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We have investigated theoretically the case of a highly anisotropic layered superconductor consisting of two
identical parts that are twisted with respect to each other by an akgkbout thec axis. This work was
motivated by recent high-quality-axis twist Josephson junctions prepared with3jCaCyOg, s by Li et al.

Our interest lies in studying whether the Josephson critical voltglgg measured along the axis in high-
temperature superconductors as a functiombgfcould give valuable information regarding the orbital sym-
metry of the superconducting order parameter. We assume both coherent and incoherent interlayer tunneling
processes, and ordinary intralayer impurity scattering. We have derived and studied the effective Lawrence-
Doniach model appropriate for the cases of paieave andd,2_,>-wave order parameters, a dominagpt_ >

and subdominand,, mixed order parameter, and a domindpi_,2 with a subdominans-wave mixed order
parameter. Our results suggest that Josephson tunneling acrasaxisetwist junctions can indeed be a useful

tool for probing the superconducting order-parameter symmetry. Further experiments to clarify the situation
are suggestedS0163-18208)05226-4

[. INTRODUCTION crystal structure that was tetragonal, but very recent neutron-
diffraction results have determined that most samples of
In recent years, there has been a raging controversy ré2201 are rather orthorhombic, as is YBC®OAIthough
garding the orbital symmetry of the superconducting ordethere has never been any consensus on the actual crystal
parameter in the high-temperature superconductors. Manstructure of Bi2212° most samples are thought to be ortho-
experiments were interpreted in terms of d,2_,-wave rhombic. However, in this case the orthorhombicity is differ-
order parameter predicted by theories involving a repulsiveent, with a distortion along the diagonal between the crystal
pairing interactiorf, but many others*® were interpreted in  a andb axes?° Such a distortion would not lead to the co-
terms of a more conventionawave order parameter, as existence of ad,>_,>-wave order parameter with either an
obtained in the standard BCS theory based upon rather isg-wave or ad,,-wave order parameter, except below a sec-
tropic, attractive pairing mediated by phonons or other suclond phase transition, since these order parameters are mani-
bosons. In the last year or so, an increasing number of thedestations of different representations of the crystal group.
experiments appear to have been easiest to explain from a In Bi2212, the only published experiments relevant to the
predominantd,._,2-wave order parameter, most likely ac- order-parameter symmetry of which we are aware were made
companied by a subdominartwave order parametét. by Josephson tunneling into tizb plane and into a mixed
However, nearly all of the important experiments purportingc-axis, ab-plane configuration, and by scanning tunneling
to provide evidence regarding the orbital symmetry of themicroscopy (STM) onto the top ¢-axis) surface'’?1-2
order parameter were performed on the single materiaThese experiments led to inconsistent conclusions, with
YBa,Cu;0,_5 (YBCO). Unfortunately, YBCO is always STM measurements appearing to givé-tvave-like” results
distinctly orthorhombic, due to the inescapable presence ofthen the tip was above @ominally semiconductingBiO
the conducting CuO chains. Hence, both $awave and the layer, but “s-wave-like” results when it was above(auper-
dy2_y2-wave order parameters belong to the same represegonducting CuG, layer. While apparent Josephson tunneling
tation of the relevant crystal group,,, and can mix freely into the c-axis did not produce any measurabl&?,, Jo-
at all temperature§. Thus, before one becomes too preju- sephson tunneling into theb-plane gave a very largeR,
diced by the apparent results on a single material, one oughilue, which has recently also been seen consistently in
to examine the available experimental evidence that might be-axis point-contact measuremeftsalthough the direction
relevant to this question in a different material. of the Josephson currents in that latter experiment was un-
To date, the only other materials for which Josephsorknown. In addition, angle-resolved photoemission spectros-
junction experiments, which are the most sensitive expericopy (ARPES experiments on Bi2212 have been interpreted
ments to determine the phase of the order parameter, haws being consistent with an order parameter of dpe 2
been performed are the single experiment yB&CuQ,, s form.2>2° We remark that ARPES experiments are insensi-
(TI2201) (Ref. 12 and a few on BiS,LCaCyOg,s tive to electronic properties of the sample arising from states
(Bi2212).13-1" Until recently, TI2201 was thought to have a physically deeper than about 10 A from the surface. Al-
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C1]|C2 whetherd-wave pairing can be ruled out conclusively by
measuring the supercurrent througlt-axis twist junction.
To achieve this aim it is necessary to take into consideration
admixtures of order parameters with different symmetries in
such a way that the interpretation of other experiments is not
affected. If the pair state, locked onto the crystal lattice, had
dy2_y2 symmetry, it would be obvious that the supercurrent
would vanish for¢y=45°. The presence of a subdominant
order parameter witld,, symmetry would allow the overall
d-wave order parameter to rotate and thus compensate for
the twist. A subdominans-wave order parameter could
dominate the supercurrent because of differences in the tun-
neling matrix elements.

In Sec. Il, we shall introduce a weak-coupling model of

FIG. 1. Sketch of the twisted bicrystal. A single crystal is unconventional superconductivity in a layered supercon-
cleaved in a plane normal to tiseaxis; the two cleaved sections are ductor with some form of single-particle interlayer tunneling,
rotated by an angles, with respect to each other, and then fused and in Sec. 11l we shall discuss the resulting self-consistency
together as pictured. equations for the case of two competing order parameters. In

Sec. IV these equations are simplified by keeping only terms

though one cannot determine the phase of the order parargf cubic order in the order-parameter amplitudes and the ef-
eter through ARPES experiments, one would have to confective Lawrence-Doniacfi free energy for these two order
clude from the data that the order parameter was locked ontearameters is evaluated. Section V contains an outline of the
the crystal lattice on the top atomic layer normal to the calculation of the Josephson current and the definition of the
axis, provided that the ARPES experiments are indeed medfitical current that, in the presence of a complex order pa-
suring the superconducting and not some other order paraniameter, presents some difficulties. We also calculate the
eter such as that pertaining to a charge-density wave or spiguasiparticle current for both coherent and incoherent tunnel-
density wavé’ ing in order to elucidate the problems involved in deriving a

Very recently, some preliminary results relevant to therelation between the parameters in the Josephson critical cur-
symmetry of the order parameter in Bi2212 have becoméent and the normal-state resistance when the tunneling takes
available!®>*® In these experiments, a high-quality single place between two-dimensional superconductors. In Sec. VI
crystal of Bi2212 was cleaved mechanically between neighsolutions of the Lawrence-Doniach equatigec. IV) in the
boring BiO layers; the two cleaved surfaces were then roabsence of the twist junction are given, which are required to
tated by an anglep, with respect to each other and heat fix the boundary conditions. When the order parameter is
treated to fuse them back together, as pictured in Fig. 1complex, the boundary conditions are established by the re-
Miraculously, transmission electron microscope studiegjuirement that there must be no Josephson current along the
showed that the fused boundary appeared in many samples ¢@Xis for the closed system. In Sec. VIl the numerical results
be essentially perfect. To measure theacross the twist are presented and discussed. Greatest attention is given to the
boundary, the authors attached two current leads far from theery interesting possibility of two purely redlwave order
twist, and four voltage leads near it. Due to the large valueparameters, where the sign of the subdomirggtwave or-
of I, at low T, it was necessary to apply a substantial mag-der parameter changes across the twist boundary. This solu-
netic field along thec axis to reducd.. Thel.(¢,) they tionis found when the bare transition temperafligg of the
obtained were identical to those obtained for single-crystafubdominant order parameter is very lowT|fg is compa-
Bi2212, without any twist boundaries, and were essentiallyable to the transition temperature of the dominant order pa-
independent of$,.™® For T close to the transition tempera- rameter, the competing order parameters are most likely out
ture T it is possible to measure, without applying a mag- of phase with each other, their phases differinga#g in the
netic field. First results also show no significant variation ofbulk, far from the twist boundary. Our conclusions are pre-
| . with the twist anglep,.'® These observations appear to besented in Sec. VIII.
incompatible withd-wave pairing.

Unfortunately, the dependence bf upon the junction Il. MODEL
greaA and on thg current distribution, which could be very  \ye assume that the system consists fs2L layers,
inhomogeneous, is presently unknown. However, we expeGfhich are labeled with integens such that—N<n<—1,
that amblgwtles inherent in the present experiments, Whl(_:l’iSnS+ N. The two sections=1 andn=<—1 of the crys-
were designed to study the weak link behavior of the graing| are assumed to be rotated relative to one another by an
boundary an_d not the symmetry of the order parameter, wil ngle ¢, creating a[001] twist grain boundary between
be removed in the future. In this paper we therefore study th?ayersn= 1 andn=—1. For simplicity, we treat each micro-

problem of the critical supercurrent along theaxis in a scopic CuQ double laver of Bi2212 as a sinale conductin
highly anisotropic layered superconductoe., Bi2212 with (or zuperc%nductir‘bglag//er. We assume that t%e charge cagr]—

a c-axis twist junction anglaﬁ_o. We restrict our con3|de_r- riers on these planes are fermions described by the standard
ations to the temperature regime ndar, where the experi- Hamiltonian?{ of layered superconductors

ments can be performed in the absence of the complicating
magnetic field, which we neglect. It is our aim to establish H=Ho+H;+V, (1)
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with been noted before, though, it is important to keep the mo-
mentum dependence when tunneling betweemave super-
Ho= t (K K K 2 conductors is F:onglderéa. These authors cqn&dered tun-
0 E Vg (K) oK) trno(K) @ neling along directions parallel to the conducting planes, but
the arguments applicable teaxis tunneling are very similar.

Thus, in order to have Josephson tunneling between the
_ T L ’ '
Hl_n n’gk K no(K) thn (K=K") g o(K"),  (3) layers of a purportedi-wave superconductor, we must re-
Cian'y quire some amount of coherent tunneli{g® or else we

have to introduce som@-wave anisotropy to the incoherent
tunneling amplitudé®3® We therefore assume in this work
_ T T _ ’
V_n Z:'k, ¥n,o(K) - (= K)ONA(KKT) that the incoherent part of the second-order tunneling process
s in Eq. (6) can be expanded as

Xihn,— (= K" ) thn o (K"). (4)

¢;vg(k) [#n,-(K)] creategannihilate$ a single quasiparticle

with spin o, wave vectork=(k,,ky), and energyéy(k) (k—K')=

= e(k) — Ef relative to the Fermi energir within the nth ne

layer. H; is the Hamiltonian describing single-particle tun-

neling between near-neighbor layersandn’=n=*1, de-

noted by(nn"), for whicht, ,(k’ — k)—t ,(k—k'), andV whereN,p(0) is the two-dimensional density of states; for

is the generalized singlet intralayer palrmg Hamiltonian. Wefree particlesN,p(0)=m/(27). We have introduced the in-

takec=h=kg=1. coherent pair tunneling rates7l/,. Generally one would
The tunneling matrix elemett, ,, depends only upon the €Xpect 1f, , to decrease rapidly with increasing with the

change in momenturk—k’, when umklapp processes can S-wave term, corresponding to complete incoherence, being

be neglected, as for free particles. We assume there are tWRy far the largest.

types of interlayer tunneling processes, coherent tunneling We remark that Eq.(7) assumes that the single-

and incoherent tunneling at the positions of “electrical quasiparticle tunneling matrix element only depends upon

shorts.” Here we treat both of these processes together. [f#e tunneling angleb,— ¢y. That is, we assume the tunnel-

coherent tunneling, the tunneling matrix element in realing amplitude does not depend upon the orientation of the

space is translationally invariant, so that in momentum spac@uasiparticle relative to the underlying crystal lattice, but

it preserves the wave vector parallel to the junction. Theonly upon the relative change in direction incurred upon in-

incoherent process occurs at random defects situated at therlayer tunneling. We thus expect the tunneling to be invari-

posmonsR“” between the adjacent layarsn’, at which the ant underk—k'. In this case, if one were to have added a
potential barrier for interlayer tunneling is reduced. The tun-Phase shifis "' to the term/( ¢ — ¢y) inside the argument

é cog / (pyx— d’k’)], )

27T,

N, (0)

neling matrix elements are thus of the form of the cosine, one would be forced to add an equivalent term
with 87" ——&»"" | in order to preserve the invariance un-
ty n(K—K') =81 naq| I6P(k—K') derk<k’. Thus, we set?" =0.

The pairing interactior) is treated in the mean-field ap-
proximation, which leads to the following “impurity”-
+2 r(k—k’) e (k= k' >Rnn . (5 averaged self-consistency equation for the order parameter
on thenth layer:

Physical quantities are obtained by taking two-dimensional
averages with respect to the random sfteshich we denote

by () In .the first-order term, we can neglect the con.tri— AK)=T> An(k k') T n(K' ). ®)
bution from incoherent tunneling, since we already consider ok’
explicitly the coherent tunneling. For the second-order term,
we obtain
The sum over Matsubara frequenciess cut off in the usual
(tnn (K=K )t (k' —k")) = 8s 018D (k—K") way at some frequencyp .
b <2 Assuming the interlayer tunneling process is “weak,” we
X928 2 (k=K") Syr nr+1 expand the anomalous Green’s functiB,(k, ) in powers
L of t. For coherent tunneling in the bulk of a layered super-
+5n” n |nc(k k )] (6)

conductor, it is elementary to include the tunneling to all
The averages of incoherent tunneling processes between diders int,>*3*but when a surfacésuch as a twist boundary
ferent adjacent layer pairs vanish. Théunction outside the is introduced, the order parameters on each layer are in-
square brackets reflects the restoration of translational invarequivalent, and the Fourier-transform technique does not
ance upon averaging. We note that the incoherent tunnelingiork **® So, we have to rely on this expansion technique,
function f;,(k—k')=p|7(k—k")|?, with p the density of although it is only valid fot<T, in the absence of intralayer
incoherent tunneling sites, is ordinarily taken to be a conscattering. To second order in the interlayer tunneling, one
stant, as was done by Ambegaokar and Bardfofis has  obtains
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0 ” 2 ) coupling of the order parameters on adjacent layers, the Jo-
Fanlk,0)=Fok )+ X X [[926P(k-k") sephson tunneling term in the Lawrence-Doniach model.
n" Kk’
(nn')
, , lll. GAP EQUATIONS
+ findk—K)ILFIUK, )G (K, 0)G3T(K,w) ©
0 o, 0 The gap equation is obtained by inserting the anomalous
+ Fo(k,0) Fol (k') F(k,0) Green’s function from Eq(9) into Eq.(8). Depending on the
0 0,1, ot range over which the twist grain boundary affects the intra-

+Gn(kw) 7 (K 0)Gg (K o) layer order parameters, we need to solve a rather large num-

0 0\ 0 ber of coupled two-dimensional nonlinear integral equations.
FGnk@)Gr (K@) Fo(k,@)]. ©) (The total number of layers considered in most of our nu-
The bare BCS-type Green’s functions are given by merical calculations was 160This problem is so formidable
that one needs to make some simplifying assumptions to
Ok o) — —[iw+&(k)] make it amenable to numerical solution.
Gn(k )= w2+ gg(k)Jr |AL(K)|? First, we assume that all the functions in E8) with the
(100 exception of the Green’s functions vary weakly with energy
o An(k) &o(k). We can thus repladeandk’ in the arguments ok,
Fnk,w)= w2t E2(K) 1 [A K2 \,, andf, by the anglesp, and ¢, that specify the ori-
0 " entations of the Fermi momenta in the two-dimensional Bril-
FOolk,0)=[FO(k,0)]*, and G°T(k,w)=[—G°k,w)]*. louin zone. We then make use of the standard approximation

The important term in Eq9) is the third term, which explic- A3, —N,p(0)f(d¢/27) [T 2déy, whereA is the area of
itly couples]—'ﬂ to J-'g, in linear order, and leads to the linear a layer. After integrating ovef,, we obtain

2md ' An ’
A1) =7TNzp(0) 2 fo %xn<¢k,¢k/>{ﬂ+2 {|J|2rcoh(w,An<¢k/>,An/<¢k/>)

Dn(wi¢k’) n’
(nn")
27 depyn
+2m7N,p(0) 0 ?finc((f’k’_d’k”)rinc(waAn(d’k’)aAn’(d’k")) ) (11)
|
where o
An(d)=20 Ay er (1), (14)
Dn(w, d) =[w?+|An(di) |21V (12

In Eq. (11), T'syp, and Ty, are the coherent and incoherent Where theA ) areC numbers, which we calculate. _
parts of the second-order interlayer tunneling processes, re- Before we ca(r?)proceed any further we need to specify the
spectively. The exact forms @f,,, andT;,. are given in the ~ basis functionsp;’(¢y). At present the most popular choice

Appendix. for tetragonal highF, materials ise{™)(¢y) = 2cosapy,
Second, we approximate the pairing interactionby a  corresponding to a-wave state withd,>_,> symmetry, as
sum of separable terms: the only nonvanishing contribution to the pairing interaction

[Eq. (13)]. If, following Ambegaokar and Baratoff, we as-
sume the tunneling matrix elements to be momentum inde-
M D) =2 MoV () o (o), (13)  pendent, so that;,.=const, then we see immediately from
[ Egs.(11) and(A2) that incoherent tunneling does not couple
_ d-wave order parameters on neighboring planed;lf has
where the basis functiongpﬂ)(cﬁk)} are chosen in accor- some momentum dependence, represented in(Bgas a
dance with the symmetry of the system. Since the order pa-ourier series, all terms withf=2+4i, i a nonnegative in-
rameters are expected to lock onto the lattice, the argumentsger, will contribute to the coupling of states withz 2
of the basis functions have to be shifted by¢y/2  symmetry. Of course, those with-2 only contribute to the
(— ¢o/2) for positive(negative values ofn when there is a coupling of orderA® and/or higher, so they are negligible in
single twist grain boundary between layerd and—1 with  the Ginzburg-Landau regime. In the presence of a 45° twist,
twist angle ¢y. Otherwise, the basis functions are indepen-we must replace cog® by sinZp, on one of the layers.
dent of the layer index. For this type of pairing interaction, Then, neither coherent tunneling nor incoherent tunneling
the momentum dependence of the order parameter is of theith the momentum dependence equati@ can provide
form any coupling between thd-wave states across the twist
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grain boundary. It is clear that similar conclusions apply towith layer index for several values of the temperature at
the critical Josephson curreht® to be discussed in more which the transition to a two-component state takes place,
detail below. including very low ones.

One can escape these conclusions if, due to some more Even with these simplifying assumptions the numerical
general momentum dependence of the pairing interactior\_l,VOfk required is considerable, because neith(_ar the angular
pairing channels with different symmetries are available. Inntegrals nor the sum over Matsubara frequencies can be per-

particular, a combination of states withz_.> andd,, sym-  formed analytically. As a first step we shall, therefore, take
’ -y Xy the approximations further and consider only the Ginzburg-
metry, pp y g

Landau regime. To elucidate the qualitative effects that arise
from the destruction of translational invariance along the
_ + axis, this is probably sufficient. On the basis of the knowl-
An($)=An\2 COS261c= o) edge gainedpwithin )'zhe constraints of the Ginzburg-Landau
+Bn\/§ SiN2¢* ¢o), (dd), (15) approximation and in the light of available experimental
data, one can then decide whether or not a full-scale weak-
where the+ (—) sign pertains to positivénegative layer  coupling calculation is worthwhile.
indices, can also be written @3,\2 co$2¢* (do— 5n) 1,
providedA, andB,, are real and,, changes sign across the V- LAWRENCE-DONIACH PHENOMENOLOGICAL
twist grain boundary. We see that such a superposition of the MODEL

two d-wave states will reduce the mlsma_ltch bgtween the The Ginzburg-Landau theory of superconductivity has
order parameters above and below the twist grain boundaryeen generalized to layered materials by Lawrence and
and thus will lead to an Jncrease in the coupling betweerhniach?® The corresponding equations for multicomponent
layers and hence also Ii°. If the two d-wave states were nconventional pair states in the presence of a twist grain
degenerate, the angle§ would be arbitrary and the order poyndary are obtained by expanding the first term in(Eg).

parameter could rotate freely in the plane. A complicatingy, third order inA,, while keeping only first-order contribu-
feature is that in the presence of two nearly degenerate paifigns in Egs.(Al) and (A2):

ing channels, weak-coupling theory predicts a time-reversal
symmetry-breaking  state  like Ap2 cos(2h* ¢g) , ,
+iBpv2 sin(2p,* ¢g). Near the twist grain boundary and Teon(@, An(K'), A (K'))= An(k )_én(k )’ (179
below the transition temperature of subdominant pair state c A " 2|l
we would, therefore, expeét,, andB,, to be both complex.

Another, more trivial explanation for a finite Josephson 2[A (K" = An (k)]
critical current at any twist angle would be the presence of a Cinc(@,Ap(K"), AL (K")= n n
subdominant pair state withrwave symmetry:

®° )
(170

The various frequency sums can now be performed:
An( ) =An2 CO$2¢4 = bo) +B,, (ds).  (16) dueney P

We will only consider the case that pairing takes place in at 1 =
most two channels, so we can uAgto designate the aver- WT; w2 4T
age amplitude of the dominant pair state &hgto designate

that of the subdominant pair state, which may have either

dy2_y2 or s symmetry. Since there appears to be no evidence s 1 743 —h 185
for the presence of two or more order-parameter components ™ ~ 2|w|§ T 8miTe o(T), (18D
in Bi2212 we shall study the variation of the order-

parameter components and the Josephson critical curresb that we obtain the following self-consistency equation:

= aO( T) ’ (186)

ZwD

2m d ey
ﬂ)\n((ﬁka(f’k’) An(¢k’)|n< ;/_T )_bO(T)An(¢k’)|An(¢k’)|2

0 2

An( k) =N2p(0)

+ 2 [3Pbo(T)[ A (i) = Al bir)]
(nn")
27 ddyn
+ay(T) X fo O N2 O) il o~ e [ Ao ()~ Bl )1 | (19
(nn")
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where we have introduced a cutesfy for the divergent fre- 0=tpA;+ 3 bo(T)[Ar|Aq|?+ % A1|B,|?+ 2A% Bf]
guency sum. Inserting the two-component pair states Eq.
(15) or Eq. (16) and using the expansion equatitf, the + ng(A1—A_1€0S 2po) + 7g(A1— Ay), (249
integrations with respect tgh,» and ¢, can be done. Lin- X
earizing the resulting equations and ignoring contributions 0=tgB;+bo(T)[By1|B1|*+2By|A(|*+BI Af]
from tunneling, one finds the bare transition temperatures ,
70 +75(B1—B_1)+75(B1—By). (24b)
Here, we have introduced the abbreviations
L 2o 20

NNoo(0) | 7O, (20 na=0(T)/(47.2)+13|%Dg(T), (259

with i=A,B. y=1.781 is the exponential of Euler's con- ns=ao(T) (47, ) +]J|?bo(T). (25b)

stant. Using these relations to eliminate the coupling con- , . ]

stants, the density of states, and the cutoff, we obtain as afYfting 77q and 7 in front of the terms representing tunnel-

intermediate step Eq$A3) in the Appendix. ing across the twist grain boundary we allowed for the pos-
The terms in these two equations are rearranged into tw8ibility that tunneling matrix elements representing this pro-

groups, one pertaining to layer only, the other one repre- €SS might be different. This possibility arises from the fact

senting coupling terms that vanish in the absence of the twidhat the atomic orbitals entering in a microscopic calculation

grain boundary, i.e., when the order parameters are identic®f the tunneling matrix elements would be rotated with the

on all the layers. Then the leading intralayer term will con-lattice. Depending on the anisotropy of the orbitals involved,
tain the factor their overlap will thus depend on the twist anghg. In ad-

dition to this intrinsic effect, the quality of the interface
ti=In(T/T)~(T—T)/T.i, (21 could be different, especially if the samples were treated
chemically or physically after cleavage and before fusing

where for either of thel-wave states]; follows from together to form the twist junctions. This possibility could be

IN(T¢; /TS +ao(Te)[ 17, o— 1127, ,]=0. (22) of great experimental importance, and will be discussed fur-
0 - ~ ther in Sec. VIII.
Tei~Tei— (7/4) [ U7 o—1/27 ;] represents the bulk transi-  Equations for an arbitrary set of neighboring planes

tion temperature of @-wave superconductor reduced from +1 are obtained by setting,=0, »= 7', and by replacing

its “bare” value [Eqg. (20)] by second-order incoherent the index 1 byn. Note, that Eqs(23) are not symmetric with
tunneling® This T, reduction is mitigated by the-wave  respect to the interchange @f1 and —1. To obtain the
part of the incoherent tunneling. Sinckwave scattering correct equations foh_; andB_ the sign of the twist angle
cannot enhancd ., we require 1127 ,]<1/7 . This re- ¢, needs to be changed.

quirement appears reasonable in view of the fact thatn As anticipated, there is indeed no coupling for the_,2

Eq. (7) is positive definite. For the model considered by Grafstate across a 45° twist grain boundary. However, if pairing
et al,® which emphasizes strong forward scattering, onen ad,, state is possible, a linear coupling between these two
finds 1/r ,<1/7, o. Ordinarily, however, we expect 4/,  pair states is caused by the twist that will leadBto>0 even
<17, o. The suppression of # 0 superconductivity by non- for T>T_g. No such linear coupling arises from a superpo-
magnetic impuritie®**is obviously closely related, so that sjtion of ad-wave ands-wave state. These conclusions are
it is not surprising that Eq(22) again describes th€. re-  not altered when the coupling terfSgs.(A1) and(A2)] are
duction, provided the appropriately defined scattering timegxpanded to third order, as one obtains the above forms of
are sufficiently long. For the isotropg&wave state consid- T, andT';,., multiplied by terms such ag\,(k’)|? and
ered here, incoherent tunneling does not lead 1@ @duc-  |A,,,(k")|?, which are positive definite. Similarly, taking the
tion (see the Appendix In this paper we shall not consider perturbation theory with respect to the tunneling Hamiltonian
the dependence df; on 7, and 7, , in any detail, instead to fourth order does not change the physics qualitatively. In
we shall treaff .4 and T.g as independent parameters. particular, one doesot get any linear Josephson coupling

After these remarks we can write down two sets of equapetweers-wave andsziyz-wave order parameters along the
tions for the case that the pair state is a superposition of twg axis.

d-wave states, Eq15): In order to introduce dimensionless quantities and to re-
, A )1 Axn2 duce the number of parameters we normalize all order-
0=tpA1+ 7 bo(T)[Ag|As|“+ 5 A1[B4|*+ 3 ATB1] parameter components with respect to
+ 7g(A1—A_1€0S 2pg+ B_1Sin 2pg) + (A1~ Ay), 2ty 2
|A]2=— (26)

3b6(T) ~ 3bo(Tom)| = Ton)"

which is the solution of the above equations in the absence of
the twist grain boundary and in the absence of additional
+ 14(B1—B_1€0S 2pg—A_;Sin 2¢g) + 74(B1—By). pairing channels. We shall consider the regiffig,=T
=0.5T;5. For this temperature range we shall put the argu-
(230 ments inag andbg [Eq. (18)] equal toT.,, a constant, and
For the superposition ai- ands-wave states, Eq16), we use the approximatioriy~ T/T.o—1. The resulting ap-
find proximate expression for tHe dependence dfA|? actually

(233

0=1tgB;+ 3 bo(T)[By|B1|2+5B4|As|>+ § Bf AZ]
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agrees reasonably well at all temperatures with the result of Ba=3 Bs=1, (299
the weak-coupling theory while the “exact” Ginzburg-

Landau expression shows qualitatively different behavior at €4=3 €5=3, (29b
low T. We see from Eqs(21), (23), and (24) that a small

value of T g will give small real values foB,,. For T, 5d,3=% €ds- (290

=T>T,.5 we havetg>1 so that Eq(23b) reduces to Different values can result from strong-coupling effects.

7 From these equations one can construct a dimensionless
Bl:t_dAlSin 20, 27 Lawrence-Doniach free energdp p such that variations with
B respect to each of the order parameters and their complex

and B,>t;". Using the approximate expression HQ1)  conjugates reproduce the Lawrence-Doniach equalid8s

would severely underestimaBy for T.g<Tea. as well as the equations for all other layers indices. Also,
ComponentS, Eq$23) are transformed into tl’eated Simultaneously W|th the Combination df and
s-wave state$Eq. (16)]. We find
0= X~ XXy~ Xyl Y12 280X Y3+ 74X, = Xy) .
A Fip=> (F,+F_,) (intralaye)
, n=1
7 .
+ =2 (X, — X_1€08 2bo+ Y _15in 2), (283 N-1
A + > (Fons1tFon_n-1) (interlayer coupliny
n=1
tg 5

0= aYl_IBdY1|Yl|2_ €qY1|X1|?—284YT X7 +F_;,; (twist grain boundary coupling  (30)

7" - with

+t—d(vl—v,lcosz%—x,lsin2¢0)+ t—d(Yl—Yz). t
A A B
Fo=— |Xn|2_ t_|Yn|2+% |Xn|4+,8d,s%|Yn|4
(28b A
The same transformations are applied to Egd). + €q.61Xn| | Yal 2+ 63 ( X2YE2+X*2Y2), (319
As in the Lawrence-Doniach theory we have introduced

here phenomenological parametess &, e which, in the —taFnns1= 7alXn—Xnt 112+ 74 Yn— Yns1l?,
weak-coupling theory developed above, have the values (31b

n4([[Xg+X_1]sin ¢po—[Y1—Y_1]1c0s | >+ |[ X1 — X_1]C0S o+ [ Y1+ Y _4]sin ¢|?) for dd,

—taF_14+1=
AR g(IX =X 1|20 o+ [ Xy X | PsinP o) + mi| Y1~ Y 4|2 for ds,
(319

For thedd case[Eq. (15)], F_; ; can be obtained from The free energy describing the twist grain-boundary cou-
an obvious generalization of the standard Lawrence-Doniachling is not symmetric with respect to the interchange of
coupling energy layer indices in thedd case, unles¥;=X_; andY;=Y_;.

This choice, however, does not minimige ; ,; for ¢o#0.
;[ dex ) In order to justify the use of the pair state, Efj5), we have
Fo1+1%74 E|Al(¢k)_Afl(¢k)| : (32 already argued that R€, should be antisymmetric to alle-
viate the strain introduced by the twist grain boundary. In
general, we haveF_; ;,(¢o)=F 1_1(—¢o), consistent
with our discussion beloWEq. (23)]. F_; ;; is, however,

coupling parametersy; and ». different from one another. mvarlant if we substitute X* ;X% ) for (X;1,X_4) and
F_p remains the same if we changg from zero tom/2,  (—YZ1,~Y%4) for (Y, 1,Y_,). The intralayer term&, and
provided the signs oX,, andY,, for all n.<—1 are changed. t€rms descrlpmg thg mtgrlayer coupll_ng on e_nhgr side of the
The same is true if we replace an arbitrasy by m/2— ¢,. twist are obviously invariant under this subsutunon. We thus
To renderF Y, | invariant, we also have to change the Signconclude that the solutions of the Lawrence-Doniach equa-

of ¢ taking into account the fact that one is now rotating theflons for thedd case have the symmetry

sample sections in opposite directions. The effect of a twist
grain boundary for tetragonal systems is thus seen to be sym-
metric with respect to the twist anglég'®= /4. Hence-

forth, we shall only consider the range<@s,< /4. Y_on=—Yq,

However, such is not the case for ttis state. If it[Eq. (16)]
is inserted in Eq(32), one cannot obtain Eq31c with the

X_,=X*,
n n (33
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for all 1=n=<N. This conclusion can also be reached by depy

studying the Lawrence-Doniach equations for the real andy "= 2€[27N,p(0)]]J]2 Im @T

imaginary parts of the order parameters, for which the com-

puter code was written, and it is supported by the results of 5 An(d )AL (D)

our numerical calculations. Fotr/2= ¢o= m/4, the minus X D K. o) D (K D — K o)+ D.(k '
sign would appear in the relation for the dominant order @ Dnza(ki@)Dn(k,0)[Dnza(k, @)+ Dok, )]
parameter. Using this symmettly, , . ; reduces to (36

whereD,(k,w) has been defined in Eql2). This expres-
- sion with a layer index andp -independentA was given
S ﬂﬂXiSin(ﬁo—YiCOS(boF previ_ously.35 If the tunneling is incoherent, the two Green's
' ta functions are integrated separately with respect to energy so

. that the corresponding expression is
+|X!cosgo+ Ysingo| 2, (34) ponding exp

) d doy
|7"%"= e[ 2N p(0) ]2 Im f e J e k)T
where a primeg(double prime denotes the realimaginary 2m ) 2w
part. We see that, witi] = — Y tang, andY ;= — X;tang,, A A* ,
F  would vanish for anyg,. No such cancellation can X D 5 (nliqsk;D”lEf,k )) . (37)
occur forF(,dls?+l so that the only way to reduce thiposi- o U@ n=x iR

tive) contribution to the free energy is to suppress the \ye gee that in this case of a layered compound different
d-wave order parameter near the grain boundary, while thgsgmptions with respect to the tunneling process lead to

(isotropio s-wave order parameter, unaffected by the presyjterent temperature dependences of the Josephson current.
ence of the twist grain boundary, should show the bulk beThege gifferences may be relevant to the intrinsic voltage

haviorY_,=Y,. _ steps observed in various high-temperature
A complication can be expected in tiiel case at tem-  gyperconductor#° This is also true foc-axis break junc-
peratures <Tg and for63<<0. Then the subdominant order i hetween two layered superconductors with sufficiently
parameter is real and finite for all twist angles. To minimizeyesk intrinsic interlayer coherent tunneliffyas seen in re-
FP, 1 it would need to have the symmetl§;=Y_; for  cent experiment& However, this is not the case when the
0=0 andY;=—Y_, for ¢o= /2. Josephson effect between two half-spaces filled with three-
dimensional superconductors is considef®t. When one
assumes the tunneling matrix element to be completely inde-
V. CRITICAL CURRENT pendent of momenturi?,the result given above for incoher-
ent tunneling withf;,.= const is obtained. If momentum con-
servation parallel to the tunnel barrier is assurffedne is
still left with two integrations with respect to the momenta
perpendicular to the barrier. Since those particles moving
erpendicular to the barrier are most likely to tunrielis

Following the original work of Josephstnand that of
Ambegaokar and Baratolf, as described in detail by
Mahan?® we calculate the time rate of change of the fermion
number operator on layer: Ny==,3,¢},,Con, . ONly tun-

neling to one Of_ the two neighboring Iayers_ is considere eglected in the arguments of the Green’s functions so that
becquse otherwise the tqnnel current, defined! #$) = integrating with respect td simply leads to an effective
—e(Np)(t), would vanish{N,)(t) is evaluated using linear tynneling matrix elemerff. The remaining integrals with re-
response theory with respect to the tunneling Hamiltoniangpect tok, andk! are, with the usual approximations, for-

Eq. (3). The resulting dc Josephson current can be expressgfily identical to the energy integrals evaluated in the case
most conveniently as a sum over Matsubara frequencies: of incoherent tunneling.

In the Ginzburg-Landau regime we can approximate
&K a2k D,(k,), Eq.(12), by || so that the frequency sum in Eq.
j [|J|25<2>(k—k’) (36) and Eq.(37) can be performed. For the combination of
(2m)*) (2m)* two d-wave states given in E¢15) we find for the total
Josephson current across the twist grain boundary

I)=4e Im
+find(k—k)]T Ok, w) Fo (k
nc )] % Falkw)Fazakow), (39 lg=4eN,p(0) 7 IM{(AA* |+ B,B* ,)cos 2,

The corresponding result for the combination ofig_ 2
state and ais-wave state given in Eq16) reads

where the upper(lower) sign corresponds tm=1 (n<
—1). The Josephson curreh} across the twist is obtained
from F2F°" . The commonly used step to revert to real
frequencies requires some caution when the order parameter |3 =4eN,;(0)Im{7,A,;A* ;cos 2po+ 7.B,B* ;}. (39)

is complex because the spectral representation of the anoma-

lous Green’s function needs to be generalized. Inserting th&he current between any other pair of neighboring layers is
bare Green'’s functiorigq. (10)] and performing the integral formally obtained from these equations by setting= 74,

with respect to energy, gives for the case of coherent tun- ;= 7s, ¢o=0, and by replacing (}1) by any pair f,n
neling between neighboring layers, +1) of positive(uppe) or negative(lower) integers.
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The order-parameter amplitudés andB,, are calculated tion betweenl’¢ and R, is even more remote fod-wave
from Eq. (28) which describes a large but finite stack of superconductors because here the Josephson current arising
Josephson coupled superconducting layers. Without attaclirom incoherent tunneling involves the parametes, which
ing current leads, no net current can flow perpendicular t@an be very different fromr, , appearing in Eq(40).
the layers so thalt} must vanish for alh. This means that
the expression inside the braces must be real, even thugh VI. BOUNDARY CONDITIONS
and B,, may be complex. We can thus interpret the expres-
sions on the right-hand sides of H§8) and Eq.(39) without The influence of the twist grain boundary should be re-

the imaginary part being taken as ttritical Josephson cur-  stricted to some limited number of adjoining layers so that
rent |f1C_ on the extremal layera= =N of a large N>1) but finite

stack considered in the numerical calculations the order pa-
rameters should attain their bulk valu¥s andY.,, which

eN,p(0)[ag(T)/ B,B*,, which is exactly the same as _ o .
thaiDébtging(d ZJyTZOr%blegéclear and Baral?(?fcélculating the are characterized by their independence of the layer index
If T2,>T>T%, Eq. (20), only the dominant order param-

guasiparticle current in the normal state within the same ap-

proximations and taking into account only incoherent tunnel€t€r, EQ.(26), is present. Because of our normalization we
ing we find have the simple boundary condition

The incoherent contribution to trewave channel° is

Xn=X_n=1
1 N N ’
19P(incoh) = 2eN,p(0) — eV, (40) (42)
710 YN:Y,NZO,
so that 1f, ; can be expressed in terms of the normal-statg st anglesgy< /4.

resistance. Including coherent tunneling in the Ginzburg- 5, sufficiently low temperatures the subdominant order
Landau r?gime only changes the constanF of pmportiona"%arameter becomes nonvanishing. From @44 it is obvi-
betweenly™ andB;B* . However, according to Eq$36) o5 that foréy >0 the free energy is minimized if the phase
and (37) we can expect different temperature dependencie§itference be'tweelxw andY., is = 7/2, corresponding to a

of 13°(coh) andi3“(incoh) outside the Ginzburg-Landau re- pair state with an anisotropic but nodeless energy gap. For
gime. In particular, aT =0 one finds thaty“(incoh) is pro- 5, <0 the phase difference is zero. Since the overall phase
portional to the order-parameter amplitdevhile 13°(coh)  factor is arbitrary we can choosé, real andY., real or
turns out to be independent of this quantity. Calculations ofmaginary, depending on the sign 6f ;. For all the cases
the normal-state quasiparticle current from coherent tunnelinder discussionX,, and Y., can be determined from Eq.

ing between neighboring layers yiefds (28) with all interlayer coupling terms removed,
eN,p(0)[J]2  2TeV 0=1-X2—19|Y.|?
Iﬂp(coh)Z 2D(2)| | (41) oo 7’| | ) 43)

T (eV)2+(2I)?"

Conserving energy and momentum during the coherent tun- 0= t—B — B|Y.|2— X2,
neling process at finite voltagds requires the presence of A

some intralayer scattering, parametrized by a scattering ratghere

I'. Note that the coherent quasiparticle current is only Ohmic

for eV<T. y=€qs— 2|84
If quasiparticle tunneling between two superconducting (44)
half-spaces across a planar interface is consid¥rieds not =3eqs for weak coupling.

necessary to invoke quasiparticle scattering in either of the ] ] ]
superconductors. As in the case of Josephson tunneling dighe weak-coupling expressions for the parameters are given
cussed above, the additional degree of freedom represent#HEQ. (29). The equations fox2 and|Y..|? are easily solved

by the momentum perpendicular to the tunneling barriewith the results

leads for two three-dimensional superconductors to a result

for the quasiparticle tunneling current formally identical with Y. [2= tg— yta
that obtained from incoherent tunneling. However, qualita- * —ta(y?*—B) "’
tively new results are obtained foraxis break junction tun-

neling between two quasi-two-dimensional layered super- X2=1-19|Y.|%
conductors  with  sufficiently narrow c-axis band N )
dispersioné® In either case, however, if we had included The transition temperaturggs, below whichY., becomes
intralayer scattering in the bare Green’s functions, @g),  finite, follows from the conditiortz— yto=0, which gives
I" would have appeared in the coefficieatg T) andbg(T)

(45)

<
in Eqg. (18). But, sincel'=T. at T, and decreases rapidly JeB_ E 1-vy (46)
belowT,, the changes ilag andb, resulting from the pres- Tea Tea Teg
ence of intralayer quasiparticle scattering are expected to be 1- VT—CA

small and confined to the vicinity of .. As a consequence,
the coherent contribution to the Josephson critical current i&s compared with the bulk transition temperatuiigy is
not related to the coherent quasiparticle current. The conneceduced by the presence of the dominant order parameter.
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For 64 >0 it would seem natural to use the boundary 1.0fesccacorsrsnnng
conditionX.y=X,, andY_y=i|Y.|, in agreement with the e e

T
®9ggpc0econ oy

g greeee

o <

o

2
°
°

symmetry requirement, Eq(33). When the Lawrence- 0.8 |
Doniach equations for theld case are solved with these . e e
boundary conditions, one finds a finite Josephson current .| T, coy gen ]

across the sample that is unphysical. The source of this prob- .=
lem is that, with a compler-wave order parameter locking

. . .. . 4 * . « t=099 ]
onto the lattice, there exists a finite average phase difference . . s =090
across the twist grain boundary. The unphysical Josephson | I .tz |
current can be made to vanish by compensating for this av- . :fg.gg

erage phase difference. The correct boundary conditions are,
therefore,

XjN:Xooeiiax:

(47)
Yo n=ilY.|e",
where
1 2 tan 2poX..|Y..|
= — —] L . et S
0. Ztan ( Xi+|Y3@|2 (48)

For ¢g=m/4 one findsé..=— w/4. The sign of the phase
angle is such thax” \ <0, in agreement with the discussion
below Eq.(34). It is clear from Eq.(39) that no such prob- .
lems arise for thels caseEq. (16)], so that we can take the *%0 0z oa 05 08 10
phased.. =0 for all twist anglesp,. . _ 0 =35 7 9 11 13 15 17 19
The situation is even more complex in tde case with b) Layer Index n

84>0 for temperatures in the range,<T<T.g, Where

Y..=0. It would appear that one possible solution would be 1.0

to have bothX, and Y, real for all n. However, since the

dominant order parameter is suppressed near the twist grain 5

boundary, it is less effective in suppressing the subdominant

order parameter. We can thus expect to find a complex sub- " -~ __ | 106
dominant order parameter for small layer indices. A complex " | /" -7 1
Y, varying from layer to layer results in a finite Josephson % |/ / 1 %
current. This is compensated by a finite imaginary pért 04f / 1 [ ™
While lim,_,..Y,=0, there is no reason faX] to vanish, / e
because the phase of the dominant order parameter on either 02 { ] 102
side of the twist grain boundary is arbitrary. ImposiXg, /

=0 has the consequence thdt varies linearly withn when 0.0, 0.0

. L ) . . . 0.0 0‘.2 014 016 0‘.8 1.0 1.0 018 0‘.6 0‘.4 0.‘2 0.0
Y, is already negligible. This, again, results in an unphysical n n

Josephson current, which has to be removed by a judicious
choice of the phase for the dominant order parameter. For
¢o=l4 one can see from Ed38) that 17=0 if we put
0..= — /4. For arbitrary twist angleg, there seems to be
no analytic result for,, .

FIG. 2. (a) The real amplitude of the dominant order parameter
dy2_y2 [EQ. (15)], normalized to its bulk valu¢Eq. (26)], as a
function of the layer index for various reduced temperatures. The
transition temperature for the subdominant order parameter has

been taken asT.z=0.2T.5. Other parameters are;=0.5, &4
VII. NUMERICAL RESULTS AND DISCUSSION =0.05, and ¢,=45°. For these parameters one obtaifig

. . . =0.1304T., from Eq. (46). The Josephson coupling constants in
Apro_ss the twist grain bOL_mdary we expect a destru_ctl\_/eEq.(ZSa) are n— 5’ —1. (b) Same asa), but for 7' = 0.2. The inset
proximity eff_ect _on the dqmlnant order paramete_r. This ISshowsxi as a function ofyp’ for =1 for the same set of reduced
clearly seen in Fig. @), which shows the sgppressmn of the temperaturesc) The real amplitude of the dominant order param-
dominantd,2_ 2 order 'parameter for various temperatureseterdXLyz [Eq. (15)], normalized to its bulk valugEg. (26)], on
well above the transition temperature to a two-cComponeniyyer 1 (left pane} and layer Zright pane) as a function of the bulk
pair state. For the twist angle we have chosen the extremgbsephson coupling constantfor 7' =0.2, ¢,=45°, and for the
value ¢,=45°. We see that for high temperatures the supsame set of reduced temperatures.
pression relative to the bulk value is very large and extends
across many layers. As the temperature is reduced, the suflects the temperature dependence of the coherence length.
pression of the order parameter on the layers forming the In these calculations we have chosen rather large values
twist grain boundary becomes less severe and the number gf= »' =1 for the coupling constanf&q. (25)]. Such values
layers affected becomes smaller. The latter effect simply rewould lead to a substantidl, suppression, Eq22), unless
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the tunneling is predominantly coherent. As explained in  0.20 — 010 '
Sec. V, these parameters cannot be estimated from the
normal-state resistivity. Only measurements of the interpla- 0.6 | . 0.08 \
nar critical Josephson current could provide some informa- o
tion which, however, would still be rather ambiguous be- 012 | i 0.06 Tl i
cause of the uncertainty in the two-dimensional density of e < —
states. An independent measurement of the consiant 0.08 | Y | 0.04 [ e |
which describes coupling across the twist grain boundary, i S ]
seems to be completely out of the question. However, it can 0.04 1 ,;’5;?;';,,~———j 0.02 f/// |
be varied in some controlled way in the experimental sample // F
preparation. AN — E - |

If anything, 7' is likely to be smaller thany, so in Fig. 0000702 o‘.4n,o‘.6 08 1.0 %0602 01411016 08 1.0

2(b) we show results similar to those in Fig@® but for

=1 and#’=0.2. The suppression of the order parameter is
much reduced, as one would expect, since 460 there
would be no proximity effect. The mset sr:ows thg ordernant order parameter, on layer 1 f¢p=45° and the same set of
parameter on layer 1 fop=1 as a function of;’ for V"’!”OUS temperatures considered in Fig. 2. The left panel sh¥ysas a
temperatures. The number of layers affected remains largelnction of ' for »=1. The right panel show¥, as function ofy
the same, bearing in mind the overall reduction of the prox+or ;' =0.2.

imity effect. A different type of behavior can be expected

only if we change the coupling constanjs In Fig. 2c) we 10 s finite. On the other hand, if one assumes that the

! . cB:
therefore showX’ on layers 1 and 2 as functions affor  ,enetration depth measuremefftexhibiting linear-inT be-
several temperatures. The left panel shows that=i#0, X

, s i . haviors at lowT, are related to nodes in the superconducting
is vanishingly small at high temperatures because the intrgs,qer parameter, then one would need to have the atyal

layer condensation enerd§q. (31a] vanishes as (#1)%? very small, indeed.
while the coupling energyEq. (310] varies as (+-t)*2 We shall begin our discussion with choosiigs/Tex
Since we have chosen a fairly small valye=0.2, the in-  _g 2 \hich is large enough to make the expected effects
tralayer contribution soon becomes more important than thgjearly visible but small enough to make the observation of a
coupling term when the temperature is lowered. As one ingecond superconducting transition in the bulk material un-
creasesy, X increases, because it is pulled up by the neighiiyely. This value forT g is well below the temperaturek
boring layer towards the bulk valué;=1. The left panel for which we can trust our Ginzburg-Landau approximation
shows what happens on the second layer. If this is decouple@ give reliable results. We shall, therefore, only consider the
from the first layer, we simply find the bulk value. Turning regimeT> T, for which both order parameters are real. The
on the coupling constany allows the twist grain boundary results for the normalized dominant order parameXér
to make itself felt on this more distant layer. The proximity shown in Fig. 2 for 0.5.,<T<T., Were, in fact, obtained
effect on layer 2 at high temperatures is largestfefn’.  for this finite value ofT 5. ReducingT.g to zero has the
_Independent of the coupling constant, the Josephson effect of making the suppression X, on layers close to the
critical current across the twist grain boundary is, accorquwiSt grain boundary even more pronounced. Fgs=0, X
to Eqs. (38) and (3?)’ proportional to cos &, and hence is found to be some 20% lower than the results shown in Fig.
yamshes foro =45 yvhen only the order parameis_ 2 2(a). According to Eq.(33) we expect the real part of the
is present. The proximity effect just discussed has the cong,,pjominant order parameter to be odd with respect to the

sequence that in addition to the junction between Iayer§ayer index and this is indeed what we find. In Fig(&ft
—1 and +1 several other junctions are driven normal at

o - ane) we plot Y; as a function of the parametey;, Eq.
currents well below the bulk cnpcal current, This means that?ZSa), which characterizes the strength of the coupling across
the resistance should vary rapidly with the applied current

which would make it easier to identifydje_ 2 order param- the twist. To describe the coupling between pairs of layers on

; . ; either side of the twist, we have chosgr 1. Itis clear from
eter through the effect of a twist grain boundary. It is con- ) . : o
: . : : Eqg. (310 thatY; must be zero for’ =0. The increase iy,
ceivable that the spatially varying suppression ofdh@ave

Y oL . .
order parameter resulting from a lattice mismatch contribute ith mcretzri]smgr]t(_:lepetndls quite sensﬂwc(ajly (zn }emperaturl_e,
significantly to the nonlinearity in the current response fre- ecause the cost In Intralayer energy and interiayer coupling

quently observed in high, materials. The proximity effect energy resulting from the generation of the subdominant or-

betweend-wave states rotated relative to one another alsfer parameter is reduced as one approaches the transition

. ; . . turel ..
affects the quasiparticle density of states that one might b empera cB . ,
able to study using scanning tunneling spectroscopy. The right panel of Fig. 3 shows the dependence of; .

Probably the most interesting aspect of the present theorft the lowest temperature Org,, Y; (solid line) decreases
is the creation of a subdominadéwave order parameter by @S the coupling to more distant layers is increased because
the strain associated with the twist grain boundary, whictsufficiently far from the twisty, must vanish. We find, in
would render the Josephson critical current finite even for 4act, that for the parameters used héfg decreases very
45° twist. This process is, however, possible only if the pair-rapidly with layer index. For the higher temperaturdy,
ing interaction, characterized by a bare transition temperatunaitially increases withz. This is due to the fact that the

FIG. 3. The real amplitude of the subdominant order parameter
dyy [Eg. (15)], normalized to the bulk valugEg. (26)] of the domi-
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1.0[ BT EEEEEEEEEEEEE parametely,. For very lowT g we can estimat¥; from Eq.
P (27). The normalized ;° [Eq. (38)] reduces to X,;Y; and
08} ae " L] thus depends linearly on the small parame’gelr. Even for
o .t LT Tea/Tea as low as 0.001 we fint)©=0.067 for' =1 and
“: 0.6 ot .t ] temperatures low enougte.g., 0.9;,) such thatX; is a
. e, O sizable fraction X;=0.524 in this cageof its bulk value.
= 045 L . £2099 | We see from Fig. &) that, depending on the temperature,
o L s+ t=0.90 the Josephson critical current can be suppressed on a fair
0.2° e ’ ::8-?8 . number of junctions. Unliké;C, 17 for n=1 is primarily
S, s t=0.50 determined by the dominant order parameter, which is seen
oogt - ] from the inset of Fig. ) to vary substantially withy’. The
0 2 4 6 8 10 12 14 16 18 20 number of junctions with severely suppres$&dwould thus

(@) Layer Index n be smaller for smaller,’. Remember that large values gf
and ' are compatible only with coherent tunneling. From

1.0 —n’=|1 Fig. 2(c) we can infer that, at least at the lower end of our
------- 7 = 0.6 temperature scale, a variation k#: n=1, through the de-
08 - :]1: - 8%1_ pendence oK}, on 7, is not very significant.
s ) Figure 4b) shows the dependence t§¢ on the twist
&E» 061 angle ¢, for several reduced temperatures ayid=1 (solid
>~ lines). The other parameters are the same as in Fig. 2
g 04} Also shown isl 3¢ as a function of¢, for several values of
£ n' att=0.7. The curve forp'=0.01 is indistinguishable
021 from cos 2p,, which is the dependence on twist angle ex-
) pected at any temperature if only the dominant order param-
0.0 w L ‘ - eter, unaffected by the proximity effect, were present.
) 0 10 20 2, Laeg] 40 So far we have not shown how the results depend on the

parameterss and § that describe the strength of coupling

- . between the dominant and the subdominant order parameter.
FIG. 4. (a) The Josephson critical currefEq. (38)] with 74 The values used actually differ from the weak-coupling re-

= 74 between neighboring pairs of layers with,=45°, normal-  gt[Eq. (29)]. We did change to 2/3[Eq. (29b)] and varied

ized by its value in the bulk. The layer index 0 designates the5 between+ e/4 and — e/4. Even changing the sign af

Junction formed by the twist grain boundary between layedsand hich would favor a real subdominant order paramete}, has

*+1,and the layer 'ndix.l des'gnat?s the junction between layers #étle effect on the results presented so far. The changes are at
and 2, etc. Becausl:l1 is symmetric, we only show results for

S ; . . most a few percent and would be barely visible in these
jlrJ]nctlons on o_neri|d¢(aa)of(:)k)le_rtr\]/\gsﬁJ Ogsr:mhsb;l:ncc:ﬁlirgél Pcirra:ren[;ters arﬁgures

the same as In .(d). . ) .

(38)] as function ofgthe twist angléy, npormalized by its value? at For thg temperatureb,,>T>Tg considered so far, the
$o=0°, for several reduced temperatures afic=1 (solid lineg. ~ cOmbination Eq.(16) of d- and s-wave order parameters
The other parameters are the same as in Figl. Zhe various ©Only leads to the trivial solutiorB,=0 for all n and
dashed lines show the changes in this angular dependente aflp ($o=45°)=0. The proximity effect orA, is the same as
=0.7 asp’ is lowered. in the dd case discussed above withg=0.

The only other really relevant parameter, in additionjto
and »', therefore is the strength of pairing in the subdomi-
nant channel, parametrized By,z. Results for thels case
with T.g/T:o=0.9 are presented in Fig. 5, which shows the
bulk solutions and the solutions on layer 1 together wifh
as a function of temperature for the maximum twist anfile
=45°, For this value ofT .z we obtain from Eq.(46) Tog
=0.857T.5. At this temperature the buk-wave order pa-

tC)uCrCeurcL?]rs;[Qgr(tanIS; %?g;ﬁo;:)in%u’?; tir;,efgﬂr;lez[t tzgﬁb&a- rameterY,, sets in with the usual square-root behavior while
X, drops with a discontinuity in slope.

=12°. As the temperature is lowered, this maximum shifts As in thedd case withT> T, it suffices to consider only

ti);?[’ger twist angles and dt=0.5T, it is found nearg, two order-parameter amplitudeX,,, which is chosen to be
B : real, andY,,, which is real or imaginary depending on the

In Fig. 4a we show the Josephson critical current Eq. _. . X
. : . sign of &5 in EqQ. (3138. The phase is of no consequence here,
51388’)\'22?8')\/;:?” nEetlfr}gg)mégspggznogrﬁilgésé%h?hgrgiggtfrsince we consider the coupling between layers and the Jo-

arameter . amplitudes have been normalized. so th stephson current only to lowest order in the order-parameter
P P ’ aamplitudes. The difference between a time-reversal breaking

lim,_1n"=1 atall temperatures for which the subdominantga e 1 js without nodes in the energy gap and a real com-
order parameter vanishes in the bulk. Singg=45°, the binationd+ s with nodes can be expected to show up at low
finite value of 3¢ is entirely due to the subdominant order temperatures.

finite value of Y; arises from minimizing the free-energy
contribution[Eq. (319)], so thatY; must scale withX; . For
T.g<T.a We have the analytic result, ER7). Comparing
with the left panel of Fig. &), we see that such a relation
betweenX; andY; persists to much larger values Bfg. It
is for the same reason that the maximum¥gf does not
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FIG. 5. Order-parameter components on layer 1 and in the bulk FIG. 6. The left panel shows the amplitudé ; of the subdomi-
for thesd combinatio{ Eq. (16)] as a function of temperature in the nantd-wave order parameter on layers 1 and as a function of
vicinity of the s-wave transition temperature. Also showsolid ¢ for the case of a reald superposition. The two solutions shown
line) is |3C(¢,0)/|3C(o), Eq. (39). The parameters ar&.g/Tea have different symmetries with respect to the layer index. In the
=0.9,8=1, 74= 4= ns=1,=0.2, andp,=45°. right panel, the twal-wave order parameters differ in phase#i2.
The symmetry of these states is given in E8R). 17(¢,) is in-
cluded in both panels. It is normalized to unity¢gaf=0 when only
For the parameters chosex, at T.g is reduced through a single order parameter is present. The parametersTage
the proximity effect to about half its bulk value. Equation =0.9T_,, T=0.8T ., B8=1, €e=1/3, =*¢€/4, andnp=17'=1.
(43) with X, replaced byX;<X.,=1 shows why the transi-
tion temperature folr; is found to be higher thafis;. An - . . .
accurate estimate of this transition temperature is not pOS[a_lcross the twist junction as a short dashed line. However, in

sible because the coupling to outer layers also serves to sugh?n?nb:tfn:;?:oyhev\}\évlﬁé vr\ﬁn?r)r(\?zz(:ttrfza:‘tr;eS:rlgrlon Vé'ttzr:_he
pressY;. It is only in this rather indirect way that the twist y YTi=Y¥-1 9y

grain boundary has an effect on an isotropic subdominanipg with & trial solution t_hat has this symmetry we find con-
s-wave order parameter. Note that, unliXg , X; continues vergence only up o twist angleso~25°. For ¢o#0 the

to grow with decreasing temperature, even after the onset or° Iut'FlonY?ctualllly haz $(,) sy(;nrtngtrty(,j ats dtheh tv(;/;)hlmesFrepre-
Y,. This temperature variation of, has been discussed ex- S€MN9 Y1 (solid) and Y_, ( ol-dot-dot-cas gdshow. For
tensively in connection with Fig. 2 equal coupling constantg=»’, the minimum Josephson
At ¢ho=45° the Josephson CLjrrént is carried solely by thecritical current, shown as a dot-dashed line, does not occur at

s-waveocomponent of the condensate so that. unlikedifhe the twist junction but a few layers away from it, the distance
case considered abovl%C is finite only below temperatures dependmg Onﬁo.' In Fh|s case we compared the free energies
at which Y. is finite A’E temperatures not verv far below to establish which is the correct solution. The result is that

< 1 ' peratur . Y . the most stable state is the one that has the larggsmum
Teg, Y1 and X, are comparable in size. Since from our dis-

. f the t i rix el " Id Josephson critical current. Thus, at the twist angle at which
cu’ssm,n of the tunneling matrix elements we woulo €XPeClhe short-dashed and the dot-dashed lines cross, the system
1ns> 14, the Josephson current would flow primarily in the

i ) ; undergoes a phase transition during which the order param-
channel at any twist angle so tHéF would show little varia-  gter changes its symmetry with respect to the layer index.
tion with ¢, except very close td ;5. This explanation for When 84>0, as expected from weak-coupling theory, the
the absence of a strong variation I with twist angle phase difference between the twiewave states isr/2. In
implies, however, a substantial deviation in the nodal strucorder to avoid spurious Josephson currents we have to mul-
ture of the order parameter in the bulk material from that oftiply the bulk solutions with a phase factpEq. (47)]. The
thed,2_,2 state. phase angl@ in Eq. (48) is not quite the correct choice when
Finally, we consider the case of two coexistidgvave the boundary conditions are imposed not at infinity but at
states, Eq.(15). As before, we choos@ g/T;4=0.9 and some finite layer indeXN. For N=80, # has to be modified
consider the temperatuie=0.8T .z<T;3=0.857T . Top by less than one degree to reduce the Josephson current to
is the same as for thds case because we use the samebelow the numerical error. The numerical solutions pre-
parameter values far and 8. Whend, in Eq. (313 is nega- sented in the right panel in Fig. 6 have the symmetry ex-
tive, the phase difference between tig_,2> and thed,,  pected according to Eq33) at all twist angles. Atp,=0,
state vanishes. As discussed above, in order to relieve titbe amplitude of the dominant pair state is real, that of the
strain induced by the twist grain boundary the subdominansubdominant state is purely imaginary. &g is increased, a
pair state should be antisymmetfigq. (33)] with respect to  real partY’ and an imaginary paiX” are created that serve
the layer index. Starting the iteration with a trial solution thatto rotate the clover leaf of a-wave state relative to the
has this symmetry, we obtain a convergent result for anyattice to minimize the interlayer coupling energy.
twist angle. In the left panel of Fig. 6 we show the purely In the intermediate-temperature regiig<T<T.g the
real solutionY;=—Y' ; for the subdominant state on layer 1 subdominant order parameter has a finite complex amplitude
as a long dashed line and the Josephson critical curremtear the twist grain boundary. To cancel the Josephson cur-
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rent that results fronY”# 0 the dominant state must acquire two-component pair state is formed in the bulk, sieave
an imaginary part. Whil&" andY” must go to zero far away component can form near the twist junction and thus render
from the twist sinceY..=0, there is no reason faX” to  13%(,=45°) finite. If the tunneling is predominantly inco-
vanish in the bulk. When one impos¥5=0 as a boundary herent, the Josephson coupling betweemave states is ex-
condition, one finds thak” vanishes linearly at the outer- pected to be much stronger than that betweemave states,
most layer, whatever the number of layers considered maynless the quasiparticle momentum is very nearly conserved
be. The result is again a spurious Josephson current. Thuring the incoherent tunneling process. A snmsllvave
correct solution is obtained by multiplyirig,. with a suitable  component, possibly too small to be detected by other
phase factor, Eq47). In this case we do not have an analytic means, could thus carry most of the Josephson current, in
formula to calculate the phase angle. The Josephson critic@jhich case no dependencelé? on the twist angle would be
current for two such nearly degeneratavave states is very expected. Unless the and d components of the pair state
nearly independent of the twist angle at all temperatures. coexist at all temperatures, possibly because the system does
not have tetragonal symmetry, one would expect to see some
dramatic change with temperature Iig}F(zﬁo), even for ¢
=0.

It is evident from Fig. 4b) that if the dominant order
parameter were the presumég _,2-wave order parameter,

If the in-plane order parameter of high-temperature superdecreasing;’ causes strong variations in the angular depen-
conductors had-wave symmetry, the Josephson critical cur- dence of the normalized critical current, so that twist junc-
rent from one conducting layer to the next is exactly 3275~ tions with ¢o=45° would have a vanishing critical current
unless there is some coherent tunneffhif or else there is for T values down tdl g, the bare transition temperature of

A . H /.
some momentum dependence to the incoherent tunnehr{#}1e subdominant order parameter. We remark tatthe
amplitudé'~333%containing a component witt-wave sym- osephson coupling parameter across the twist junction, can
metry. If either one or both of these preconditions is fulfilled, P& varied experimentally by chemically reacting the cleaved
the Josephson critical currehfC across a-axis twist junc- surfaces prior to forming the twist junction. In addition, since

tion varies with twist anglep, as cosd, if the pair state the ac_tua_l criti_cal current is propor_ti_onal %', weakening :
with d,>_.» symmetry varies along the Fermi line as cgs?2 the twist junction decreases the critical current for all twist
Xe—y

At intermediate twist anglest;‘,c even falls below cos3, angles¢,. Note that this would a!so be the case for a pure
; Swave order parameter, except in that case there would be

rameter on lavers cl he twist arain ndarv. Th ode_:pendence upon _the tw?st anglg Decreasingy’ sub- _
parameter on layers close to the twist grain boundary ¢ antially should provide evidence that effects of the twist

size of this suppression, and the number of layers affectegf) q indeed ob d

depend on the strength of the Josephson coupling betwe undary are indeed observed. . .

the layers, which cannot be estimated directly from the We thus encourage fqrther experllmgnts to be carried out

normal-state resistance. The proximity effect depends via th ear toT, ‘_N'th Z€ro applled magnetic field. Th_ese are pre-
cted to give the maximum information regarding the sym-

coherence length strongly on temperature so that chang .
resulting from variations of the twist angle should be moreMetry of the .superconductmg order parameter gnq the nature
of the tunneling process between layers. A preliminary set of

easily detectable close to the transition temperature. h . s i v | d&sideall
A nonvanishing Josephson critical current at twist angleSuc expenments 1S currently in progressideally, one

¢ho=45° can result if a second pairing channel wi or s should study groups of samples, each group having the twist
symmetry exists. Even if the, pairing is very weak, so that junctions deliberately weakened with identical procedures.

one would not expect to see a second superconducting traﬁ_urthermore, experiments should be carried out to determine
sition, we find a finite order parameter with this symmetry Onwhether the current paths are indeed homogeneous. This

the layers forming the twist junction at all temperatures atCOUId be done by decreasing the area of the junction, and

which the dominant order parameter is nonvanishing. I:Opeeing if the critical current scales with the junction area.
weakd,, pairing we would still expect to see a substantiaIAISO’ the placement of the current and voltage leads should

variation of 3¢ with the twist angle. This variation is stron- be varied.
ger close to the transition temperature because, as the tem-
perature is raised;(¢,=45°) will drop much more rap-

idly than the bulk critical current. If the twd-wave states

are nearly degenerate, the combined state is more or less free

to rotate relative to the crystal axes and very little variation

of 13%(¢o) would ensue. Such a state, however, would either The authors would like to thank Qiang Li for useful dis-
have a finite energy gap everywhere on the Fermi surface qfussions and for communicating his data prior to publication.
the nodal structure would disagree with the results of ARPES he authors also gratefully acknowledge financial support by
measurements. NATO through the Collaborative Research Grant No.
The existence of as-wave pairing channel has no effect 960102 and by the Deutsche Forschungsgemeinschaft
on If,c(¢0=45°) at temperatures above the transition tem-through the Graduiertenkolleg “Physik nanostrukturierter
peratureT.s at which thiss-wave state would form in the Festkaper.” The work of one of the authorR.A.K.) was
absence of any other pairing. In a narrow temperature rangsupported by the U.S. Department of Energy, Division of
To<T<T.s, WhereTg, is the temperature below which a Basic Sciences, through Contract No. W-31-109-ENG-38.
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APPENDIX
Here we list the full forms of"., andT’;,. that appeared in Eq11). After integrating over,, we have

An(K")—Ap(k")
Dn(w,k")Dp/(w,k")[Dpr(w,k") +Dn(w,k")]

Leon(@,An(k"),Ap (K"))=

2[An(K) 2= An(k)AT (K= AR (k) Ap/ (k")

An(k)——

2D (w,k")Dpi(w,k)[Dp(w,k")+Dpr(w,k")]

2|A(K")[2=An(K AR (K) = AF (K )AL (K')

Ak D2 w0k )Dr (@K J[Dn(wk') + D (w0 k )2
Ak |An (K= [An(K")|? AL

n )Dn(w,k’)Dn/(w,k’)[Dn(w,k’)+Dn,(w,k’)]3’

and

. AR A (k)= 2 Api(K")—An(k") C2[An(K)[P= An(KDAR (KM= AR (k) Ap/(K") ,
inc(wv n( )1 n’( ))_ Dn(w,k')Dn/(w,k")+ n Dﬁ(w,k’)Dn/(w,k”) ’ (A)

whereD ,(w,k) is given by Eq.(12). Expanding Eqs(Al) and (A2) to linear order in the\,,, one obtains Eq9173 and
(17b), respectively. Note, that in the absence of the twist grain boundary there is no reason for the order parameter to vary from
layer to layer. In the approximation that has led to E§l) we do not expect to see any effect of the coherent interlayer
tunneling on the intralayer order parameter and, indeed, whék’) is independent of, I' .., does vanish. Since the order
parameters appearing Iiy,,; have different arguments, such a cancellation occurs only for isotsepave states. For all other
pair states, incoherent tunneling will suppress the transition temperatures in much the same way as random scattering events
within the conducting planes.

Expanding the first term on the right-hand side of Ehl) to cubic order in the order parameters, and the interlayer
tunneling terms to linear order in the order parameters, and lejpegr A, , A,,=B,,, respectively, we have

0=AnN(T/TEW{¢h1) +bo( TIIATAT (@) + (BIAT + 24418yl ) ehy o)1+ 2 (|J|2bo<T>[An<<pﬁ1>—An,<<pn1<pnf1>

(nn')

B enpm ] o )[An<¢nl> Anr (o) ()~ Bur{ )]~ A [{ a0 20} 1005281

+{@n18IN 2y ) @nr1SiN 2¢) |+ B/ [ ( 9n1€0S 201) @7 2C0S 26hy) + ( 91SiN 20 ) s 2SN 2¢k>]}) , (A3a)

0=ByIn(T/Te)( o) + o TIBIBA (o) + (ATBY +2Bul Anl®) (R o) 1+ 2 (|J|2bo<T>[Bn<soﬁz>—Bnr<¢n2m>

(nn’)

—Aq <‘Pn2‘Pn’1>]+ ( [Bn<‘Pn2> Bn <‘Pn2><‘Pn'2> An <‘Pn2><‘Pn’1>] {B [<‘PnZCOS2¢k><QDn’ZCOS2¢k>

+(@n2SiN 2y ) @nr2SIN 2¢y) 1+ An/ [ ©n2C0S 2y ) @7 1COS 26by) + {9 n2SIN 26h) @1 SIN 2¢k>]}) . (A3b)

Two additional equations are obtained by complex conjugafunctions. Thus, symmetry forces these to vanish for the
tion. In Egs.(A3), (---)=[2"(d¢p)/2m) -+ is an angular d-wave states, but not for thewave state. For as-wave
average over the Fermi surface. Because of the orthonormaguperconductor, these incoherent terms just add to the re-

ity of the basis functions, spective coherent interlayer coupllng terms, albeit with a dif-
ferentT dependence, which is of no importance near to the
<@ﬁi>: 1 (A4) maximumT .. For ad-wave superconductor, since the inco-

herent interlayer coupling terms vanish, they do not cancel
for all n,i. We note that the terms proportional torl§ in  the intralayer incoherent tunneling terms which arise from
each of the above equations contain averagessimgtegap  self-energy corrections. This lack of cancellation breaks the
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d-wave pairs, reducing the “bare” transition temperature.across the twist boundafge.g.,d,2_,2 for n=1 andd,, for
As usual, the bare transition temperature $ovave super- n=—1, with ¢¢#0).

conductivity is not reduced by this incoherent interlayer tun- On the other hand, the last terms in each of EAB)
neling. In addition, we note that the terms containing thevanish fors-wave superconductivity, but not fawave su-
integrals (¢n1){®n») always vanish, since we assume atperconductivity. Ford-wave superconductivity, these terms
most only ones-wave order parameter on each layer. Also,have the effects of raising, (albeit by a value less than the
coherent tunneling terms containing the integkalg, ¢n,/») reduction inT. due to the 14, o termg, and of adding to the
vanish except for the case of twbwave order parameters Josephson tunneling.
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