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Core x-ray spectra in semiconductors and the Mahan-Nozieres-De Dominicis model
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The Mahan-Noziges-De DominicisMND) model of core x-ray spectra is examined for semiconductors.
Due to the finite band gap, the Anderson orthogonality does not occur, and thus spectra near the band edge can
be calculated without the shakeup contribution. For semiconductors, and not only for metals, we investigate
whether the remaining many-particle dynamic exchange effect of the MND model, or so-called replacement,
can significantly alter x-ray spectral shapes near the band edge from those obtained from a straightforward
final-state rule. For both emission and absorption, in the absence of shakeup, an exact formulation suitable for
materials with band structure is discussed. A numerical model for a semiconductor with a 1-eV band gap
demonstrates the band-edge modifications, and shows a 50% effect at the band edge, indicating that this
dynamic exchange effect can be significant and should be considered in any specific emission or absorption
calculation for a semiconductor. Although the ineffectiveness of the orthogonality theorem in semiconductors
is emphasized, a suppression near the band edge also remains a possibility. Included is a discussion on the
breakdown of the final-state rule. In addition, connection is made to the determinantal approach of Ohtaka and
Tanabe[S0163-18208)01040-6

[. INTRODUCTION dipole selection rule with that core state. The ND solution
incorporates two competing effects in the edge region. The

Since the recognition of the edge singularity in the x-rayfirst term in the above exponent is the diverging contribution
spectra_of metalb? and the Anderson orthogonality discovered by Mahan, the other gives a suppression of the
theoren® much effort has been extended to obtaining im-edge spectra, related to the Anderson orthogonality. Features
proved theoretical descriptions of core spectroscopies ofway from the edge region were later noted to follow a final-
metals within the Mahan-Nozies—DeDominicis(MND)  state ruld—°
model*® This model embodies the most significant many- Alternatively, the MND model is equivaletft*' to calcu-
body effects in core-spectroscopies. Its most curious predidating the x-ray spectra using Slater determinantal many-
tion for metals is that in certain cases one expects an inteparticle states constructed from self-consistent initial and fi-
grable divergence at the emission or absorption edgesal single-particle electron states. Thus two orthonormal sets
Another surprising result is the so-called final-state ruleof single-particle states are notddj;) for the undistorted
which specifies what effective single-particle electron statesstates,| #;) for the distorted states in the presence of the
used in a single-particle calculation, best reflect the manycore-hole. The transition rate is then formulated through the
particle spectra. Disentangling these many-particle spectr@ermi golden rule in terms of the many-particle transition
modifications is of course important to the experimental dematrix elements. In this approach, one makes distinction be-
termination of the independent electron structure. Here wéween a primary transition and a shakeup transition. We de-
will address the modifications occurring in the soft X-rayfine a primary transition as one resulting in the transfer of
spectra of semiconductors. In particular, there is the questiojist a single electron between a valence and a core state. The
of whether the edge enhancement occurring in metals is sighakeup transitions instead appear as primary transitions ac-
nificant in nonmetals. companied by one or more valence electrons simultaneously

For metals, Noziees and DeDominici$ND) [Ref. 2l use  promoted to unoccupied valence states. The determinantal
a contact potential and calculate the appropriate responsgproach emphasizes that the divergent behavior of the
function in obtaining the spectral asymptotic limit. Their so- MND edge feature is a consequence of a dynamic exchange
lution quantitatively predicts a power-law behavide  process during the x-ray transition. Frietfedointed out that
— wo|* in terms of the photon energy, measured from the the divergence occurs due to the contribution of what he
absorption or emission thresholgh. The exponent is given named “replacement terms,” which arise in the transition
by element due to the antisymmetrization. We distinguish this
dynamic exchange feature from the exchange-correlation po-
tentials used to calculate self-consistent independent single-
particle electron states.

The most complete theoretical solution to the MND prob-
The partial-wave phase shift, for each angular momen- lem to date has been obtained by Ohtaka and Tanabe
tum component’, evaluated at the Fermi energy, describe(OT).>*? Unlike the ND solution, their method is based on
the core-hole potential. The componérgpecifies the angu- determinants, where all shakeup contributions have been
lar momentum for the valence electron that is active in thesummed. For a simple contact potential, the OT solution ob-
transition to or from the core state, and that thus satisfies th@ins analytic results throughout the complete spectral range,

a=—2[8 7]+ 22" +1)[ 8/ 7]% 1)
=
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not just in the edge region. In the determinantal approach focontribute at energies near the boundary between occupied
metals, the focus of summing all shakeup contributions camnd unoccupied states. This is in contrast to the case of met-
be traced to the Anderson orthogonality theorem for metalsals. To understand this, we focus on the case of emission. As
By direct evaluatior?, Anderson has shown that the overlap mentioned, the shape of the spectral contribution from the
p=(¥,|®,) between the ground states of two many-particleShakeup can be viewed approximately as a convolution of
states| W) and|®,), constructed from Slater determinants the primary transition spectrum with a function that charac-
of plane and scattered single-electron wave functions, vari€izes the energy dependence of the single-particle shakeup
ishes aN increases. The Anderson theorem implies that foProbabilities. The shakeup energy is the energy gain an elec-
N particles, any one particular transition, primary or shakeup:[ron obtalns in jumping to an unoccupied state. The probabil-
occurs with vanishing probability a¥ increases to infinity. ity amphtudes for such shakeup processes are reIaFeq to the
Hence, to obtain a finite analytic result for?#@lectrons, all Single-particle overlap§;;= (4| ¢;), where staté andj lie

transitions to infinite shakeup order are required. We see th opposite sides of the Fermi level. .I_n metals, the function
that determines the shakeup probability energy dependence

in metals the contribution purely from primary transitions . . . ;
alone are then overwhelmed by the shakeup contributio S characterized by a relatively narrow function of energy

However, the information in the primary spectrum is not lost, ohcal:ed neaL zbe_lr_;) fhakeup e_n%rgy. 'Il'h|s '? IbectaLtjse dthe
it is convoluted in a complicated manner with the shakeupS akeup probability {0 unoccupied singie-particie states de-

contributions. The total result is, from what one may expec ays with energy measured from_oqqup|ed states. Smce_ a
from the primary transitions alone, that the shape of the re[netal lacks a band gap, the most significant shakeup energies

sulting total spectrum is only largely modified from the pri- are the closest, S”?a” energies. In metal_s, covoluting th_e pri-
mary spectrum near the edge regions, and also in the lownary spectrum W|_th this narrow function produces _Ilttle
energy tail for emission. Except in the case of the edgeChange from the primary spectrum, except at the Fermi edge,

suppression in metals, the spectrum obtained from the prfllend alf,o I? ;heffﬁr?%tloré of at Iqwl—er;ﬁrgy tail for. ?mlsﬁ%lon.
mary transitions alone does include the dominant many-n contrast, for filed band materials, the appropriate charac-
eristic function to convolute with is offset from zero by at

) X . St
particle effect. The Mahan edge singularity, as also the final: o
state rule, are in fact identified with the primary spectrum. ItleaSt the energy gap. Its centroid is further offset because the

is the complicated convoluting of the shake-up processes thegtenSity of unoccupied states right above the gap is small and

may or may not suppress the edge singularity in metals, atgnly then |ncreas§s.tF|na!Iy,|the cetntrot|d of th?hprlmary Sp‘?c('j
the ND formula, Eq(1), indicates. rum in semiconductors is largest not near the unoccupie

The Anderson orthogonality is important in metals. How- §tates, b.Ut lower in energy. Thus the approx.ima.te convolu-
ever, this report will instead primarily concern itself with the tion leading to the resulting shakeup contribution is expected

influence of the many-particle effects in the spectra of filledt© peak at the lower energy end of the emission spectrum.

band materials with small to moderate band gaps, such a‘gherefore, the shakeup contribution remains insignificant for

semiconductors. In materials with a finite band gap, the or—mUCh Of. the high—energy end of the emission band. It is of
thogonality theorem will not be effective, and hence the®OUrse rigorously zero within a band gap from the band edge.

spectra can be to a large degree described by the primar It should be noted that near the edge emission in a semi-

transitions alone. To recognize this, we need only note ex_onductor, unlike in metals, the single-particle density of
periment. If the orthogonality were to apply to filled band states for a honmetal approaches zero. Contrary to metals

materials, then an additional spectral gap, beyond the ener%en’ any many-body enhancement of the spectra, giving de-

gap, would appear between emission and absorption in th ation from what one would expect from the final-state rule,
sam'e material. For if the orthogonality were to block a pri_IS not strikingly apparent from experiment without a detailed

mary transition from the top of a filled band in emission, comparison to (_:al_culgted final-state spectra. L|keW|se, in a_b-
sorption, the distinction between a many-particle dynamic

then only shakeup transitions would allow for the largest h h t and itoni h td
emission transition energy, diminishing the photon energy bfxc ange ennancement and an excitonic enhancement due

at least the band-gap energy required to simultaneously pré_imply to a _fina_l—state atiractive potential, also rgquires a
mote the shakeup electron. On the other hand, in absorptioﬁIoser examination. Here, we address the question of any

the least energetic threshold photon would not only promoté?ch Et.sflnd-edgefz moo:!ﬂcatflon;shlrj norémettalsa_and qtﬁyelt?]p a
an electron from the core to the lowest unoccupied state, b raightrorward formafism tor their understanding within the

also an electron across the gap. This would increase the r amework of ordinary band-structure calculations.

quired photon energy by at least a band-gap energy. Thus an Il PARTIALLY INVERTED INITIAL STATES
additional spectral gap of at least twice the energy gap would
occur between the emission spectra and absorption spectra. Having recognized that the primary spectrum can be ex-
This is never observed. In both emission or absorption, th@ected to dominate in the x-ray spectra of semiconductors,
overall relaxation energy shift contributes to the photon enwe omit in the following the shakeup contribution, and only
ergy in the same way, and would not have an effect withconsider the primary spectrum. This, however, will retain the
regard to any spectral energy gap. Thus near the band edgenmajor dynamic exchange effect of the MND model. It will
the spectra of semiconductors, the Anderson suppressidiecome apparent that the spectral behavior discussed here,
does not enter, only the Mahan divergent effect does, whickvhether for emission or absorption, will be better understood
could then provide a remnant of the edge singularity found irthrough an emission process. Thus, we shall remain focused
metals. on the emission problem, although much of the discussion
There is evidendé that shakeup in semiconductors is cer- will also be relevant to absorption. The extensions to absorp-
tainly not negligible, but when it is significant, it does not tion are discussed in Sec. IV.
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In the determinantal description of the emission processvhere the single-particle transition matrix elements replace
one considers transition matrix elemeifis between the ini-  the nth row.
tial and final many-particle states with energiesandE;s, In considering the determinant of this matrix, we note that
respectively. By the Fermi golden rule, the transition rate asletM ,=det(M)=det©)detc *M). Furthermore, due to the
a function of photon energy is proportional to a function orthonormality condition of Eq(4), the matrixs *M/ has
|(w) given by off-diagonal elements that are zero, except for columFRor
all elements with k#n, (s™*™M)i=2_ocS;; (4l b))
I(w)=2 |Ti|26(w+E;—Ey). 2 ZEj:occ<¢k|Sﬁl|¢j>=<¢k| ¢;), while for the casek=n,
(5™ M)in == =ocdCls; 7| 6))= (€| #). Thus ™M, s
For x-ray photons, the slowly varying factor involving the similar to the matrixM,, but where the elements have been

n

photon frequency is here suppressed for the relatively narrowonstructed with all states;) replaced by the transformed
band energy range. Since we omit the shakeup contributiongtateslgi>_

the final many-particle states for emission are limited t0  This Jast observation leads to a trivial evaluation of

those with a single vacant level somewhere within the ordi-d —1n TN i
S . e . et “M,), givin
narily filled band. The many-particle transition matrix ele- ¢ ) gving
mentsTy; will involve determinants of matrices composed of T =dets)(— 1" YEl . ’y
single-particle overlaps and single-particle transition matrix " ( )(_ ) |¢"§l//l|¢l> .
elements? An exact simplified analysis occurs for each such X (ol o) - (N ha b)) - (| dp).  (6)
many-particle matrix element when one employs the single- )
particle state$ | 4,,) given by It now appears that the passive electron overlap

(Y] d1) (2l @)+ (NO(hn| b)) - (Yl ), With further n

|— - s 3 dependence, remains. However, the mentioned orthonormal-
¢“>_i:m Sni' | Bi), ) ity assures that in the diagonal product of E@), we have

1 . . , _ {ii|¢;)=1, thus voiding anyn-dependent passive overlap.
\;vhe_resi _'<$ (;h|e(ﬁ|r;v(e;sr§ ggtjr;efgrotfhtigcfﬁﬁpdi(ijtas;sbnr?:mx For each cas@, the transformation on the distorted states
nm=_=nm— 4 ¥ml Pn/ 4L " int th nfact t6)=(Wo/Pp)=p, giving th
trix S These partially inverted initial states, so called be-'sr:r;%%;:gzsresiﬁmmo actor det6)=(Wolo)=p, giving the

cause they represent an incomplete transformation from ini-

tial distorted statg¢,) to final undistorted statéy,), are T 12=1,[2 AR

: . = corgt . 7
orthogonal to alloccupied undistortedtates. Observe that ITol*=lpl K corat| ¢n)| @
the Kronecker delta As anticipated, the Anderson factfy|? enters. This effec-

tive single-particle matrix element then provides the exact

Si= > siltsg=(y| = Sﬁ(l|¢k>:<l/,j|%>, (4)  transition probability within the MND model when shakeup

k=occ k=occ is negligible. It is such an analysis of emission, rather than
absorption, that leads to the particularly simple result of Eqg.
(7), due to a common transformation factor. We distinguish
here the orthogonalized final stat®FS of Davis and
Feldkampt* which, however, does not give an exact effec-
Five state, particularly in the edge region. As a consequence,
the OFS state predicts a logarithmic edge singularity in
metals'® instead of a power law.

The final-state rule specifies that the best effective single-
particle states to use in a one-particle description of emission
or absorption are those appropriate to the final-state poten-
tials. In emission this will imply the undistorted stafefs,).

The partially inverted initial state, as defined by HS),
provides a natural theoretical explanat_i'&ﬁ?he imposed or-
éhogonalization exhibited by the stale);) forces it to ap-
proach its corresponding undistorted sthte). This occurs
most strongly to occupied statethat are far in energy from
unoccupied states. In these cases the comporgnts un-
occupied statepare relatively small, such that the distorted
(alp1) .. (Waldn) . (1] dN) statei can be effectively spanned by states within the subset
(ol o) (ol ) of occupied undistorted states. This then allows for an ap-
AV e \T2ITN proximate orthonormalization within all the undistorted

for i andj occupied. However, the statgg,) are not nor-
malized.

To verify the simplification introduced by such single-
particle states, we consider the many-particle transition m
trix elementT,= (¥ (n)|2 ntm|Po), Wheret,, represents the
optical transition operator for particle. For instance, the
dipole operator. Herel(n) is the N particle state with a
valence hole in state, but with the core statéore filled.
Implicit within the MND model is a “frozen core” approxi-
mation, in which the overlap&ord) and(cord¢) are con-
sidered negligible for both orthonormal sets. Hence, the rel
evant many-particle transition matrix elemént reduces to
calculating the determinant of a single matrim, con-
structed from elements which are single-particle overlap
S,m and single-particle transition matrix elements
(cordt|¢,)=(C|¢,). Following Friedef® the matrix M,,
has the form

: : : : : states, and thus the transformed state must be very similar to
@lp)y ... Cloyy ... Clow | its corresponding undistorted state. This orthonormalizing ef-
. . : : fect will slowly diminish as the energy of the staiteap-

M,=

: : : . : proaches unoccupied states. We show below, that slowly
(bl ) oo (Ul dn) - (N DN means approximately logarithmically with the energy differ-
(5) ence to unoccupied states. This initial logarithmic depen-
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dence eventually begins turning to a more rapid spectral ertonians that include and exclude the core-hole potentjal
hancement upon nearing the edge region, even imespectively. Then the distorted state;)==_ S| )
semiconductors. Hence, the effect of replacement is respomsatisfies

sible for both the final-state rule, as well as deviations from -

it, in the form of an edge enhancement. H|¢i) =" d1), (12

and the undistorted states satisfy

Hol¢i) =€l 1), (13

wheree; and’e; are the energies of the undistorted and dis-
torted states, respectively. Substitution of the expanded dis-
torted state into Eq(12) leads to the standard eigenvalue
problem. For eacly,

Ill. BAND-EDGE MODIFICATIONS

Further interpretation of the state,) is obtained when
written in terms of the undistorted statb,!zj). Expanding in
the complete seft;), and invoking the resulting Kronecker
delta, gives

_1 _
|¢n>_i:20(;csni ];CCS]|¢J>+1:%0CCS”|¢]> k=§¢j vijk+(vjj+ej)$j=eiSij, (14)
_ -1 where v ={i;|vn| ), which become uniquely specified
_W”Hi;,cc Sni j:%occgﬂ'm' (® Wit the above-mentioned phase restriction.
For a general understanding and illustration of the emer-

The first term conforms to the final-state rule, while the secgence of the edge singularity from E@.0), we deduce the
ond term contains elemen®; , which only couple between behavior of the mixing term. For this purpose, first-order
occupied states and unoccupied statgs Besides the con- perturbation theory will suffice. The overlap elements are
stant factorp, it is now evident that deviation from indepen- specified to first order by
dent electron behavior is reflected in the second term, which
arises from both the effective interaction of the electron with _
the core hole and the requirements on particle exchange. The S~z
emission at the energy corresponding to a transition leaving
sole valence hole in the single-particle statwill be deter-

5—-+L> (15)
' (fi—fj) '

‘?he factorz; is the normalization factor for the distorted state
i. It can always be chosen real and positive, and it then has a

mined b : s ) .
y value that is ordinarily close to 1. For the present discussion,
2 it is assumed that the single-particle matrix elemejptfor
ITol2=p?Clyn)+ > smt > Si(Cly)| . (9  the attractive potential is a negative constant—|v|. Con-
i=occ j=unocc

sider the summation defining;. Since the energy of the

In a metal where the ions are modeled with a uniform posi-u.m)CCUpie.OI statpis _always greater.than the energy of occu-
ied statei, andv is negative,g; is always positive. To

tive background, different angular momentum states are de? ) :
coupled, and thus would make a separate contributidto ~ JiSCETN how the factog; behaves with the energy of state
Normalized delocalized undistorted states of the same ang°nsider the integral apprommatlgﬁ’;?gsijnodej to the defin-
lar momentum have dipole matrix elements with magnitudesng sum forg;, using a constant density of statgg and an
that vary slowly with energy. Actual solids of course exhibit integration cutofiC>|¢;|. Heree, is the energy gap between
an energy-dependent hybridization of angular momentuneccupied and unoccupied states, thus the energy zero corre-
states, and this will increase the energy variatiodafs,,).  sponds to the highest occupied state. Insertion of ()
However, it will help to elucidate Eq9) if we set the single- shows thatg; varies with € typically like zny|v|In((C
particle transition matrix elemergg|,) to the constant fac-  +|€[)/(| €+ €5))=zno|v|[In(C)—In(|€|+ )], where the
tor 1, and consider instead average value fog; is z=1. Thus,g; varies slowly with
energye; until the edge region is approached, at which point,
_ if €, is not finite, g; diverges logarithmically. Figure (&)
|-|—n|2:pz|1+i:zoCC Snilj :%OCCSH’FEAH' (10 give?s an example of; from the numerical model to follow
(Sec. V), which uses a 10-eV occupied bandwidth with a
The only loss of generality comes from the constant magnid-eV energy gap beginning at zero energy. The abrupt be-
tude of(C|#,), since we may always choose the state phaseBavior shown at the bottom of the band deviates from the
so that the transition matrix elemenfs|,) are real and above-mentioned logarithmic behavior because near the bot-
positive. We denote the second term in EtQ), which we tom of a band the states are not perturbed weakly, and the
call the mixing term, by above first-order perturbation relation f&; becomes in-
valid. The rise at the top of the band marks the onset of the
logarithmic divergence.

— -1 — -1 R . .
hn—i;occ Sni j:%msij —i;occ Sni Gis (11 To obtainh,, from Eq. (11), the termg; is summed with
the inverse matrix elemessf,;* over occupied statds Since
whereg;==;_ jnocSj - the matrixs is a submatrix of a unitary matrix in which

The introduction of the core-hole potential produces arelements only strongly couple states that are near in energy,
impurity scattering problem for the distorted wave functions.we expect thag, should give an approximation to the value
We write H=Hy+v,, andH for the single-particle Hamil- for s,:il. Indeed S;, is the leading term for a series expansion
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0.8 ' ‘ , - ‘ are not sensitive to where the occupation boundary is, and
0.7} . thus Eq.(15) is expected to hold. Also, at least for semicon-
06| @) | ductors,s;,;* still does not deviate considerably fros,,
o5t | since a finite band gap tends to kegploser to a unitary
g(e) matrix (see Appendix Now, near the unoccupied states, the
0'4"' . removal of the negative wing fas,;* further enhances the
03r =, PO emerging logarithmic divergence gf,. In metals, this sharp
02} v 1 cutoff at the Fermi energy is critical for the transformation
01l | from the logarithmic behavior of,, to a power-law diver-
o , ‘ ‘ , , gence. If the system is a metal without an energy gap, the
7o -8 —6 -4 —2 0 Mahan asymptotic power law divergence for metals arises as
unoccupied states are approached.
08 (b) Using the previously discussed edge behaviorgiarwe
06} 1 check this assertion by examinirly, near threshold €,
5&104_ | =0). Summing the mixing term while maintaining the ap-
' proximations,;'~ S, gives
02r
0 J.’f ha= 2 Sy'0i~ 2 Shoi (16)
* I=o0cc I=o0cC
—0.2} -
-10 -8 -6 -4 —2 0 vlo:
e *2_2 (5in9i_ |'_|g, ) (17)
) i=occ €~ €
FIG. 1. An example of the behavior @f(¢;) ands™* for the
numerical model of Sec. IV, wheldv =—2 eV with a 1-eV band  Near threshold,
gap starting at;=0. In (a), g; is plotted vse; . In (b), s,;* is plotted
vs € for n=80 (e,= —5.049 eV). 0 In|e;|de;
o~ 2ol + (o P [ S g
for s,;* developed in the Appendix. The leading term by A €™ €n

itself is most accurate for the diagonal and near-diagonal h P indicates th incinal value. aAd |
elements, which are the most important terms when evaluafy "€'€  Indicates he principal value, angs some lower
. . o integration limit. The diverging contributiofsgive
ing h,, since these are the largest terms. The behavisf,bf
as a function of is ’Ehen clear_from the perturbatlc_)l_w expres- Anp2|1+In| e, "2+ L(In|e,| 2022, (19)
sion Eq.(15), for Sj,. It consists of a single positive term
with magnitude near 1 for=n, otherwise the energy de- which is recognized to contain the first few terms in the
nominator decays with both positive and negative counterseries for exp(lhn|‘”b‘”‘), as similarly done in Ref. 1, thus
parts, similar to the numerically determinﬁ,ﬂ1 of Fig. 1(b). pointing to the power-law expression,
S}, can always be chosen to be zero for statefegenerate
with statei. T I I (20
With S ~s;., and if there are sufficient occupied terms
above and below in energy from statein the sum ovei
definingh,,, then we observe in thesummation of the prod-
ucts,;'g; thats,;! has the approximate effect of a Kronecker
delta 5,; picking out just the one term belonging to state
This is because the decaying energy denominator wings wigp
cancel wherg; exhibits the slow logarithmic variation with
€; . Thenh, effectively reflects the behavior gf,, which for
much of the spectrum varies slowly wity .
As the staten moves towards the bottom of the band it

For the threshold behavior in a metal, should correspond
to the density of statesg at the Fermi energy. Furthermore,
nglv| can be identified withde /7 in the Born approxima-
tion.
This analysis is of course not exact given the lower-order
proximations, but it does lead beyond the logarithmic di-
vergence, and to the power-law divergence for metals. In-
deed, in their analysis to demonstrate the final-state rule, Von
Barth and Grossmédrreat a metal with a contact potential in

, ”» ) U 1t an approximation that ignores shakeup, and thus equivalent
would appear that removing the positive wing of the first- the yse of the partially inverted initial state. They obtain
order expression t&,~s,;", together with the variation of {he power-law form of the Mahan edge singularity for the
g; there, would produce structure by . This will not be the  asymptotic limit of the edge region. Here we have instead
case, since the orthogonalizing effectsof!, leading to the  geveloped and maintained a general discussion wheréEq.
final-state rule, must result for these states that are far ipemains suited for the analysis of semiconductors, which of
energy from unoccupied states. Here, as mentioned above,dbyrse includes band structure, and without further Fourier
is expected thas,'~ S}, deviates from the simple behavior transformation of a many-body response function.
for Sy, given by first-order perturbation theory, enough so as In summary, throughout most of the spectrum, away from
to prevent any rapid variation tis,. On the other hand, as the band edge), varies slowly with the energy, as Fig(a?
the staten moves closer in energy toward unoccupied statesjllustrates for the factor\,,. Thus, producing an approxi-
the negative wing ofs,;* will start to be removed. Here, mately uniformly enhanced final-state spectrum, reflecting a
within the one-body problem for metals, the quantitigs final-state rule. The above discussion points out that if a
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3— ' ' ' ' =§Ti, in direct correspondence to the case of electron emis-
sion, but the unecessary definition is avoided with the adjoint
25 operation.
ol For the MND problem, the initial formulation of Ohtaka
A(e) and Tanab¥ is based from the viewpoint of absorption.
15l Later!® an accounting for emission is obtained. Here we
have instead taken the opposite approach. The OT result for
1t . the primary emissiof! is easily seen to conform with Eq.
(3). The connection for absorption is not so obvious, since
0.5 ——.. | here we have described absorption using the inverse of the
unoccupied submatrix, whereas the corresponding OT effec-
0= 8 "6 ~1 2 0 tive single-particle statp/>") used to calculate absorption is
80— ' ' ' ' given by
25t (b) 5
D =ldn)— > Sm2 snilé), (22
20+ m=occ j=occ
() 15} . which instead involves the inverse of the occupied subma-
s . trix.
10} - The two relations Eq(21) and Eq.(22) can be shown to
) be equivalent by using two identit@<or partitioned matri-
51 i ces. For the matriXd, written in partitioned block form
0 —-10 —I8 —I6 _'4 _'2 0 _ ( A11 Alz) (23)
(V) Az Azl

FIG. 2. The model calculatiofa) for the factorA is plotted vs  the identities are
the energye for several values ob with e;=1eV. For those in-
stan_ces wher&ly is_ positive, the specifi_ed value_‘ for represents [Ay— A21A111A1ﬂil: (Afl)zz, (24
the interband matrix element only, while2 eV is used for the
intraband matrix element. Ith) we show the corresponding emis- and
sion (pointg for the caseNv=—2eV. The associated occupied . . 1 o
density of stategsolid) also gives the relative emission using the [A21A17 A= Azl "AxArr = (A )1 (25
final-state rule. Here (A~ 1),, denotes the lower left block for the inverse of

. 71 .

small gap exists, the aborted divergence can still leave aWebf“” matrix A, whereasA, ;" denotes the inverse of the
enhanced band edd€ig. 2b)]. We will find that both the ~SUPmatrixA

band-edge enhancement, and the approximate uniform en- Upon partiFioning the uni;ary_matr.ig between occupied
hancement, are not expected to be negligible. and unoccupied parts, the first identity implies

1
IV. ABSORPTION Sm—kE SikSep Spn|  =Sh=Sh. (26)
,p=o0cc

Within the MND model, it has been demonstrated by

Mahari that absorption may be analyzed as the emission of’
holes from the unoccupied states. In such instance, the initial
states fo_r holes are the correspondlng_ u_nc_il_stort_ed electron Sin— 2 Skslzplspn:(?)alz(s*);l_ 27
states, since the core-hole does not exist initially in the case k.p=occ
of absorption. According to the prescription given here for
emission, corresponding to E(B), the appropriate partially
inverted initial staté,) to use in hole emission to describe
electron absorption to the unoccupied staie then is given
by -1

E Sikslzplspn_ Sin Snmsr;”;: SE

m=0CCc,n=unocc k,p:OCC

=lgn+ 2 @i X sile) (28)

=occ
or

Here, the indices and n necessarily refer to unoccupied
states, angl refers to occupied states. With the second iden-
tity we have

:|¢n>+j§cc(§_l hox Sile). @) N
mZOC(;:unocc _Smsnmsmj :Sji !

(29

where's denotes the submatrix d8 corresponding to the
unoccupiedstates only. Within the discussion of hole emis- whereSy; was substituted from the first identity. Multiplying
sion, one could define a matrix elemeBf=(¢;| ;) =S} both sides of Eq(29) by (s*);* (I unoccupied] then sum-
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ming the indexi over unoccupied states and noting the re- 40 ' - ' '
sulting Kronecker delta, one obtains the desired connection 351 Emission or Absorm2S T (a) |
Distorted State T%)OS *
L — 301
-1_ —lgx
= 2 SuSni= 2 (Si'S). (30 o5l
m=o0cc I=unocc

Substitution of this result into Eq21) demonstrates the
equivalence of Eq921) and (22).

Equation(9) for the primary emission is missing from the
OT analysis. Theré,t was lamented that the final-state rule
for emission could not be clearly argued from their analytic

results with the contact potential for a partially filled conduc- 0 -
tion band, because an analogous expression as for absorp- 6 0 o5 0 ;
tion, EqQ.(22), was not available for the case of emission. We ‘. to ~16
can obtain this counterpart relation by invoking a companion 50 (b) 1
identity of Eq.(25), which is )
at i
ALAL [A2AL A= Agl T= (A1, (3D Okl
3t ]
In a similar procedure that lead to E@0), this last identity
yields 20 1
_ — 1r 4
-2 si'Si= 2 Sh(S)im (32 : \
I=0cc m=unocc ) ) ) ) )
- . o . 10 -5 0 5 10
Substitution of this relation into Ed48) gives €(eV)
N _ * -1 FIG. 3. Comparisor{a) of the model emission and absorption
| bn) =) m;u:ﬁocc Sm“j :%OCC(S )Jmll’m’ (33 for Nu=—2eV. Also included is the TDOS for absorption,

whereas here the TDOS for emission follows the DOS(bnwe
which is the missing analogous expression to absorption, Egnow the distorted state transition matrix eleméfits €)[C)]? con-
(22), for the case of emission. We note that this is preciselysistent with(¢|y(e))=1.
what one would obtain using the OT absorption relation Eq.
(22), but where one views emission as the absorption ofze with, leaving the distorted state essentially unaltered, thus
holes. As far as recognizing which single-particle states arguggesting an initial-state rule for the case of a slightly filled
most suitable for a single-particle calculation, and obtainingband. However, near the band minimum, the mixing between
an elementary understanding of the edge behavior, it seenie two orthonormal sets due to the impurity potential is not
here that an original viewpoint based on the emission proas simple as the first-order perturbation relation would sug-
cess, Eqs(3) or (8), rather than the absorption process, hasgest. At least for the numerical model to be used here, the
been generally more illuminating for both the cases of emisoverlap elements; near the band minimum tend to have

sion and absorption, in semiconductors. more weight toward statesof lower energy from state.
Thus, orthogonalization to the few occupied states still may
V. A TWO-BAND MODEL alter the initial distorted state significantly, yet the partial

) transformation is not complete enough to form a final state.
~ To address the question of whether the edge enhancemefitys no part of the spectra need reflect the final-state or
is significant in ordinary semiconductors, some reasonablgisia|-state single-particle wave functions, and invoking an
estimates for the matrix elementg will be needed, as well jjjtjal-state rule can be misleading. Therefore, no such con-
as a model system to study. Previousfy,numerical calcu-  clysion is drawn here from the exact relations Bj.or Eq.
lations within the MND model have often used a partially (8).
filled single band when modeling a metal. It is there ob- ", actual semiconductors, there are unoccupied states
served that the emission spectra tend to exhibit quite differacross a band gap. A two-band model is then appropriate,
ent behavior dependent on the band filling. Such numericajnere one band is completely occupied. We employ two
calculations have indicated that the transition rate foom-  energy bands separated by a specified band[Bigp 3a)].

pletelyfilled band reflects the final-state single-particle tran-g5ch pand has an elliptical density of stat&09) n(e)
sition matrix elements, exactly, throughout the band. In Iightgiven by

of Eq. (9), this is to be expected, since all unoccupied states

have been exhausted, and thus the second term is zero. The 20
other extreme is a band that is only slightly filled, and where n(e)= B
initial-state single-particle transition matrix elements ap-

peared appropriate.In this case, we have thatl occupied whereB is the bandwidth and, is the center of the band.
states are near in energy to unoccupied states. From thihe parametes controls the strength of the density of states
viewpoint taken here, one might be inclined to conclude thatind thus the total number of states. In the model calculation
there are relatively few occupied components to orthogonalhere, we use 161 states per band, which for a finite band gap

2
_(6_50)2

112
: (34)

B

2
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easily exceeded what is needed for satisfactory convergendenctions. Here we see that the missing emission strength
of the spectral shape with regard to the level spacing. Givenear the band edge could very well be accounted for by this
energies; that conform to the modeled density of states, andband-edge enhancement.
appropriate matrix elementsy, the eigenvalue problem of Even with a tight-binding model in mind, the interband
Eq.(14) is solved numerically, yielding;; . The submatrixs ~ matrix elements, as well as the intraband matrix elements
can then be numerically inverted, and the resulting spectrrom different bands, need not be the same constant. It is of
constructed. course the matrix elements that couple between occupied and
The model parameters are chosen here with a semiconmnoccupied states, which are most significant with regard to
ductor similar to silicon in mindB=10 eV for each band, the spectral shape modifications discussed here. In semicon-
separated in energy bgy=1 eV. As for the matrix elements ductors these will be interband matrix elements, in contrast
vj; for the simple model here, we only desire to obtain someo metals where the intraband matrix elements are most im-
representative results using sensible numbers. For typic@iortant. In a tight-bonding model the intraband matrix ele-
values of the matrix elements; , we again rely on a nega- ments are necessarily negative for an attractive potential.
tive constant quantityy, as done in the Koster-Slatdr However, the interband matrix elements need not be nega-
model. This is what tight-binding Bloch wave functions tive. This will depend critically on the screening distance,
since this length will determine the range of integration in
1 determiningu;; . If the interband elements were to be pre-
n(D=Ny > expki-RIx(r—R) (35  dominantly positive, the band-edge enhancement instead be-
R comes a suppressidfrig. 2(a)] of the band edge.

for N lattice sites would have when the core-hole site is at the A modified screening may be an important effect in the
arbitrary origin, and the screened core potential is localizednterpretation of data for x-ray resonant inelastic
to the core-hole site. Herg(r — R) is a localized wave func-  Scattering;®?° since both the ordinary emission process dis-

tion about each lattice sif, andk; is the crystal momentum cussed here, and the resonant scattering occur with compa-
for statei. rable contributions. The x-ray resonant scattering is a single

To obtain a typical estimate fop, we employ self- coherent absorption and emission process, unlike the ordi-

consistent silicon 8 and 3 radial atomic wave functiod$ ~ nary incoherent two-step process that has been addressed
for x(r—R). One approach to the screening is to use d'ere. The resonant scattering typically occurs for photon en-
simple effective-mass impurity potentiale?/ xr, wherexis  €rgies that would promote 'the core e[ectron to a Iog:allzed
the static dielectric constant typical of a semiconductor. An-coreé exciton state. Such a final state will produce a different
other simple approach uses a Thomas-Fermi screenirgfreening than thgt obtame_d by self-consistent delocall_z_ed
(—e2/r)exp(/\) with screening length. states._The formalism described her(_-:t s_hows that a modified
In the effective mass approximation usirg: 10, whether ~ SCreening can stron_gly alter the emission spectra. Whether
evaluating matrix elements betwesstatesp states, or be- the modified screening suppresses or enhances the edge re-
tween s and p states, these atomic wave functions yield 9ion. it would be important to the analysis of the resonant
strengths forv of ~1.5 eV. For Fermi-Thomas screening meIastlc_ scatterlng to understand any modifications for the
with a screening length of 0.5 &, one obtains strengths of Subtraction of the incoherent contribution. _ _
~3 eV or larger. We shall take the value Nb=—2 eV as Although band structure plays a [esser role in absorption
typical for all matrix elements. well above threshold, as recognized in the theory of extended
We define the undistorted and distorted transitionXT@y absorption fine structuréEXAFS), near threshold

density of states(TDOS) with n(e)|(E|y(e))|? and where the photoelectron mean free path is relatively large,
n(€)|(#(€)[T)|2, respectively. Figure () shows the factor the two-band model calculation is still relevant. Results from

A, from the model calculation for several valueswofThis ~ the model calculation foNv = —2 eV for both emission and

factor is the enhancement factor that multiplies the undis@°SOrption, are also shown in Fig. 3. For the model calcula-
on of absorption, using the effective single-particle states

torted final-state TDOS, which for this case where we choosd X , ) >

(€ly.)=1, is identical to the modeled DOS. Fdiv= deﬁngd with 'Eq.(21), thg matrix elementée,|c) should be

—2 eV, we observe fol,, a slow rise of 25% within the Cconsistent with the choic|,)=1. Hence

lower 70% of the band, then an additional 50% gain just

within the remaining band-edge region with a range of 3 eV. ~\ " ~\ x

Significant effects occur even fdtv = — 1 eV. Diminishing <¢“|C>_k:2au S lﬂk|C>—k:2a” Shic (36

the band gap, as well as narrower bandwidths, will increase

the effect also. Thus here, for absorption, the distorted state TDOS is differ-
Calculations for the emission spectra of siliédf have  entin Fig. 3a) from both the DOS and the exactly calculated

always lacked enough strength near the band-edge regi@bsorption. The threshold enhancement for absorption at the

when efforts are invoked to sensibly select the energyband edge, beyond the final-state distorted TDOS, is evident.

dependent valence-hole lifetime broadening to help fit thé=urthermore, since in semiconductors the shakeup is absent

calculation to the remaining experimental spectrum. Thisat the edge region, there exists a clear distinction between the

model calculation indicates that the band-edge modificatiomdge enhancement in absorption due to the final-state inter-

can be significant even for semiconductors, and that bandxctions, and the many-particle dynamic exchange enhance-

structure calculations need to include the contributions of thenent. For both emission and absorption, the model calcula-

second term of Eq9) in calculating emission and near-edge tion predicts large effects beyond the final-state TDOS,

absorption spectra from single-particle self-consistent wavearticularly with regard to the absolute transition rates. Ex-
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perimental data rarely measure absolute rates, therefore it is APPENDIX
the spectral shapes near the band edges that will ordinarily It is of analytic interest to have a series expansion for
reveal the band-edge modifications described here. If the e%-1 The unitary condition
act absorption is normalized to the same area as the distorted
TDOS of absorption, the model calculation witky =
—2 eV still shows a~25% threshold enhancement due to >SSt 2 SHSk=6k (A1)
the dynamic exchange effect. n=oce n=unoce

Figure 3b) shows the matrix elemen{¢s(e)[C)* con-  may be written, foik andi occupied, as
sistent with the choic€c|y,)=1. The figure aides in the
appreciation of the final-state rule in emission, while Fig.
2(a) indicates to what extent the uniform enhancem@mt
suppressionfactor relevant to the final-state rule is constant
over most of the band. Multiplying by (s*),;il, with p occupied, and summing over

occupied statesgives

Y ShSa= 2 SHs)pt- X SESm. (A2
J=o0cc n=unocc

n=o0cc

VI. SUMMARY AND CONCLUSION 2 SknE (s* )p|1S|*n_ 2 (S )Jk 2 (S )p|lS*
In emphasizing that the Anderson orthogonality is not ex- "~°¢ =0t
pected to occur for filled band materials, we have discussed,
for semiconductors, a simple and rather complete description - (s*)pit > ShSa
within the MND model of x-ray spectra from electronic tran- 1=oce n=unoce
sitions alone. The shakeup contribution is not at all critical (A3)

within the x-ray edge regions, and can then be addressed as a
distinct smaller effect further away from the edge regions in°"
both emission and absorption. The many-particle modifica-

tion from the final-state TDOS in the core spectra of semi- E S, _ E (s*)216,

conductors is described within a formalism, embodied in Eq. nSocc PN ST Ik TP

(9), which is based on single-particle wave functions and the

impurity scattering problem. The formalism is thus practical _ s* Ad
for materials with band structure, and not restricted to the i:Eocc )p' 2 SnSan (A9

model scattering matrix elements used here. The present
model calculation has illustrated these spectral modificationgnd hence
in a simple two-band picture, and demonstrates that these
effects can be significant, thus indicating that any realistic -1_ -1
calculation of emission or absorption for a filled band mate- Skp = pk+|§o: Cs n %o cSi S (AS)
rial with a relatively small band gap should include the mix-
ing term contribution of Eq(9). A treatment for the case of By defining the matrixf =3 _ ynocSinSkn» and retiterating
silicon is currently in progress. We have also clarified theEQ. (A5), one obtains the series expansion
connection for absorption to the determinantal technique of
Ohtaka and Tanabe with the approach used here. So =ShH(f)f+(F2) 8 +(f3)f +--- . (AB)

For semiconductors, a calculation that yields good self-
consistent wave functions for both occupied and unoccupied In comparing to the model calculations used here, the
states, using matrix elements modified according to(Bgy. series convergence properties will depend on the ratiduvof
would be expected to obtain better agreement with emissioto the band gap. For numerical calculations wity =
spectral shapes in the band-edge region. If realistic calcula=2 eV and a 1-eV band gap, all elements converge rapidly,
tions indeed obtain good agreement in the band-edge regparticularly the diagonal and near-diagonal elements. Con-
gions, the formalism should be particularly important in ex-vergence is poorest for elements that are the least diagonal
perimental analysis for the scaling of data to theoreticaklements that also are next to the energy boundary with un-
calculations, since near the edge regions in semiconductoregcupied states. With only the second series term included,
unknown factors from other physical processes such as thiie percentage deviation from the exact inverse was found to
valence-hole lifetime broadening and shakeup are absent tee 1% for the poorest converging terms, and two orders of
minimized. A confident scaling using this region of data canmagnitude better for the diagonal terms. As might be ex-
begin to distinguish and clarify these other many-particlepected, when the energy gap closes, as for a metal, conver-
contributions to core x-ray spectra that occur in other specgence becomes less rapid. Nevertheless, for energy gaps
tral regions. Hence, further many-body effects can be experiequal to the energy level spacing, add= —2 eV, numeri-
mentally investigated. The formalism also makes a clear diseal examination for larger and larger systems, with smaller
tinction between an exitonic versus a many-particle dynamidevel spacing, indicates that the two-term truncated series
exchange enhancement in absorption edges of filled barglm remains accurate to 1% for the diagonal inverse matrix
materials. Finally, the effective single-particle state used herelements. Furthermore, inclusion of the third term gives at
should also be relevant to the calculation of near-edge x-rajeast 10% accuracy for the least convergent inverse matrix
absorption fine structure. elements.
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