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Intrinsic admittance of unipolar double-barrier resonant-tunneling structures
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Following the definition of admittance, we have performed a theoretical analysis of the total intrinsic
admittance of unipolar double-barrier resonant-tunneling structures. The theory includes contributions from the
tunneling currents through the barriers, as well as from the charge distribution. We have solved the problem
numerically for small ac voltage amplitudes in the framework of linear response. The calculations are fully
guantum mechanical in the Hartree approximation. In linear response, and at frequencies much smaller than the
internal frequencies of the system, the susceptance is found to be entirely of a capacitive nature. We have
studied both a symmetric and a highly asymmetric sample, with a thick second barrier at the collector side. For
the symmetric sample we found that the susceptance-voltage characteristic depends strongly on both frequency
and temperature. A-shaped peak in the susceptance is found in the negative differential resistance region,
where the conductance also depends strongly on frequency. For the asymmetric sample the susceptance ex-
hibits a sharp maximum in the negative differential resistance region, although its value is smaller than that for
the symmetric case. The frequency dependence of the susceptance is also found to be quite weak for the
asymmetric samplg¢S0163-18208)04939-X]

l. INTRODUCTION lattice structurd® which both demonstrate very high and
narrow features of the admittance spectrum. In both cases the
In resonant tunneling theurrent-voltage (I-V)and the sharp peaks were interpreted as an intrinsic feature of reso-
capacitance-voltage (C-\bharacteristics are of basic impor- nant tunneling.
tance. While the d¢-V characteristics of resonant tunneling  The existing theoretical treatments of the quantum capaci-
structures are much studied, both &/ characteristics and tance vary from mostly classical approaches to methods
the inductive behavior are far from being fully understood.based on quantum mechanics. Ldrgdapted the classical
One important application of resonant tunneling structures igeometric capacitance of a three-plate parallel plate capacitor
high-speed devices such as high-frequency oscillators arte the DBRTS. Genoet al® refined this model, by including
detectors. To understand the high-frequency behavior dthe tunneling processes through the two barriers. Hu and
these devices, it is essential to know the intrinsic admittanc&tapletori proposed another definition of the quantum ca-
of the system. pacitance of DBRTS’s, namel{;=dQ,,/dV, whereQ,, is
The C-V characteristics of resonant tunneling structureshe charge in the quantum well aktthe applied voltage. In
are generally highly nonlinear and show the fingerprint of thea later work they included contributions from afijected
quantum confinement, the so-callegiantum capacitance charge® These studies are all based on the quasistatic
The notion of quantum capacitance was first introduced byteady-state picture.
Luryi.> Other authors have investigated the quantum capaci- Investigations of the inductance of the DBR¥S? or
tance in structures such as ordinary heterojunctfons,more generally, the admittand&;*>1"®have also been car-
5-doped structuredguantum doté,and interband tunneling ried out. As a result of these studies there has been a contro-
structures, as well as ordinary tunneling structure%:2°By  versy on whether the DBRTS is of dominantly capacitive or
ordinary tunneling structures we mean both the doubleinductive nature. However, this controversy takes place only
barrier resonant-tunneling structulés® (DBRTS's) and the ~ when one tries to apply conventional definitions of capaci-
superlattice structurée$. tance or inductance to tunneling systems with an ac voltage
There exists very little experimental work on the admit- applied. For example, the conventional way to find the ca-
tance of the unipolar DBRTS. However, there are two strik-pacitance is based on defining the regions where charge is
ing experiments, one on quantum dd@nd one on a super- stored. These regions are considered as plates of a capacitor.
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tion. For a small ac voltage superimposed onto a steady-state
dc bias we derive a closed differential equation for the
charge in the quantum well. In linear response the parameters
of this equation will be calculated from a self-consistent
steady-state solution of the system. After the charge inside
the well is found we can determine the current across the
system and so the complex admittance of the DBRTS. Our
calculations allow us to provide a numerical treatment and
qualitative explanation of thé-shaped peaks in the admit-
tance observed experimentafiflo our knowledge, this fun-
SAMPLE damental way of describing the total intrinsic admittance of
tunneling structures is given for the first time. We would like
Ieo | T to point out that the admittance peak appears in the bias
_ voltage region fonegative differential resistanc&herefore,

T in a way the admittance peak is associated to the resonant

Vo tunneling current through a unipolar DBRTS. As shown in

FIG. 1. Schematic sketch of the unipolar DBRT@per pat ~ SCMe early 9e}lculatioﬁ3, the transmission probability of an

and a principal sketch of the ac circgiower par. electron exhibits sharp peaks when the energy of the electron
is close to the resonant levels in the well.

However, in tunneling systems there is no way to unambigu- 1"€ paper is organized as follows. In Sec. Il we define the
ously define such regions. On the other hand, a consiste§yStem under consideration and develop the theoretical
way to find the capacitance, as well as the inductance, can g80del for quantum admittance. The theory is then employed
based on an analysis of the complex admittance of the Sygqr numerlcgl studies of two dlffgrent samples in Sec. .
tem. In a general ac circuit with an ac voltag(t) Finally we give some comments in Sec. IV. In the Appendix
—Vsin ot and a complex admittancé, the current is given e demonstrate the correct symmetry property in our deriva-
by 1(t)=YV(t). The current may be separated intoian  tion of the quantum admittance.

phasepart and arout-of-phasepart! (t) =1'P(t) +1°P(t). 1'P

gives us the conductanc@=Re(Y) and|°", which is 90° IIl. LINEAR RESPONSE OF QUANTUM ADMITTANCE

out of phase with the applied voltage, gives us the suscep- We consider the unipolar DBRTS schematically illus-

tanch=Im(Y). A". information abouf[ capacitive gnd N"  trated in Fig. 1. Thesamplein the circuit is the DBRTS. The
ductive characteristics of the system is contained in the fre-

; . chargeQ, in the left reservoir, the current, in the left
quency dependence B{w). In its turn, as seen from Fig. 1, contact, and the tunneling curreiptthrough the left barrier
the total current (t) corresponds to the measurable Curremsatisfy the equation
I, . That allows for measurement of both the real and imagi-
nary parts of the admittance. dQ,

Our goal is to develop a theory for calculating the com- W=Iw(t)—l|(t). 1)
plex admittance of a unipolar DBRTS in a wide enough re-
gion of ac frequencies. There have been several works apt we rewrite Eq.(1) as
proaching this problem. Some authors have employed
Green’'s-function techniques based on the Landatii&u dQ, dVv
formulal! the independent particle model with conventional (D=1 (1) + dav dt’ @
tunneling theory? and an analytic path-integral methtitl.
None of these studies has taken into account the selfMaking use of the general definition of admittance it be-
consistent potential in the sample. Other approaches, whickPMes
are also not self-consistent, are the Liouville equation com-
bined with the Wigner distributiof the Breit-Wigner ex- L =1P@0) +1970)+ 2 Y ey sin wt
pansion of sidebands near resonariéemd the r?Iglunon of dv dt
the periodic time-dependent Schinger equation? A self-
consistent approach in the Hartree approximation, employing +Im(Y)V cos wt. &)
the harmonic balance technique was also repdﬁéﬂbw- Thein_phasecomponent gi\/es the conductance
ever, in this work the transport of electrons was described by
coherent tunneling, and thus the scattering processes of elec- |1P
trons in the quantum well were completely neglected. ReY)=G=
While various levels of approximations have been em-
ployed to investigate the admittance of the DBRTS, none ofind theout-of-phasecomponents give the susceptance
them seems to be able to provide a sufficiently rigorous op
guantum-mechanical self-consistent approach allowing for I dQ
an analysis of the capacitive and inductive nature of the ad- dv/dt + av /e
mittance and comparing with experiment. In the present
work we derive an exact equation for the admittance, ex- We have derived the above results by analyzing the cur-
pressing it via the tunneling currents and the charge distriburents at the left part of the DBRTS shown in Fig. 1. Exactly

4

V sin wt’

Im(Y):B=w( (5
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the same results can be derived if we analyze the currents ablution of 5Q,,(t) in response to an ac voltage of frequency
the right part of the DBRTS, as one expects. This is shown inw. Consequently the solution of E(LO) has the form
the Appendix.
To proceed further, we consider the situation of a small rsv
amplitude ac voltagejV(t), superimposed on a steady state oQu(t) =— ﬁ(w coswt+Q sinwt). (11)
dc biasV, w0+

V(t)=Vy+ 6V(t)=Vy+ 6V sin wt. (6) Our scheme for calculating the conductance and the sus-
. . 1 _y _ ceptance, defined in Eq#4) and (5), is to calculate self-
For a typical density 2510°" cm™*, the hot electron relax consistently the charge distribution and the tunneling cur-

i H i IGS 19
"’.‘t'o.n time is less than S On the _other hand, .the rents at steady-state for all voltag¥g. From this steady-
lifetime of an electron occupying the quasibound level in the

well is of the order of the inverse tunneling rate, which iss't{jlte solution, within the linear response regime, we are
typically about 10*? s. For the problem of our interest, the ready to derivalQ,/dV, as well as the coefficients and 2

frequencyw is assumed to be sufficiently low such that '[hede}tmed in Eq.(10). With these coefficientsoQ,(t) in Eq.

period of bias voltage variation is longer than the hot elec-(ll) is obtained. We can then calculate the time-dependent

tron relaxation time. Therefore, the quasiequilibrium in thecggen“'(t) and separate t_he two compc_)l_"nerhtg(t) _and
quantum well can be established since the lifetime of elec!i (). Now we have obtained all quantities required for
tron is sufficiently long as compared to the hot electron re-c@lculating the conductandé) and the susceptands).
laxation time. This quasiequilibrium state is characterized by L€t us first clarify the question that the nature of the sus-
a quasi-Fermi level. With given tunneling rates, quasi-FermFeptance(s) is capacitive or inductive. The last part of Eq.

level, and bias voltage, one can write the tunneling current>), @dQi/dV, is clearly a regular linear function of fre-
I,(t) andl,(t) as quency, and thus contributes capacitively to the susceptance.
;

The more interesting part db) is (wl°")/(dV/dt). From
our detailed numerical calculations this part is found to be
fdku|(k)|t|(k)|2 proportional to w/(w?+Q?). There are two different re-
gimes to be consideredy<<() and w> . () was defined in
X[f(k:V,E; |, T)—F(K;V,Ef . T)] Eq. (20 asd(l,—1,)/19Q,, and plays the rolle of the typical
' ’ internal frequencyof the system. Let us first look at the
low-frequency limit w<€Q. By expandingw/(w?+ Q?) in
f dko, (K)|t,(K)|?f(k;V,E; ,,T). powers ofw at small frequencies one finds a regular series of
(2m)® ’ odd positive powers with a leading linear term. Inductance

We notice that the quasi-Fermi level is uniquely determinedS: however, identified with a singular term diverging as.1/

by the density of electrons in the quantum well. Therefore Consequently, for<(Q, the susceptances), when calcu-
1,(t)-1,(t) is a function ofV(t) andQ,(t) at the same time _ated in linear response, is of a purely capacm.ve nature. This
because here is much less than the hot electron relaxation'S €xactly the conclusion expected from a linear response
rate. This allows us to construct a closed differential equath€ory- In the high-frequency limit>(}, the situation is

| =
1(t) (2m)?

Ir(t):

tion for the chargeQ,, in the quantum well, more complicated. The reg_ular part frash@, /dV still con-
tributes to the capacitance. However, the term
dQ, (0l PP)/(dV/dt) will go as 1k, and thus be of inductive
dt =1(V,Qw) = 1:(V,Qu). (7) " nature. Foro— this term vanishes, and we are left with

] ] o only the capacitive ternC.,.=dQ,/dV.
We assum&V/Vo<1, and in regions wherk; (V) is fairly To conclude our theoretical analysis we give a brief de-
linear, we can safely treat the system in the framework okcription of our self-consistent calculation for the steady
linear response. In this case the charge in the quantum wedkate. The method is described in detail elsewhere for a more
can be written as complicated bipolar DBRT& We consider the heavily
doped emitter and collector as perfect particle reservoirs,
Qult) = Quo dQu(D), ®) chgracterized by their respective Igermi en%rgies. Assuming a
whereQ,, o is the dc response charge. Under steady state thguasi-Fermi level in the well, we solve the Poisson and

two tunneling currents are equal, Schradinger equations self-consistently, together with the

equations for the two tunneling currertsandl,. The con-
11(Vo,Qw,0 =11 (V0,Qu,0 =0. (9 straint (9) on the two tunneling currents determines the

Using this condition the differential equatioh) is linearized ~ Steady-state quasi-Fermi energy in the quantum well, and

as thus the steady-state char@g, o. With this self-consistent
steady state we proceed to calculate the admittance as de-

dsQ,, a(l,—1I;) alh—1y) scribed earlier.

AT v NV + =55 8Qu(t)
(Vo.Quw,0 W T(Vg,Qu o)

Ill. NUMERICAL RESULTS

=ToVsin wt+Q5Qu(1), (10 We have studied both a symmetrical and a highly asym-

where the coefficients and() are the corresponding partial metrical DBRTS. We will first present the numerical results
derivatives evaluated at steady state. We are interested in tfier the symmetrical DBRTSsample A, the structure of
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TABLE I. Structure of sample Afor Figs. 2—7. s
Emitter 210" n* GaAs 400 A c.v’E‘ 4
Spacer undoped GaAs 80 A 8
Barrier undoped AJGa, As 40 A o LL
Well undoped GaAs 50 A s
Barrier undoped AJ;Ga, As 40 A § ok
Spacer undoped GaAs 80 A 3
Collector 2}10%n* GaAs 400 A E 2

L . . . 40 | | | 7
which is described in Table I. In Fig. 2 we show both
0.0 0.1 0.2 0.3

Im(Y)/w and the steady-state current as functions of voltage
at T=300 K. Im(Y)/w is plotted for both the low frequency Bias voltage (Volts)
0=10° s ! and the high frequency=10"? s 1. It is im-
portant to point out that in the limitv—0, Im(Y)/w has
contributions from the current terms in E&), and therefore  _ . 42" —1 : i

is different from the steady-state resdl®, /dV. For both the forl glamsple E:(zldtecrﬁ;v:)r’a?unr%:tg%g‘tiédy statelash-dotted curje
high and the low frequency, the susceptance exhibits a sharp,
almost§-shaped, peak at bias voltagg=0.3 V, which lies . . .
right in the middle of thenegative differential resistance Contributions froméG in the NDR region around 0.3 V,
(NDR) region. Thes spike originates from the discharging Which makesG(V,«—0) different from the steady-state
of the quantum well, and is a fingerprint of tliantum conductance. As a result of this, the overall conductance in

admittance Such sharp peak in the susceptance has bedft® NDR region is negative for low frequencies and positive
found in DBRTS'"151715in superlatticed? and in quan- for high frgquenues. Thlfs?%eees well qualitatively with re-
tum dots* Besides the main sharp peak, we observe a proSUlts obtained by others: o _ ,
nounced drop of Im{)/w when the voltage increases across W& have reproduced Fig. 2 for various temperatures in
0.18 V. The reason for this drop is that at this bias voltagePTder o investigate the temperature dependence of the sus-
the tunneling becomes resonant, i.e., the energy level in thgEPtance. Again we are most interested in the NDR region,
quantum well coincides with the Fermi energy in the emitter Within which Im(Y)/w exhibits aé peak at an optimal bias
For low frequency we also see a small drop in ¥j{w at vpltage. Both the value of the optimal voltage and the mag-
the voltageV,=0.12 V. The mechanism of this drop is hid- Nitude of thes peak are found to be strongly temperature
den in the termal, /dQ,, in Eq. (10), and cannot be ex- dependent as shgwn in Figs. 4 and.5. In Fig. 4 we see that as
plained by a simple physical picture. the temperature increases the optimal voltage remains con-
The conductance is calculated &(V,w)=Gq+ 5G, stant for very low temperaturés<50 K, gnd_ then decreases
where the steady-state conductance is given Gy linearly with temperature. Such beha_\nor is due.to the tem-
—1,(Vo,Qu.0)/Vo and 6G =4 IP(t)/ 6Vsin ot, with &1!P(t) perature dependence of the self-consistently derived resonant

defived from 0, (1) in Eq. (1. The conductance-voltage. iy e A8 e Wl e e e e
relation atT=300 K is shown in Fig. 3, with the solid curve ' 9

for the high frequencyw=10" s I, the dashed curve for resonant energy level drops. Therefore it requires a lower

the low frequencyw=10° s, and the dash-dotted curve bias voltage to reach the NDR regime, in which lies the

for the steady-state conductance. The conductance has lar gak of_the susceptance. The optimal bias voltage is _fre-
tency independent, as seen from the low- and the high-

frequency curves for IMi()/w in Fig. 2.

FIG. 3. Conductance-voltage characteristics for the low fre-
quency w=10° s™! (dashed curye the high frequencyw
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FIG. 2. Im(Y)/w for the low frequencyw=10° s~ (curve with
the highers peal, the high frequencw = 10'? s~! (curve with the
lower & peak, and the steady-state currddashed curveas func- FIG. 4. Temperature dependence of the optimal bias voltage for
tions of voltage at temperatufie=300 K for sample A. the occurrence of thé peak in Im{Y)/» for sample A.
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FIG. 5. Temperature dependence of the magnitude of theak
in Im(Y)/w for the low frequencyw=10° s~ (upper curve and
the high frequencyw=10'? s~! (lower curve for sample A.

FIG. 7. Frequency dependence of the conductance at voltage 0.3
V and T=300 K for sample A. Under these conditions M){w
has the peak value.

In Fig. 5 we plot the magnitude of thepeak of Im(Y)/w  x10'2 571, This is in good agreement with the electron tun-

as a function of temperature for the low frequen@y neling time of a few picoseconds, found in similar
=10> s' (upper curvg and the high frequencyo  structure€2! From Fig. 6 we see that In¥)/w has practi-
=10" s7* (lower curve. In both cases the peak height de- cally reachedC., at w~10" s %, which is much larger than
creases with temperature. This is exactly what one would)

expect, since with increasing temperature the NDR region in - As mentioned at the beginning of this section, we use the
the -V curve gets broader. The broadening of the NDR reformulationG(V,w) =G, + 8G, whereG, is the steady-state
gion reduces the discharging of the quantum well, and congonductance, to calculate the conductance. With a tedious

sequently decreases tdepeak in Im(Y)/w. _ analysis we can show th&G has a frequency dependence of
In the NDR region, for a fixed temperature, the admit-the “form (w2—Q2)/(w?+Q32). Therefore G(V,w— )

tance is very sens?tive to th.e frequency as seen in Figs. 2 ar_ld G(V,0=0)=G(V,0=0)—G(V,w—0). For sample

3. We have |nvest|ga_ted th|s f_requency dependence in detaif ¢ temperatureT=300 K and bias voltage 0.3 V, we
a_nd the results are given in Figs. 6 and 7 for sample_A_at thesund 0=0.2x102s ! and G(V,0=0)=G,=15

bias voltage 0.3 V and the temperature-300 K. This is  »10# S cni 2. All these features are confirmed in Fig. 7,
exactly theT=300 K point in Fig. 4, and consequently the \yhere the conductance increases from a negative value to a

peak value of Im{)/w is plotted in Fig. 6, and the peak positive saturation as the frequency increases fiom0 to
value of the conductancé is plotted in Fig. 7. The peak ,~ .

value of the admittance has a large contribution from the \ye have reached our conclusion that the characteristic
current term in Eq(5), which is related to the charge in the featyres of the quantum admittance is related to the dynamics
quantum well given by Eq11). As expected from our the- ¢ the tunneling current, especially in the NDR region. We
oretical analysis in the previous section, in Fig. 6 ¥Mo  therefore expect a suppression of the quantum behavior of
drops to a constant valu@.=dQ,/dV for >, and be-  the admittance if the peak-to-valley ratio of the tunneling
come purely capacitive. For this sample A the internal fre-cyrrent is reduced. This can be achieved easily by increasing
quency, atT=300 K and voltageVy=0.3 V, is 0=0.2  tne strength of the barrier on the collector side, but at the
same time to make sure there is no bistability. To demon-
strate this point, let us consider the asymmetric DBRTS
(sample B, the structure of which is specified in Table II. In
Fig. 8 we plot Im{Y)/w of sample B for the low frequency
0=10° s™1 at the temperatur&= 300 K, together with the
steady staté-V curve. Although in this case we also observe
a relatively sharp peak in InY()/w in the NDR region, it is

TABLE Il. Structure of sample Rfor Figs. 8 and @

Im(YYo (10° Fem™)
)]
T
l

4 -
B | Emitter 2x10®n* GaAs 400 A
A A A i A Spacer undoped GaAs 80 A
0.0 0.5 1.0 1.5 2.0 Barrier undoped A Ga, As 50 A
E 12 -1 Well undoped GaAs 60 A
requency (10 s ) .
Barrier undoped AJGa -As 100 A
FIG. 6. Frequency dependence of M)(w at voltage 0.3V and Spacer undoped GaAs 80 A
T=2300 K for sample A. Under these conditions M){w has the  Collector 2< 10 n* GaAs 400 A

peak value.
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4 as(1) the ac amplitudeSV is much less than the dc bi&s,

and (2) around thisV, the tunneling current,;, is fairly
linear on the scale ofV. Under this approximation the sus-
ceptance was found to be of entirely capacitive nature for
both w—0 andw>(). However, it would be of interest to

go beyond the linear response approximation to investigate
the inductive component of the susceptance as well as the
nonlinear response of the DBRTS to a larger ac amplitude.

Nevertheless, even with the nonlinear response neglected,
when compared with the existing theoretical treatments on
oEIm- "1 L 1 L m ) this subject, our fundamental way of describing the total in-

0.10 0.15 0.20 0.25 0.30 0.35 trinsic admittance of tunneling structures is given for the first
time. Because our theory goes beyond all existing ones, our
calculations produces for the first time the correct explana-

FIG. 8. Im(Y)/w for the low frequencyo=10° s™* (solid  tion of the S-shaped peaks in the capacitance observed
curve and the steady-state currefalashed curveas functions of  experimentally”. It is important to notice in Fig. 2 and Fig. 8
voltage at temperaturé=300 K for sample B. that the admittance peak appears in the bias voltage region

) for NDR. Therefore, the admittance peak is associated with
much broader and less intense as compared to the corrgye resonant tunneling current through a unipolar DBRTS.
sponding peak structure of the symmetric sample A, ashe resonant current peaks in Fig. 2 and Fig. 8 are broad
shown in Fig. 2. These changes are due to a large reductigfecause of the finite Fermi energy in the left reservoir in Fig.
of the tunneling current and a dramatic broadening of they |f we let the Fermi energy approach zero to simulate the
NDR region, as can be seen from the steady-dtat@urve  tynneling of a single electron with specific energy, as shown
in Fig. 8. The susceptance minimum appeariny gt 0.16  jn some early calculation'$,the transmission probability ex-
Vin Fig. 8 is caused by the onset of resonant tunneling, thgyipits sharp peaks when the energy of the electron is close to
same reason as for the susceptance drop at 0.18 V in Fig. the resonant levels in the well.

The peak in ImY{)/w in Fig. 8 is located at the bias  Since the phonon energy in GaAs,37 meV, is of the
voltage 0.27 V. The corresponding internal frequencylis  same order of magnitude as the thermal endggly at room
=4.0x10'” s™'. We keep the bias voltage at 0.27 V and thetemperature, the phonon scattering, with a time constant
temperature af =300 K, but vary the frequency to calculate —10-13s will be a very effective process for fast relaxation
Im(Y)/w as function of frequency. The result is plotted in of electrons in the quantum well and thus allow us to define
Fig. 9. By comparing Fig. 9 and Fig. 6, it is obvious that thethe quasiequilibrium. Furthermore, our detailed numerical
change of the dynamics of the tunneling current affects thigalculations has shown that in the entire bias voltage range
susceptance-frequency relation quantitatively but not qualitagnder consideration, the electron density in the well is

Im(Y)o (10~ Fem™)
™)
Current (10° Acm’)

Bias voltage (Volts)

tively, as expected from E(5). ~10" cm™2. For instance, for sample A at bias voltage
0.12 V the density is already 0&L0' cm 2, at voltage 0.3
IV. DISCUSSION V it has increased to 2 10'* cm™2 before it decreases again

. . to 0.5 10 cm 2 at 0.35 V. With such high densities of
With Egs.(4) and(5) we have provided the exact expres- electrons in the well electron-electron scattering will be very

sion of the total infrinsic _admlttance; of the unipolar DBRTS’ strong. This will contribute to the fast relaxation of electrons,
derived from our theoretical analysis. The self-consistent nu-

merical solutions are obtained within the framework of Iinearand thus further support our assumption of a quasiequilib-

) : O rium in the quantum well.
response. The use of linear response is well justified as long The major deficiency in our solution of the steady-state

problem is the lack of an explicit treatment of phonon scat-

' ' ! ' ' tering. The phonons smear out the sharp features of-the
5.90 7] characteristics and give a broadening of the NDR region.
‘.“’E\ 5.88 - . Consequently we would expect a widér peak with a
£ s.86l - smaller amplitude in InY)/. Furthermore, one can go be-
s 5.84 _ yond the Hartree approximation to include many-body ef-
T fects. However we do not expect these improvements to alter
g 5.82- 7] the qualitative features of the quantum admittance demon-
% 5.80 - - strated in this paper.
= 578} -
576 - -
1 ! ! ! L APPENDIX: SYMMETRY PROPERTIES OF QUANTUM

13 -1
F 10 A o
requency ( s) We will briefly repeat the analysis witf, instead ofQ,

FIG. 9. Frequency dependence of M)(w at voltage 0.27 vV  to derive the same results of conductance and susceptance as
and T=300 K for sample B. Under these conditions M)(w has  given by Egs.(4) and (5). Analogous to(1) the chargeQ,
the peak value. and the currents, andl., satisfy
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dQ;
ar 010, (A1)
which we rewrite as
dQ, dVv
_IP OP/py_ or UV
LO=1"O+IPP) -/ 4r- (A2)
This give the conductance
IIP
J— — r
REYV)=C=Vsinat’ (A3)
and the susceptance
I?"dQ
Im(Y)—B—w(m— av | (A4)
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To prove this we rewrite Eqg3) and(A2) as

Im(Y) dV
L=
l.(t)— 11P(t)= Im{f)Y) Z—\tl.

Sincel , for the left is identical td ,, for the right side of the
sample, it is clear thali"=1!", which is simply the state-
ment that the conductance of the DBRTS, Ed$.and(A3),

is uniquely defined regardless its derivation. We now con-
sider the charg®,, in the quantum well, which is related to
the tunneling currents as

dQw

5 ==L =1P71) 177,

The two equivalent expressions for the susceptance, EqBy rewriting the above equation and making use of Eg5.
(5) and(A4), are consistent with the charge conservation lawand (A4) we obtain the desired conservation |&a5),

d
d_\/(QW+QI+Qr):O- (A5)

dQ, IPPm—1P7t)
v~ aviat ~ gv @TQn.
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