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Angular dependence of the Josephson critical current inc-axis twist junctions
of high-temperature superconductors
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~Received 12 February 1998!

We have investigated theoretically the case of a highly anisotropic layered superconductor consisting of two
identical parts that are twisted with respect to each other by an anglef0 about thec axis. This work was
motivated by recent high-qualityc-axis twist Josephson junctions prepared with Bi2Sr2CaCu2O81d by Li et al.
Our interest lies in studying whether the Josephson critical voltageI cRn measured along thec axis in high-
temperature superconductors as a function off0 could give valuable information regarding the orbital sym-
metry of the superconducting order parameter. We assume both coherent and incoherent interlayer tunneling
processes, and ordinary intralayer impurity scattering. We have derived and studied the effective Lawrence-
Doniach model appropriate for the cases of pures-wave anddx22y2-wave order parameters, a dominantdx22y2

and subdominantdxy mixed order parameter, and a dominantdx22y2 with a subdominants-wave mixed order
parameter. Our results suggest that Josephson tunneling across thec-axis twist junctions can indeed be a useful
tool for probing the superconducting order-parameter symmetry. Further experiments to clarify the situation
are suggested.@S0163-1829~98!05226-6#
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I. INTRODUCTION

In recent years, there has been a raging controversy
garding the orbital symmetry of the superconducting or
parameter in the high-temperature superconductors. M
experiments1–3 were interpreted in terms of adx22y2-wave
order parameter predicted by theories involving a repuls
pairing interaction,4 but many others5–10 were interpreted in
terms of a more conventionals-wave order parameter, a
obtained in the standard BCS theory based upon rather
tropic, attractive pairing mediated by phonons or other s
bosons. In the last year or so, an increasing number of th
experiments appear to have been easiest to explain fro
predominantdx22y2-wave order parameter, most likely a
companied by a subdominants-wave order parameter.11

However, nearly all of the important experiments purporti
to provide evidence regarding the orbital symmetry of
order parameter were performed on the single mate
YBa2Cu3O72d ~YBCO!. Unfortunately, YBCO is always
distinctly orthorhombic, due to the inescapable presence
the conducting CuO chains. Hence, both thes-wave and the
dx22y2-wave order parameters belong to the same repre
tation of the relevant crystal groupC2v , and can mix freely
at all temperaturesT. Thus, before one becomes too pre
diced by the apparent results on a single material, one o
to examine the available experimental evidence that migh
relevant to this question in a different material.

To date, the only other materials for which Josephs
junction experiments, which are the most sensitive exp
ments to determine the phase of the order parameter,
been performed are the single experiment on Tl2Ba2CuO41d
~Tl2201! ~Ref. 12! and a few on Bi2Sr2CaCu2O81d
~Bi2212!.13–17 Until recently, Tl2201 was thought to have
PRB 580163-1829/98/58~2!/1051~17!/$15.00
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crystal structure that was tetragonal, but very recent neut
diffraction results have determined that most samples
Tl2201 are rather orthorhombic, as is YBCO.18 Although
there has never been any consensus on the actual cr
structure of Bi2212,19 most samples are thought to be orth
rhombic. However, in this case the orthorhombicity is diffe
ent, with a distortion along the diagonal between the crys
a andb axes.20 Such a distortion would not lead to the co
existence of adx22y2-wave order parameter with either a
s-wave or adxy-wave order parameter, except below a se
ond phase transition, since these order parameters are m
festations of different representations of the crystal group

In Bi2212, the only published experiments relevant to t
order-parameter symmetry of which we are aware were m
by Josephson tunneling into theab plane and into a mixed
c-axis, ab-plane configuration, and by scanning tunneli
microscopy ~STM! onto the top (c-axis! surface.17,21–23

These experiments led to inconsistent conclusions, w
STM measurements appearing to give ‘‘d-wave-like’’ results
when the tip was above a~nominally semiconducting! BiO
layer, but ‘‘s-wave-like’’ results when it was above a~super-
conducting! CuO2 layer. While apparent Josephson tunneli
into the c-axis did not produce any measurableI cRn , Jo-
sephson tunneling into theab-plane gave a very largeI cRn
value, which has recently also been seen consistently
c-axis point-contact measurements,24 although the direction
of the Josephson currents in that latter experiment was
known. In addition, angle-resolved photoemission spectr
copy ~ARPES! experiments on Bi2212 have been interpret
as being consistent with an order parameter of thedx22y2

form.25,26 We remark that ARPES experiments are insen
tive to electronic properties of the sample arising from sta
physically deeper than about 10 Å from the surface. A
1051 © 1998 The American Physical Society
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1052 PRB 58R. A. KLEMM, C. T. RIECK, AND K. SCHARNBERG
though one cannot determine the phase of the order pa
eter through ARPES experiments, one would have to c
clude from the data that the order parameter was locked
the crystal lattice on the top atomic layer normal to thec
axis, provided that the ARPES experiments are indeed m
suring the superconducting and not some other order pa
eter such as that pertaining to a charge-density wave or s
density wave.27

Very recently, some preliminary results relevant to t
symmetry of the order parameter in Bi2212 have beco
available.13–15 In these experiments, a high-quality sing
crystal of Bi2212 was cleaved mechanically between nei
boring BiO layers; the two cleaved surfaces were then
tated by an anglef0 with respect to each other and he
treated to fuse them back together, as pictured in Fig
Miraculously, transmission electron microscope stud
showed that the fused boundary appeared in many sampl
be essentially perfect. To measure theI c across the twist
boundary, the authors attached two current leads far from
twist, and four voltage leads near it. Due to the large val
of I c at low T, it was necessary to apply a substantial ma
netic field along thec axis to reduceI c . The I c(f0) they
obtained were identical to those obtained for single-cry
Bi2212, without any twist boundaries, and were essenti
independent off0.13 For T close to the transition tempera
ture Tc it is possible to measureI c without applying a mag-
netic field. First results also show no significant variation
I c with the twist anglef0.16 These observations appear to
incompatible withd-wave pairing.

Unfortunately, the dependence ofI c upon the junction
areaA and on the current distribution, which could be ve
inhomogeneous, is presently unknown. However, we exp
that ambiguities inherent in the present experiments, wh
were designed to study the weak link behavior of the gr
boundary and not the symmetry of the order parameter,
be removed in the future. In this paper we therefore study
problem of the critical supercurrent along thec axis in a
highly anisotropic layered superconductor~i.e., Bi2212! with
a c-axis twist junction anglef0. We restrict our consider
ations to the temperature regime nearTc , where the experi-
ments can be performed in the absence of the complica
magnetic field, which we neglect. It is our aim to establ

FIG. 1. Sketch of the twisted bicrystal. A single crystal
cleaved in a plane normal to thec axis; the two cleaved sections a
rotated by an anglef0 with respect to each other, and then fus
together as pictured.
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whether d-wave pairing can be ruled out conclusively b
measuring the supercurrent through ac-axis twist junction.
To achieve this aim it is necessary to take into considera
admixtures of order parameters with different symmetries
such a way that the interpretation of other experiments is
affected. If the pair state, locked onto the crystal lattice, h
dx22y2 symmetry, it would be obvious that the supercurre
would vanish forf0545°. The presence of a subdomina
order parameter withdxy symmetry would allow the overal
d-wave order parameter to rotate and thus compensate
the twist. A subdominants-wave order parameter coul
dominate the supercurrent because of differences in the
neling matrix elements.

In Sec. II, we shall introduce a weak-coupling model
unconventional superconductivity in a layered superc
ductor with some form of single-particle interlayer tunnelin
and in Sec. III we shall discuss the resulting self-consiste
equations for the case of two competing order parameters
Sec. IV these equations are simplified by keeping only ter
of cubic order in the order-parameter amplitudes and the
fective Lawrence-Doniach28 free energy for these two orde
parameters is evaluated. Section V contains an outline of
calculation of the Josephson current and the definition of
critical current that, in the presence of a complex order
rameter, presents some difficulties. We also calculate
quasiparticle current for both coherent and incoherent tun
ing in order to elucidate the problems involved in deriving
relation between the parameters in the Josephson critical
rent and the normal-state resistance when the tunneling t
place between two-dimensional superconductors. In Sec
solutions of the Lawrence-Doniach equations~Sec. IV! in the
absence of the twist junction are given, which are required
fix the boundary conditions. When the order paramete
complex, the boundary conditions are established by the
quirement that there must be no Josephson current along
c axis for the closed system. In Sec. VII the numerical resu
are presented and discussed. Greatest attention is given t
very interesting possibility of two purely reald-wave order
parameters, where the sign of the subdominantdxy-wave or-
der parameter changes across the twist boundary. This s
tion is found when the bare transition temperatureTcB of the
subdominant order parameter is very low. IfTcB is compa-
rable to the transition temperature of the dominant order
rameter, the competing order parameters are most likely
of phase with each other, their phases differing byp/2 in the
bulk, far from the twist boundary. Our conclusions are p
sented in Sec. VIII.

II. MODEL

We assume that the system consists of 2N@1 layers,
which are labeled with integersn such that2N<n<21,
1<n<1N. The two sectionsn>1 andn<21 of the crys-
tal are assumed to be rotated relative to one another b
angle f0, creating a@001# twist grain boundary between
layersn51 andn521. For simplicity, we treat each micro
scopic CuO2 double layer of Bi2212 as a single conductin
~or superconducting! layer. We assume that the charge ca
riers on these planes are fermions described by the stan
HamiltonianH of layered superconductors

H5H01H11V, ~1!
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with

H05 (
n,s,k

cns
† ~k!j0~k!cns~k…, ~2!

H15 (
n,n8,s,k,k8

^nn8&

cn,s
† ~k! tn,n8~k2k8! cn8,s~k8!, ~3!

V5 (
n,s,k,k8

cn,s
† ~k!cn,2s

† ~2k!ln~k,k8!

3cn,2s~2k8!cn,s~k8!. ~4!

cn,s
† (k) @cn,s(k)# creates~annihilates! a single quasiparticle

with spin s, wave vectork5(kx ,ky), and energyj0(k)
5e(k)2EF relative to the Fermi energyEF within the nth
layer.H1 is the Hamiltonian describing single-particle tu
neling between near-neighbor layersn and n85n61, de-
noted bŷ nn8&, for which tn8,n(k82k)5tn,n8

* (k2k8), andV
is the generalized singlet intralayer pairing Hamiltonian. W
takec5\5kB51.

The tunneling matrix elementtn,n8 depends only upon the
change in momentumk2k8, when umklapp processes ca
be neglected, as for free particles. We assume there are
types of interlayer tunneling processes, coherent tunne
and incoherent tunneling at the positions of ‘‘electric
shorts.’’ Here we treat both of these processes togethe
coherent tunneling, the tunneling matrix element in r
space is translationally invariant, so that in momentum sp
it preserves the wave vector parallel to the junction. T
incoherent process occurs at random defects situated a

positionsRm
nn8 between the adjacent layersn,n8, at which the

potential barrier for interlayer tunneling is reduced. The tu
neling matrix elements are thus of the form

tn,n8~k2k8!5dn8,n61FJd~2!~k2k8!

1(
m

t~k2k8! e2 i ~k2k8!Rm
nn8G . ~5!

Physical quantities are obtained by taking two-dimensio
averages with respect to the random sites,29 which we denote
by ^•••&. In the first-order term, we can neglect the cont
bution from incoherent tunneling, since we already consi
explicitly the coherent tunneling. For the second-order te
we obtain

^tn,n8~k2k8!tn8,n9~k82k9!&5dn8,n61d~2!~k2k9!

3@ uJu2d~2!~k2k9!dn9,n861

1dn9,nf inc~k2k8!#. ~6!

The averages of incoherent tunneling processes between
ferent adjacent layer pairs vanish. Thed function outside the
square brackets reflects the restoration of translational inv
ance upon averaging. We note that the incoherent tunne
function f inc(k2k8)5rut(k2k8)u2, with r the density of
incoherent tunneling sites, is ordinarily taken to be a c
stant, as was done by Ambegaokar and Baratoff.30 As has
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been noted before, though, it is important to keep the m
mentum dependence when tunneling betweend-wave super-
conductors is considered.31–33These authors considered tu
neling along directions parallel to the conducting planes,
the arguments applicable toc-axis tunneling are very similar

Thus, in order to have Josephson tunneling between
layers of a purportedd-wave superconductor, we must re
quire some amount of coherent tunneling,34,35 or else we
have to introduce somed-wave anisotropy to the incoheren
tunneling amplitude.33,36 We therefore assume in this wor
that the incoherent part of the second-order tunneling proc
in Eq. ~6! can be expanded as

f inc~k2k8!5
1

N2D~0! (
l 50

`
cos@ l ~fk2fk8!#

2pt'l

, ~7!

whereN2D(0) is the two-dimensional density of states; f
free particles,N2D(0)5m/(2p). We have introduced the in
coherent pair tunneling rates 1/t'l . Generally one would
expect 1/t'l to decrease rapidly with increasingl , with the
s-wave term, corresponding to complete incoherence, be
by far the largest.

We remark that Eq.~7! assumes that the single
quasiparticle tunneling matrix element only depends up
the tunneling anglefk2fk8. That is, we assume the tunne
ing amplitude does not depend upon the orientation of
quasiparticle relative to the underlying crystal lattice, b
only upon the relative change in direction incurred upon
terlayer tunneling. We thus expect the tunneling to be inva
ant underk↔k8. In this case, if one were to have added

phase shiftd l
n,n8 to the terml (fk2fk8) inside the argumen

of the cosine, one would be forced to add an equivalent te

with d l
n,n8→2d l

n,n8 , in order to preserve the invariance u

der k↔k8. Thus, we setd l
n,n850.

The pairing interactionV is treated in the mean-field ap
proximation, which leads to the following ‘‘impurity’’-
averaged self-consistency equation for the order param
on thenth layer:

Dn~k!5T(
v,k8

ln~k,k8!Fn,n~k8,v!. ~8!

The sum over Matsubara frequenciesv is cut off in the usual
way at some frequencyvD .

Assuming the interlayer tunneling process is ‘‘weak,’’ w
expand the anomalous Green’s functionFn,n(k,v) in powers
of t. For coherent tunneling in the bulk of a layered sup
conductor, it is elementary to include the tunneling to
orders int,34,35but when a surface~such as a twist boundary!
is introduced, the order parameters on each layer are
equivalent, and the Fourier-transform technique does
work.37,38 So, we have to rely on this expansion techniqu
although it is only valid fort!Tc in the absence of intralaye
scattering. To second order in the interlayer tunneling, o
obtains
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Fn,n~k,v!5F n
0~k,v!1 (

n8
^nn8&

(
k8

@ uJu2d~2!~k2k8!

1 f inc~k2k8!#@F n
0~k,v!G n8

0†
~k8,v!G n

0†~k,v!

1F n
0~k,v!Fn8

0†
~k8,v!F n

0~k,v!

1G n
0~k,v!F n8

0
~k8,v!G n

0†~k,v!

1G n
0~k,v!G n8

0
~k8,v!F n

0~k,v!#. ~9!

The bare BCS-type Green’s functions are given by

G n
0~k,v!5

2@ iv1j0~k!#

v21j0
2~k!1uDn~k!u2 ,

~10!

F n
0~k,v!5

Dn~k!

v21j0
2~k!1uDn~k!u2 ,

F 0†(k,v)5@F 0(k,v)#* , and G 0†(k,v)5@2G 0(k,v)#* .
The important term in Eq.~9! is the third term, which explic-
itly couplesF n

0 to F n8
0 in linear order, and leads to the linea
nt
,

-
p
en

n
n

f t
coupling of the order parameters on adjacent layers, the
sephson tunneling term in the Lawrence-Doniach model.

III. GAP EQUATIONS

The gap equation is obtained by inserting the anomal
Green’s function from Eq.~9! into Eq.~8!. Depending on the
range over which the twist grain boundary affects the int
layer order parameters, we need to solve a rather large n
ber of coupled two-dimensional nonlinear integral equatio
~The total number of layers considered in most of our n
merical calculations was 160.! This problem is so formidable
that one needs to make some simplifying assumptions
make it amenable to numerical solution.

First, we assume that all the functions in Eq.~8! with the
exception of the Green’s functions vary weakly with ener
j0(k). We can thus replacek andk8 in the arguments ofDn ,
ln , and f inc by the anglesfk and fk8 that specify the ori-
entations of the Fermi momenta in the two-dimensional B
louin zone. We then make use of the standard approxima
A21(k→N2D(0)*(dfk/2p)*2`

1`dj0, whereA is the area of
a layer. After integrating overj0, we obtain
Dn~fk!5pTN2D~0!(
v

E
0

2p dfk8
2p

ln~fk ,fk8!H Dn~fk8!

Dn~v,fk8!
1 (

n8
^nn8&

F uJu2Gcoh„v,Dn~fk8!,Dn8~fk8!…

12pN2D~0!E
0

2p dfk9
2p

f inc~fk82fk9!G inc„v,Dn~fk8!,Dn8~fk9!…G J , ~11!
the
e
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where

Dn~v,fk!5@v21uDn~fk!u2#1/2. ~12!

In Eq. ~11!, Gcoh and G inc are the coherent and incohere
parts of the second-order interlayer tunneling processes
spectively. The exact forms ofGcoh andG inc are given in the
Appendix.

Second, we approximate the pairing interactionln by a
sum of separable terms:

ln~fk ,fk8!5(
i

l iwn
~ i !~fk!wn

~ i !~fk8!, ~13!

where the basis functions$wn
( i )(fk)% are chosen in accor

dance with the symmetry of the system. Since the order
rameters are expected to lock onto the lattice, the argum
of the basis functions have to be shifted by1f0/2
(2f0/2) for positive~negative! values ofn when there is a
single twist grain boundary between layers11 and21 with
twist anglef0. Otherwise, the basis functions are indepe
dent of the layer index. For this type of pairing interactio
the momentum dependence of the order parameter is o
form
re-

a-
ts

-
,
he

Dn~fk!5(
i

Dn
~ i !wn

~ i !~fk!, ~14!

where theDn
( i ) areC numbers, which we calculate.

Before we can proceed any further we need to specify
basis functionswn

( i )(fk). At present the most popular choic
for tetragonal high-Tc materials iswn

(d1)(fk)5A2cos2fk ,
corresponding to ad-wave state withdx22y2 symmetry, as
the only nonvanishing contribution to the pairing interacti
@Eq. ~13!#. If, following Ambegaokar and Baratoff,30 we as-
sume the tunneling matrix elements to be momentum in
pendent, so thatf inc5const, then we see immediately from
Eqs.~11! and~A2! that incoherent tunneling does not coup
d-wave order parameters on neighboring planes. Iff inc has
some momentum dependence, represented in Eq.~7! as a
Fourier series, all terms withl 5214i , i a nonnegative in-
teger, will contribute to the coupling of states withdx22y2

symmetry. Of course, those withi .2 only contribute to the
coupling of orderD6 and/or higher, so they are negligible i
the Ginzburg-Landau regime. In the presence of a 45° tw
we must replace cos2fk by sin2fk on one of the layers.
Then, neither coherent tunneling nor incoherent tunnel
with the momentum dependence equation~7! can provide
any coupling between thed-wave states across the twi
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grain boundary. It is clear that similar conclusions apply
the critical Josephson currentI JC to be discussed in mor
detail below.

One can escape these conclusions if, due to some m
general momentum dependence of the pairing interact
pairing channels with different symmetries are available.
particular, a combination of states withdx22y2 anddxy sym-
metry,

Dn~fk!5AnA2 cos~2fk6f0!

1BnA2 sin~2fk6f0!, ~dd!, ~15!

where the1 ~2! sign pertains to positive~negative! layer
indices, can also be written asCnA2 cos@2fk6(f02dn)#,
providedAn andBn are real andBn changes sign across th
twist grain boundary. We see that such a superposition of
two d-wave states will reduce the mismatch between
order parameters above and below the twist grain bound
and thus will lead to an increase in the coupling betwe
layers and hence also inI JC. If the two d-wave states were
degenerate, the anglesdn would be arbitrary and the orde
parameter could rotate freely in the plane. A complicat
feature is that in the presence of two nearly degenerate p
ing channels, weak-coupling theory predicts a time-reve
symmetry-breaking state like AnA2 cos(2fk6f0)
1 iBnA2 sin(2fk6f0). Near the twist grain boundary an
below the transition temperature of subdominant pair s
we would, therefore, expectAn andBn to be both complex.

Another, more trivial explanation for a finite Josephs
critical current at any twist angle would be the presence o
subdominant pair state withs-wave symmetry:

Dn~fk!5AnA2 cos~2fk6f0!1Bn , ~ds!. ~16!

We will only consider the case that pairing takes place in
most two channels, so we can useAn to designate the aver
age amplitude of the dominant pair state andBn to designate
that of the subdominant pair state, which may have eit
dx22y2 or s symmetry. Since there appears to be no evide
for the presence of two or more order-parameter compon
in Bi2212 we shall study the variation of the order
parameter components and the Josephson critical cu
re
n,
n
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with layer index for several values of the temperature
which the transition to a two-component state takes pla
including very low ones.

Even with these simplifying assumptions the numeri
work required is considerable, because neither the ang
integrals nor the sum over Matsubara frequencies can be
formed analytically. As a first step we shall, therefore, ta
the approximations further and consider only the Ginzbu
Landau regime. To elucidate the qualitative effects that a
from the destruction of translational invariance along thec
axis, this is probably sufficient. On the basis of the know
edge gained within the constraints of the Ginzburg-Land
approximation and in the light of available experimen
data, one can then decide whether or not a full-scale we
coupling calculation is worthwhile.

IV. LAWRENCE-DONIACH PHENOMENOLOGICAL
MODEL

The Ginzburg-Landau theory of superconductivity h
been generalized to layered materials by Lawrence
Doniach.28 The corresponding equations for multicompone
unconventional pair states in the presence of a twist g
boundary are obtained by expanding the first term in Eq.~11!
to third order inDn while keeping only first-order contribu
tions in Eqs.~A1! and ~A2!:

Gcoh„v,Dn~k8!,Dn8~k8!…5
Dn8~k8!2Dn~k8!

2uvu3 , ~17a!

G inc„v,Dn~k8!,Dn8~k9!…5
2@Dn8~k9!2Dn~k8!#

v2 .

~17b!

The various frequency sums can now be performed:

pT(
v

1

v2 5
p

4T
[a0~T!, ~18a!

pT(
v

1

2uvu3
5

7z~3!

8p2T2 [b0~T!, ~18b!

so that we obtain the following self-consistency equation
Dn~fk!5N2D~0!E
0

2p dfk8
2p

ln~fk ,fk8!H Dn~fk8!lnS 2gvD

pT D2b0~T!Dn~fk8!uDn~fk8!u
2

1 (
n8

^nn8&

uJu2b0~T!@Dn8~fk8!2Dn~fk8!#

1a0~T! (
n8

^nn8&

E
0

2p dfk9
2p

pN2D~0! f inc~fk82fk9!@Dn8~fk9!2Dn~fk8!#J , ~19!
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where we have introduced a cutoffvD for the divergent fre-
quency sum. Inserting the two-component pair states
~15! or Eq. ~16! and using the expansion equation~7!, the
integrations with respect tofk9 and fk8 can be done. Lin-
earizing the resulting equations and ignoring contributio
from tunneling, one finds the bare transition temperatu
Tci

0 :

1

l iN2D~0!
5 lnS 2gvD

pTci
0 D ~20!

with i 5A,B. g51.781 is the exponential of Euler’s con
stant. Using these relations to eliminate the coupling c
stants, the density of states, and the cutoff, we obtain a
intermediate step Eqs.~A3! in the Appendix.

The terms in these two equations are rearranged into
groups, one pertaining to layern only, the other one repre
senting coupling terms that vanish in the absence of the t
grain boundary, i.e., when the order parameters are iden
on all the layers. Then the leading intralayer term will co
tain the factor

t i5 ln~T/Tci!'~T2Tci!/Tci , ~21!

where for either of thed-wave states,Tci follows from

ln~Tci /Tci
0 !1a0~Tci!@1/t'021/2t'2#50. ~22!

Tci'Tci
0 2(p/4) @1/t'021/2t'2# represents the bulk trans

tion temperature of ad-wave superconductor reduced fro
its ‘‘bare’’ value @Eq. ~20!# by second-order incoheren
tunneling.39 This Tc reduction is mitigated by thed-wave
part of the incoherent tunneling. Sinced-wave scattering
cannot enhanceTc , we require 1/@2t'2#,1/t'0. This re-
quirement appears reasonable in view of the fact thatf inc in
Eq. ~7! is positive definite. For the model considered by G
et al.,33 which emphasizes strong forward scattering, o
finds 1/t'2<1/t'0. Ordinarily, however, we expect 1/t'2
!1/t'0. The suppression ofl Þ0 superconductivity by non
magnetic impurities40,41 is obviously closely related, so tha
it is not surprising that Eq.~22! again describes theTc re-
duction, provided the appropriately defined scattering tim
are sufficiently long. For the isotropics-wave state consid
ered here, incoherent tunneling does not lead to aTc reduc-
tion ~see the Appendix!. In this paper we shall not conside
the dependence ofTci on t'0 andt'2 in any detail, instead
we shall treatTcA andTcB as independent parameters.

After these remarks we can write down two sets of eq
tions for the case that the pair state is a superposition of
d-wave states, Eq.~15!:

05tAA11 3
2 b0~T!@A1uA1u21 2

3 A1uB1u21 1
3 A1* B1

2#

1hd8~A12A21cos 2f01B21sin 2f0!1hd~A12A2!,

~23a!

05tBB11 3
2 b0~T!@B1uB1u21 2

3 B1uA1u21 1
3 B1* A1

2#

1hd8~B12B21cos 2f02A21sin 2f0!1hd~B12B2!.

~23b!

For the superposition ofd- ands-wave states, Eq.~16!, we
find
q.
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05tAA11 3
2 b0~T!@A1uA1u21 4

3 A1uB1u21 2
3 A1* B1

2#

1hd8~A12A21cos 2f0!1hd~A12A2!, ~24a!

05tBB11b0~T!@B1uB1u212B1uA1u21B1* A1
2#

1hs8~B12B21!1hs~B12B2!. ~24b!

Here, we have introduced the abbreviations

hd5a0~T!/~4t'2!1uJu2b0~T!, ~25a!

hs5a0~T!/~4t'0!1uJu2b0~T!. ~25b!

Writing hd8 andhs8 in front of the terms representing tunne
ing across the twist grain boundary we allowed for the p
sibility that tunneling matrix elements representing this p
cess might be different. This possibility arises from the fa
that the atomic orbitals entering in a microscopic calculat
of the tunneling matrix elements would be rotated with t
lattice. Depending on the anisotropy of the orbitals involve
their overlap will thus depend on the twist anglef0. In ad-
dition to this intrinsic effect, the quality of the interfac
could be different, especially if the samples were trea
chemically or physically after cleavage and before fus
together to form the twist junctions. This possibility could b
of great experimental importance, and will be discussed
ther in Sec. VIII.

Equations for an arbitrary set of neighboring planesn, n
61 are obtained by settingf050, h5h8, and by replacing
the index 1 byn. Note, that Eqs.~23! are not symmetric with
respect to the interchange of11 and 21. To obtain the
correct equations forA21 andB21 the sign of the twist angle
f0 needs to be changed.

As anticipated, there is indeed no coupling for thedx22y2

state across a 45° twist grain boundary. However, if pair
in a dxy state is possible, a linear coupling between these
pair states is caused by the twist that will lead toB1.0 even
for T.TcB . No such linear coupling arises from a superp
sition of a d-wave ands-wave state. These conclusions a
not altered when the coupling terms@Eqs.~A1! and~A2!# are
expanded to third order, as one obtains the above form
Gcoh and G inc , multiplied by terms such asuDn(k8)u2 and
uDn8(k8)u2, which are positive definite. Similarly, taking th
perturbation theory with respect to the tunneling Hamilton
to fourth order does not change the physics qualitatively
particular, one doesnot get any linear Josephson couplin
betweens-wave anddx22y2-wave order parameters along th
c axis.

In order to introduce dimensionless quantities and to
duce the number of parameters we normalize all ord
parameter components with respect to

uAu252
2tA

3b0~T!
'

2

3b0~TcA!S 12
T

TcA
D , ~26!

which is the solution of the above equations in the absenc
the twist grain boundary and in the absence of additio
pairing channels. We shall consider the regimeTcA>T
>0.5TcA . For this temperature range we shall put the arg
ments ina0 andb0 @Eq. ~18!# equal toTcA , a constant, and
use the approximationtA' T/TcA 21. The resulting ap-
proximate expression for theT dependence ofuAu2 actually
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agrees reasonably well at all temperatures with the resu
the weak-coupling theory while the ‘‘exact’’ Ginzburg
Landau expression shows qualitatively different behavio
low T. We see from Eqs.~21!, ~23!, and ~24! that a small
value of TcB will give small real values forBn . For TcA
>T@TcB we havetB@1 so that Eq.~23b! reduces to

B15
hd8

tB
A1sin 2f0 ~27!

and Bn}tB
2n . Using the approximate expression Eq.~21!

would severely underestimateB1 for TcB!TcA .
Writing Xn and Yn for the normalized order-paramete

components, Eqs.~23! are transformed into

05X12X1uX1u22edX1uY1u222ddX1* Y1
21

hd

tA
~X12X2!

1
hd8

tA
~X12X21cos 2f01Y21sin 2f0!, ~28a!

05
tB

tA
Y12bdY1uY1u22edY1uX1u222ddY1* X1

2

1
hd8

tA
~Y12Y21cos 2f02X21sin 2f0!1

hd

tA
~Y12Y2!.

~28b!

The same transformations are applied to Eqs.~24!.
As in the Lawrence-Doniach theory we have introduc

here phenomenological parametersb, d, e which, in the
weak-coupling theory developed above, have the values
ia

.

gn
he
i
y

of

t

d

bd5 3
2 bs51, ~29a!

ed5 1
2 es5

2
3 , ~29b!

dd,s5
1
4 ed,s . ~29c!

Different values can result from strong-coupling effects.
From these equations one can construct a dimension

Lawrence-Doniach free energyFLD such that variations with
respect to each of the order parameters and their com
conjugates reproduce the Lawrence-Doniach equations~28!
as well as the equations for all other layers indices. Al
combinations of twod-wave states@Eq. ~15!# can easily be
treated simultaneously with the combination ofd- and
s-wave states@Eq. ~16!#. We find

FLD5 (
n51

N

~Fn1F2n! ~intralayer!

1 (
n51

N21

~Fn,n111F2n,2n21! ~interlayer coupling!

1F21,11 ~twist grain boundary coupling! . ~30!

with

Fn52uXnu22
tB

tA
uYnu21 1

2 uXnu41bd,s
1
2 uYnu4

1ed,suXnu2uYnu21dd,s~Xn
2Yn*

21Xn*
2Yn

2!, ~31a!

2tAFn,n115hduXn2Xn11u21hd,suYn2Yn11u2,
~31b!
2tAF21,115H hd8~ u@X11X21#sin f02@Y12Y21#cosf0u21u@X12X21#cosf01@Y11Y21#sin f0u2! for dd,

hd8~ uX12X21u2cos2f01uX11X21u2sin2f0!1hs8uY12Y21u2 for ds.
~31c!
ou-
of

-
In

the
us
ua-
For thedd case@Eq. ~15!#, F21,11 can be obtained from
an obvious generalization of the standard Lawrence-Don
coupling energy

F21,11}hd8E dfk

2p
uD1~fk!2D21~fk!u2. ~32!

However, such is not the case for theds state. If it@Eq. ~16!#
is inserted in Eq.~32!, one cannot obtain Eq.~31c! with the
coupling parametershd8 andhs8 different from one another.

FLD remains the same if we changef0 from zero top/2,
provided the signs ofXn andYn for all n<21 are changed
The same is true if we replace an arbitraryf0 by p/22f0.
To renderF21,11

(dd) invariant, we also have to change the si
of f0 taking into account the fact that one is now rotating t
sample sections in opposite directions. The effect of a tw
grain boundary for tetragonal systems is thus seen to be s
metric with respect to the twist anglef0

max5p/4. Hence-
forth, we shall only consider the range 0<f0<p/4.
ch

st
m-

The free energy describing the twist grain-boundary c
pling is not symmetric with respect to the interchange
layer indices in thedd case, unlessX15X21 andY15Y21.
This choice, however, does not minimizeF21,11 for f0Þ0.
In order to justify the use of the pair state, Eq.~15!, we have
already argued that ReYn should be antisymmetric to alle
viate the strain introduced by the twist grain boundary.
general, we haveF21,11(f0)5F11,21(2f0), consistent
with our discussion below@Eq. ~23!#. F21,11 is, however,
invariant if we substitute (X21* ,X11* ) for (X11 ,X21) and
(2Y21* ,2Y11* ) for (Y11 ,Y21). The intralayer termsFn and
terms describing the interlayer coupling on either side of
twist are obviously invariant under this substitution. We th
conclude that the solutions of the Lawrence-Doniach eq
tions for thedd case have the symmetry

X2n5Xn* ,
~33!

Y2n52Yn* ,
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for all 1<n<N. This conclusion can also be reached
studying the Lawrence-Doniach equations for the real
imaginary parts of the order parameters, for which the co
puter code was written, and it is supported by the results
our numerical calculations. Forp/2>f0>p/4, the minus
sign would appear in the relation for the dominant ord
parameter. Using this symmetry,F21,11 reduces to

F21,11
~dd! 52

4hd8

tA
$uX18sinf02Y18cosf0u2

1uX19cosf01Y19sinf0u2%, ~34!

where a prime~double prime! denotes the real~imaginary!
part. We see that, withX1952Y19tanf0 andY1852X18tanf0,
F21,11

(dd) would vanish for anyf0. No such cancellation can
occur for F21,11

(ds) so that the only way to reduce this~posi-
tive! contribution to the free energy is to suppress
d-wave order parameter near the grain boundary, while
~isotropic! s-wave order parameter, unaffected by the pr
ence of the twist grain boundary, should show the bulk
havior Y2n5Yn .

A complication can be expected in thedd case at tem-
peraturesT,TcB and fordd,0. Then the subdominant orde
parameter is real and finite for all twist angles. To minimi
F21,11

(dd) it would need to have the symmetryY15Y21 for
f050 andY152Y21 for f05p/2.

V. CRITICAL CURRENT

Following the original work of Josephson42 and that of
Ambegaokar and Baratoff,30 as described in detail by
Mahan,43 we calculate the time rate of change of the fermi
number operator on layern: Nn5(s(pcpns

† cpns . Only tun-
neling to one of the two neighboring layers is conside
because otherwise the tunnel current, defined asI n(t)5

2e^Ṅn&(t), would vanish.̂ Ṅn&(t) is evaluated using linea
response theory with respect to the tunneling Hamiltoni
Eq. ~3!. The resulting dc Josephson current can be expre
most conveniently as a sum over Matsubara frequencies

I n
J54e Im E d2k

~2p!2E d2k8

~2p!2 @ uJu2d~2!~k2k8!

1 f inc~k2k8!#T(
v
F n

0~k,v!F n61
0† ~k,v!, ~35!

where the upper~lower! sign corresponds ton>1 (n<
21). The Josephson currentI 0

J across the twist is obtaine
from F 1

0F21
0† . The commonly used step to revert to re

frequencies requires some caution when the order param
is complex because the spectral representation of the an
lous Green’s function needs to be generalized. Inserting
bare Green’s functions@Eq. ~10!# and performing the integra
with respect to energyj0 gives for the case of coherent tun
neling between neighboring layers,
d
-

of

r

e
e
-
-

d

,
ed

l
ter
a-
e

I n
J,coh52e@2pN2D~0!#uJu2 ImE dfk

~2p!
T

3(
v

Dn~fk!Dn61* ~fk!

Dn61~k,v!Dn~k,v!@Dn61~k,v!1Dn~k,v!#
,

~36!

whereDn(k,v) has been defined in Eq.~12!. This expres-
sion with a layer index andfk-independentD was given
previously.35 If the tunneling is incoherent, the two Green
functions are integrated separately with respect to energ
that the corresponding expression is

I n
J, incoh5e@2pN2D~0!#2 Im E dfk

2p E dfk8
2p

f inc~k2k8!T

3(
v

Dn~fk!Dn61* ~fk8!

Dn~k,v!Dn61~k8,v!
. ~37!

We see that in this case of a layered compound differ
assumptions with respect to the tunneling process lead
different temperature dependences of the Josephson cur
These differences may be relevant to the intrinsic volta
steps observed in various high-temperatu
superconductors.44,45 This is also true forc-axis break junc-
tions between two layered superconductors with sufficien
weak intrinsic interlayer coherent tunneling,46 as seen in re-
cent experiments.24 However, this is not the case when th
Josephson effect between two half-spaces filled with thr
dimensional superconductors is considered.30,47 When one
assumes the tunneling matrix element to be completely in
pendent of momentum,30 the result given above for incoher
ent tunneling withf inc5const is obtained. If momentum con
servation parallel to the tunnel barrier is assumed,47 one is
still left with two integrations with respect to the momen
perpendicular to the barrier. Since those particles mov
perpendicular to the barrier are most likely to tunnel,ki is
neglected in the arguments of the Green’s functions so
integrating with respect toki simply leads to an effective
tunneling matrix element.47 The remaining integrals with re
spect tok' and k'8 are, with the usual approximations, fo
mally identical to the energy integrals evaluated in the c
of incoherent tunneling.

In the Ginzburg-Landau regime we can approxima
Dn(k,v), Eq. ~12!, by uvu so that the frequency sum in Eq
~36! and Eq.~37! can be performed. For the combination
two d-wave states given in Eq.~15! we find for the total
Josephson current across the twist grain boundary

I 0
J54eN2D~0!hd8 Im$~A1A21* 1B1B21* !cos 2f0

2~A1B21* 2B1A21* !sin 2f0%. ~38!

The corresponding result for the combination of adx22y2

state and ans-wave state given in Eq.~16! reads

I 0
J54eN2D~0!Im$hd8A1A21* cos 2f01hs8B1B21* %. ~39!

The current between any other pair of neighboring layer
formally obtained from these equations by settinghd85hd ,
hs85hs , f050, and by replacing (1,21) by any pair (n,n
61) of positive~upper! or negative~lower! integers.
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The order-parameter amplitudesAn andBn are calculated
from Eq. ~28! which describes a large but finite stack
Josephson coupled superconducting layers. Without att
ing current leads, no net current can flow perpendicula
the layers so thatI n

J must vanish for alln. This means that
the expression inside the braces must be real, even thougAn
and Bn may be complex. We can thus interpret the expr
sions on the right-hand sides of Eq.~38! and Eq.~39! without
the imaginary part being taken as thecritical Josephson cur-
rent In

JC .
The incoherent contribution to thes-wave channelI 0

JC is
eN2D(0)@a0(T)/t'0#B1B21* , which is exactly the same a
that obtained by Ambegaokar and Baratoff.30 Calculating the
quasiparticle current in the normal state within the same
proximations and taking into account only incoherent tunn
ing we find

I n
qp~ incoh!52eN2D~0!

1

t'0
eV, ~40!

so that 1/t'0 can be expressed in terms of the normal-st
resistance. Including coherent tunneling in the Ginzbu
Landau regime only changes the constant of proportiona
betweenI 0

JC and B1B21* . However, according to Eqs.~36!
and ~37! we can expect different temperature dependen
of I 0

JC(coh) andI 0
JC(incoh) outside the Ginzburg-Landau r

gime. In particular, atT50 one finds thatI 0
JC(incoh) is pro-

portional to the order-parameter amplitude30 while I 0
JC(coh)

turns out to be independent of this quantity. Calculations
the normal-state quasiparticle current from coherent tun
ing between neighboring layers yields43

I n
qp~coh!5

eN2D~0!uJu2

p2

2GeV

~eV!21~2G!2 . ~41!

Conserving energy and momentum during the coherent
neling process at finite voltagesV requires the presence o
some intralayer scattering, parametrized by a scattering
G. Note that the coherent quasiparticle current is only Ohm
for eV!G.

If quasiparticle tunneling between two superconduct
half-spaces across a planar interface is considered,47 it is not
necessary to invoke quasiparticle scattering in either of
superconductors. As in the case of Josephson tunneling
cussed above, the additional degree of freedom represe
by the momentum perpendicular to the tunneling bar
leads for two three-dimensional superconductors to a re
for the quasiparticle tunneling current formally identical wi
that obtained from incoherent tunneling. However, qual
tively new results are obtained forc-axis break junction tun-
neling between two quasi-two-dimensional layered sup
conductors with sufficiently narrow c-axis band
dispersions.46 In either case, however, if we had include
intralayer scattering in the bare Green’s functions, Eq.~10!,
G would have appeared in the coefficientsa0(T) andb0(T)
in Eq. ~18!. But, sinceG'Tc at Tc and decreases rapidl
belowTc , the changes ina0 andb0 resulting from the pres-
ence of intralayer quasiparticle scattering are expected t
small and confined to the vicinity ofTc . As a consequence
the coherent contribution to the Josephson critical curren
not related to the coherent quasiparticle current. The con
h-
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tion betweenI n
JC and Rn is even more remote ford-wave

superconductors because here the Josephson current a
from incoherent tunneling involves the parametert'2, which
can be very different fromt'0 appearing in Eq.~40!.

VI. BOUNDARY CONDITIONS

The influence of the twist grain boundary should be
stricted to some limited number of adjoining layers so th
on the extremal layersn56N of a large (N@1) but finite
stack considered in the numerical calculations the order
rameters should attain their bulk valuesX` and Y` , which
are characterized by their independence of the layer inden.
If TcA

0 .T.TcB
0 , Eq. ~20!, only the dominant order param

eter, Eq.~26!, is present. Because of our normalization w
have the simple boundary condition

XN5X2N51,
~42!

YN5Y2N50,

for twist anglesf0<p/4.
At sufficiently low temperatures the subdominant ord

parameter becomes nonvanishing. From Eq.~31a! it is obvi-
ous that fordd,s.0 the free energy is minimized if the phas
difference betweenX` andY` is 6p/2, corresponding to a
pair state with an anisotropic but nodeless energy gap.
dd,s,0 the phase difference is zero. Since the overall ph
factor is arbitrary we can chooseX` real andY` real or
imaginary, depending on the sign ofdd,s . For all the cases
under discussion,X` and Y` can be determined from Eq
~28! with all interlayer coupling terms removed,

0512X`
2 2guY`u2,

~43!

05
tB

tA
2buY`u22gX`

2 ,

where

g5ed,s22udd,su
~44!

5 1
2 ed,s for weak coupling.

The weak-coupling expressions for the parameters are g
in Eq. ~29!. The equations forX`

2 anduY`u2 are easily solved
with the results

uY`u25
tB2gtA

2tA~g22b!
,

~45!

X`
2 512guY`u2.

The transition temperatureTcB
, , below whichY` becomes

finite, follows from the conditiontB2gtA50, which gives

TcB
,

TcA
5

TcB

TcA

12g

12g
TcB

TcA

. ~46!

As compared with the bulk transition temperature,TcB
, is

reduced by the presence of the dominant order paramet
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For dd,s.0 it would seem natural to use the bounda
conditionX6N5X` andY6N5 i uY`u, in agreement with the
symmetry requirement, Eq.~33!. When the Lawrence-
Doniach equations for thedd case are solved with thes
boundary conditions, one finds a finite Josephson cur
across the sample that is unphysical. The source of this p
lem is that, with a complexd-wave order parameter lockin
onto the lattice, there exists a finite average phase differe
across the twist grain boundary. The unphysical Joseph
current can be made to vanish by compensating for this
erage phase difference. The correct boundary conditions
therefore,

X6N5X`e6 iu`,
~47!

Y6N5 i uY`ue6 iu`,

where

u`52
1

2
tan21S 2 tan 2f0X`uY`u

X`
2 1uY`u2 D . ~48!

For f05p/4 one findsu`52p/4. The sign of the phase
angle is such thatX1N9 ,0, in agreement with the discussio
below Eq.~34!. It is clear from Eq.~39! that no such prob-
lems arise for theds case@Eq. ~16!#, so that we can take th
phaseu`50 for all twist anglesf0.

The situation is even more complex in thedd case with
dd.0 for temperatures in the rangeTcB

, <T<TcB , where
Y`50. It would appear that one possible solution would
to have bothXn and Yn real for all n. However, since the
dominant order parameter is suppressed near the twist g
boundary, it is less effective in suppressing the subdomin
order parameter. We can thus expect to find a complex s
dominant order parameter for small layer indices. A comp
Yn varying from layer to layer results in a finite Josephs
current. This is compensated by a finite imaginary partXn9 .
While limn→`Yn50, there is no reason forX9̀ to vanish,
because the phase of the dominant order parameter on e
side of the twist grain boundary is arbitrary. ImposingX6N9
50 has the consequence thatXn9 varies linearly withn when
Yn is already negligible. This, again, results in an unphysi
Josephson current, which has to be removed by a judic
choice of the phase for the dominant order parameter.
f05p/4 one can see from Eq.~38! that I 1

J50 if we put
u`52p/4. For arbitrary twist anglesf0 there seems to be
no analytic result foru` .

VII. NUMERICAL RESULTS AND DISCUSSION

Across the twist grain boundary we expect a destruc
proximity effect on the dominant order parameter. This
clearly seen in Fig. 2~a!, which shows the suppression of th
dominantdx22y2 order parameter for various temperatur
well above the transition temperature to a two-compon
pair state. For the twist angle we have chosen the extre
value f0545°. We see that for high temperatures the s
pression relative to the bulk value is very large and exte
across many layers. As the temperature is reduced, the
pression of the order parameter on the layers forming
twist grain boundary becomes less severe and the numb
layers affected becomes smaller. The latter effect simply
nt
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flects the temperature dependence of the coherence len
In these calculations we have chosen rather large va

h5h851 for the coupling constants@Eq. ~25!#. Such values
would lead to a substantialTc suppression, Eq.~22!, unless

FIG. 2. ~a! The real amplitude of the dominant order parame
dx22y2 @Eq. ~15!#, normalized to its bulk value@Eq. ~26!#, as a
function of the layer indexn for various reduced temperatures. Th
transition temperature for the subdominant order parameter
been taken asTcB50.2TcA . Other parameters areed50.5, dd

50.05, and f0545°. For these parameters one obtainsTcB
,

50.1304TcA from Eq. ~46!. The Josephson coupling constants
Eq. ~25a! areh5h851. ~b! Same as~a!, but forh850.2. The inset
showsX18 as a function ofh8 for h51 for the same set of reduce
temperatures.~c! The real amplitude of the dominant order param
eter dx22y2 @Eq. ~15!#, normalized to its bulk value@Eq. ~26!#, on
layer 1~left panel! and layer 2~right panel! as a function of the bulk
Josephson coupling constanth for h850.2, f0545°, and for the
same set of reduced temperatures.
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the tunneling is predominantly coherent. As explained
Sec. V, these parameters cannot be estimated from
normal-state resistivity. Only measurements of the interp
nar critical Josephson current could provide some inform
tion which, however, would still be rather ambiguous b
cause of the uncertainty in the two-dimensional density
states. An independent measurement of the constanth8,
which describes coupling across the twist grain bounda
seems to be completely out of the question. However, it
be varied in some controlled way in the experimental sam
preparation.

If anything, h8 is likely to be smaller thanh, so in Fig.
2~b! we show results similar to those in Fig. 2~a! but for h
51 andh850.2. The suppression of the order paramete
much reduced, as one would expect, since forh850 there
would be no proximity effect. The inset shows the ord
parameter on layer 1 forh51 as a function ofh8 for various
temperatures. The number of layers affected remains lar
the same, bearing in mind the overall reduction of the pr
imity effect. A different type of behavior can be expect
only if we change the coupling constantsh. In Fig. 2~c! we
therefore showX8 on layers 1 and 2 as functions ofh for
several temperatures. The left panel shows that ifh50, X18
is vanishingly small at high temperatures because the in
layer condensation energy@Eq. ~31a!# vanishes as (12t)3/2

while the coupling energy@Eq. ~31c!# varies as (12t)1/2.
Since we have chosen a fairly small valueh850.2, the in-
tralayer contribution soon becomes more important than
coupling term when the temperature is lowered. As one
creasesh, X18 increases, because it is pulled up by the nei
boring layer towards the bulk valueX1851. The left panel
shows what happens on the second layer. If this is decou
from the first layer, we simply find the bulk value. Turnin
on the coupling constanth allows the twist grain boundary
to make itself felt on this more distant layer. The proxim
effect on layer 2 at high temperatures is largest forh'h8.

Independent of the coupling constanth8, the Josephson
critical current across the twist grain boundary is, accord
to Eqs. ~38! and ~39!, proportional to cos 2f0 and hence
vanishes forf0545° when only the order parameterdx22y2

is present. The proximity effect just discussed has the c
sequence that in addition to the junction between lay
21 and 11 several other junctions are driven normal
currents well below the bulk critical current. This means th
the resistance should vary rapidly with the applied curre
which would make it easier to identify adx22y2 order param-
eter through the effect of a twist grain boundary. It is co
ceivable that the spatially varying suppression of thed-wave
order parameter resulting from a lattice mismatch contribu
significantly to the nonlinearity in the current response f
quently observed in high-Tc materials. The proximity effec
betweend-wave states rotated relative to one another a
affects the quasiparticle density of states that one migh
able to study using scanning tunneling spectroscopy.

Probably the most interesting aspect of the present the
is the creation of a subdominantd-wave order parameter b
the strain associated with the twist grain boundary, wh
would render the Josephson critical current finite even fo
45° twist. This process is, however, possible only if the pa
ing interaction, characterized by a bare transition tempera
n
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TcB
0 , is finite. On the other hand, if one assumes that

penetration depth measurements,48 exhibiting linear-in-T be-
haviors at lowT, are related to nodes in the superconduct
order parameter, then one would need to have the actualTcB
very small, indeed.

We shall begin our discussion with choosingTcB /TcA
50.2, which is large enough to make the expected effe
clearly visible but small enough to make the observation o
second superconducting transition in the bulk material
likely. This value forTcB is well below the temperaturesT
for which we can trust our Ginzburg-Landau approximati
to give reliable results. We shall, therefore, only consider
regimeT.TcB for which both order parameters are real. T
results for the normalized dominant order parameterXn8
shown in Fig. 2 for 0.5TcA<T<TcA were, in fact, obtained
for this finite value ofTcB . ReducingTcB to zero has the
effect of making the suppression ofXn8 on layers close to the
twist grain boundary even more pronounced. ForTcB50, X18
is found to be some 20% lower than the results shown in F
2~a!. According to Eq.~33! we expect the real part of th
subdominant order parameter to be odd with respect to
layer index and this is indeed what we find. In Fig. 3~left
panel! we plot Y18 as a function of the parameterhd8 , Eq.
~25a!, which characterizes the strength of the coupling acr
the twist. To describe the coupling between pairs of layers
either side of the twist, we have chosenh51. It is clear from
Eq. ~31c! thatY18 must be zero forh850. The increase inY18
with increasingh8 depends quite sensitively on temperatu
because the cost in intralayer energy and interlayer coup
energy resulting from the generation of the subdominant
der parameter is reduced as one approaches the trans
temperatureTcB .

The right panel of Fig. 3 shows theh dependence ofY18 .
At the lowest temperature 0.5TcA , Y18 ~solid line! decreases
as the coupling to more distant layers is increased beca
sufficiently far from the twistYn8 must vanish. We find, in
fact, that for the parameters used hereYn8 decreases very
rapidly with layer index. For the higher temperatures,Y18
initially increases withh. This is due to the fact that the

FIG. 3. The real amplitude of the subdominant order param
dxy @Eq. ~15!#, normalized to the bulk value@Eq. ~26!# of the domi-
nant order parameter, on layer 1 forf0545° and the same set o
temperatures considered in Fig. 2. The left panel showsY18 as a
function ofh8 for h51. The right panel showsY18 as function ofh
for h850.2.
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finite value of Y18 arises from minimizing the free-energ
contribution@Eq. ~31c!#, so thatY18 must scale withX18 . For
TcB!TcA we have the analytic result, Eq.~27!. Comparing
with the left panel of Fig. 2~c!, we see that such a relatio
betweenX18 andY18 persists to much larger values ofTcB . It
is for the same reason that the maximum ofY18 does not
occur for the twist anglef0545°. At the highest tempera
ture considered a broad maximum is found at aroundf0
512°. As the temperature is lowered, this maximum sh
to larger twist angles and atT50.5TcA it is found nearf0
537°.

In Fig. 4~a! we show the Josephson critical current E
~38! between neighboring pairs of layers. The prefac
4eN2D(0)hd in Eq. ~38! has been omitted and the orde
parameter amplitudes have been normalized, so
lim

n→`
I n

JC51 at all temperatures for which the subdomina

order parameter vanishes in the bulk. Sincef0545°, the
finite value of I 0

JC is entirely due to the subdominant ord

FIG. 4. ~a! The Josephson critical current@Eq. ~38!# with hd

5hd8 between neighboring pairs of layers withf0545°, normal-
ized by its value in the bulk. The layer index 0 designates
junction formed by the twist grain boundary between layers21 and
11, and the layer index 1 designates the junction between laye
and 2, etc. BecauseI n

JC is symmetric, we only show results fo
junctions on one side of the twist grain boundary. Parameters
the same as in Fig. 2~a!. ~b! The Josephson critical current@Eq.
~38!# as function of the twist anglef0, normalized by its value a
f050°, for several reduced temperatures andh851 ~solid lines!.
The other parameters are the same as in Fig. 2~a!. The various
dashed lines show the changes in this angular dependencet
50.7 ash8 is lowered.
s

.
r

at
t

parameterY1. For very lowTcB we can estimateY1 from Eq.
~27!. The normalizedI 0

JC @Eq. ~38!# reduces to 2X1Y1 and
thus depends linearly on the small parametertB

21 . Even for
TcB /TcA as low as 0.001 we findI 0

JC50.067 forh851 and
temperatures low enough~e.g., 0.5TcA) such thatX1 is a
sizable fraction (X150.524 in this case! of its bulk value.

We see from Fig. 4~a! that, depending on the temperatur
the Josephson critical current can be suppressed on a
number of junctions. UnlikeI 0

JC , I n
JC for n>1 is primarily

determined by the dominant order parameter, which is s
from the inset of Fig. 2~b! to vary substantially withh8. The
number of junctions with severely suppressedI JC would thus
be smaller for smallerh8. Remember that large values ofh
and h8 are compatible only with coherent tunneling. Fro
Fig. 2~c! we can infer that, at least at the lower end of o
temperature scale, a variation ofI n

JC , n>1, through the de-
pendence ofXn8 on h, is not very significant.

Figure 4~b! shows the dependence ofI 0
JC on the twist

anglef0 for several reduced temperatures andh851 ~solid
lines!. The other parameters are the same as in Fig. 2~a!.
Also shown isI 0

JC as a function off0 for several values of
h8 at t50.7. The curve forh850.01 is indistinguishable
from cos 2f0, which is the dependence on twist angle e
pected at any temperature if only the dominant order par
eter, unaffected by the proximity effect, were present.

So far we have not shown how the results depend on
parameterse and d that describe the strength of couplin
between the dominant and the subdominant order param
The values used actually differ from the weak-coupling
sult @Eq. ~29!#. We did changee to 2/3@Eq. ~29b!# and varied
d between1e/4 and 2e/4. Even changing the sign ofd,
which would favor a real subdominant order parameter,
little effect on the results presented so far. The changes a
most a few percent and would be barely visible in the
figures.

For the temperaturesTcA.T.TcB considered so far, the
combination Eq.~16! of d- and s-wave order parameter
only leads to the trivial solutionBn50 for all n and
I 0

JC(f0545°)50. The proximity effect onAn is the same as
in the dd case discussed above withTcB50.

The only other really relevant parameter, in addition toh
andh8, therefore is the strength of pairing in the subdom
nant channel, parametrized byTcB . Results for theds case
with TcB /TcA50.9 are presented in Fig. 5, which shows t
bulk solutions and the solutions on layer 1 together withI 0

JC

as a function of temperature for the maximum twist anglef0

545°. For this value ofTcB we obtain from Eq.~46! TcB
,

50.8571TcA . At this temperature the bulks-wave order pa-
rameterY` sets in with the usual square-root behavior wh
X` drops with a discontinuity in slope.

As in thedd case withT.TcB it suffices to consider only
two order-parameter amplitudes,Xn , which is chosen to be
real, andYn , which is real or imaginary depending on th
sign ofds in Eq. ~31a!. The phase is of no consequence he
since we consider the coupling between layers and the
sephson current only to lowest order in the order-param
amplitudes. The difference between a time-reversal break
stated1 is without nodes in the energy gap and a real co
binationd1s with nodes can be expected to show up at lo
temperatures.
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For the parameters chosen,X1 at TcB is reduced through
the proximity effect to about half its bulk value. Equatio
~43! with X` replaced byX1,X`51 shows why the transi
tion temperature forY1 is found to be higher thanTcB

, . An
accurate estimate of this transition temperature is not p
sible because the coupling to outer layers also serves to
pressY1. It is only in this rather indirect way that the twis
grain boundary has an effect on an isotropic subdomin
s-wave order parameter. Note that, unlikeX` , X1 continues
to grow with decreasing temperature, even after the onse
Y1. This temperature variation ofX1 has been discussed e
tensively in connection with Fig. 2.

At f0545° the Josephson current is carried solely by
s-wave component of the condensate so that, unlike thedd
case considered above,I 0

JC is finite only below temperature
at which Y1 is finite. At temperatures not very far belo
TcB

, , Y1 andX1 are comparable in size. Since from our d
cussion of the tunneling matrix elements we would exp
hs8@hd8 , the Josephson current would flow primarily in thes
channel at any twist angle so thatI 0

JC would show little varia-
tion with f0 except very close toTcB

, . This explanation for
the absence of a strong variation ofI 0

JC with twist angle
implies, however, a substantial deviation in the nodal str
ture of the order parameter in the bulk material from that
the dx22y2 state.

Finally, we consider the case of two coexistingd-wave
states, Eq.~15!. As before, we chooseTcB /TcA50.9 and
consider the temperatureT50.8TcB,TcB

, 50.8571TcA . TcB
,

is the same as for theds case because we use the sa
parameter values fore andd. Whendd in Eq. ~31a! is nega-
tive, the phase difference between thedx22y2 and thedxy
state vanishes. As discussed above, in order to relieve
strain induced by the twist grain boundary the subdomin
pair state should be antisymmetric@Eq. ~33!# with respect to
the layer index. Starting the iteration with a trial solution th
has this symmetry, we obtain a convergent result for a
twist angle. In the left panel of Fig. 6 we show the pure
real solutionY1852Y218 for the subdominant state on layer
as a long dashed line and the Josephson critical cur

FIG. 5. Order-parameter components on layer 1 and in the b
for thesd combination@Eq. ~16!# as a function of temperature in th
vicinity of the s-wave transition temperature. Also shown~solid
line! is I 0

JC(f0)/I 0
JC(0), Eq. ~39!. The parameters areTcB /TcA

50.9, b51, hd5hd85hs5hs850.2, andf0545°.
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across the twist junction as a short dashed line. Howeve
the absence of the twist we expect that a solution with
symmetryY185Y218 would minimize the free energy. Star
ing with a trial solution that has this symmetry we find co
vergence only up to twist anglesf0'25°. For f0Þ0 the
solution actually has no symmetry, as the two lines rep
sentingY18 ~solid! and Y218 ~dot-dot-dot-dashed! show. For
equal coupling constantsh5h8, the minimum Josephson
critical current, shown as a dot-dashed line, does not occu
the twist junction but a few layers away from it, the distan
depending onf0. In this case we compared the free energ
to establish which is the correct solution. The result is t
the most stable state is the one that has the largestminimum
Josephson critical current. Thus, at the twist angle at wh
the short-dashed and the dot-dashed lines cross, the sy
undergoes a phase transition during which the order par
eter changes its symmetry with respect to the layer inde

Whendd.0, as expected from weak-coupling theory, t
phase difference between the twod-wave states isp/2. In
order to avoid spurious Josephson currents we have to m
tiply the bulk solutions with a phase factor@Eq. ~47!#. The
phase angleu in Eq. ~48! is not quite the correct choice whe
the boundary conditions are imposed not at infinity but
some finite layer indexN. For N580, u has to be modified
by less than one degree to reduce the Josephson curre
below the numerical error. The numerical solutions p
sented in the right panel in Fig. 6 have the symmetry
pected according to Eq.~33! at all twist angles. Atf050,
the amplitude of the dominant pair state is real, that of
subdominant state is purely imaginary. Asf0 is increased, a
real partY8 and an imaginary partX9 are created that serv
to rotate the clover leaf of ad-wave state relative to the
lattice to minimize the interlayer coupling energy.

In the intermediate-temperature regimeTcB
, ,T,TcB the

subdominant order parameter has a finite complex amplit
near the twist grain boundary. To cancel the Josephson

lk FIG. 6. The left panel shows the amplitudeY618 of the subdomi-
nantd-wave order parameter on layers 1 and21 as a function of
f0 for the case of a realdd superposition. The two solutions show
have different symmetries with respect to the layer index. In
right panel, the twod-wave order parameters differ in phase byp/2.
The symmetry of these states is given in Eq.~33!. I JC(f0) is in-
cluded in both panels. It is normalized to unity atf050 when only
a single order parameter is present. The parameters areTcB

50.9TcA , T50.8TcA , b51, e51/3, d56e/4, andh5h851.
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rent that results fromY9Þ0 the dominant state must acqui
an imaginary part. WhileY8 andY9 must go to zero far away
from the twist sinceY`50, there is no reason forX9 to
vanish in the bulk. When one imposesX950 as a boundary
condition, one finds thatX9 vanishes linearly at the outer
most layer, whatever the number of layers considered m
be. The result is again a spurious Josephson current.
correct solution is obtained by multiplyingX` with a suitable
phase factor, Eq.~47!. In this case we do not have an analy
formula to calculate the phase angle. The Josephson cri
current for two such nearly degenerated-wave states is very
nearly independent of the twist angle at all temperatures

VIII. CONCLUSIONS

If the in-plane order parameter of high-temperature sup
conductors hasd-wave symmetry, the Josephson critical cu
rent from one conducting layer to the next is exactly zero32,31

unless there is some coherent tunneling,34,35 or else there is
some momentum dependence to the incoherent tunne
amplitude31–33,36containing a component withd-wave sym-
metry. If either one or both of these preconditions is fulfille
the Josephson critical currentI 0

JC across ac-axis twist junc-
tion varies with twist anglef0 as cos2f0 if the pair state
with dx22y2 symmetry varies along the Fermi line as cos2f.

At intermediate twist angles,I 0
JC even falls below cos2f0

because of the proximity effect, which suppresses the o
parameter on layers close to the twist grain boundary.
size of this suppression, and the number of layers affec
depend on the strength of the Josephson coupling betw
the layers, which cannot be estimated directly from
normal-state resistance. The proximity effect depends via
coherence length strongly on temperature so that cha
resulting from variations of the twist angle should be mo
easily detectable close to the transition temperature.

A nonvanishing Josephson critical current at twist an
f0545° can result if a second pairing channel withdxy or s
symmetry exists. Even if thedxy pairing is very weak, so tha
one would not expect to see a second superconducting
sition, we find a finite order parameter with this symmetry
the layers forming the twist junction at all temperatures
which the dominant order parameter is nonvanishing.
weak dxy pairing we would still expect to see a substant
variation of I 0

JC with the twist angle. This variation is stron
ger close to the transition temperature because, as the
perature is raised,I 0

JC(f0545°) will drop much more rap-
idly than the bulk critical current. If the twod-wave states
are nearly degenerate, the combined state is more or less
to rotate relative to the crystal axes and very little variat
of I 0

JC(f0) would ensue. Such a state, however, would eit
have a finite energy gap everywhere on the Fermi surfac
the nodal structure would disagree with the results of ARP
measurements.

The existence of ans-wave pairing channel has no effe
on I 0

JC(f0545°) at temperatures above the transition te
peratureTcs at which thiss-wave state would form in the
absence of any other pairing. In a narrow temperature ra
Tcs

, ,T,Tcs , whereTcs
, is the temperature below which
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two-component pair state is formed in the bulk, thes-wave
component can form near the twist junction and thus ren
I 0

JC(f0545°) finite. If the tunneling is predominantly inco
herent, the Josephson coupling betweens-wave states is ex-
pected to be much stronger than that betweend-wave states,
unless the quasiparticle momentum is very nearly conser
during the incoherent tunneling process. A smalls-wave
component, possibly too small to be detected by ot
means, could thus carry most of the Josephson curren
which case no dependence ofI 0

JC on the twist angle would be
expected. Unless thes and d components of the pair stat
coexist at all temperatures, possibly because the system
not have tetragonal symmetry, one would expect to see s
dramatic change with temperature inI 0

JC(f0), even forf0

50.
It is evident from Fig. 4~b! that if the dominant order

parameter were the presumeddx22y2-wave order parameter
decreasingh8 causes strong variations in the angular dep
dence of the normalized critical current, so that twist jun
tions with f0545° would have a vanishing critical curren
for T values down toTcB , the bare transition temperature o
the subdominant order parameter. We remark thath8, the
Josephson coupling parameter across the twist junction,
be varied experimentally by chemically reacting the cleav
surfaces prior to forming the twist junction. In addition, sin
the actual critical current is proportional toh8, weakening
the twist junction decreases the critical current for all tw
anglesf0. Note that this would also be the case for a pu
s-wave order parameter, except in that case there would
no dependence upon the twist anglef0. Decreasingh8 sub-
stantially should provide evidence that effects of the tw
boundary are indeed observed.

We thus encourage further experiments to be carried
near toTc with zero applied magnetic field. These are pr
dicted to give the maximum information regarding the sy
metry of the superconducting order parameter and the na
of the tunneling process between layers. A preliminary se
such experiments is currently in progress.16 Ideally, one
should study groups of samples, each group having the t
junctions deliberately weakened with identical procedur
Furthermore, experiments should be carried out to determ
whether the current paths are indeed homogeneous.
could be done by decreasing the area of the junction,
seeing if the critical current scales with the junction are
Also, the placement of the current and voltage leads sho
be varied.
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APPENDIX

Here we list the full forms ofGcoh andG inc that appeared in Eq.~11!. After integrating overj0, we have

Gcoh„v,Dn~k8!,Dn8~k8!…5
Dn8~k8!2Dn~k8!

Dn~v,k8!Dn8~v,k8!@Dn8~v,k8!1Dn~v,k8!#

1Dn~k8!
2uDn~k8!u22Dn~k8!Dn8

* ~k8!2Dn* ~k8!Dn8~k8!

2Dn
3~v,k8!Dn8~v,k8!@Dn~v,k8!1Dn8~v,k8!#

1Dn~k8!
2uDn~k8!u22Dn~k8!Dn8

* ~k8!2Dn* ~k8!Dn8~k8!

2Dn
2~v,k8!Dn8~v,k8!@Dn~v,k8!1Dn8~v,k8!#2

1Dn~k8!
uDn8~k8!u22uDn~k8!u2

Dn~v,k8!Dn8~v,k8!@Dn~v,k8!1Dn8~v,k8!#3 , ~A1!

and

G inc„v,Dn~k8!,Dn8~k9!…52
Dn8~k9!2Dn~k8!

Dn~v,k8!Dn8~v,k9!
1Dn~k8!

2uDn~k8!u22Dn~k8!Dn8
* ~k9!2Dn* ~k8!Dn8~k9!

Dn
3~v,k8!Dn8~v,k9!

, ~A2!

whereDn(v,k) is given by Eq.~12!. Expanding Eqs.~A1! and ~A2! to linear order in theDn , one obtains Eqs.~17a! and
~17b!, respectively. Note, that in the absence of the twist grain boundary there is no reason for the order parameter to v
layer to layer. In the approximation that has led to Eq.~A1! we do not expect to see any effect of the coherent interla
tunneling on the intralayer order parameter and, indeed, whenDn(k8) is independent ofn, Gcoh does vanish. Since the orde
parameters appearing inG inc have different arguments, such a cancellation occurs only for isotropics-wave states. For all othe
pair states, incoherent tunneling will suppress the transition temperatures in much the same way as random scatter
within the conducting planes.

Expanding the first term on the right-hand side of Eq.~11! to cubic order in the order parameters, and the interla
tunneling terms to linear order in the order parameters, and lettingDn15An , Dn25Bn , respectively, we have

05Anln~T/TcA
0 !^wn1

2 &1b0~T!@An
2An* ^wn1

4 &1~Bn
2An* 12AnuBnu2!^wn1

2 wn2
2 &#1 (

n8
^nn8&

S uJu2b0~T![An^wn1
2 &2An8^wn1wn81&

2Bn8^wn1wn82&] 1
a0~T!

2t'0
@An^wn1

2 &2An8^wn1&^wn81&2Bn8^wn1&^wn82&#2
a0~T!

2t'2
$An8@^wn1cos 2fk&^wn81cos 2fk&

1^wn1sin 2fk&^wn81sin 2fk&#1Bn8@^wn1cos 2fk&^wn82cos 2fk&1^wn1sin 2fk&^wn82sin 2fk&#% D , ~A3a!

05Bnln~T/TcB
0 !^wn2

2 &1b0~T!@Bn
2Bn* ^wn2

4 &1~An
2Bn* 12BnuAnu2!^wn1

2 wn2
2 &#1 (

n8
^nn8&

S uJu2b0~T!@Bn^wn2
2 &2Bn8^wn2wn82&

2An8^wn2wn81&#1
a0~T!

2t'0
@Bn^wn2

2 &2Bn8^wn2&^wn82&2An8^wn2&^wn81&#2
a0~T!

2t'2
$Bn8@^wn2cos 2fk&^wn82cos 2fk&

1^wn2sin 2fk&^wn82sin 2fk&#1An8@^wn2cos 2fk&^wn81cos 2fk&1^wn2sin 2fk&^wn81sin 2fk&#% D . ~A3b!
ga

m

the

re-
if-

the
o-
cel
m

the
Two additional equations are obtained by complex conju
tion. In Eqs. ~A3!, ^•••&[*0

2p(dfk)/2p)••• is an angular
average over the Fermi surface. Because of the orthonor
ity of the basis functions,

^wni
2 &51 ~A4!

for all n,i . We note that the terms proportional to 1/t'0 in
each of the above equations contain averages oversinglegap
-

al-

functions. Thus, symmetry forces these to vanish for
d-wave states, but not for thes-wave state. For ans-wave
superconductor, these incoherent terms just add to the
spective coherent interlayer coupling terms, albeit with a d
ferentT dependence, which is of no importance near to
maximumTc . For ad-wave superconductor, since the inc
herent interlayer coupling terms vanish, they do not can
the intralayer incoherent tunneling terms which arise fro
self-energy corrections. This lack of cancellation breaks
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d-wave pairs, reducing the ‘‘bare’’ transition temperatu
As usual, the bare transition temperature fors-wave super-
conductivity is not reduced by this incoherent interlayer tu
neling. In addition, we note that the terms containing
integrals ^wn1&^wn82& always vanish, since we assume
most only ones-wave order parameter on each layer. Als
coherent tunneling terms containing the integrals^wn1wn82&
vanish except for the case of twod-wave order parameter
.

,

A
et
.
.

s
,

s

S
B.

v

E.
nd

ll
le
tt

B.
an

a

o-

a,

-

.

.

-
e
t
,

across the twist boundary~e.g.,dx22y2 for n51 anddxy for
n521, with f0Þ0).

On the other hand, the last terms in each of Eq.~A3!
vanish fors-wave superconductivity, but not ford-wave su-
perconductivity. Ford-wave superconductivity, these term
have the effects of raisingTc ~albeit by a value less than th
reduction inTc due to the 1/t'0 terms!, and of adding to the
Josephson tunneling.
gh,

em.

H.

and

r,
.
rk,

d-
-

rch
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