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Exciton binding energy in a quantum well
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We consider a model describing the one-dimensional confinement of an exciton in a symmetrical, rectan-
gular quantum-well structure, and derive upper and lower bounds for the binding dagigfythe exciton.
Based on these bounds, we study the dependenEg oh the width of the confining potential with a higher
accuracy than previous reports. For an infinitely deep potential the binding energy varies, as expected, from 1
exciton Rydbergr at large widths to 4R at small widths. For a finite potential, but without consideration of
a mass mismatch or a dielectric mismatch, we substantiate earlier results that the binding energy approaches
the value 1R for both small and large widths, having a characteristic peak for some intermediate size of the
slab. Taking the mismatch into account, this result will in general no longer be true. For the specific case of a
Ga, _,Al,As/GaAs/Ga_,Al,As quantum-well structure, however, and in contrast to previous findings, the
peak structure is shown to survi&60163-18208)08639-1

I. INTRODUCTION AND STATEMENT OF THE ent aspects have been controversially discussed in the litera-
PROBLEM ture.
In this paper we are concerned with one of the problems
The study of electronic and excitonic properties inwhich—to the best of our knowledge—has not been solved,
guantum-well structures has been a subject of great intereke., the position of the peak of the excitonic binding energy
since the pioneering work of Dingle, Wiegmann and Hehry. as a function of the width of the confining potential. Some
In view of the enormous amount of literature in this field, introductory comments may be appropriate. For an infinitely
any list of references must be incomplete. We quote Refsdeep well, the binding energy is known to vary monotoni-
2—12 and 19, which are in part related to this work, andcally from 1 to 4R if the width L varies from infinity to
recommend the references therein. One of the most appeatero. Contrasting this case with that of a finite well in an
ing features of these systems is the enhancement of excitonitherwise homogeneous material, the binding energy be-
effects, for instance the increase of the binding energy antlaves similarly for sufficiently large values bf but quali-
the oscillator strength, which may allow the observation oftatively differently for smallL. In the latter case, the wave
an exciton even up to room temperature. function spills increasingly over the interfaces and into the
The main reason for the large binding energies and oscilbarriers, occupying a greater three-dimensional volume as
lator strengths is understood to be the quantum confinemetnneling becomes more and more important. In the ultimate
of the electron and hole in the growth direction of the het-limit of zero width, the binding energy will again be .
erostructure; in comparison to a three-dimensional monoFor a finite well width the confinement will increase the
structure, the electron-hole correlation is increased. Morebinding energyE,, above 1R. Thus we are lead to conclude
over, the mass mismatch as well as the dielectric mismatcthat E,, should have a maximum for some intermediate well
in a quantum well may even enhance this effect, as wawidth. In fact, this behavior was found in a variational treat-
primarily pointed out by Keldysf® ment due to Greene, Bajaj, and Phelpm Sec. IV, we
In contrast to the simple qualitative reasonings, a quanticomplement their results by lower bounds for the binding
tative theoretical description of the excitonic enhancement ignergy, which have a relative deviation(aef mosj 0.2 from
quite complicated. The reasons are obvious; as translatidme corresponding upper bounds and, furthermore, a similar
symmetry is broken in the growth direction of the hetero-shape.
structure, the familiar separation of the center of mass and A finite well in an otherwise homogeneous material
the relative part of the exciton motion is no longer possibleshould probably be viewed as a rather poor model for a real
If a dielectric mismatch is to be included, the electron-holequantum well. We anticipate, however, that such a conclu-
potential is no longer a simple Coulomb potential. If a masssion might be somewhat pessimistic. The model is well ap-
mismatch exists, the kinetic-energy part of the Hamiltonianplicable as a starting point for a quantitative description, but
is no longer isotropic. Turning to real substances such awe include mismatches for the masses and the dielectric con-
Ga, _,Al,As/GaAs/Ga_,Al,As, band-structure complica- stants. What about the binding energy under these circum-
tions (e.g., valence-band degenerpao occur. Moreover, stances? The situation is clear in the limiting cases; for an
the growing process may induce interface roughness, etc. Agfinite well width, we start with IR of the well material,
a consequence, the spectra of excitons in a quantum well arghereas for zero well width, we arrive atRl’ of the barrier
far from being understood on a quantitative scale, and differmaterial. Whether or not a peak appears will be sensitive to

0163-1829/98/5@.6)/1056810)/$15.00 PRB 58 10 568 © 1998 The American Physical Society



PRB 58 EXCITON BINDING ENERGY IN A QUANTUM WELL 10 569

ance within thex-y plane; consequently, the corresponding
/ / / / components of the total momentum are conserved.
To set up a model Hamiltonian, we proceed as described
! ! ! ! !

5 7m/e’ m’, £,me,my | €,ml,m} before. Intrpdu_cing center-of-mass and relati-ve coordinates
for the motion in thex-y plane, the corresponding center-of-
mass part can be eliminated by projection on the subspace of
total momentum zero. We are left with the Hamiltonian

|
_% 0 % z H::[zﬂi(zeazh)]ilpi—i_pz,e[zme(ze)]ilpz,e
+P2n[ 2Mn(20) 17 'P2nt Ve(Ze) + Vi(2Zn)
+Ver(T | \Z,2n).- 2)
] ji Here the indice® andh characterize the electron and hole,
CB respectivelyz,, z,, p,., andp,, are thez components of
.. V. the position and momentum, amae,(z) and m,(z) the cor-
toinimum l responding masses. For the relative coordinate inxthe
plane we use the notatian :=r, .—r, ,, p, denotes the
corresponding momentum, and
4 _ _ _
VB v, (11 (Ze,20)] 1=y (2] M p(z)] 7 ()
maxinm | SEEL B is a generalized reduced mass. The confining potentials for

electron and hole aré.(z.) andV,(z,). These potentials are

FIG. 1. Geometry of the quantum well. - © 3
assumed to be finite rectangular wells of the wilth

the value ofR/R’. Andreani and Pasquarellperformed a ,
study for Ga_,Al,As/GaAs/Ga_,Al,As, including the ef- V(2= 0 if |z]=L/2 @
fects of, first, a dielectric mismatch and, second, the valence- O AV P A WP
band degeneracy. They did not find a peak¥pr0.25 and a
width L>30A, even when the band degeneracitieoreti-  wherei=e,h. Finally, we have to specifWqn(r, ,Ze.zp),
cally) switched off. that is, the potential energy of the electron and hole. To do
The intention of this paper is to reexamine this conclusiorso, we apply Poisson’s equation to find the electrostatic po-
critically. Clearly, our model must also resort to simplifica- tential of one of the point charge®.g., that of the hole
tions, as was indicated above. For each part of the heteramnder the geometrical conditions of Fig. 1. At the interfaces,
structure, we assume nondegenerate, isotropic, and parabotfee familiar continuity conditions of electrodynamics have to
bands, but include a mass mismatch and a dielectric mishe fulfilled. If we assume this potential to be known, its
match at the interfaces. The confinement of the electron angroduct with the electron charge yields the potential energy
hole is mimicked by finite rectangular wells. Our strategy isof interest. We note that the required solution of Poisson’s
to produce upper and lower bounds for the correct bindingquation can conveniently be set up as follows. At first, one
energy of the model. Consequently, we can estimate the errgrerforms a Fourier transform of the potential with respect to
of our results quantitatively. Inserting the material param-the coordinates andy. One will realize that the remaining
eters of Ga_ ,Al,As/GaAs/Ga_,Al,As, with x varying differential equation with respect tocan be treated directly
from 0.15 to 0.40, we do find a peak structure. We canthe solutions are exponentialdn fact, this is the method
thereby disprove the above assertions. which was used by Fomin and Pokatif8winder more gen-
eral circumstances. For the present geometry, their formulas
can be somewhat simplified, leading to an explicit result for
the potential energy which can be found in a paper of Kuma-
To begin with, we fix the geometry of the quantum well gai and Tagakahara.These authors used the method of im-
as shown in Fig. 1. The figure shows a cut perpendicular tage charges, and arrive at a power-series expansidfof
they axis, the well extending frorm=—L/2 toz=L/2. The the expansion parameter being
remaining spacez|>L/2 is occupied by the barrier material.

IIl. FORMULATION OF THE MODEL

The material parameters of the well and barrier are denoted e—g'

by unprimed and primed characters, respectively. To achieve q:= - 5)
a compact nomenclature, we defindependent expressions, ete

e.g.,

The zeroth-order terr??) of the power series is the familiar
Coulomb expression

m(z):=mé(L/2—|z|)+m’6(|z] —L/2), 1)
for the mass of a particlgj(z) is the familiar step function. VO, \2e.20):=— e_2 6)
As indicated in the figure, we assume a translational invari- eh\l11%e:4h): er’
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the dielectric constant being that of the well material, and Vvanishes. Summarizing, the confinement potentials are as-
denotes the hole charge, divided byrg, (S| unity. The sumed to be changed. We doubt that modifications of the
higher-order terms constitute the so-called image potentiafonfinement potentials can be motivated this way, and refer

For further use, we note thglinear contribution explicitly: 0 the early quantum-mechanical debate on the hydrogen
problem with (or withouy self-energy correctionde.g.,

qe?(0.+0. 1-0, 1-0. Tomonagd®). Consequently, we did not include such correc-

& r t T r. ) tions here. We agree, however, with the statement made in
7) Ref. 12 that a correct microscopic description of an exciton

) ] i i in a quantum well should contain(well behaved

In this equation, we defined the distances ., and the®  nojarization-induced modifications of the rectangular con-

1,2 )
VD(r, ,ze,20):=—

factors as follows: finement potentials. It should be mentioned that if we modify
. \/272 the confinement potentials in the way indicated above, then
F=nri+(ze=z0)% the corrections to the final binding energies presented Sec.

> 5 IV are of the order 1 meV.
rei=ri+(zetzyxL)?, tS) It will prove useful to introduce dimensionless variables.
For the excitonic system under consideration, appropriate

and
units of length and energy are the exciton Bohr radius and
0. :=0(ze—LI2)+ 6(z,— L/2), Rydberg energy. Considering the well material, these are
O, :=0(—z.—LI12)+ 6(—z,—L/2). 9 52e w et
ag:= , 1= . 12
We add three remarks concerning these formulas. ® w, €2 282h2 12

The reader will notice that all terms &f{}) are of Cou-
lomb type, the corresponding denominators being partiallReturning to Eqs(2), (6), and (7), we replacer by agr,
displaced. It is important to realize that this property remainsntroduce the dimensionless Hamiltonian
valid for all higher-order contributiongsee Ref. 1L Conse-
quently, we induce an error of ordgf, if we replace the full h:=H/R, (13)
expression folV,, by VO + V() As q is typically of the
order 0.1, this simplification is reasonable, and will be usedind find the expression
in the remainder of this paper.

The second remark is concerned with an ambiguity in the

power-series expansion df,,. Because of E¢5), we may h=——"—+-—-Vi-—
replaces by &’ (1+q)/(1—q). Inserting this equality into H1(Ze Zn) 0Ze Me(Ze) 9Ze  0Zn Mn(Zn) 924
Egs. (6) and (7), we find terms of zeroth and first order as 2 0.+0. 1-0. 1-0.
follows: ——=—2q +
r r r_ ry
— 2 +Uq(Ze)+Up(zp). (14)
Ven(r. ze.zn)i=— —, (10 el
All variables are now dimensionless. The confinement poten-
tials read
(1) > qe?( 0. +0 -2
Ven(ry,ze,zp)i=— —| ——— _
r Uiz {o if |z]<1/2 .
i(z):= .
+ - + . . 11
- * where we introduced
These expansions are clearly equivalent, and will be used to
our advantage in Sec. Ill. V; L
Finally, we mention that some authdisee, e.g., Refs. 8, Uit==. l:= 2’ (16)

11, and 12 include self-energy terms iHl, which are also

due to a dielectric mismatch. Formally these appear ifrhg gfactors are defined as in E) with the exception that
one considers electron and hole inhomogeneities in Poig- g replaced by .
son’s equation, and inserts the total electrostatic energy \ye shall need a second dimensionless version of Hamil-

into H. The interaction part of this energy is the one we useqonian (2), which is based on the Bohr radiag, and the
above [i.e., Ver(r, ,Ze,zy)], the diagonal parts produce Rydberg energR’ of the barrier material, as well as formu-
the self-energy termsX(z,) for the electron [ie., |as(10) and(11) for the electron-hole potential energy. In-
—Ven(r, ,Ze,ze)/z, evaluated for, =0 andz,=z., the bulk  troducing

Coulomb singularity being subtractednd 2 (z,) for the

hole. Inspection of Eq(7) shows thaf, (z) consists of one- h':=H/R', (17)
dimensional Coulomb potentials, which exhibit a singularity

on the interfacez=+L/2 andz=—L/2, and vanish ifg  one arrives at
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w) ., 0 w. a9 g uml 9 (parame;eh).hBoth as_pectsdgre pa_rticullarly impc;]rtantri]]c onsj A
VT T oo T o o oo approaches the quasi-two-dimensional case, where the widt
#o(Ze:20) 02 Me(Z) 0Ze 92 Mi(Zh) 92 of the layer becomes considerably smaller than the Bohr ra-
2 0.+0.-2 1-0. 1-0. dius of the exciton. We anticipate that our numerical results
- F—Zq + + for Ga _,Al,As/GaAs/Ga_,Al,As will confirm this picture.
The effect of an optimized variational choice foris most
+UL(Ze)+U(2h). (18) pronounced in the vicinity of the maximum of the binding
energy, wherex deviates significantly from 1, thereby en-
The @ factors are defined as in EQ) with the exception larging the binding energy up to a factor 1¢f course, the
thatL has to be replaced Hy:=L/a . In analogy, the con- precise value depends on the material parametée en-
finement potential®)’ can be taken from Eq$15) and(16), velope can correctly reproduce the ultimate limits of a free-
if one replaces the unprimed material parameters by primeéxciton ground state in two or three dimensions. Conse-
ones. quently, the trial function is quite flexible, and we expect the
variational inequality

h'=

r r_ My

lll. UPPER AND LOWER BOUNDS
FOR THE EXCITON BINDING ENERGY Eo_  (Wanlh[Wan)

smin—=———F+-+ (24
Because of the absence of translation symmetry, the R\ (P arl¥an)

HamiltonianH (or h or h’, respectively cannot be treated . o .
analytically. Nevertheless, we can fix quantitative propertied® P€ effective. For the binding energg, we derive
of the binding energyE, by means of rigorous bounds,
which will be derived in the following sections. Our strategy Eo_o o mintYealhl¥an)

. . . =€peT €oh I . (25
will be to discuss first the ground-state enefgy The rea- R ’ T one (Tanl¥on)
son is that we can directly prove bounds Ey. The binding
energyEy, in turn, is related tdE, by the equation Note that the minimum of the right-hand side can be calcu-

lated forq=0, as we have linearizeld with respect tag.
Eb=EcontEo,

where E.,,; denotes the energy of the continuum edge. In B. Upper bounds for the binding energy

our case,E . is the sum of the lowest well energies of

. . In this subsection, we provide a class of lower bounds for
electron and hole, any correlation being neglected. For furs: : ,
o Eo. To do so, we assume that the barrier massgamy, are
ther use we note the explicit formula

not smaller than the corresponding well massgsandm;, .

Econt/ R=©0e+ €oh (200  This is the case for Ga,Al,As/GaAs/Ga_,Al,As, which

) . ' T will be used as an example. Recalling form@is) for the
whereeo, (i =e,h) is the ground-state eigenvalue of the one-pamiltonian under consideration, one verifies by direct in-

dimensional well Hamiltonian spection that the following inequality is true:
. J M d ' ']
hi= = @ 2 V@ (21) (¢Ih'|py=(o|h"| $) (26)
part of the total Hamiltoniar(14). The eigenvaluesy; is for any normalized wave functios, where
implicitly defined by the equation
T — N i L2 1 1
eoi =L arcsif LoV, (22) h'zi—Vf—&—z—M—Lﬁ—r—ZQ(,—ﬂ—)
P = a . ! / Z _
o m; 12 \/1+(mi’/mi—l)eo,i/Ui Me 9Ze My h "
Due to Eq.(19), an upper(lower) bound for E, yields a +Ug(ze) +Up(zh). (27)

lower (uppep bound forE,, .
(uppey b We stress that the above assumptigh>m; is not crucial. If

the contrary was true, we would find an analogous inequality
o . with respect to Hamiltoniaf14). o
We use a_varlatlonal ap_proach, to derive an upper bound T provide a lower bound to the spectrumtdf, we split

on Eq. The trial wave function is the Hamiltonian(27) into four tractable parts. Assuming the

corresponding ground-state energies to be known, their sum
e = —ar2 222 . ' .
V(11 ,26,21):=Dg(Ze)Pp(zn)e” “V' =™ (23)  will be a lower bound tcEy/R'. Let us consider the follow-
ing decompositions:

A. Lower bounds for the binding energy

wherez: =z.—z,, and®;(i =e,h) is the ground-state eigen-
function ofh; [see Eq(21)]. Clearly, the factorsb, and®d,, —

serve to incorporate the single-particle well behavior. h'=h¢+hp+hi+hi,,
Choosing an exponential envelope in E2p), we account

for two important aspects: first, the confinement-induced w5

change of the effective Bohr radigsarameter); and, sec- hi=: _(1_Xi)F ?+ U/(z), i=eh,

ond, the quenching of the wave function in thealirection i 04
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R ul P P2 Concerninge,, , we transform the corresponding Hamiltonian
hi=:—yV ?—XeYe T XY ST h; introducing center-of-mass and relative coordinates in-
e 0Ze h 9Zh stead ofz, andz,, we can separate the center-of-mass part.

Performing an appropriate scaling transformation with re-

’ = 'u’l 02 r =7 — i i -
h=: —(1—Y)Vf—xe(1—Ye) i, - sfpecF tor, andz=z,—z,, we arrive at the following equa
Mg 0z tions:
Xp(1-y )—Mi —62 Zq(—l + 1 ) (28 1 2 1
ALl A VRN R ' e.=—infsped —V2— —————t=:1-¢e(A), (31

Here,x;, y;, andy are parameters with values in the inter-
val [0,1] but otherwise arbitrary, which can then be choserwhere inf specf) denotes the lower edge of the spectrum of
to lift the lower bound as much as possible. The excitonthe operatoA and
ground-state energl, fulfills the inequality
Eo/R' =€) +e)+e,+el, (29 poo P XY Me M
T ' ' e ’ r "
y(me+mh) Mg+ My,

where the four terms on the right-hand side are the ground- M
state eigenvalues of the four partshdf, defined in Eq(28). Clearly, e(A) is (in units of R') the ground-state energy of

The elgenva_llueei can be derlv_ed from Ec{?Z); removing 4 anisotropic Coulomb system. Before we comment on this,
the mass mismatch and rescaling the particle mass appropri- he | g l v e’
ately, we find we turn to the last term in inequali29), namely,e/,,. We
' transform the corresponding operalgy, in two steps. First,
’ we replacez;, by —z,, second, we introduce center-of-mass
! [t H ! ! H H H
€ =4(1—xi),—,2arcsu¥\/1—ei 1U;. (300  and relative coordinates instead nf and z;, as was done
m; | above. We find

Xe(1—Ye) N Xp(1—Yh)

! !

Mg mp

32 2[1 1
Fri

ei’m=inf8pet{ ~(1-y)VZ=u| 98- TR } (33
whereR, andR_ are derived front, andr _ by replacingz.+ z, by the relative coordinate. Splitting the right-hand side

of expression{33) again into two parts, containing the term&1/and 1R, separately, we may shift the varialdéy +1’ and

by —1’, respectively. We obtain pure Coulomb potentials in both cases. Assuming their solutions to be known, we are finally

lead to the inequality

R Xe(1— Xn(1— #? 4
ol =infsped — (1—y)¥ 2 /| e Ye) | XL 7Yn) —- = (34)
m,, my, gz T
|
Performing an appropriate scaling of variables, we can o 1 4q2
reduce the right-hand sidg once more to the anisotropic Cou- —— =  max e.+el+—e(A)+ e(A)|.
lomb problem. In comparison with E¢31), the parameters R e Xn Yo Vn oy y (1-y)
are changed: (37
2 2 Finall i | indi i
, . ez y, we arrive at a result for the binding energy, which
Cim= 1_y|nfspe{ v /—rf+A’22 ' (39) complements the relatiof25);
the anisotropy parameter now being E
b ! !
B Xe(1=Ye)Mp+Xp(1—yp)me =, ST max | (e—€oe)*(€h—eop)
'=—= (36) R Xe Xn Ve Vh Y
,u,‘f (1_Y)(me+mh)
1 492
We summarize our results fa&, e/,,, andEy/R'. To + ;e(A)ﬂL 1=y e(A")|. (38

evaluate relation$29), (31) and (35), we need an exact ex-
pression for the ground-state eigenvak(@) of the aniso-
tropic Coulomb problem or, at least, a corresponding lowerTo the best of our knowledge, an exact analytical equation
bound. Assuminge(A) to be known, the above consider- for e(A) is not available up to now. However, involved
ations prove the inequality variational calculations were performed by several authors;
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4.0 LY L} T T

\ \ no parameter mismatch

\ . Ve=Vh=V ; M=my

3
5 3
/ L
sl 7/ [T e 1
= S/ —— Gerlach/Pollmann, 1st upper bound
/7 / — — - Gerlach/Polimann, lower bound
Y — - — simple lower bound
’/ /
4
-4.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.0 : : : \
anisotropy parameter A 0.0 1.0 2.0 3.0 4.0 5.0

well thickness L/a,
FIG. 2. Upper(solid lineg and lower(dashed linesbounds for

the anisotropic Coulomb problem. The solution which is considered FIG. 3. Binding energy as a function of the well thickness for
numerically exact is drawn as a thick line. different potential heights, showing comparison of the variational

calculation (solid lineg and lower bound metho¢dashed lines
we refer to the paper by Gerlach and Polim&hand the The dash-dotted line shows .the result for the simple analytical
references therein and to our brief summary in the Appendix/0Wer bound from the Appendix.
The optimal upper bound a(A), which is presented in Ref.
15, will be denoted asgp(A) (see Fig. 2. Numerical stud-
ies indicate thakegp(A) deviates frome(A) only on a 1%
scale, although a rigorous estimate is admittedly missing. W
mention that the quoted paper also contains additional low
bounds fore(A) which might be used to evaluate the pre-
ceeding inequality. In this paper we shall add another Iowe{
bound(again, see the AppendixUnfortunately, the overall
quality of all these lower bounds is not sufficient. Therefore, >
we will usually insert the numerical approximatieg (A) Es —ma —Aw—+e(A)
instead ofe(A). 2

ande; o can be derived frone; , if we let x;=0. The eigen-
valuee(A) was defined in Eq(31). We shall now treat the
ases of an infinite and a finite well. They will be shown to
ave a qualitatively different behavior in the narrow-well
regime, as indicated in Sec. I.
For the limiting case of an infinite well we can simplify
he inequality(39) as follows:

. (41

To proceed, we employ another inequality, namel4) =

V. RESULTS AND DISCUSSION —4/(1+ 3A), which is derived in the Appendix. In this case,

A. Absence of mass and dielectric mismatch we are lead to an analytical result fiag :
We used this simplified model to test the efficiency of the p
above bounds and to illustrate the dimensional aspect. The 4 if |sw\ﬁmo_91

system is interesting on its own, and was already discussed
in the literature(see Refs. 4 and)7Here it will prove useful 3 a2
to understand the well-width dependence of the binding en- 4 \/:_ — if 0.91=<1=<3.63 (42)
ergy on a quantitative basis. 3l 312
One can easily specify the general results from above for 2 3
if IBZW\ﬁ~3.63.

2|
Iy

the discussion of the present case. Equalizing all primed and 1+ 77_2
I

unprimed material parameters, we haye0 andh=h’. We \
simplify even further by assuming.=my,, u, = u;=mg/2, ] ] .
andU/=U/=U. Turning to inequality38) and recalling its The right-hand side of Eq42) is shown as dash-dotted

derivation, we have to choose=y,=y=1 (no image po- curve in Fig. 3. One realizes that the required two- and three-

tentia). Consequently, the anisotropy paramefsee Eq. dimensional Iimits 4 and R are reproduced, if ten;ls to0 _
(32)] is fixed asA=(x.+x,)/2. Summarizing at this stage, ando, respectively. Unfortunately, the overall quality of this

we derive, from relatio{38) bound is rather poor. Inserting the resedi-(A) for e(A), as
’ ’ indicated in Sec. I, the upper bound @&, is drastically

lowered as shown in the figurglashed line folV=c). In
addition, Fig. 3 contains a lower bound for the binding en-
ergy (solid curve forV=cx), which is based on inequality

=h<— masf(ea—ene) +(en—eon) +e(A)], (39

wheree; [see Eq.(30)] is now the solution of the equation

(25).
2(1— Before we discuss the results in greater detail, we con-
ei=(—xi)arcsir? 1—¢ U, (40)  sider the finite-well case. Then the inequali8g) has to be

12 evaluated without further simplifications. Apart from the
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limiting cased — 0 andl — o, an analytical discussion is not ' '
possible. The small-width case, however, is interesting on its HH-exciton in GaAs/Al,,Ga, ;As
own. Forl—0, the solution fore; is 10.0 1 (inclusion of the exact cont. edge) 7
e=U[1—-UI?/(2—2x;))+0(I%)]. (43 -
(]
Inserting this expression into inequalit39) and utilizing % 8.0
e(A)=—4/(1+3A) again, one finds the result o -
5
1= <14 BUICo(D), i 10 w £
=R (1), it 1-0, (44) 2 no mismatch |
S 60 ¥ | ~—a only dislectric mismatch i
which was mentioned in the Abstract as well as in Sec. I. For ¢—— only mass mismatch
finite values of, we proceed as in the numerical treatment of — diff. & diff. m
the infinite well. Replacinge(A) by egp(A), we find the
upper bounds, which are shown in Fig.(@ashed curves 4.0 L L
. ; . ; 0 100 200 300
Again, the figure includes the corresponding lower bounds thickness of the slab [A]

(solid curves.

Clearly, the most significant attribute of these curves is FIG. 4. Binding energy of a HH exciton in
the appearance of a maximum Bf as function of the well ~ Alg Gay As/GaAs/A} ,Ga 6As; the effect of dielectric and mass
width L, if the heightV of the well is finite. There exists a Mmismatch is shown separately by the triangle and circle symbols,
unique relation betwee¥t and the position. ,,, of the maxi- re_spe_ctively. The thick solid line illustrates the result of both con-
mum; for larger values ol L. becomes smaller. All ({ributions.
curves exhibit the expected asymptotic behavior. For finite
(infinite) V, the largek limit of the binding energy is IR, +10.0&, with one notable exception; the differenaé&, of
and the small: limit 1 R (4 R). Last but not least, the shape the gap energies for=0 andx>0 is fitted as
of the upper and lower bound is very similar, the relative
deviation not exceeding 0.2. We are sure that the deviation
as such is mostly due to the inaccuracy of the upper bound AE4=(1.08%+0.4382) eV. (45)
on the binding energy. We recall that the lower boundHEgr
is based on a variational upper bound on the ground-state } . )
energy, whereas the upper bound needs an accurate lower The precise partition ohEg on the electronic pai, and
bound forE, as input; as usual, this part of the task is thethe hole party, has been critically discussed; to the best of
more difficult one. our knowledge, no previous general solution exists. We used
the empirical relationV=0.6AEy; and V,=0.3%AE,
(again, see Ref.)9 but also indicate the consequences of
modification to this assumption.

In this part we apply our theory to a single-well structure, We discuss now our results. To begin with, we present
which exhibits a mismatch of both masses and dielectric patlower bounds for the binding energy according to relation
rameters. As far as specific material data are concerned, wWe5). In Fig. 4 we depict the influence of the parameter mis-
use those of Ga ,Al,As/GaAs/Ga_,Al,As. We stress, matches on the heavy-hole (HH) exciton of
however, that a direct comparison of our results with experiAl,Ga, _ ,As/GaAs/ALGa, _,As for x=0.3. The thin solid
mental data is limited by the fact that the present theory igurve describes the hypothetical case of equal masses and
clearly incomplete. An obvious shortcoming is that, for ex-dielectric constants in well and barrier; it may be viewed as a
ample, the effects of valence-band degeneracy, spin-orbieference line. Switching on the discontinuity of the band
coupling, and exchange interaction are not included. Our inmasses onlycircles, the bound for the binding energy is
tention was to analyze the implications of the well structure Jowered. We are confident that this is an artifact of our varia-
in particular the inability to separate the center-of-mass angional treatment. On the one hand, the energy of the con-
relative coordinates, as accurate as possible in order to hav@uum edge is exact, the effects of the mass mismatch being
a well-defined basis for further improvements. fully incorporated; on the other hand, the variational bound

For the material parameters, we refer to the tables of Refon the ground-state energy is, of course, an approximation.
16 and the work of Winklér (see also references there The difference between the two underestimates the influence
in). For GaAs, we used=12.53, andn,=0.067m,, further-  of the mass mismatch. Treating the mass-mismatch induced
more, m,=0.090ny,u, =0.05Im;, R=4.418 meV, and effects on the binding energy in first-order perturbation
ag=130.21 A for the light hole, andm,=0.377m,, theory, no such artifact shows up. Our results agree with
w, =0.042n;,, R=3.638 meV,and ag=158.12 A for previous ones of Priester, Allan, and Lanf8donsidering
the heavy hole. For AIAs, the corresponding param-only a dielectric mismatch, we find the curve depicted by
eters are £=10.06, m,=0.150n,, m,=0.208(0.478)n,, triangles. One realizes that the presence of image charges
p, =0.106(0.093)n,, R=14.2(12.5) meV, and ag shifts the binding energy to higher values, and this shift re-
=50.2(57.2) A for the ligh{heavy hole. The material pa- mains present for a wider range of the well width. It is only
rameters for Ga_,Al,As are normally described by linear for L>ag that the energy shift disappears. Finally, the thick
interpolations formulas, for instances’=12.53(1-Xx) solid line summarizes all effects. In comparison to the refer-

B. Finite rectangular quantum well in a heterostructure
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FIG. 5. Binding energies of the HH and LH excitons for differ- ~ FIG. 6. Binding energies of the HH and LH excitons for differ-
ent Al concentrationsx=0.15, 0.3, and 0.4. The variational ap- ent valence-band offsets in ffGa ¢As/GaAs/Ab GayeAs. The
proach including parameter mismatch is applied. The logh- valence-band offsets are chosen either from Greene, Bajaj, and
es) curves belong to the smalle@argest value ofx. P)h(elps(RQef. 7 (triangles or from Andreani and PasquareliRef.

8) (circles.

ence curve, the peak height and peak position is only slightly _ ) ) . )
changed: in our case, we find,,~60 A and a peak height cal data in detail, we realized two points; the adapted trial
of 9.5 meV. ' ax function is well localized within the well for all values of
Figure 5 presents lower bounds for the binding energie§2LmaX_amj even slightly be_low; anii) the upper bound
of heavy- and light-hole (LH) excitons in for the binding energyor, equivalently, the lower bound for
Al,Ga, _,As/GaAs/ALGa_,As, assuming different Al con- the ground-state energgrossly overestimates the mismatch.
ce);1trati_oxn9<=0.15 03 z;rxld 04 The dash@blid) curves If we take(i) for granted, for the exact wave function we can
correspond to the light-holéeavy-holg¢ exciton. The lowest also simplify the peak prpblem from the very beginning. If
(highes} curve of every set belongs to the smalldatgesy W€ calculate an expectation valugha[fsee Eq(14)] for such
value ofx. The observed sequence can easily be explained Wave function, we can first omit & factors, and second
A higher Al concentration causes a higher band-gap differ’®Place all material parameters by well parameters. Then
ence and therefore higher potential wells. In addition, thenay be replaced by’ [see Eq.(27)] with the important
peak positions are found to decrease with increasing Al conmodification that all parameters i have to be understood
centration. Again, the reason is clear; the higher the value odis unprimed ones, namely, those of the well. Calculating
X, the smaller the influence of the barrier. In fact, we expect
to recover the trend illustrated in Fig. 3, which is indeed the

. . lower bound I
case. Above all, we find a peak structure for0.25 andL A— approximate upper bound
>30A, in contrast to the assertion of Andreani and #—— rigorous upper bound

Pasquarelld.Comparing their trial wave function with ours 15.0
[see EQ.(23)], one realizes a significant difference. In their
case, the motion of the electron and hole can be separated>’
We believe that this property is responsible for the aboveg,
discrepancy.
We mentioned above that the actual value¥/gfandV,
are somewhat controversial. Therefore, we found it interest-
ing to change the fractioW/V.. In Fig. 6 we compare
lower bounds for the binding energy,,/V. being chosen as
35/65 (circles and 15/85(triangles, respectively; the latter HH in GaAs/Al, ,Ga, ,As
value was used by Greene, Bajaj, and Phélpgerestingly !
enough, the peak position is not changed too much. 50 F .
We shall now comment on the accuracy of our results. To ' L L
do so, we have chosen the HH case of 0 50 100 .. 150 200
: thickness of the slab [A] |
Al Ga, /As/GaAs/Al Ga, ;AS as a representative example.
In Fig. 7 we contrast lower and upper boun@stted and FIG. 7. Rigorous upper boundgircles and lower bounds
solid lines for the binding energy according to Eq&5) and  (lines) in comparison with approximate upper bounds for the exci-
(38). The shape of the curves and the peak positions argn binding energy in Al,Ga As/GaAs/Ab Ga¢As. The HH

nearly the same for both bounds, the peak heights, howevef.H) exciton is denoted by soliddashedl lines and filled(open
differ disappointingly by a factor 1.5. Analyzing the numeri- symbols.

10.0

ng energy

bindi
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15.0 T T T | authors(see, e.g., Refs. 8 and 20
variational method
—==—appr. lower bound method
130 | m—a theor. data from Ref. [8] V. CONCLUSIONS
. * exp. data from Ref. [17] . . . o
A exp. data from Ref. [18 The intention of this work was to calculate the binding

energy of an exciton in a rectangular quantum well with a
higher reliability as was previously to be found in the litera-
ture. In doing so, we provided upper and lower bounds for
the binding energy, which have a similar shape and consti-
tute an allowed channel for the exact binding energy which
is satisfactorily small. We can conclude that the peaks of the
] binding energy as function of the well width are well estab-
lished within our model, and for a wide parameter range. In
the case of Ga ,Al,As/GaAs/Ga_,Al,As, our results re-
5.0 . . . vise those of Ref. 8, thereby extending the regime of “ad-

0 50 100 . 150 200 missable” well widths to less than 30 A. From a method-

thickness of the slab [A] . . . S
ological point of view, our derivation of upper bounds on the

binding energy (or, equivalently, lower bounds to the
ground-state energycan be transferred to related problems.

9.0

binding energy [meV]

70 | HH in GaAs/Al, .Ga, As |

FIG. 8. Comparison of the present calculatigsslid and dash-
dotted lineg with experimental datgéstars and trianglesas well as
with theoretical datdsquare symbo)sor the heavy-hole exciton in
Al Ga AS/IGaAs/Af Ga, AS. ACKNOWLEDGMENTS

. . The authors would like to thank E. Bratkovskaya and H.
lower bounds in exactly the same manner as before, we finfleschie for inspiring discussions at earlier stages of the

the bounds which are denoted by approximate ofi8s  resent study. Furthermore, we are indebted to J. T.
angles. Of course, this curve has to be cut in the region ofpeyreese, F.'M. Peeters, and G. Flinn for critical remarks.
small well widths when the requirement of prevailing local- ginancial support of the Heisenberg-Landau progfaiNR-
ization inside the well is not fulfiled any longer. One ob- Germany collaboration in theoretical physicas well as
serves that the allowed channel for the exact binding energpe tsche Forschungsgemeinsch@taduiertenkolleg GRK

is now considerably smaller. _ 50/2) is gratefully acknowledged.
Finally, Figs. 8 and 9 compare experimental and theoret-

ical results, again for GgAlAs/GaAs/Gg-AlysAs. The
experimental data are due to Gurietiall’ as well as Voli-
otis, Grousson, and Lavallatd The observed peak structure
is reproduced by the present theory, but the experimental To evaluate expressio{88) for the lower bound on the
binding energies are up to 1 meV larger. There are indicabinding energy of Hamiltoniait27), we had to provide ex-
tions that this discrepancy may be caused by our simplificapressions for the ground-state energfA) of the Hamil-
tion of the real band structure. An enhancement of the excitonian:
ton binding energies due to valence-band degeneracy and
conduction-band nonparabolicity has been found by several

APPENDIX: UPPER AND LOWER BOUNDS
FOR THE ANISOTROPIC COULOMB PROBLEM

. 2 -, 2
hai==V 2 e ==V 2~ —— :
- ' - V2 +AZ VArZ+(1-A)r?
variational method
=== appr. lower bound method (Al)

m—a theor. data from Ref. [8]

15.0 k % exp. data from Ref. [18] We shall now briefly comment on this problem. Clearly,
S e(A) interpolates between the two- and three-dimensional
2 limits of the hydrogen system. & is changed from 1 to O,

g the ground-state enerdy, varies from—1 to —4 (in Ryd-

3 berg unit3. Therefore, it is tempting to choose a variational
“E’, ool wave function for the ground state as folloysee Ref. 15

2

o]

l//:CefA(rJrari), (A2)

LH in GaAs/Al, ,Ga, ,As

wherea and\ are variational parameters. This wave func-
tion is asymptotically exact in the threeAH-1N—1a
5.0 ' ' ' —0) and two-dimensional{—0Aa— 2\ —0) limits. Cal-
0 50 100 150 200 . . . . .
thickness of the slab [A] culating the expectation value of Hamiltoniéhl), one finds
e(A)<egp(A), where

FIG. 9. Comparison of the present calculatigsslid and dash-
dotted line$ with experimental datéstarg, as well as with theoret-
ical data (square symbo)s for the light-hole exciton in
Al Ga, ;As/IGaAs/Al :Ga 7As.

V?(A,a)
V3(1a)—a?v3(0a)/4’

ep(A)=min(a®~1)

(A3)
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and e(A)=(alhal )
P sin :<‘/fA|ht - —Vi |¢/fA>
via)= [ o n? . L VAP (-ArE
0 (1+asing)?Vsir? 6+ x cos on  an "
1
rr, r
For a derivation of these equations and a discussion of the
quality of the boundegp(A), we again refer to Ref. 15. In — 5 > | )
Sec. IV we made repeated use of form(#e). VArZ+(1-Ayr?
Interestingly enough, the same trial wave function pro- 1 5
vides us with a lower bound fag(A). To demonstrate this, - - ﬂ_
. . /etr+<‘//A| 2N+ |‘/’A>v
we start from the identity r P JA+(1-A)p?
(A6)

. v — 2 2
Va+Vey=—2(1+a)%y, where we definedp:=r, /r and made use op<1. The

right-hand side of the latter inequalifa6) may be consid-
ered as a function of the variational paramete@ndai (A
(A5) being the experimental “input): We evaluate this function
as follows. First, we calculate the minimum of the expression
in square brackets as a function pf inserting the corre-
Thus ¢ is an eigenfunction of the Hamiltoniah,, = sponding solution into inequalit$A6), the square bracket is
~V2+V,,, corresponding to the eigenvalig, =—\2(1 @& purec number and can be extracted from the expectation
+a)2. In fact, ¢ is the ground-state eigenfunctiontof . To  Value. Second, we choose such that the extracted square

2N a\ ) r,
Vy=—| —+—+2ar? 1- =
t roor, r

prove this, one should realize th@} the ground-state df,, bracket vanishe; and, finglla)\ such that the lower bound
is nondegenerate for a#i, and (i) e, coincides with the ~@SSumes a maximum. This leads us to

ground-state energy fa=0; besides, the chosef has no 4

zeros. We remark thal, has the same two- and three- e(A)=— 173A" (A7)

dimensional limits a$, .

Now let s, be the exact ground-state wave function of the  Obviously, this lower bound gives the correct values
Hamiltonianh, . Then we obtain e(1)=—1 ande(0)=—4.
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