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Exciton binding energy in a quantum well

B. Gerlach* and J. Wu¨sthoff
Institut für Physik, Universita¨t Dortmund, D-44221 Dortmund, Germany

M. O. Dzero and M. A. Smondyrev
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 14980 Dubna, Moscow Region, Russia

~Received 30 March 1998!

We consider a model describing the one-dimensional confinement of an exciton in a symmetrical, rectan-
gular quantum-well structure, and derive upper and lower bounds for the binding energyEb of the exciton.
Based on these bounds, we study the dependence ofEb on the width of the confining potential with a higher
accuracy than previous reports. For an infinitely deep potential the binding energy varies, as expected, from 1
exciton RydbergR at large widths to 4R at small widths. For a finite potential, but without consideration of
a mass mismatch or a dielectric mismatch, we substantiate earlier results that the binding energy approaches
the value 1R for both small and large widths, having a characteristic peak for some intermediate size of the
slab. Taking the mismatch into account, this result will in general no longer be true. For the specific case of a
Ga12xAl xAs/GaAs/Ga12xAl xAs quantum-well structure, however, and in contrast to previous findings, the
peak structure is shown to survive.@S0163-1829~98!08639-1#
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I. INTRODUCTION AND STATEMENT OF THE
PROBLEM

The study of electronic and excitonic properties
quantum-well structures has been a subject of great inte
since the pioneering work of Dingle, Wiegmann and Henr1

In view of the enormous amount of literature in this fiel
any list of references must be incomplete. We quote R
2–12 and 19, which are in part related to this work, a
recommend the references therein. One of the most app
ing features of these systems is the enhancement of exci
effects, for instance the increase of the binding energy
the oscillator strength, which may allow the observation
an exciton even up to room temperature.

The main reason for the large binding energies and os
lator strengths is understood to be the quantum confinem
of the electron and hole in the growth direction of the h
erostructure; in comparison to a three-dimensional mo
structure, the electron-hole correlation is increased. Mo
over, the mass mismatch as well as the dielectric misma
in a quantum well may even enhance this effect, as w
primarily pointed out by Keldysh.13

In contrast to the simple qualitative reasonings, a qua
tative theoretical description of the excitonic enhancemen
quite complicated. The reasons are obvious; as transla
symmetry is broken in the growth direction of the hete
structure, the familiar separation of the center of mass
the relative part of the exciton motion is no longer possib
If a dielectric mismatch is to be included, the electron-h
potential is no longer a simple Coulomb potential. If a ma
mismatch exists, the kinetic-energy part of the Hamilton
is no longer isotropic. Turning to real substances such
Ga12xAl xAs/GaAs/Ga12xAl xAs, band-structure complica
tions ~e.g., valence-band degeneracy! do occur. Moreover,
the growing process may induce interface roughness, etc
a consequence, the spectra of excitons in a quantum wel
far from being understood on a quantitative scale, and dif
PRB 580163-1829/98/58~16!/10568~10!/$15.00
st

s.
d
al-
nic
d
f

il-
nt
-
-
-

ch
s

i-
is
on
-
d
.

e
s
n
s

As
re

r-

ent aspects have been controversially discussed in the li
ture.

In this paper we are concerned with one of the proble
which—to the best of our knowledge—has not been solv
i.e., the position of the peak of the excitonic binding ener
as a function of the width of the confining potential. Som
introductory comments may be appropriate. For an infinit
deep well, the binding energy is known to vary monoto
cally from 1 to 4R if the width L varies from infinity to
zero. Contrasting this case with that of a finite well in
otherwise homogeneous material, the binding energy
haves similarly for sufficiently large values ofL, but quali-
tatively differently for smallL. In the latter case, the wav
function spills increasingly over the interfaces and into t
barriers, occupying a greater three-dimensional volume
tunneling becomes more and more important. In the ultim
limit of zero width, the binding energy will again be 1R.
For a finite well width the confinement will increase th
binding energyEb above 1R. Thus we are lead to conclud
that Eb should have a maximum for some intermediate w
width. In fact, this behavior was found in a variational trea
ment due to Greene, Bajaj, and Phelps.7 In Sec. IV, we
complement their results by lower bounds for the bindi
energy, which have a relative deviation of~at most! 0.2 from
the corresponding upper bounds and, furthermore, a sim
shape.

A finite well in an otherwise homogeneous mater
should probably be viewed as a rather poor model for a
quantum well. We anticipate, however, that such a conc
sion might be somewhat pessimistic. The model is well
plicable as a starting point for a quantitative description,
we include mismatches for the masses and the dielectric
stants. What about the binding energy under these circ
stances? The situation is clear in the limiting cases; for
infinite well width, we start with 1R of the well material,
whereas for zero well width, we arrive at 1R8 of the barrier
material. Whether or not a peak appears will be sensitive
10 568 © 1998 The American Physical Society
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PRB 58 10 569EXCITON BINDING ENERGY IN A QUANTUM WELL
the value ofR/R8. Andreani and Pasquarello8 performed a
study for Ga12xAl xAs/GaAs/Ga12xAl xAs, including the ef-
fects of, first, a dielectric mismatch and, second, the valen
band degeneracy. They did not find a peak forx.0.25 and a
width L.30 Å, even when the band degeneracy is~theoreti-
cally! switched off.

The intention of this paper is to reexamine this conclus
critically. Clearly, our model must also resort to simplific
tions, as was indicated above. For each part of the het
structure, we assume nondegenerate, isotropic, and para
bands, but include a mass mismatch and a dielectric m
match at the interfaces. The confinement of the electron
hole is mimicked by finite rectangular wells. Our strategy
to produce upper and lower bounds for the correct bind
energy of the model. Consequently, we can estimate the e
of our results quantitatively. Inserting the material para
eters of Ga12xAl xAs/GaAs/Ga12xAl xAs, with x varying
from 0.15 to 0.40, we do find a peak structure. We c
thereby disprove the above assertions.

II. FORMULATION OF THE MODEL

To begin with, we fix the geometry of the quantum we
as shown in Fig. 1. The figure shows a cut perpendicula
the y axis, the well extending fromz52L/2 to z5L/2. The
remaining spaceuzu.L/2 is occupied by the barrier materia
The material parameters of the well and barrier are deno
by unprimed and primed characters, respectively. To ach
a compact nomenclature, we definez-dependent expression
e.g.,

m~z!:5mu~L/22uzu!1m8u~ uzu2L/2!, ~1!

for the mass of a particle;u(z) is the familiar step function.
As indicated in the figure, we assume a translational inv

FIG. 1. Geometry of the quantum well.
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ance within thex-y plane; consequently, the correspondi
components of the total momentum are conserved.

To set up a model Hamiltonian, we proceed as descri
before. Introducing center-of-mass and relative coordina
for the motion in thex-y plane, the corresponding center-o
mass part can be eliminated by projection on the subspac
total momentum zero. We are left with the Hamiltonian

H:5@2m'~ze ,zh!#21pW'
2 1pz,e@2me~ze!#

21pz,e

1pz,h@2mh~zh!#21pz,h1Ve~ze!1Vh~zh!

1Veh~rW' ,ze ,zh!. ~2!

Here the indicese andh characterize the electron and hol
respectively;ze , zh , pz,e , andpz,h are thez components of
the position and momentum, andme(z) andmh(z) the cor-
responding masses. For the relative coordinate in thex-y

plane we use the notationrW' :5rW',e2rW',h , pW' denotes the
corresponding momentum, and

@m'~ze ,zh!#21:5@m',e~ze!#
211@m',h~zh!#21 ~3!

is a generalized reduced mass. The confining potentials
electron and hole areVe(ze) andVh(zh). These potentials are
assumed to be finite rectangular wells of the widthL:

Vi~zi !:5H 0 if uzi u<L/2

Vi if uzi u>L/2,
~4!

where i 5e,h. Finally, we have to specifyVeh(rW' ,ze ,zh),
that is, the potential energy of the electron and hole. To
so, we apply Poisson’s equation to find the electrostatic
tential of one of the point charges~e.g., that of the hole!
under the geometrical conditions of Fig. 1. At the interfac
the familiar continuity conditions of electrodynamics have
be fulfilled. If we assume this potential to be known,
product with the electron charge yields the potential ene
of interest. We note that the required solution of Poisso
equation can conveniently be set up as follows. At first, o
performs a Fourier transform of the potential with respect
the coordinatesx andy. One will realize that the remaining
differential equation with respect toz can be treated directly
~the solutions are exponentials!. In fact, this is the method
which was used by Fomin and Pokatilov10 under more gen-
eral circumstances. For the present geometry, their form
can be somewhat simplified, leading to an explicit result
the potential energy which can be found in a paper of Kum
gai and Tagakahara.11 These authors used the method of im
age charges, and arrive at a power-series expansion ofVeh ,
the expansion parameter being

q:5
«2«8

«1«8
. ~5!

The zeroth-order termVeh
(0) of the power series is the familia

Coulomb expression

Veh
~0!~rW' ,ze ,zh!:52

ē2

« r
, ~6!
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10 570 PRB 58GERLACH, WÜSTHOFF, DZERO, AND SMONDYREV
the dielectric constant being that of the well material, anē
denotes the hole charge, divided by 4p«0 ~SI units!. The
higher-order terms constitute the so-called image poten
For further use, we note theq-linear contribution explicitly:

Veh
~1!~rW' ,ze ,zh!:52

qe2

« S Q@1Q!

r
1

12Q@

r 2
1

12Q!

r 1
D .

~7!

In this equation, we defined the distancesr , r 6, and theQ
factors as follows:

r :5Ar'
21~ze2zh!2,

r 6 :5Ar'
21~ze1zh6L !2, ~8!

and

Q@ :5u~ze2L/2!1u~zh2L/2!,

Q! :5u~2ze2L/2!1u~2zh2L/2!. ~9!

We add three remarks concerning these formulas.
The reader will notice that all terms ofVeh

(1) are of Cou-
lomb type, the corresponding denominators being parti
displaced. It is important to realize that this property rema
valid for all higher-order contributions~see Ref. 11!. Conse-
quently, we induce an error of orderq2, if we replace the full
expression forVeh by Veh

(0)1Veh
(1) . As q is typically of the

order 0.1, this simplification is reasonable, and will be us
in the remainder of this paper.

The second remark is concerned with an ambiguity in
power-series expansion ofVeh . Because of Eq.~5!, we may
replace« by «8(11q)/(12q). Inserting this equality into
Eqs. ~6! and ~7!, we find terms of zeroth and first order a
follows:

Ṽeh
~0!~rW' ,ze ,zh!:52

ē2

«8r
, ~10!

Ṽeh
~1!~rW' ,ze ,zh!:52

qe2

«8
S Q@1Q!22

r

1
12Q@

r 2
1

12Q!

r 1
D . ~11!

These expansions are clearly equivalent, and will be use
our advantage in Sec. III.

Finally, we mention that some authors~see, e.g., Refs. 8
11, and 12! include self-energy terms inH, which are also
due to a dielectric mismatch. Formally these appear
one considers electron and hole inhomogeneities in P
son’s equation, and inserts the total electrostatic ene
into H. The interaction part of this energy is the one we us
above @i.e., Veh(rW' ,ze ,zh)], the diagonal parts produc
the self-energy termsS(ze) for the electron @ i.e.,
2Veh(rW' ,ze ,ze

)/2, evaluated forrW'50 andzh5ze , the bulk

Coulomb singularity being subtracted# and S(zh) for the
hole. Inspection of Eq.~7! shows thatS(z) consists of one-
dimensional Coulomb potentials, which exhibit a singular
on the interfacesz51L/2 and z52L/2, and vanish ifq
l.
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vanishes. Summarizing, the confinement potentials are
sumed to be changed. We doubt that modifications of
confinement potentials can be motivated this way, and re
to the early quantum-mechanical debate on the hydro
problem with ~or without! self-energy corrections~e.g.,
Tomonaga14!. Consequently, we did not include such corre
tions here. We agree, however, with the statement mad
Ref. 12 that a correct microscopic description of an exci
in a quantum well should contain~well behaved!
polarization-induced modifications of the rectangular co
finement potentials. It should be mentioned that if we mod
the confinement potentials in the way indicated above, t
the corrections to the final binding energies presented S
IV are of the order 1 meV.

It will prove useful to introduce dimensionless variable
For the excitonic system under consideration, appropr
units of length and energy are the exciton Bohr radius a
Rydberg energy. Considering the well material, these are

aB :5
\2«

m'e2
, R:5

m'e4

2«2\2
. ~12!

Returning to Eqs.~2!, ~6!, and ~7!, we replacerW by aBrW,
introduce the dimensionless Hamiltonian

h:5H/R, ~13!

and find the expression

h52
m'

m'~ze ,zh!
¹W '

2 2
]

]ze

m'

me~ze!

]

]ze
2

]

]zh

m'

mh~zh!

]

]zh

2
2

r
22qS Q@1Q!

r
1

12Q@

r 2
1

12Q!

r 1
D

1Ue~ze!1Uh~zh!. ~14!

All variables are now dimensionless. The confinement pot
tials read

Ui~zi !:5H 0 if uzi u< l /2

Ui if uzi u> l /2,
~15!

where we introduced

Ui :5
Vi

R , l :5
L

aB
. ~16!

Theu factors are defined as in Eq.~9! with the exception that
L is replaced byl .

We shall need a second dimensionless version of Ha
tonian ~2!, which is based on the Bohr radiusaB8 and the
Rydberg energyR8 of the barrier material, as well as formu
las ~10! and ~11! for the electron-hole potential energy. In
troducing

h8:5H/R8, ~17!

one arrives at
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h852
m'8

m'~ze ,zh!
¹W '

2 2
]

]ze

m'8

me~ze!

]

]ze
2

]

]zh

m'8

mh~zh!

]

]zh

2
2

r
22qS Q@8 1Q!8 22

r
1

12Q@8

r 2
1

12Q!8

r 1
D

1Ue8~ze!1Uh8~zh!. ~18!

The u factors are defined as in Eq.~9! with the exception
that L has to be replaced byl 8:5L/ab8 . In analogy, the con-
finement potentialsU8 can be taken from Eqs.~15! and~16!,
if one replaces the unprimed material parameters by prim
ones.

III. UPPER AND LOWER BOUNDS
FOR THE EXCITON BINDING ENERGY

Because of the absence of translation symmetry,
HamiltonianH ~or h or h8, respectively! cannot be treated
analytically. Nevertheless, we can fix quantitative proper
of the binding energyEb by means of rigorous bounds
which will be derived in the following sections. Our strateg
will be to discuss first the ground-state energyE0. The rea-
son is that we can directly prove bounds forE0. The binding
energyEb , in turn, is related toE0 by the equation

Eb5Econt2E0 , ~19!

whereEcont denotes the energy of the continuum edge.
our case,Econt is the sum of the lowest well energies
electron and hole, any correlation being neglected. For
ther use we note the explicit formula

Econt /R5e0,e1e0,h , ~20!

wheree0,i( i 5e,h) is the ground-state eigenvalue of the on
dimensional well Hamiltonian

hi :52
]

]z

m'

mi~z!

]

]z
1Ui~z!, ~21!

part of the total Hamiltonian~14!. The eigenvaluee0,i is
implicitly defined by the equation

e0,i5
4m'

mi l 2
arcsin2

A12e0,i /Ui

A11~mi8/mi21!e0,i /Ui

. ~22!

Due to Eq. ~19!, an upper~lower! bound for E0 yields a
lower ~upper! bound forEb .

A. Lower bounds for the binding energy

We use a variational approach, to derive an upper bo
on E0. The trial wave function is

Ca,l~rW' ,ze ,zh!:5Fe~ze!Fh~zh!e2aAr'
2

1lz2
, ~23!

wherez:5ze2zh , andF i( i 5e,h) is the ground-state eigen
function ofhi @see Eq.~21!#. Clearly, the factorsFe andFh
serve to incorporate the single-particle well behavior.

Choosing an exponential envelope in Eq.~23!, we account
for two important aspects: first, the confinement-induc
change of the effective Bohr radius~parametera); and, sec-
ond, the quenching of the wave function in thez direction
d

e

s

n

r-

-

d

d

~parameterl). Both aspects are particularly important if on
approaches the quasi-two-dimensional case, where the w
of the layer becomes considerably smaller than the Bohr
dius of the exciton. We anticipate that our numerical resu
for Ga12xAl xAs/GaAs/Ga12xAl xAs will confirm this picture.
The effect of an optimized variational choice forl is most
pronounced in the vicinity of the maximum of the bindin
energy, wherel deviates significantly from 1, thereby en
larging the binding energy up to a factor 1.2~of course, the
precise value depends on the material parameters!. The en-
velope can correctly reproduce the ultimate limits of a fre
exciton ground state in two or three dimensions. Con
quently, the trial function is quite flexible, and we expect t
variational inequality

E0

R <min
l,a

^Ca,luhuCa,l&

^Ca,luCa,l&
~24!

to be effective. For the binding energyEb we derive

Eb

R >e0,e1e0,h2min
l,a

^Ca,luhuCa,l&

^Ca,luCa,l&
. ~25!

Note that the minimum of the right-hand side can be cal
lated forq50, as we have linearizedh with respect toq.

B. Upper bounds for the binding energy

In this subsection, we provide a class of lower bounds
E0. To do so, we assume that the barrier massesme8 ,mh8 are
not smaller than the corresponding well massesme andmh .
This is the case for Ga12xAl xAs/GaAs/Ga12xAl xAs, which
will be used as an example. Recalling formula~18! for the
Hamiltonian under consideration, one verifies by direct
spection that the following inequality is true:

^fuh8uf&>^fuh̄8uf& ~26!

for any normalized wave functionf, where

h̄85:2¹W '
2 2

m'8

me8

]2

]ze
2

2
m'8

mh8

]2

]zh
2 2

2

r
22qS 1

r 2
1

1

r 1
D

1Ue8~ze!1Uh8~zh!. ~27!

We stress that the above assumptionmi8.mi is not crucial. If
the contrary was true, we would find an analogous inequa
with respect to Hamiltonian~14!.

To provide a lower bound to the spectrum ofh̄8, we split
the Hamiltonian~27! into four tractable parts. Assuming th
corresponding ground-state energies to be known, their
will be a lower bound toE0 /R8. Let us consider the follow-
ing decompositions:

h̄85he81hh81hc81him8 ,

hi85:2~12xi !
m'8

mi8

]2

]zi
2

1Ui8~zi !, i 5e,h,
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hc85:2y¹W '
22xeye

m'8

me8

]2

]ze
2

2xhyh

m'8

mh8

]2

]zh
2

2
2

r
,

him8 5:2~12y!¹W '
22xe~12ye!

m'8

me8

]2

]ze
2

2xh~12yh!
m'8

mh8

]2

]zh
2

22qS 1

r 2
1

1

r 1
D . ~28!

Here,xi , yi , andy are parameters with values in the inte
val @0,1# but otherwise arbitrary, which can then be chos
to lift the lower bound as much as possible. The exci
ground-state energyE0 fulfills the inequality

E0 /R8>ee81eh81ec81eim8 , ~29!

where the four terms on the right-hand side are the grou
state eigenvalues of the four parts ofh8̄, defined in Eq.~28!.
The eigenvaluesei8 can be derived from Eq.~22!; removing
the mass mismatch and rescaling the particle mass appr
ately, we find

ei854~12xi !
m'8

mi8l 8
2
arcsin2A12ei8/Ui8. ~30!
a
o

-

e
r-
n
n

d-

ri-

Concerningec8 , we transform the corresponding Hamiltonia
hc8 ; introducing center-of-mass and relative coordinates
stead ofze andzh , we can separate the center-of-mass p
Performing an appropriate scaling transformation with
spect torW' andz5ze2zh , we arrive at the following equa
tions:

ec85
1

y
inf specH 2¹W 22

2

Ar'
2 1Az2J 5:

1

y
e~A!, ~31!

where inf spec(A) denotes the lower edge of the spectrum
the operatorA and

A:5
m'8

m i8

xeyemh81xhyhme8

y~me81mh8!
, m i8 :5

me8mh8

me81mh8
. ~32!

Clearly, e(A) is ~in units ofR8) the ground-state energy o
an anisotropic Coulomb system. Before we comment on t
we turn to the last term in inequality~29!, namely,eim8 . We
transform the corresponding operatorhim8 in two steps. First,
we replacezh by 2zh , second, we introduce center-of-ma
and relative coordinates instead ofze and zh as was done
above. We find
e finally
eim8 5 inf specH 2~12y!¹W '
22m'8 F xe~12ye!

me8
1

xh~12yh!

mh8
G ]2

]z2
22qF 1

R2
1

1

R1
G J , ~33!

whereR1 andR2 are derived fromr 1 andr 2 by replacingze1zh by the relative coordinatez. Splitting the right-hand side
of expression~33! again into two parts, containing the terms 1/R2 and 1/R1 separately, we may shift the variablez by 1 l 8 and
by 2 l 8, respectively. We obtain pure Coulomb potentials in both cases. Assuming their solutions to be known, we ar
lead to the inequality

eim8 > inf specH 2~12y!¹W '
22m'8 F xe~12ye!

me8
1

xh~12yh!

mh8
G ]2

]z2
2

4q

r J . ~34!
ch

ion
d
rs;
Performing an appropriate scaling of variables, we c
reduce the right-hand side once more to the anisotropic C
lomb problem. In comparison with Eq.~31!, the parameters
are changed:

eim8 >
4q2

12y
inf specH 2¹W 22

2

Ar'
2 1A8z2J , ~35!

the anisotropy parameter now being

A85
m'8

m i8

xe~12ye!mh1xh~12yh!me

~12y!~me1mh!
. ~36!

We summarize our results forec8 , eim8 , and E0 /R8. To
evaluate relations~29!, ~31! and ~35!, we need an exact ex
pression for the ground-state eigenvaluee(A) of the aniso-
tropic Coulomb problem or, at least, a corresponding low
bound. Assuminge(A) to be known, the above conside
ations prove the inequality
n
u-

r

E0

R8
> max

xe ,xh ,ye ,yh ,y
Fee81eh81

1

y
e~A!1

4q2

~12y!
e~A8!G .

~37!

Finally, we arrive at a result for the binding energy, whi
complements the relation~25!;

Eb

R8
<2 max

xe ,xh ,ye ,yh ,y
F ~ee82e0,e!1~eh82e0,h!

1
1

y
e~A!1

4q2

~12y!
e~A8!G . ~38!

To the best of our knowledge, an exact analytical equat
for e(A) is not available up to now. However, involve
variational calculations were performed by several autho
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we refer to the paper by Gerlach and Pollmann,15 and the
references therein and to our brief summary in the Appen
The optimal upper bound one(A), which is presented in Ref
15, will be denoted aseGP(A) ~see Fig. 2!. Numerical stud-
ies indicate thateGP(A) deviates frome(A) only on a 1%
scale, although a rigorous estimate is admittedly missing.
mention that the quoted paper also contains additional lo
bounds fore(A) which might be used to evaluate the pr
ceeding inequality. In this paper we shall add another low
bound~again, see the Appendix!. Unfortunately, the overal
quality of all these lower bounds is not sufficient. Therefo
we will usually insert the numerical approximationeGP(A)
instead ofe(A).

IV. RESULTS AND DISCUSSION

A. Absence of mass and dielectric mismatch

We used this simplified model to test the efficiency of t
above bounds and to illustrate the dimensional aspect.
system is interesting on its own, and was already discus
in the literature~see Refs. 4 and 7!. Here it will prove useful
to understand the well-width dependence of the binding
ergy on a quantitative basis.

One can easily specify the general results from above
the discussion of the present case. Equalizing all primed
unprimed material parameters, we haveq50 andh5h8. We
simplify even further by assumingme5mh , m'5m i5me/2,
andUe85Uh85U. Turning to inequality~38! and recalling its
derivation, we have to chooseye5yh5y51 ~no image po-
tential!. Consequently, the anisotropy parameter@see Eq.
~32!# is fixed asA5(xe1xh)/2. Summarizing at this stage
we derive, from relation~38!,

Eb

R <2max
xe ,xh

@~ee2e0,e!1~eh2e0,h!1e~A!#, ~39!

whereei @see Eq.~30!# is now the solution of the equation

ei5
2~12xi !

l 2
arcsin2A12ei /U, ~40!

FIG. 2. Upper~solid lines! and lower~dashed lines! bounds for
the anisotropic Coulomb problem. The solution which is conside
numerically exact is drawn as a thick line.
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andei ,0 can be derived fromei , if we let xi50. The eigen-
valuee(A) was defined in Eq.~31!. We shall now treat the
cases of an infinite and a finite well. They will be shown
have a qualitatively different behavior in the narrow-we
regime, as indicated in Sec. I.

For the limiting case of an infinite well we can simplif
the inequality~39! as follows:

Eb

R <2max
A

F2A
p2

l 2
1e~A!G . ~41!

To proceed, we employ another inequality, namely,e(A)>
24/(113A), which is derived in the Appendix. In this cas
we are lead to an analytical result forEb :

Eb

R <5
4 if l<pA3

6
'0.91

4pA 3

3l
2

p2

3l 2
if 0.91< l<3.63

11
p2

l 2
if l>2pA3

3
'3.63.

~42!

The right-hand side of Eq.~42! is shown as dash-dotte
curve in Fig. 3. One realizes that the required two- and thr
dimensional limits 4 and 1R are reproduced, ifl tends to 0
and`, respectively. Unfortunately, the overall quality of th
bound is rather poor. Inserting the resulteGP(A) for e(A), as
indicated in Sec. II, the upper bound onEb is drastically
lowered as shown in the figure~dashed line forV5`). In
addition, Fig. 3 contains a lower bound for the binding e
ergy ~solid curve forV5`), which is based on inequality
~25!.

Before we discuss the results in greater detail, we c
sider the finite-well case. Then the inequality~39! has to be
evaluated without further simplifications. Apart from th

d FIG. 3. Binding energy as a function of the well thickness f
different potential heights, showing comparison of the variatio
calculation ~solid lines! and lower bound method~dashed lines!.
The dash-dotted line shows the result for the simple analyt
lower bound from the Appendix.
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limiting casesl→0 andl→`, an analytical discussion is no
possible. The small-width case, however, is interesting on
own. For l→0, the solution forei is

ei5U@12Ul 2/~222xi !1O~ l 3!#. ~43!

Inserting this expression into inequality~39! and utilizing
e(A)>24/(113A) again, one finds the result

1<
Eb

R <11A3Ul 1O~ l 2!, if l→0, ~44!

which was mentioned in the Abstract as well as in Sec. I.
finite values ofl , we proceed as in the numerical treatment
the infinite well. Replacinge(A) by eGP(A), we find the
upper bounds, which are shown in Fig. 3~dashed curves!.
Again, the figure includes the corresponding lower boun
~solid curves!.

Clearly, the most significant attribute of these curves
the appearance of a maximum ofEb as function of the well
width L, if the heightV of the well is finite. There exists a
unique relation betweenV and the positionLmax of the maxi-
mum; for larger values ofV Lmax becomes smaller. All
curves exhibit the expected asymptotic behavior. For fin
~infinite! V, the large-L limit of the binding energy is 1R,
and the small-L limit 1 R ~4R!. Last but not least, the shap
of the upper and lower bound is very similar, the relati
deviation not exceeding 0.2. We are sure that the devia
as such is mostly due to the inaccuracy of the upper bo
on the binding energy. We recall that the lower bound forEb
is based on a variational upper bound on the ground-s
energy, whereas the upper bound needs an accurate l
bound forE0 as input; as usual, this part of the task is t
more difficult one.

B. Finite rectangular quantum well in a heterostructure

In this part we apply our theory to a single-well structu
which exhibits a mismatch of both masses and dielectric
rameters. As far as specific material data are concerned
use those of Ga12xAl xAs/GaAs/Ga12xAl xAs. We stress,
however, that a direct comparison of our results with exp
mental data is limited by the fact that the present theory
clearly incomplete. An obvious shortcoming is that, for e
ample, the effects of valence-band degeneracy, spin-o
coupling, and exchange interaction are not included. Our
tention was to analyze the implications of the well structu
in particular the inability to separate the center-of-mass
relative coordinates, as accurate as possible in order to
a well-defined basis for further improvements.

For the material parameters, we refer to the tables of R
16 and the work of Winkler9 ~see also references the
in!. For GaAs, we used«512.53, andme50.067m0, further-
more, mh50.090m0 ,m'50.051m0 , R54.418 meV, and
aB5130.21 Å for the light hole, andmh50.377m0 ,
m'50.042m0 , R53.638 meV,and aB5158.12 Å for
the heavy hole. For AlAs, the corresponding para
eters are «510.06, me50.150m0, mh50.208(0.478)m0 ,
m'50.106(0.093)m0 , R514.2 (12.5) meV, and aB
550.2 (57.2) Å for the light~heavy! hole. The material pa-
rameters for Ga12xAl xAs are normally described by linea
interpolations formulas, for instance,«8512.53(12x)
ts
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110.06x, with one notable exception; the differenceDEg of
the gap energies forx50 andx.0 is fitted as9

DEg5~1.087x10.438x2! eV. ~45!

The precise partition ofDEg on the electronic partVe and
the hole partVh has been critically discussed; to the best
our knowledge, no previous general solution exists. We u
the empirical relation Ve50.65DEg and Vh50.35DEg
~again, see Ref. 9!, but also indicate the consequences
modification to this assumption.

We discuss now our results. To begin with, we pres
lower bounds for the binding energy according to relati
~25!. In Fig. 4 we depict the influence of the parameter m
matches on the heavy-hole ~HH! exciton of
Al xGa12xAs/GaAs/AlxGa12xAs for x50.3. The thin solid
curve describes the hypothetical case of equal masses
dielectric constants in well and barrier; it may be viewed a
reference line. Switching on the discontinuity of the ba
masses only~circles!, the bound for the binding energy i
lowered. We are confident that this is an artifact of our var
tional treatment. On the one hand, the energy of the c
tinuum edge is exact, the effects of the mass mismatch b
fully incorporated; on the other hand, the variational bou
on the ground-state energy is, of course, an approximat
The difference between the two underestimates the influe
of the mass mismatch. Treating the mass-mismatch indu
effects on the binding energy in first-order perturbati
theory, no such artifact shows up. Our results agree w
previous ones of Priester, Allan, and Lannoo.19 Considering
only a dielectric mismatch, we find the curve depicted
triangles. One realizes that the presence of image cha
shifts the binding energy to higher values, and this shift
mains present for a wider range of the well width. It is on
for L@aB that the energy shift disappears. Finally, the thi
solid line summarizes all effects. In comparison to the ref

FIG. 4. Binding energy of a HH exciton in
Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As; the effect of dielectric and mas
mismatch is shown separately by the triangle and circle symb
respectively. The thick solid line illustrates the result of both co
tributions.
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ence curve, the peak height and peak position is only slig
changed; in our case, we findLmax;60 Å and a peak heigh
of 9.5 meV.

Figure 5 presents lower bounds for the binding energ
of heavy- and light-hole ~LH! excitons in
Al xGa12xAs/GaAs/AlxGa12xAs, assuming different Al con-
centrationsx50.15, 0.3, and 0.4. The dashed~solid! curves
correspond to the light-hole~heavy-hole! exciton. The lowest
~highest! curve of every set belongs to the smallest~largest!
value ofx. The observed sequence can easily be explain
A higher Al concentration causes a higher band-gap dif
ence and therefore higher potential wells. In addition,
peak positions are found to decrease with increasing Al c
centration. Again, the reason is clear; the higher the valu
x, the smaller the influence of the barrier. In fact, we exp
to recover the trend illustrated in Fig. 3, which is indeed
case. Above all, we find a peak structure forx.0.25 andL
.30 Å, in contrast to the assertion of Andreani a
Pasquarello.8 Comparing their trial wave function with our
@see Eq.~23!#, one realizes a significant difference. In the
case, thez motion of the electron and hole can be separat
We believe that this property is responsible for the abo
discrepancy.

We mentioned above that the actual values ofVe andVh
are somewhat controversial. Therefore, we found it inter
ing to change the fractionVh /Ve . In Fig. 6 we compare
lower bounds for the binding energy,Vh /Ve being chosen as
35/65 ~circles! and 15/85~triangles!, respectively; the latter
value was used by Greene, Bajaj, and Phelps.7 Interestingly
enough, the peak position is not changed too much.

We shall now comment on the accuracy of our results.
do so, we have chosen the HH case
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As as a representative exampl
In Fig. 7 we contrast lower and upper bounds~dotted and
solid lines! for the binding energy according to Eqs.~25! and
~38!. The shape of the curves and the peak positions
nearly the same for both bounds, the peak heights, howe
differ disappointingly by a factor 1.5. Analyzing the nume

FIG. 5. Binding energies of the HH and LH excitons for diffe
ent Al concentrationsx50.15, 0.3, and 0.4. The variational ap
proach including parameter mismatch is applied. The lowest~high-
est! curves belong to the smallest~largest! value ofx.
ly
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cal data in detail, we realized two points:~i! the adapted trial
function is well localized within the well for all values o
L>Lmax and even slightly below; and~ii ! the upper bound
for the binding energy~or, equivalently, the lower bound fo
the ground-state energy! grossly overestimates the mismatc
If we take~i! for granted, for the exact wave function we ca
also simplify the peak problem from the very beginning.
we calculate an expectation value ofh @see Eq.~14!# for such
a wave function, we can first omit allQ factors, and second
replace all material parameters by well parameters. Theh

may be replaced byh8̄ @see Eq.~27!# with the important
modification that all parameters inh8̄ have to be understood
as unprimed ones, namely, those of the well. Calculat

FIG. 6. Binding energies of the HH and LH excitons for diffe
ent valence-band offsets in Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As. The
valence-band offsets are chosen either from Greene, Bajaj,
Phelps~Ref. 7! ~triangles! or from Andreani and Pasquarello~Ref.
8! ~circles!.

FIG. 7. Rigorous upper bounds~circles! and lower bounds
~lines! in comparison with approximate upper bounds for the ex
ton binding energy in Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As. The HH
~LH! exciton is denoted by solid~dashed! lines and filled~open!
symbols.
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lower bounds in exactly the same manner as before, we
the bounds which are denoted by approximate ones~tri-
angles!. Of course, this curve has to be cut in the region
small well widths when the requirement of prevailing loca
ization inside the well is not fulfilled any longer. One o
serves that the allowed channel for the exact binding ene
is now considerably smaller.

Finally, Figs. 8 and 9 compare experimental and theo
ical results, again for Ga0.7Al0.3As/GaAs/Ga0.7Al0.3As. The
experimental data are due to Gurioliet al.17 as well as Voli-
otis, Grousson, and Lavallard.18 The observed peak structur
is reproduced by the present theory, but the experime
binding energies are up to 1 meV larger. There are ind
tions that this discrepancy may be caused by our simplifi
tion of the real band structure. An enhancement of the e
ton binding energies due to valence-band degeneracy
conduction-band nonparabolicity has been found by sev

FIG. 8. Comparison of the present calculations~solid and dash-
dotted lines! with experimental data~stars and triangles! as well as
with theoretical data~square symbols! for the heavy-hole exciton in
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As.

FIG. 9. Comparison of the present calculations~solid and dash-
dotted lines! with experimental data~stars!, as well as with theoret-
ical data ~square symbols! for the light-hole exciton in
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As.
d
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authors~see, e.g., Refs. 8 and 20!.

V. CONCLUSIONS

The intention of this work was to calculate the bindin
energy of an exciton in a rectangular quantum well with
higher reliability as was previously to be found in the liter
ture. In doing so, we provided upper and lower bounds
the binding energy, which have a similar shape and con
tute an allowed channel for the exact binding energy wh
is satisfactorily small. We can conclude that the peaks of
binding energy as function of the well width are well esta
lished within our model, and for a wide parameter range.
the case of Ga12xAl xAs/GaAs/Ga12xAl xAs, our results re-
vise those of Ref. 8, thereby extending the regime of ‘‘a
missable’’ well widths to less than 30 Å. From a metho
ological point of view, our derivation of upper bounds on t
binding energy ~or, equivalently, lower bounds to th
ground-state energy! can be transferred to related problem

ACKNOWLEDGMENTS

The authors would like to thank E. Bratkovskaya and
Leschke for inspiring discussions at earlier stages of
present study. Furthermore, we are indebted to J.
Devreese, F. M. Peeters, and G. Flinn for critical remar
Financial support of the Heisenberg-Landau program~JINR-
Germany collaboration in theoretical physics! as well as
Deutsche Forschungsgemeinschaft~Graduiertenkolleg GRK
50/2! is gratefully acknowledged.

APPENDIX: UPPER AND LOWER BOUNDS
FOR THE ANISOTROPIC COULOMB PROBLEM

To evaluate expression~38! for the lower bound on the
binding energy of Hamiltonian~27!, we had to provide ex-
pressions for the ground-state energye(A) of the Hamil-
tonian:

hA :52¹W 22
2

Ar'
2 1Az2

,52¹W 22
2

AAr21~12A!r'
2

.

~A1!

We shall now briefly comment on this problem. Clear
e(A) interpolates between the two- and three-dimensio
limits of the hydrogen system. IfA is changed from 1 to 0,
the ground-state energyEA varies from21 to 24 ~in Ryd-
berg units!. Therefore, it is tempting to choose a variation
wave function for the ground state as follows~see Ref. 15!:

c5Ce2l~r 1ar'!, ~A2!

wherea and l are variational parameters. This wave fun
tion is asymptotically exact in the three- (A→1,l→1,a
→0) and two-dimensional (A→0,la→2,l→0) limits. Cal-
culating the expectation value of Hamiltonian~A1!, one finds
e(A)<eGP(A), where

eGP~A!5min
a

~a221!
V2~A,a!

V2~1,a!2a2V2~0,a!/4
, ~A3!
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and

V~x,a!5E
0

p/2

du
sinu

~11a sinu!2Asin2 u1x cos2 u
.

~A4!

For a derivation of these equations and a discussion of
quality of the boundeGP(A), we again refer to Ref. 15. In
Sec. IV we made repeated use of formula~A3!.

Interestingly enough, the same trial wave function p
vides us with a lower bound fore(A). To demonstrate this
we start from the identity

2¹W 2c1Vtrc52l2~11a!2 c,

Vtr52F2l

r
1

al

r'

12al2S 12
r'

r D G . ~A5!

Thus c is an eigenfunction of the Hamiltonianhtr5

2¹W 21Vtr , corresponding to the eigenvalueetr52l2(1
1a)2. In fact,c is the ground-state eigenfunction ofhtr . To
prove this, one should realize that~i! the ground-state ofhtr
is nondegenerate for alla, and ~ii ! etr coincides with the
ground-state energy fora50; besides, the chosenc has no
zeros. We remark thathtr has the same two- and thre
dimensional limits ashA .

Now letcA be the exact ground-state wave function of t
HamiltonianhA . Then we obtain
e

ro

e

e

-

e~A!5^cAuhAucA&

5^cAuhtr2
2

AAr21~12A!r'
2

2Vtr ucA&

>etr1^cAu
2l

r
1

al

r'

12al2S 12
r'

r D
2

2

AAr21~12A!r'
2

ucA&

>etr1^cAu
1

r F2l1
al

r
2

2

AA1~12A!r2G ucA&,

~A6!

where we definedr:5r' /r and made use ofr<1. The
right-hand side of the latter inequality~A6! may be consid-
ered as a function of the variational parametersl andal (A
being the experimental ‘‘input’’!. We evaluate this function
as follows. First, we calculate the minimum of the express
in square brackets as a function ofr; inserting the corre-
sponding solution into inequality~A6!, the square bracket i
a purec number and can be extracted from the expecta
value. Second, we choosel such that the extracted squa
bracket vanishes and, finally,al such that the lower bound
assumes a maximum. This leads us to

e~A!>2
4

113A
. ~A7!

Obviously, this lower bound gives the correct valu
e(1)521 ande(0)524.
.
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