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We have developed an explicit formulation of the total intrinsic admittance of bipolar double-barrier
resonant-tunneling structures. The theory includes contributions from the tunneling currents through the bar-
riers and the recombination current, as well as from the charge distribution. We have numerically solved the
problem for small ac voltage amplitudes in the framework of linear response. The calculations are fully
guantum mechanical in the Hartree approximation. In linear response, and at frequencies below the internal
frequency of the system, the susceptance is found to be entirely of a capacitive nature. We have studied both
an ordinary bipolar double-barrier resonant-tunneling structure and an optimized resonant-tunneling light emit-
ting diode. We have investigated the frequency dependence of the admittance as well as the dependence on
recombination time. In both samplesdashaped peak in the susceptance is found in the negative differential
resistance region. However, the details of the frequency response are found to be closely related to the specific
structure under consideratiof50163-182608)04739-(

I. INTRODUCTION which very little theoretical work has been performed. Only
recently we presented the first thorough theoretical investi-
Resonant tunnelingRT) is a phenomenon utilized in a gation of the steady state properties of the bipolar DBRTS,
variety of electronic devices. Especially theuble-barrier  and to our knowledge there exists no theoretical work at all
resonant-tunneling structurg®BRTS’s) are much used for on the ac properties of this structure.
technological applications. The unipolar DBRTS is, for in-  The problem in calculating the ac response of RT systems
stance, used for RT diodes, RT oscillators, switches, ané that for semitransparent barriers one cannot unambigu-
bistable lasers. The bipolar DBRTS has been proposed farusly split the system into isolated regions in order to sub-
applications, such as the RT light emitting diodé€ED).1™*  stitute the charge stored there into the conventional definition
Apart from its technological applications, the DBRTS is alsoof the capacitanc€=dQ/dV. Therefore, we employ a more
a nanostructure of rich quantum phenomena, and thus vexplicit approach based on an analysis of the frequency de-
interesting for fundamental theoretical research. pendence of the current across the whole system. We will
In resonant tunneling theurrent-voltage (I-V)measure- consider the case when the electron and hole relaxation rate
ment and theapacitance-voltage (C-Mpeasurement are of in the quantum well is larger than both the ac frequency and
basic importance. The unipolar DBRTS has been a veryhe tunneling and recombination rates. The electrons and
popular system for experimental and theoretical studies ofioles inside the quantum well can then be described by a
both thel-V and theC-V characteristics of resonant tunnel- quasiequilibrium state. This has allowed us to write a closed
ing. The dcl-V characteristics are thoroughly investigated differential equation for the time dependence of the charge
and well understood, while both tH@V characteristics and stored in the well. In linear response the parameters of this
the inductive behavior are still under discussion. T/  equation will be calculated from a self-consistent steady state
characteristics of RT structures are generally strongly nonsolution of the system. After the charge inside the well is
linear and show clear fingerprints of the quantum confinefound we can determine the current across the system and
ment, the so-calleduantum capacitanceThe quantum ca- thus the complex admittancé of the DBRTS. Its textbook
pacitance was first recognized by Lufyiand has been definition is given byl (t)=Y\(t). The current (t) can be
investigated in  various structures with quantumseparated into one part phasewith the applied voltagé'”
confinemenfCincluding the unipolar DBRTS1*Some  and one parbut of phasel °F. I'P corresponds to R¥() and
work on the inductance of the unipolar DBRTS has also beemnepresents the conductar@ewhile 1°7, which is 90° out of
presented®'® as well as general treatments of phase with the applied voltage, corresponds to¥jn(The
admittance.’ 22 imaginary part, or the susceptarBeconsists of the capaci-
The bipolar DBRTS is a much less studied system, ortanceC and the inductancé, both contributing toB with
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The chargeQ, in the left reservoir, the current, in the
left contact, and the electron and hole tunneling curréhts
andllh through the left barrier then satisfy the equation

d
§=|w<t>—lf(t>—li‘(t>. ®

If we rewrite Eq.(1) as

u(t)=lf(t>+l?<t>+%i—\:, @
making use of the general definition of admittance and as-
suming an ac voltag¥(t) =V sinwt it becomes
L(O)=1"t)+ ]P0 +1PPe(t) +1PP(t) + % Z—\t/
=RgY)Vsin wt+Im(Y)V cos wt. 3
The in-phasepart gives the conductance
| IIP,e+ | IIP,h
SAMPLE ReY)=G= Vsnot (4)
I I while the out-of-phasecomponents give the susceptance
@ IPPE+IPP" dQ
V) Im(Y)=B=w W+d_v . 5)
FIG. 1. Schematic sketch of the bipolar DBRTU®per partand We have derived the above results by analyzing the cur-
a principal sketch of the ac circulower pan. rents at the left part of the DBRTS shown in Fig. 1. How-

ever, the results should be independent of which side of the
their specific frequency dependencies. Consequently, onBBRTS one considers. We will therefore briefly repeat the
can findC andL from the shape of th&(w) curve. analyses withQ, instead ofQ, to demonstrate this fact.
This approach is a generalization of our previous work onAnalogous to(1) the chargeQ, and the currents’, IF, and
a unipolar DBRTS. However, for a bipolar DBRTS we | satisfy
have to take into account the tunneling currents of both elec-

trons and holes, as well as the electron-hole recombination daqQ,
- : : =18t)+ 1Mt —1..(1) (6)
process. This accounts for an extremely complicated analysis dt T r (1)
for steady-state calculations, and certainly even more for in- _
vestigation of ac properties. which we rewrite as

The paper is organized as follows. In Sec. Il we define the
system under consideration and develop the theoreticalI (t):|IP,e(t)+|IP,h(t)+|OP,e(t)+|OP,h( )_er dv
o r r r r

model. The theory is employed for numerical studies of two dv dt”
different samples in Sec. Ill. Finally we give some comments (7)
in Sec. V. This give for the conductance
|r P |r P,h
Il. THEORY —C=
_ Re(Y)=G Vsinwt ’ ®
A. Quantum admittance
Our system is schematically illustrated in Fig. 1. The and for the susceptance

samplein the circuit is the DBRTS. In order to be consistent |OP.e |OPh dQ
with our earlier work on the bipolar DBRT@ef. 4 and our Im(Y)=B=o| ——— — —|. (9)
work on the admittance of the unipolar DBRTRef. 17 we dv/dt dv

use the following conventions. The electron tunneling cur-
rents, |7 and If, and the current in the contacts,, are
defined positive for an electron tunneling from left to right,
while the hole tunneling currents! andI, are defined posi- d
tive for a hole tunneling from right to left. All charges, in- W(Qfﬁ Qh+Q+Q,)=0. (10
cluding the hole charge in the quantum V\@ﬂ, are treated

as electronic charge. To prove this we rewrite Eq$3) and(7) as

The two alternative expressions for the susceptafges
and (9) are consistent with the conservation law
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Im(Y) dV dQs
L0 =1P SO = 11PN = ——— —5p = HV.QR) —1R(V.Q5)
Im(Y) dV 1
L0 1Py = T 8 — AV.Q5.Q0), (14
Sincel, for the left is identical td ,, for the right side of the th
sample, it is clear that/”®+1/P"=|Pe+ PN which is — M 1hev,QMy =1V, QM)
. dt r 1w | 1w
simply the statement that the conductance of the DBRTS,
Egs.(4) and(8), is uniquely defined independent of the two 1
analyses. - ;N(V,va Qb (15

The electron and hole charges in the quantum w@{,
h . . .
andQ,,, may recombine to emit light. Hence they are relatedye notice that the equations are coupled together by the

to the tunneling currents as recombination term\7 r, which can be written in the com-
pact forn#23

dQ\?" e e N
o -1 -—, (11 .
7 N o2 dk oo
- = _f —Zfe(k!VIQw) fh(kIV!Qw)' (16)
daqQh N T T) (2m)
e HORIHORE (12

In our approach the recombination timeis an experimen-

The termsA/+ are due to recombination of electrons andtally determined parameter. When not otherwise indicated
holes, and will be defined later in details in H@6). It has ~ We Wwill use the valuer=1 ns, which is consistent with our
also been studied elsewhér@ The sign of Eq.(12) origi-  assumption of a quasiequilibrium in the well.

nates from our treatment of all charges as electronic charge. With 6V/Vo<1, and in regions wheré, (V) is fairly

If we analyze the quantitg(QS,+ QM)/dV, subtracting Egs. linear in an intervaldV aroundV,, we can safely treat the
(11) and (12), and making use of Eq¢5) and (9) and the system in the framework of linear response. In this case the
uniqueness of conductance, we obtain the desired conservalarges in the quantum well can be written as

tion law (10),
QLD =Q4 o+ SQ(1),
LI, RO+ 1T ]-[17) +1](1)] ,
dv:=w o = dv/dt . e 4 son
[IPPe) + 127 ()] (1274t +197"(1)] Quit)=Quat 2%l
- dv/dt whereQ\?\f’% is the steady-state charge. Under steady state the
tunneling currents balance each other, and we have the con-
__d ditions

. . 1
We have then established the fact that our results are inde-  18(Vo,Q% ) —18(Vo, QS0 = ~MV0,Q5,0.QM o),
pendent of which side of the DBRTS one chooses to work T
with.
1
h h y_h h \_ = e h
B. Linear response I (Vo, Quio) =11 (Vo, Quio) TMVO'QW'O’QW'O)'
To proceed further from the formal expressiogd$ and
(5) we consider the situation of a small amplitude ac voltag
superimposed to a steady state dc bias,

Using these conditions the differential equatioidgl) and
e(15) are linearized as

V(t)=Vy+ 6V(t) = Vo+ 8V sin ot. (13) d . [(a0f=1)) 194
e R v B v B KM
Since the hot electron relaxation tifdds typically less ss ss
than 10 13, which is an order of magnitude shorter than the a(18—19) 1 N
lifetime of electrons and holes in the quantum w#&lye can + ( —er - - ) 5Qg/(1)
define the quasi-Fermi levels at steady state for electrons and AQu | T Qul

holes in the welf:!” For frequenciese, less than the relax-
ation rate this is still a valid assumption. Since the quasi- 19
Fermi levels are uniquely determined by the densities of

electrons and holes, the tunneling currents are functions of

V(t), Q5 (1), andQCv(t), at the same time instant, as demon- =A.6V sin wt+ Be5Q3V(t)+Ce5QCV(t), (17
strated elsewher€.We can then reformulate the differential

equationg11) and(12) in the closed form and
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d a(IM—1f

190 _ . h e
— —5Qh= ___/\ﬂ SV(t) =A, 6V sin wt+B,6Q,,(1) + CpdQ,,(1),
dt =W N | TV 19
h h
N ally—1 )‘ 1 aN‘ 50" (1) where the coefficient®\yp,, Ben, andCgy, are the partial
Q" ’ T ,9Qm w derivatives evaluated at steady state.
ss ss We are interested in the solutiodQ(t) and sQ"(t) in
1 N response to a periodic ac voltage of frequengyConse-
| 775 8Qu(1) quently the solutions of the two coupled equati¢h®) and
IQu ss (18) have the form
S5QE(t)= oV {[(AcBhCeCh+ AnBeBCo— ABB2— A,C2C})
v (w2+ CoCp)?+ w?(B2+B2) + BBp(BeBp—2CCh) e eTne TeTerh ¢
— 0?(AnCet AcBe)15iN wt —[(AcCeCht+ AeB2— ApBLCo— AnBCe) — w?A]w COS wit}, (19
for Eq. (17) and
- 8QMN(t)= oV {[(AnBeCcCh+ AeBeBLCH— AnB2B,— A.C.C2)
v (2+CoCp)2+ (B2 + B2) + BoBy(BeBn— 2CcCh) eve e emh Tewemn
— 0%(ACh+AnBp) 1sin wt—[(AnCeCh+ ApBZ— AB.Ch— AcBLCp) — w?An]w cos wt}, (20)
|
for Eq. (18). it 0, and then consider the low-frequency linat< () and

To obtain the conductandd) and the susceptan€d) we  the high-frequency limitw>(}.
calculate self-consistently the charge distribution, the tunnel- In the low-frequency limitw<Q, both terms in the ex-
ing currents, and the recombination current at steady state f@ression given above contain odd positive powersaind
all voltagesV,.* Within the linear response regime we can SO are regular. Inductance is, however, identified with a sin-
then derivedQ /dV and the coefficientsy, Bep, and — gular term diverging as &/. Consequently, in the regime of
Cen- Consequently, we obtaiiQS(t) and 5Q"(t) in Egs. linear response, for low frequencies the susceptance is of a
(19) and (20), and calculate the time-dependent tunnelingpurely capacitive nature. This is exactly the same result as

- found for the unipolar DBRTY.
currents I{(t) and I|h(t). Separating out the components we : e o
. . - > -
I:pye/h(t) andIPP'e’h(t), we have then obtained all quantities In the high-frequency limitw> (), the situation is differ

. ) ent. We still have the regular part frodQ, /dV contributing
required for calculating the conductan@g and the suscep- 5 capacitance. However, the two frequency-dependent terms

tance(S). _ , _ found fromw(1°7®+1°"M/(dV/dt) have to be considered
In_our earlier work on the admittance of the unipolar qre carefully. By expanding the expression in powers of
DBRTS (Ref. 17 we identified the capacitive and inductive \ye fing that the first term contains odd negative powers of
contributions to the total intrinsic admittance to settle theyip 4 leading term .3 The second term also contains odd
controversy on this subject. We will here perform a Sim"arnegative powers o, but with a leading term /. Thus, in
analysis for the bipolar DBRTS. In the expression for thethe high-frequency limit, we interpret the contribution from
susceptancés) the last partwdQ,/dV, is clearly a regular w(1°Pe+10PM/(dV/dt) as purely inductive.
linear function of frequency, and thus contributes capaci- To conclude our theoretical analysis we will point out that
tively to the susceptance. The more interesting part of®d. in the numerical work, presented in Sec. llI, the conductance

is w(IPPe+1P"N/(dV/dt). From our detailed numerical s calculated ass(V,w)=Go+ 6G, where the steady-state
analysis we find that this is proportional to conductance is given by

Go=[17(V0,Q%,0+ M Vo,Q0 01/ Vo

0+

(02+CeCp)?+ w?(B2+B2) + BcBp(B.B,— 2C.Cy)

and

5G=[81{"%(t)+ 81{7"(t)]/ 8V sin wt.

For the unipolar DBRTS the corresponding expression has
the form w/(w?+Q?), with an easily identifiablénternal
frequency().!” Here the internal frequency is not so easy to  The steady-state properties of bipolar DBRT structure
identify explicitly in terms of the coefficient8,,,, andCy, - have been studied in details in our previous Wouking a
However, as our numerical results will show, such an intertwo-band model, by solving eight equations self-
nal frequency exists also for the bipolar DBRTS. Let us callconsistently: the Poisson equation, two Sclnger equa-

Ill. NUMERICAL RESULTS
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TABLE I. Structure of sample Afor Figs. 2—7. — 71 T 1 r T ' 1
Electron emitter X108 nT Alg 04dGay o5AS 400 A 20 ~
Spacer undoped HbsdGa gsAS 150 A g 145 &
Barrier undoped AJ;Ga, As 40 A 4 -
Well undoped GaAs 50 A ‘?g 410 3
Barrier undoped AJ:Gay, As 40 A 3 -
Spacer undoped GaAs 150 A ) £
Hole emitter 4 10%p* GaAs 400 A & 1°%° 5
1
b N 0.0
A R BRU RPN

tions, four equations for quantum transport of electrons and
holes, and the equation for electron-hole radiative recombi-
nation. All physical parameters are calculated from first prin- Bias voltage (Volts)

ciples, except the electron-hole recombination timeavhich FIG. 2. Im(Y)/w (solid curvé and conductancédashed curje

s treated asan empirical parameter. _Wlth proper_qhmces qgr the frequencyo=10° s~ as function of voltage at temperature
the geometric structure and the chemical composition of thg _ 545 « fo; sample A

DBRT diode, its electroluminescence can be optimized. The

-V Clljrveﬁ’ of such og'tfifmizeq IDBR.T LEgj’SRexf:bit €X- resonant tunneling is seen as a marked shoulder centered
tremely sharmegative differential resistand®DR). Aswe  gjightly below w=10° s 1, and suggests an internal fre-

will show later that the characteristic features of the admit- . _ -1 ;
f le A slightl lows =10° .Th
tance of a DBRT diode are connected to its NDR, Ourquencyo sample A slightly belo S IS agrees

. . i .~ well with the recombination time=1 ns, and indicates that
present numerical studies will b.e bas_ed on_those blpOIa{he recombination process dominates the frequency response
DBRT structures that have been |_nvest|gated in Ref. 4. of this DBRTS. To further clarify the frequency response of

We have chosen to study two different samples, sample %ample A we have plotted in Fig. 4 IMf/e as function of
and sample B, which appear as sample A and sample C i ’

. . lﬁlequency at bias voltage 1.575 V where M)(w has its
Ret. . The sucures of he sanplesaredescrbed ' T20/5ai vae. Th peak vale I~ 10.8<10°° o
 resp Y- nple 7~ y gecurs atw=6x10° s, which is recognized as the inter-
trons and holes are tuned into simultaneous resonant tunnel-

. . = hal frequency) of sample A at 1.575 V an@ =300 K. In
ing at bias voltage 1.405 V fofF=300 K. Sample B reaches Fig. 4 we also notice that fow<10' s 1<Q and w

the threshold for simultaneous resonant tunneling at bia 0 o1s ; . .
voltage 1.61 V forT=10 K. However, the chemical compo- iic?lsezn ;%i’gm;,(Y)/w is frequency independent. This is

sition of sample B blocks the electrons and holes from tun- The conductance of sample A is examined in greater de-
neling out of the well because of the large band gaps in th%’;\il in Figs. 5, 6, and 7. In Fig. 5 the solid curve is for the

: h_
e W one o 1 o o opze 20 S Cordcans, h dashed curve for h o
y — —1 - -
RT LED,* and which will have strong effect on the admit- uencyw=10" s~* and the dash-dotted curve for the fre

tance of the DBRTS.

Let us first concentrate on sample A. In Fig. 2 we show
Im(Y)/w (solid curve and the conductanc& (dashed
curve as functions of bias voltage at the frequeney
=10° s ! and temperatur@ =300 K. The kink in the con-
ductance at voltage 1.4 V marks the onset of resonant tun 19
neling. In the NDR region around bias voltage 1.575 V
Im(Y)/w exhibits a sharp, almost-shaped maximum.
Qualitatively this is very similar to what we have found for 5
the unipolar DBRTS!

In Fig. 3 we show ImY)/w as function of both bias volt-
age and frequency at=300 K for sample A. The increase 0
in Im(Y)/w when the sample is tuned into simultaneous

1.40 1.60 1.60 1.70

(Yo (10 Fem™®)

TABLE Il. Structure of sample Rfor Figs. 8—15.

. 6
Electron emitter X 10" n* Alg1,Gay gAs 400 A 1o

1.7
Spacer undoped Ak,Ga gAS 50 A

Barrier undoped AJ,Ga, -As 40 A X <5 1O

WeII. undoped GaAs 60 A Frequency (s7) Bias voltage (Volts)
Barrier undoped AJGa, -As 40 A 1012

Spacer undoped HbgGay s AS 30 A

Hole emitter 310" p* Al odGay o AS 400 A FIG. 3. Im(Y)/w for frequenciesw=10° to 10" s* as func-

tion of voltage at temperaturB=300 K for sample A.
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110 1 T T T I sFE 1 T T T T T
105 g
£ A
o E
2 100 3
3 g
) e
g 95 E
0
2.0 S = B B B
10° 107 10° 10° 10" 10" 10 1.40 1.50 1.60 1.70
Frequency (s'l) Bias voltage (Volts)
FIG. 4. Frequency dependence of M)(w at voltage 1.575 V FIG. 5. Conductance-voltage characteristics at steady state
and T= 300 K for sample A. Under these conditions M)(w has (solid curve and at frequencies=10° s ! (dashed curvyeand
the peak value. 102 s71 (dash-dotted curyefor sample A at temperaturg= 300
K.
quencyw=10" s~ 1. The frequency-dependent contribution
5G is negative for the low frequency =10 s < and When electrons and holes can not tunnel out of the quan-

positive for the high frequencywy=102 s !>Q. This is tum well one would expect a much sharper and narrower
similar to what is found in the unipolar DBRTS.In Fig. 6  NDR region and a much lower conductance. In the analysis
the conductance is shown as function of both bias voltagef Sample B we pursue these questions further. In Fig. 8
and frequency. The behavior Gf as function of frequency is Im(Y)/o for sample B is plotted at the low frequeney
clearly very different from that of Im{)/w shown in Fig. 3. =10° s for the temperaturd =10 K. The sharp peak at
However, we see that around the internal frequeficy 6 bias voltage 1.678 V coincides with the NDR region, as seen
x10° s7! the conductance changes dramatically. This isfrom the conductance shown in Fig. 9. Compared to sample
further clarified in Fig. 7, where we plot the conductance asA the § peak in Im(Y)/w is much sharper and the NDR

a function of frequency at bias voltage 1.575 V. Around theregion is much narrower just as expected. This behavior is
internal frequency)=6x 1% s ! the conductance changes seen when comparing Figs. 2, 8, and 9. The large maximum
from a low frequency valu&=6.1x10° Scm 2 to a high in Im(Y)/® centered at bias voltage 1.595 V has a quite
frequency valueG=4.4x10° Scm 2. Also this feature is different origin than the peak in the NDR region. From our
very similar to the behavior found in the unipolar DBRYS. detailed analysis we found that in the bias region where this

Conductance (103 Scm_z)

Bias voltage (Volts) )

1.7 7 10

FIG. 6. Conductance-voltage characteristics for frequensied(f to 10" s * for sample A at temperatufé= 300 K.
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I ! | ! I

1.4 -

1.2 —

-~ = 10} .
g &

iz 1 0.8 —
= )

= 3 0.6 -
s ~~

] % 041 —

0.2 -

0.0 -

| | | | | | | l 1 | 1 | L | )
10‘3 107 103 109 1010 10“ 1012 1.56 1.60 1.64 1.68
Frequency (s'l) Bias voltage (Volts)

FIG. 7. Frequency dependence of the conductance at voltage FIG. 8. Im(Y)/w for the frequencyw=10* s ! as function of
1.575 V andT=300 K for sample A. Under these conditions voltage at temperaturé=10 K for sample B.
Im(Y)/w has the peak value.
correspondingly slow. Consequently the internal frequency
maximum occurs we havg'#0, but|®=0. This means that becomes very small. Furthermore, since there is no fre-
under such specific conditions the electrons can only tunnejuency dependence aroung=10° s !, corresponding to
into but not out of the quantum well, while the hole currentthe recombination time=1 ns, the recombination process is
can flow through the entire sample. The phenomenon residaslikely to be important for the susceptance of sample B.
outside the operational bias voltage region of a RT LED, and The conductance of sample B is shown in Fig. 9 for the
is not desirable for an optimized RT LEDHowever, it has  frequencieso=10* s~ (solid curve, w=10 s ! (dashed
very dramatic consequences for the intrinsic admittancegurve), w=10° s ! (dotted curvg andw= 10" s ! (dash-
which we will investigate further in the following. dotted curvé Again we notice that the frequency depen-
Our numerical analysis also showed that outside the biagence only resides in the bias voltage range 1.57 to 1.64 V.
voltage region from 1.57 to 1.64 V we havg=1'=0 in  However we see that in this range the conductance also var-
sample B. Furthermore we have found that ies for frequencies> 01 =10 s L. This is shown clearly in
Fig. 11, where we have plotted the conductance for all fre-

erer 5'?_ 10N _ quencies fromw=10 s ! to w=10" s ! in the interest-
I[(1)=0=—-=——=A=0 . . . S
' N TV ing bias voltage range. This suggests that the recombination
and process is important for the frequency dependence of the
conductance, even though it does not seem to play any role
A" 1N for the susceptance.
I{‘(t)=0:a—\;= o a_V:A“ZO' When we investigated the steady state properties of the

bipolar DBRTS? we analyzed the dynamics of the electrolu-

All terms in the numerical expressions fobf(t) and ||“(t) minescence spe_ctrum by varying the recombination time
contain either factors wittA, or factors withA,,. Conse- We follow up this study also for the frequency response of
quently, wherA,=A,=0 the admittance is frequency inde- the DBRTS. Letl'e,=1/7 be the electron, or hole, tun-
pendent. This is a very important result for the optimized RTN€ling rate through a barrier. Sineg, can be varied by
LED. However, it also means that the actual operational bias
voltage region of the optimized RT LED is quite uninterest- sofT T T T T T T T4
ing for further investigation of the frequency response. We
therefore concentrate on the frequency dependence of the
admittance in the bias voltage region from 1.57 to 1.64 V,
where we have the very special situation that difty 0.

In Fig. 10 we show ImY)/w in this bias voltage region
for frequencies fromw=10 s ! to w=10"2? s 1. The fre-
guency dependence is clearly very different from that seen in
Fig. 3 for sample A. First of all we notice the strong fre-
guency dependence at much lower frequencies than that for
sample A, and we can identify an internal frequency approxi- | T T T
mately Q=10° s 1. Since the tunneling into the quantum 156  1.60 164 168
well has become resonant, or near resonant, in this bias volt-
age region and we haué=0, we attribute the internal fre-
quencyQ=1h05 s'* to the tunneling of holes out of the  FiG. 9. Conductance-voltage characteristics at frequenoies
well, i.e., tol}". The transparancy of the left barrier for holes =1 s (solid curve, w=10° s ! (dashed cune o
in the quantum well is very low because of the large band=10° s™! (dotted curvé andw=10"2 s~! (dash-dotted curyeor
gap in the electron emitter, and the tunneling process is thusample B at temperatuie=10 K.

N
o
|

Conductance (Scm‘z)
-t
o
T

Bias voltage (Volts)
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Tn(Y)/w (107 Fem™®)

L5

1.0

0.5

10

Frequency (s’l)

102 157

FIG. 10. Im(Y)/w for frequencieso=10? to 10** s in the voltage range 1.57-1.64 V at temperaflire10 K for sample B.

changing the barrier thickness it is interesting to investigatehrough the recombination channel, thus reducing the hole
the frequency response when the ratigér and r,/7 vary.  tunneling Currenﬂ|h through the left barrier. Consequently
Instead of changing the structure of the DBRTS we achievéhe peak value of In¥)/w decreases. In Fig. 13 we show
the same goal in a practical way by usimgas a varying Im(Y)/w as a function of frequency at the bias voltage 1.595
parameter. We have then proceeded to do this in th& for the recombination times=1 ns(solid curvg and r
frequency-dependent bias voltage region for sample B. In=10"2 ps(dashed curve Here we also see that the internal
Fig. 12 we have plotted the peak value of M){w at bias  frequencyQ is shifted to a slightly higher value.

voltage 1.595 V and at frequenay=10? s~ ! for recombi- In Fig. 14 we show the conductance-voltage characteris-
nation timesr in the range 102 ps to 10 ps. The peak value tics at the low frequencyw=10° s * for recombination

is seen to drop drastically around=5x10 2 ps. We be- times ranging fromr=102 ps to 10 ps. We notice a ¥
lieve the reason for this is that with this high recombinationdependence of the magnitude of the conductance, and a ten-
rate the holes in the quantum well are effectively draineddency of saturation for the shortest recombination time

Conductance (Scm’z)

10

1.57

12

1.58 0 10
1.59
1.60

1.62
Bias voltage (Volts) 1.63 2
1.64 10

FIG. 11. Conductance-voltage characteristics in the voltage range 1.57-1.64 V for frequenci6s to 10 s~* for sample B at
temperaturél =10 K.
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FIG. 12. Im(Y)/w at voltage 1.595 V and frequency FIG. 14. Conductance-voltage characteristics in the voltage

=107 s for sample B at temperatufB=10 K as a function of ~range 1.5825-1.615 V and at the low frequeney 10? s~ for

the recombination time, which is assumed as a varying parameterecombination times=10"2 s to 10 *s for sample B at tempera-
ture T=10 K.

=102 ps. This is reminiscent of what we have earlier found

for the steady-state maximum current at bias voltage 1.678 .
V.4 Fig. 15, but that the magnitude of the frequency response

From Fig. 11 we see that the maximum frequency depent€mains constant down to=1 ps and then even decreases
dence of the conductance of sample B occurs at bias voltag@f 7=10"2 ps. This suggests that the recombination time
1.60 V, which is slightly higher than the bias voltage of theaffects the steady-state conductance &hd but has mar-
peak in Im(Y)/w. Consequently we have investigated the ginal effect on both the susceptance and the magnitude of the
r-dependence of the frequency response of the conductan&&duency response of conductance.
at bias voltage 1.60 V. In Fig. 15 we show the conductance
as a function of frequency at this bias voltage for four dif- IV. DISCUSSION

ferent recombination times. We notice that there seem to ) )
exist two internal frequencies governing the frequency re- In Egs.(4) and(5) we have provided an exact expression

sponse of the conductance, as already suggested. First thdpé the total intrinsic admittance of the bipolar DBRTS. To

is the lower internal frequenc2 =10° s 1, which we have solve the problem numerically we treated the steady-state
already identified. This was attributed to the tunneling ofProblem in the Hartree approximation, and then employed
holes out of the quantum well, and is seen to be only marthe framework of linear response. However, to investigate
ginally influenced by varying recombination times The the response of the bipolar DBRTS to larger ac amplitudes, it
higher internal frequency is, however, completely deterwould be interesting to proceed beyond the linear response

mined by the recombination time, and we may writdif ~ @Pproximation. .
—1/r. When we analyzed the frequency response of Our analysis of the dependence of admittance on recom-

Im(Y)/w in Fig. 10, we found no frequency dependence

aroundQ),. Furthermore we see that the overall magnitude 8 T 2 248 prorrrrTTTTT
of the conductance increases as,lds already seen from g 3
2 R}
| | I I | | | | £ %
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FIG. 13. Frequency dependence of M)(w at voltage 1.595 V
andT=10 K for sample B for recombination time=10° ps (solid FIG. 15. Frequency dependence of the conductance at voltage
curve and r=10"2 ps (dashed cure Under these conditions 1.60 V andT=10 K for sample B for recombination times
Im(Y)/w has a local maximum. =108sto 10 s,
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bination time, in Fig. 12 to Fig. 15, needs a few remarks.ity of our theory. However, the results remain interesting as

Since the hot electron relaxation tifdés typically less than
10 % s and the tunneling tinfdis around 10%? s, our re-
sults for very short recombination times from=10"*? to

10" s, and for very high frequencies may violate the valid-

a guide to identify the different mechanisms which govern
the frequency response of the bipolar DBRTS, and also to
indicate what happens when the ratind = and 7,/ 7 vary
from very small to very large.
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