant
neling. In the NDR region around bias voltage 1.575
Im(Y)/v exhibits a sharp, almostd-shaped maximum
Qualitatively this is very similar to what we have found f
the unipolar DBRTS.17

In Fig. 3 we show Im(Y)/v as function of both bias volt-
age and frequency atT5300 K for sample A. The increas
in Im(Y)/v when the sample is tuned into simultaneo

TABLE I. Structure of sample A~for Figs. 2–7!.

Electron emitter 231018 n1 Al0.043Ga0.957As 400 Å
Spacer undoped Al0.043Ga0.957As 150 Å
Barrier undoped Al0.3Ga0.7As 40 Å
Well undoped GaAs 50 Å
Barrier undoped Al0.3Ga0.7As 40 Å
Spacer undoped GaAs 150
Hole emitter 431018p1 GaAs 400 Å

TABLE II. Structure of sample B~for Figs. 8–15!.

Electron emitter 231018 n1 Al0.11Ga0.89As 400 Å
Spacer undoped Al0.11Ga0.89As 50 Å
Barrier undoped Al0.3Ga0.7As 40 Å
Well undoped GaAs 60 Å
Barrier undoped Al0.3Ga0.7As 40 Å
Spacer undoped Al0.08Ga0.92As 30 Å
Hole emitter 331018 p1 Al0.08Ga0.92As 400 Å
d
i-
-

of
e
e

-
r
ar

A
in

les
-
el-

s

-
e

d

n-

resonant tunneling is seen as a marked shoulder cent
slightly below v5109 s21, and suggests an internal fre
quency of sample A slightly belowv5109 s21. This agrees
well with the recombination timet51 ns, and indicates tha
the recombination process dominates the frequency resp
of this DBRTS. To further clarify the frequency response
sample A we have plotted in Fig. 4 Im(Y)/v as function of
frequency at bias voltage 1.575 V where Im(Y)/v has its
peak value. The peak value Im(Y)/v510.831026 F cm22

occurs atv563108 s21, which is recognized as the inter
nal frequencyV of sample A at 1.575 V andT5300 K. In
Fig. 4 we also notice that forv,107 s21!V and v
.1010 s21@V, Im(Y)/v is frequency independent. This i
also seen in Fig. 3.

The conductance of sample A is examined in greater
tail in Figs. 5, 6, and 7. In Fig. 5 the solid curve is for th
steady-state conductanceG0, the dashed curve for the fre
quencyv5106 s21 and the dash-dotted curve for the fr

FIG. 2. Im(Y)/v ~solid curve! and conductance~dashed curve!
for the frequencyv5109 s21 as function of voltage at temperatur
T5300 K for sample A.

FIG. 3. Im(Y)/v for frequenciesv5103 to 1012 s21 as func-
tion of voltage at temperatureT5300 K for sample A.
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10 614 PRB 58KINDLIHAGEN, MAL‘SHUKOV, CHAO, AND WILLANDER
quencyv51012 s21. The frequency-dependent contributio
dG is negative for the low frequencyv5106 s21!V and
positive for the high frequencyv51012 s21@V. This is
similar to what is found in the unipolar DBRTS.17 In Fig. 6
the conductance is shown as function of both bias volt
and frequency. The behavior ofG as function of frequency is
clearly very different from that of Im(Y)/v shown in Fig. 3.
However, we see that around the internal frequencyV56
3108 s21 the conductance changes dramatically. This
further clarified in Fig. 7, where we plot the conductance
a function of frequency at bias voltage 1.575 V. Around t
internal frequencyV563108 s21 the conductance change
from a low frequency valueG56.13102 S cm22 to a high
frequency valueG54.43103 S cm22. Also this feature is
very similar to the behavior found in the unipolar DBRTS17

FIG. 4. Frequency dependence of Im(Y)/v at voltage 1.575 V
andT5300 K for sample A. Under these conditions Im(Y)/v has
the peak value.
e

s
s
e

When electrons and holes can not tunnel out of the qu
tum well one would expect a much sharper and narrow
NDR region and a much lower conductance. In the analy
of Sample B we pursue these questions further. In Fig
Im(Y)/v for sample B is plotted at the low frequencyv
5102 s21 for the temperatureT510 K. The sharp peak a
bias voltage 1.678 V coincides with the NDR region, as se
from the conductance shown in Fig. 9. Compared to sam
A the d peak in Im(Y)/v is much sharper and the NDR
region is much narrower just as expected. This behavio
seen when comparing Figs. 2, 8, and 9. The large maxim
in Im(Y)/v centered at bias voltage 1.595 V has a qu
different origin than thed peak in the NDR region. From ou
detailed analysis we found that in the bias region where

FIG. 5. Conductance-voltage characteristics at steady s
~solid curve! and at frequenciesv5106 s21 ~dashed curve! and
1012 s21 ~dash-dotted curve! for sample A at temperatureT5300
K.
FIG. 6. Conductance-voltage characteristics for frequenciesv5106 to 1012 s21 for sample A at temperatureT5300 K.
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maximum occurs we haveI l
hÞ0, but I r

e50. This means tha
under such specific conditions the electrons can only tun
into but not out of the quantum well, while the hole curre
can flow through the entire sample. The phenomenon res
outside the operational bias voltage region of a RT LED, a
is not desirable for an optimized RT LED.4 However, it has
very dramatic consequences for the intrinsic admittan
which we will investigate further in the following.

Our numerical analysis also showed that outside the
voltage region from 1.57 to 1.64 V we haveI r

e5I l
h50 in

sample B. Furthermore we have found that

I r
e~ t !50⇒

]I l
e

]V
5

1

t

]N
]V

⇒Ae50

and

I l
h~ t !50⇒

]I r
h

]V
5

1

t

]N
]V

⇒Ah50.

All terms in the numerical expressions forI l
e(t) and I l

h(t)
contain either factors withAe or factors withAh . Conse-
quently, whenAe5Ah50 the admittance is frequency inde
pendent. This is a very important result for the optimized
LED. However, it also means that the actual operational b
voltage region of the optimized RT LED is quite unintere
ing for further investigation of the frequency response. W
therefore concentrate on the frequency dependence of
admittance in the bias voltage region from 1.57 to 1.64
where we have the very special situation that onlyI r

e50.
In Fig. 10 we show Im(Y)/v in this bias voltage region

for frequencies fromv5102 s21 to v51012 s21. The fre-
quency dependence is clearly very different from that see
Fig. 3 for sample A. First of all we notice the strong fr
quency dependence at much lower frequencies than tha
sample A, and we can identify an internal frequency appro
mately V5105 s21. Since the tunneling into the quantu
well has become resonant, or near resonant, in this bias
age region and we haveI r

e50, we attribute the internal fre
quency V5105 s21 to the tunneling of holes out of th
well, i.e., toI l

h . The transparancy of the left barrier for hole
in the quantum well is very low because of the large ba
gap in the electron emitter, and the tunneling process is

FIG. 7. Frequency dependence of the conductance at vol
1.575 V andT5300 K for sample A. Under these condition
Im(Y)/v has the peak value.
el
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correspondingly slow. Consequently the internal frequen
becomes very small. Furthermore, since there is no
quency dependence aroundv5109 s21, corresponding to
the recombination timet51 ns, the recombination process
unlikely to be important for the susceptance of sample B

The conductance of sample B is shown in Fig. 9 for t
frequenciesv5102 s21 ~solid curve!, v5106 s21 ~dashed
curve!, v5109 s21 ~dotted curve!, andv51012 s21 ~dash-
dotted curve!. Again we notice that the frequency depe
dence only resides in the bias voltage range 1.57 to 1.64
However we see that in this range the conductance also
ies for frequenciesv@V5105 s21. This is shown clearly in
Fig. 11, where we have plotted the conductance for all f
quencies fromv5102 s21 to v51012 s21 in the interest-
ing bias voltage range. This suggests that the recombina
process is important for the frequency dependence of
conductance, even though it does not seem to play any
for the susceptance.

When we investigated the steady state properties of
bipolar DBRTS,4 we analyzed the dynamics of the electrol
minescence spectrum by varying the recombination timet.
We follow up this study also for the frequency response
the DBRTS. LetGe/h51/te/h be the electron, or hole, tun
neling rate through a barrier. Sincete/h can be varied by

ge FIG. 8. Im(Y)/v for the frequencyv5102 s21 as function of
voltage at temperatureT510 K for sample B.

FIG. 9. Conductance-voltage characteristics at frequenciev
5102 s21 ~solid curve!, v5106 s21 ~dashed curve!, v
5109 s21 ~dotted curve! andv51012 s21 ~dash-dotted curve! for
sample B at temperatureT510 K.
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FIG. 10. Im(Y)/v for frequenciesv5102 to 1012 s21 in the voltage range 1.57–1.64 V at temperatureT510 K for sample B.
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changing the barrier thickness it is interesting to investig
the frequency response when the ratioste /t andth /t vary.
Instead of changing the structure of the DBRTS we achi
the same goal in a practical way by usingt as a varying
parameter. We have then proceeded to do this in
frequency-dependent bias voltage region for sample B
Fig. 12 we have plotted the peak value of Im(Y)/v at bias
voltage 1.595 V and at frequencyv5102 s21 for recombi-
nation timest in the range 1022 ps to 104 ps. The peak value
is seen to drop drastically aroundt5531022 ps. We be-
lieve the reason for this is that with this high recombinati
rate the holes in the quantum well are effectively drain
e

e

e
In

d

through the recombination channel, thus reducing the h
tunneling currentI l

h through the left barrier. Consequent
the peak value of Im(Y)/v decreases. In Fig. 13 we sho
Im(Y)/v as a function of frequency at the bias voltage 1.5
V for the recombination timest51 ns ~solid curve! and t
51022 ps ~dashed curve!. Here we also see that the intern
frequencyV is shifted to a slightly higher value.

In Fig. 14 we show the conductance-voltage characte
tics at the low frequencyv5102 s21 for recombination
times ranging fromt51022 ps to 104 ps. We notice a 1/t
dependence of the magnitude of the conductance, and a
dency of saturation for the shortest recombination timet
FIG. 11. Conductance-voltage characteristics in the voltage range 1.57–1.64 V for frequenciesv5102 to 1012 s21 for sample B at
temperatureT510 K.
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51022 ps. This is reminiscent of what we have earlier fou
for the steady-state maximum current at bias voltage 1.
V.4

From Fig. 11 we see that the maximum frequency dep
dence of the conductance of sample B occurs at bias vol
1.60 V, which is slightly higher than the bias voltage of t
peak in Im(Y)/v. Consequently we have investigated t
t-dependence of the frequency response of the conduct
at bias voltage 1.60 V. In Fig. 15 we show the conducta
as a function of frequency at this bias voltage for four d
ferent recombination times. We notice that there seem
exist two internal frequencies governing the frequency
sponse of the conductance, as already suggested. First
is the lower internal frequencyV5105 s21, which we have
already identified. This was attributed to the tunneling
holes out of the quantum well, and is seen to be only m
ginally influenced by varying recombination timest. The
higher internal frequency is, however, completely det
mined by the recombination time, and we may write itVt
51/t. When we analyzed the frequency response
Im(Y)/v in Fig. 10, we found no frequency dependen
aroundVt . Furthermore we see that the overall magnitu
of the conductance increases as 1/t, as already seen from

FIG. 12. Im(Y)/v at voltage 1.595 V and frequencyv
5102 s21 for sample B at temperatureT510 K as a function of
the recombination time, which is assumed as a varying parame

FIG. 13. Frequency dependence of Im(Y)/v at voltage 1.595 V
andT510 K for sample B for recombination timet5103 ps ~solid
curve! and t51022 ps ~dashed curve!. Under these conditions
Im(Y)/v has a local maximum.
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Fig. 15, but that the magnitude of the frequency respo
remains constant down tot51 ps and then even decreas
for t51022 ps. This suggests that the recombination tim
affects the steady-state conductance andVt , but has mar-
ginal effect on both the susceptance and the magnitude o
frequency response of conductance.

IV. DISCUSSION

In Eqs.~4! and~5! we have provided an exact expressi
for the total intrinsic admittance of the bipolar DBRTS. T
solve the problem numerically we treated the steady-s
problem in the Hartree approximation, and then employ
the framework of linear response. However, to investig
the response of the bipolar DBRTS to larger ac amplitude
would be interesting to proceed beyond the linear respo
approximation.

Our analysis of the dependence of admittance on rec

r.

FIG. 14. Conductance-voltage characteristics in the volt
range 1.5825–1.615 V and at the low frequencyv5102 s21 for
recombination timest51028 s to 10214 s for sample B at tempera
ture T510 K.

FIG. 15. Frequency dependence of the conductance at vol
1.60 V and T510 K for sample B for recombination timest
51028 s to 10214 s.
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bination time, in Fig. 12 to Fig. 15, needs a few remar
Since the hot electron relaxation time24 is typically less than
10213 s and the tunneling time25 is around 10212 s, our re-
sults for very short recombination times fromt510212 to
10214 s, and for very high frequencies may violate the val
er

i,

ll,

i.

J.

s.

R

.

-

ity of our theory. However, the results remain interesting
a guide to identify the different mechanisms which gove
the frequency response of the bipolar DBRTS, and also
indicate what happens when the ratioste /t and th /t vary
from very small to very large.
r,

r-
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