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Intrinsic admittance of unipolar double-barrier resonant-tunneling structures

A. Kindlihagen
Department of Physics and Measurement Technology, University of Linko¨ping, S-58183 Linko¨ping, Sweden

A. G. Mal‘shukov
Institute of Spectroscopy, Russian Academy of Science, 142092, Troitsk, Moscow Region, Russia

K. A. Chao
Department of Physics, Norwegian Institute of Technology, Norwegian University of Science and Technology,

N-7034 Trondheim, Norway
and Department of Theoretical Physics, Lund University, S-22362 Lund, Sweden

M. Willander
Physical Electronics and Photonics, Department of Physics, Chalmers University of Technology, S-412 96 Go¨teborg, Sweden

~Received 21 March 1997; revised manuscript received 11 July 1997!

Following the definition of admittance, we have performed a theoretical analysis of the total intrinsic
admittance of unipolar double-barrier resonant-tunneling structures. The theory includes contributions from the
tunneling currents through the barriers, as well as from the charge distribution. We have solved the problem
numerically for small ac voltage amplitudes in the framework of linear response. The calculations are fully
quantum mechanical in the Hartree approximation. In linear response, and at frequencies much smaller than the
internal frequencies of the system, the susceptance is found to be entirely of a capacitive nature. We have
studied both a symmetric and a highly asymmetric sample, with a thick second barrier at the collector side. For
the symmetric sample we found that the susceptance-voltage characteristic depends strongly on both frequency
and temperature. Ad-shaped peak in the susceptance is found in the negative differential resistance region,
where the conductance also depends strongly on frequency. For the asymmetric sample the susceptance ex-
hibits a sharp maximum in the negative differential resistance region, although its value is smaller than that for
the symmetric case. The frequency dependence of the susceptance is also found to be quite weak for the
asymmetric sample.@S0163-1829~98!04939-X#
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I. INTRODUCTION

In resonant tunneling thecurrent-voltage (I-V)and the
capacitance-voltage (C-V)characteristics are of basic impo
tance. While the dcI-V characteristics of resonant tunnelin
structures are much studied, both theC-V characteristics and
the inductive behavior are far from being fully understoo
One important application of resonant tunneling structure
high-speed devices such as high-frequency oscillators
detectors. To understand the high-frequency behavior
these devices, it is essential to know the intrinsic admitta
of the system.

The C-V characteristics of resonant tunneling structu
are generally highly nonlinear and show the fingerprint of
quantum confinement, the so-calledquantum capacitance.
The notion of quantum capacitance was first introduced
Luryi.1 Other authors have investigated the quantum cap
tance in structures such as ordinary heterojunctio2

d-doped structures,3 quantum dots,4 and interband tunneling
structures,5 as well as ordinary tunneling structures.1,6–10By
ordinary tunneling structures we mean both the doub
barrier resonant-tunneling structures1,6–9 ~DBRTS’s! and the
superlattice structures.10

There exists very little experimental work on the adm
tance of the unipolar DBRTS. However, there are two str
ing experiments, one on quantum dots,4 and one on a super
PRB 580163-1829/98/58~16!/10602~7!/$15.00
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lattice structure,10 which both demonstrate very high an
narrow features of the admittance spectrum. In both cases
sharp peaks were interpreted as an intrinsic feature of r
nant tunneling.

The existing theoretical treatments of the quantum cap
tance vary from mostly classical approaches to meth
based on quantum mechanics. Luryi1 adapted the classica
geometric capacitance of a three-plate parallel plate capa
to the DBRTS. Genoeet al.6 refined this model, by including
the tunneling processes through the two barriers. Hu
Stapleton7 proposed another definition of the quantum c
pacitance of DBRTS’s, namely,C5dQw /dV, whereQw is
the charge in the quantum well andV the applied voltage. In
a later work they included contributions from allinjected
charge.9 These studies are all based on the quasist
steady-state picture.

Investigations of the inductance of the DBRTS,11,12 or
more generally, the admittance,13–15,17,16have also been car
ried out. As a result of these studies there has been a co
versy on whether the DBRTS is of dominantly capacitive
inductive nature. However, this controversy takes place o
when one tries to apply conventional definitions of capa
tance or inductance to tunneling systems with an ac volt
applied. For example, the conventional way to find the
pacitance is based on defining the regions where charg
stored. These regions are considered as plates of a capa
10 602 © 1998 The American Physical Society
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However, in tunneling systems there is no way to unambi
ously define such regions. On the other hand, a consis
way to find the capacitance, as well as the inductance, ca
based on an analysis of the complex admittance of the
tem. In a general ac circuit with an ac voltageV(t)
5Vsinvt and a complex admittanceY, the current is given
by I (t)5YV(t). The current may be separated into anin-
phasepart and anout-of-phasepart I (t)5I IP(t)1I OP(t). I IP

gives us the conductanceG5Re(Y) and I OP, which is 90°
out of phase with the applied voltage, gives us the susc
tanceB5Im(Y). All information about capacitive and in
ductive characteristics of the system is contained in the
quency dependence ofB(v). In its turn, as seen from Fig. 1
the total currentI (t) corresponds to the measurable curre
I ` . That allows for measurement of both the real and ima
nary parts of the admittance.

Our goal is to develop a theory for calculating the co
plex admittance of a unipolar DBRTS in a wide enough
gion of ac frequencies. There have been several works
proaching this problem. Some authors have emplo
Green’s-function techniques based on the Landau-Bu¨ttiker
formula,11 the independent particle model with convention
tunneling theory,12 and an analytic path-integral method.14

None of these studies has taken into account the s
consistent potential in the sample. Other approaches, w
are also not self-consistent, are the Liouville equation co
bined with the Wigner distribution,13 the Breit-Wigner ex-
pansion of sidebands near resonances,15 and the solution of
the periodic time-dependent Schro¨dinger equation.16 A self-
consistent approach in the Hartree approximation, employ
the harmonic balance technique was also reported.17 How-
ever, in this work the transport of electrons was described
coherent tunneling, and thus the scattering processes of
trons in the quantum well were completely neglected.

While various levels of approximations have been e
ployed to investigate the admittance of the DBRTS, none
them seems to be able to provide a sufficiently rigoro
quantum-mechanical self-consistent approach allowing
an analysis of the capacitive and inductive nature of the
mittance and comparing with experiment. In the pres
work we derive an exact equation for the admittance,
pressing it via the tunneling currents and the charge distr

FIG. 1. Schematic sketch of the unipolar DBRTS~upper part!
and a principal sketch of the ac circuit~lower part!.
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tion. For a small ac voltage superimposed onto a steady-s
dc bias we derive a closed differential equation for t
charge in the quantum well. In linear response the parame
of this equation will be calculated from a self-consiste
steady-state solution of the system. After the charge ins
the well is found we can determine the current across
system and so the complex admittance of the DBRTS. O
calculations allow us to provide a numerical treatment a
qualitative explanation of thed-shaped peaks in the admi
tance observed experimentally.4 To our knowledge, this fun-
damental way of describing the total intrinsic admittance
tunneling structures is given for the first time. We would lik
to point out that the admittance peak appears in the b
voltage region fornegative differential resistance. Therefore,
in a way the admittance peak is associated to the reso
tunneling current through a unipolar DBRTS. As shown
some early calculation,18 the transmission probability of an
electron exhibits sharp peaks when the energy of the elec
is close to the resonant levels in the well.

The paper is organized as follows. In Sec. II we define
system under consideration and develop the theore
model for quantum admittance. The theory is then emplo
for numerical studies of two different samples in Sec. I
Finally we give some comments in Sec. IV. In the Append
we demonstrate the correct symmetry property in our der
tion of the quantum admittance.

II. LINEAR RESPONSE OF QUANTUM ADMITTANCE

We consider the unipolar DBRTS schematically illu
trated in Fig. 1. Thesamplein the circuit is the DBRTS. The
chargeQl in the left reservoir, the currentI ` in the left
contact, and the tunneling currentI l through the left barrier
satisfy the equation

dQl

dt
5I `~ t !2I l~ t !. ~1!

If we rewrite Eq.~1! as

I `~ t !5I l~ t !1
dQl

dV

dV

dt
, ~2!

making use of the general definition of admittance it b
comes

I `~ t !5I l
IP~ t !1I l

OP~ t !1
dQl

dV

dV

dt
5Re~Y!V sin vt

1Im~Y!V cosvt. ~3!

The in-phasecomponent gives the conductance

Re~Y!5G5
I l

IP

V sin vt
, ~4!

and theout-of-phasecomponents give the susceptance

Im~Y!5B5vS I l
OP

dV/dt
1

dQl

dV D . ~5!

We have derived the above results by analyzing the c
rents at the left part of the DBRTS shown in Fig. 1. Exac
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the same results can be derived if we analyze the curren
the right part of the DBRTS, as one expects. This is show
the Appendix.

To proceed further, we consider the situation of a sm
amplitude ac voltage,dV(t), superimposed on a steady sta
dc biasV0

V~ t !5V01dV~ t !5V01dV sin vt. ~6!

For a typical density 2.531011 cm22, the hot electron relax-
ation time is less than 10213 s.19 On the other hand, the
lifetime of an electron occupying the quasibound level in
well is of the order of the inverse tunneling rate, which
typically about 10212 s. For the problem of our interest, th
frequencyv is assumed to be sufficiently low such that t
period of bias voltage variation is longer than the hot el
tron relaxation time. Therefore, the quasiequilibrium in t
quantum well can be established since the lifetime of e
tron is sufficiently long as compared to the hot electron
laxation time. This quasiequilibrium state is characterized
a quasi-Fermi level. With given tunneling rates, quasi-Fe
level, and bias voltage, one can write the tunneling curre
I l(t) and I r(t) as

I l~ t !5
2e

~2p!3E dkv l~k!ut l~k!u2

3@ f ~k;V,Ef ,l ,T!2 f ~k;V,Ef ,w ,T!#

I r~ t !5
2e

~2p!3E dkv r~k!ut r~k!u2f ~k;V,Ef ,w ,T!.

We notice that the quasi-Fermi level is uniquely determin
by the density of electrons in the quantum well. Therefo
I l(t)-I r(t) is a function ofV(t) andQw(t) at the same time
because herev is much less than the hot electron relaxati
rate. This allows us to construct a closed differential eq
tion for the chargeQw in the quantum well,

dQw

dt
5I l~V,Qw!2I r~V,Qw!. ~7!

We assumedV/V0!1, and in regions whereI l /r(V) is fairly
linear, we can safely treat the system in the framework
linear response. In this case the charge in the quantum
can be written as

Qw~ t !5Qw,01dQw~ t !, ~8!

whereQw,0 is the dc response charge. Under steady state
two tunneling currents are equal,

I l~V0 ,Qw,0!2I r~V0 ,Qw,0!50. ~9!

Using this condition the differential equation~7! is linearized
as

ddQw

dt
5

]~ I l2I r !

]V U
~V0 ,Qw,0!

dV~ t !1
]~ I l2I r !

]Qw
U

~V0 ,Qw,0!

dQw~ t !

[GdV sin vt1VdQw~ t !, ~10!

where the coefficientsG andV are the corresponding partia
derivatives evaluated at steady state. We are interested i
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solution ofdQw(t) in response to an ac voltage of frequen
v. Consequently the solution of Eq.~10! has the form

dQw~ t !52
GdV

v21V2
~v cosvt1V sin vt !. ~11!

Our scheme for calculating the conductance and the
ceptance, defined in Eqs.~4! and ~5!, is to calculate self-
consistently the charge distribution and the tunneling c
rents at steady-state for all voltagesV0. From this steady-
state solution, within the linear response regime, we
ready to derivedQl /dV, as well as the coefficientsG andV
defined in Eq.~10!. With these coefficients,dQw(t) in Eq.
~11! is obtained. We can then calculate the time-depend
current I l(t) and separate the two componentsI l

IP(t) and
I l

OP(t). Now we have obtained all quantities required f
calculating the conductance~4! and the susceptance~5!.

Let us first clarify the question that the nature of the s
ceptance~5! is capacitive or inductive. The last part of E
~5!, vdQl /dV, is clearly a regular linear function of fre
quency, and thus contributes capacitively to the suscepta
The more interesting part of~5! is (vI l

OP)/(dV/dt). From
our detailed numerical calculations this part is found to
proportional to v/(v21V2). There are two different re-
gimes to be considered,v!V andv@V. V was defined in
Eq. ~10! as](I l2I r)/]Qw , and plays the role of the typica
internal frequencyof the system. Let us first look at th
low-frequency limit v!V. By expandingv/(v21V2) in
powers ofv at small frequencies one finds a regular series
odd positive powers with a leading linear term. Inductan
is, however, identified with a singular term diverging as 1/v.
Consequently, forv!V, the susceptance~5!, when calcu-
lated in linear response, is of a purely capacitive nature. T
is exactly the conclusion expected from a linear respo
theory. In the high-frequency limit,v@V, the situation is
more complicated. The regular part fromdQl /dV still con-
tributes to the capacitance. However, the te
(vI l

OP)/(dV/dt) will go as 1/v, and thus be of inductive
nature. Forv→` this term vanishes, and we are left wit
only the capacitive termC`[dQl /dV.

To conclude our theoretical analysis we give a brief d
scription of our self-consistent calculation for the stea
state. The method is described in detail elsewhere for a m
complicated bipolar DBRTS.20 We consider the heavily
doped emitter and collector as perfect particle reservo
characterized by their respective Fermi energies. Assumin
quasi-Fermi level in the well, we solve the Poisson a
Schrödinger equations self-consistently, together with t
equations for the two tunneling currentsI l and I r . The con-
straint ~9! on the two tunneling currents determines t
steady-state quasi-Fermi energy in the quantum well,
thus the steady-state chargeQw,0 . With this self-consistent
steady state we proceed to calculate the admittance as
scribed earlier.

III. NUMERICAL RESULTS

We have studied both a symmetrical and a highly asy
metrical DBRTS. We will first present the numerical resu
for the symmetrical DBRTS~sample A!, the structure of
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which is described in Table I. In Fig. 2 we show bo
Im(Y)/v and the steady-state current as functions of volt
at T5300 K. Im(Y)/v is plotted for both the low frequenc
v5103 s21 and the high frequencyv51012 s21. It is im-
portant to point out that in the limitv→0, Im(Y)/v has
contributions from the current terms in Eq.~5!, and therefore
is different from the steady-state resultdQl /dV. For both the
high and the low frequency, the susceptance exhibits a sh
almostd-shaped, peak at bias voltageV050.3 V, which lies
right in the middle of thenegative differential resistanc
~NDR! region. Thed spike originates from the dischargin
of the quantum well, and is a fingerprint of thequantum
admittance. Such sharp peak in the susceptance has b
found in DBRTS’s,6,7,15,17,16in superlattices,10 and in quan-
tum dots.4 Besides the main sharp peak, we observe a p
nounced drop of Im(Y)/v when the voltage increases acro
0.18 V. The reason for this drop is that at this bias volta
the tunneling becomes resonant, i.e., the energy level in
quantum well coincides with the Fermi energy in the emitt
For low frequency we also see a small drop in Im(Y)/v at
the voltageV050.12 V. The mechanism of this drop is hid
den in the term]I r /]Qw in Eq. ~10!, and cannot be ex
plained by a simple physical picture.

The conductance is calculated asG(V,v)5G01dG,
where the steady-state conductance is given byG0

5I l(V0 ,Qw,0)/V0 and dG5dI l
IP(t)/dVsinvt, with dI l

IP(t)
derived fromdQw(t) in Eq. ~11!. The conductance-voltag
relation atT5300 K is shown in Fig. 3, with the solid curv
for the high frequencyv51012 s21, the dashed curve fo
the low frequencyv5103 s21, and the dash-dotted curv
for the steady-state conductance. The conductance has

TABLE I. Structure of sample A~for Figs. 2–7!.

Emitter 231018 n1 GaAs 400 Å
Spacer undoped GaAs 80 Å
Barrier undoped Al0.3Ga0.7As 40 Å
Well undoped GaAs 50 Å
Barrier undoped Al0.3Ga0.7As 40 Å
Spacer undoped GaAs 80 Å
Collector 231018 n1 GaAs 400 Å

FIG. 2. Im(Y)/v for the low frequencyv5103 s21 ~curve with
the higherd peak!, the high frequencyv51012 s21 ~curve with the
lower d peak!, and the steady-state current~dashed curve! as func-
tions of voltage at temperatureT5300 K for sample A.
e
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contributions fromdG in the NDR region around 0.3 V
which makesG(V,v→0) different from the steady-stat
conductance. As a result of this, the overall conductance
the NDR region is negative for low frequencies and posit
for high frequencies. This agrees well qualitatively with r
sults obtained by others.13,15,17,16

We have reproduced Fig. 2 for various temperatures
order to investigate the temperature dependence of the
ceptance. Again we are most interested in the NDR reg
within which Im(Y)/v exhibits ad peak at an optimal bias
voltage. Both the value of the optimal voltage and the m
nitude of thed peak are found to be strongly temperatu
dependent as shown in Figs. 4 and 5. In Fig. 4 we see tha
the temperature increases the optimal voltage remains
stant for very low temperaturesT,50 K, and then decrease
linearly with temperature. Such behavior is due to the te
perature dependence of the self-consistently derived reso
energy level in the quantum well. With increasing tempe
ture, the charge accumulation in the well increases and so
resonant energy level drops. Therefore it requires a lo
bias voltage to reach the NDR regime, in which lies thed
peak of the susceptance. The optimal bias voltage is
quency independent, as seen from the low- and the h
frequency curves for Im(Y)/v in Fig. 2.

FIG. 3. Conductance-voltage characteristics for the low f
quency v5103 s21 ~dashed curve!, the high frequencyv
51012 s21 ~solid curve!, and the steady-state~dash-dotted curve!
for sample A at temperatureT5300 K.

FIG. 4. Temperature dependence of the optimal bias voltage
the occurrence of thed peak in Im(Y)/v for sample A.
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In Fig. 5 we plot the magnitude of thed peak of Im(Y)/v
as a function of temperature for the low frequencyv
5103 s21 ~upper curve! and the high frequencyv
51012 s21 ~lower curve!. In both cases the peak height d
creases with temperature. This is exactly what one wo
expect, since with increasing temperature the NDR regio
the I-V curve gets broader. The broadening of the NDR
gion reduces the discharging of the quantum well, and c
sequently decreases thed peak in Im(Y)/v.

In the NDR region, for a fixed temperature, the adm
tance is very sensitive to the frequency as seen in Figs. 2
3. We have investigated this frequency dependence in de
and the results are given in Figs. 6 and 7 for sample A at
bias voltage 0.3 V and the temperatureT5300 K. This is
exactly theT5300 K point in Fig. 4, and consequently th
peak value of Im(Y)/v is plotted in Fig. 6, and the pea
value of the conductanceG is plotted in Fig. 7. The peak
value of the admittance has a large contribution from
current term in Eq.~5!, which is related to the charge in th
quantum well given by Eq.~11!. As expected from our the
oretical analysis in the previous section, in Fig. 6 Im(Y)/v
drops to a constant valueC`5dQl /dV for v@V, and be-
come purely capacitive. For this sample A the internal f
quency, atT5300 K and voltageV050.3 V, is V50.2

FIG. 5. Temperature dependence of the magnitude of thed peak
in Im(Y)/v for the low frequencyv5103 s21 ~upper curve! and
the high frequencyv51012 s21 ~lower curve! for sample A.

FIG. 6. Frequency dependence of Im(Y)/v at voltage 0.3 V and
T5300 K for sample A. Under these conditions Im(Y)/v has the
peak value.
ld
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31012 s21. This is in good agreement with the electron tu
neling time of a few picoseconds, found in simila
structures.20,21 From Fig. 6 we see that Im(Y)/v has practi-
cally reachedC` at v'1012 s21, which is much larger than
V.

As mentioned at the beginning of this section, we use
formulationG(V,v)5G01dG, whereG0 is the steady-state
conductance, to calculate the conductance. With a ted
analysis we can show thatdG has a frequency dependence
the form (v22V2)/(v21V2). Therefore G(V,v→`)
2G(V,v5V)5G(V,v5V)2G(V,v→0). For sample
A at temperatureT5300 K and bias voltage 0.3 V, we
found V50.231012 s21 and G(V,v5V)5G051.5
3104 S cm22. All these features are confirmed in Fig.
where the conductance increases from a negative value
positive saturation as the frequency increases fromv50 to
v.V.

We have reached our conclusion that the character
features of the quantum admittance is related to the dynam
of the tunneling current, especially in the NDR region. W
therefore expect a suppression of the quantum behavio
the admittance if the peak-to-valley ratio of the tunneli
current is reduced. This can be achieved easily by increa
the strength of the barrier on the collector side, but at
same time to make sure there is no bistability. To dem
strate this point, let us consider the asymmetric DBR
~sample B!, the structure of which is specified in Table II. I
Fig. 8 we plot Im(Y)/v of sample B for the low frequency
v5103 s21 at the temperatureT5300 K, together with the
steady stateI-V curve. Although in this case we also obser
a relatively sharp peak in Im(Y)/v in the NDR region, it is

FIG. 7. Frequency dependence of the conductance at voltag
V and T5300 K for sample A. Under these conditions Im(Y)/v
has the peak value.

TABLE II. Structure of sample B~for Figs. 8 and 9!.

Emitter 231018 n1 GaAs 400 Å
Spacer undoped GaAs 80 Å
Barrier undoped Al0.3Ga0.7As 50 Å
Well undoped GaAs 60 Å
Barrier undoped Al0.3Ga0.7As 100 Å
Spacer undoped GaAs 80 Å
Collector 231018 n1 GaAs 400 Å
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much broader and less intense as compared to the c
sponding peak structure of the symmetric sample A,
shown in Fig. 2. These changes are due to a large reduc
of the tunneling current and a dramatic broadening of
NDR region, as can be seen from the steady-stateI-V curve
in Fig. 8. The susceptance minimum appearing atV050.16
V in Fig. 8 is caused by the onset of resonant tunneling,
same reason as for the susceptance drop at 0.18 V in Fi

The peak in Im(Y)/v in Fig. 8 is located at the bia
voltage 0.27 V. The corresponding internal frequency isV
54.031012 s21. We keep the bias voltage at 0.27 V and t
temperature atT5300 K, but vary the frequency to calcula
Im(Y)/v as function of frequency. The result is plotted
Fig. 9. By comparing Fig. 9 and Fig. 6, it is obvious that t
change of the dynamics of the tunneling current affects
susceptance-frequency relation quantitatively but not qua
tively, as expected from Eq.~5!.

IV. DISCUSSION

With Eqs.~4! and~5! we have provided the exact expre
sion of the total intrinsic admittance of the unipolar DBRT
derived from our theoretical analysis. The self-consistent
merical solutions are obtained within the framework of line
response. The use of linear response is well justified as

FIG. 8. Im(Y)/v for the low frequencyv5103 s21 ~solid
curve! and the steady-state current~dashed curve! as functions of
voltage at temperatureT5300 K for sample B.

FIG. 9. Frequency dependence of Im(Y)/v at voltage 0.27 V
andT5300 K for sample B. Under these conditions Im(Y)/v has
the peak value.
re-
s
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e
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r
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as~1! the ac amplitudedV is much less than the dc biasV0,
and ~2! around thisV0 the tunneling currentI l /r is fairly
linear on the scale ofdV. Under this approximation the sus
ceptance was found to be of entirely capacitive nature
both v→0 andv@V. However, it would be of interest to
go beyond the linear response approximation to investig
the inductive component of the susceptance as well as
nonlinear response of the DBRTS to a larger ac amplitud

Nevertheless, even with the nonlinear response neglec
when compared with the existing theoretical treatments
this subject, our fundamental way of describing the total
trinsic admittance of tunneling structures is given for the fi
time. Because our theory goes beyond all existing ones,
calculations produces for the first time the correct expla
tion of the d-shaped peaks in the capacitance obser
experimentally.4 It is important to notice in Fig. 2 and Fig. 8
that the admittance peak appears in the bias voltage re
for NDR. Therefore, the admittance peak is associated w
the resonant tunneling current through a unipolar DBRT
The resonant current peaks in Fig. 2 and Fig. 8 are br
because of the finite Fermi energy in the left reservoir in F
1. If we let the Fermi energy approach zero to simulate
tunneling of a single electron with specific energy, as sho
in some early calculations,18 the transmission probability ex
hibits sharp peaks when the energy of the electron is clos
the resonant levels in the well.

Since the phonon energy in GaAs,;37 meV, is of the
same order of magnitude as the thermal energykBT at room
temperature, the phonon scattering, with a time cons
;10213 s, will be a very effective process for fast relaxatio
of electrons in the quantum well and thus allow us to defi
the quasiequilibrium. Furthermore, our detailed numeri
calculations has shown that in the entire bias voltage ra
under consideration, the electron density in the well
;1011 cm22. For instance, for sample A at bias voltag
0.12 V the density is already 0.531011 cm22, at voltage 0.3
V it has increased to 231011 cm22 before it decreases agai
to 0.531011 cm22 at 0.35 V. With such high densities o
electrons in the well electron-electron scattering will be ve
strong. This will contribute to the fast relaxation of electron
and thus further support our assumption of a quasiequ
rium in the quantum well.

The major deficiency in our solution of the steady-sta
problem is the lack of an explicit treatment of phonon sc
tering. The phonons smear out the sharp features of theI-V
characteristics and give a broadening of the NDR regi
Consequently we would expect a widerd peak with a
smaller amplitude in Im(Y)/v. Furthermore, one can go be
yond the Hartree approximation to include many-body
fects. However we do not expect these improvements to a
the qualitative features of the quantum admittance dem
strated in this paper.

APPENDIX: SYMMETRY PROPERTIES OF QUANTUM
ADMITTANCE

We will briefly repeat the analysis withQr instead ofQl
to derive the same results of conductance and susceptan
given by Eqs.~4! and ~5!. Analogous to~1! the chargeQr
and the currentsI r and I ` satisfy



Eq
aw

n-
o
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dQr

dt
5I r~ t !2I `~ t !, ~A1!

which we rewrite as

I `~ t !5I r
IP~ t !1I r

OP~ t !2
dQr

dV

dV

dt
. ~A2!

This give the conductance

Re~Y!5G5
I r

IP

V sin vt
, ~A3!

and the susceptance

Im~Y!5B5vS I r
OP

dV/dt
2

dQr

dV D . ~A4!

The two equivalent expressions for the susceptance,
~5! and~A4!, are consistent with the charge conservation l

d

dV
~Qw1Ql1Qr !50. ~A5!
J.

R

s.
s.

To prove this we rewrite Eqs.~3! and ~A2! as

I `~ t !2I l
IP~ t !5

Im~Y!

v

dV

dt
,

I `~ t !2I r
IP~ t !5

Im~Y!

v

dV

dt
.

SinceI ` for the left is identical toI ` for the right side of the
sample, it is clear thatI l

IP5I r
IP , which is simply the state-

ment that the conductance of the DBRTS, Eqs.~4! and~A3!,
is uniquely defined regardless its derivation. We now co
sider the chargeQw in the quantum well, which is related t
the tunneling currents as

dQw

dt
5I l~ t !2I r~ t !5I l

OP~ t !2I r
OP~ t !.

By rewriting the above equation and making use of Eqs.~5!
and ~A4! we obtain the desired conservation law~A5!,

dQw

dV
5

I l
OP~ t !2I r

OP~ t !

dV/dt
52

d

dV
~Ql1Qr !.
r-

i.
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