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Core x-ray spectra in semiconductors and the Mahan-Nozieres-De Dominicis model

Peteris Livins
Department of Physics and Astronomy, Western Washington University, Bellingham, Washington 98225
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The Mahan-Nozie`res-De Dominicis~MND! model of core x-ray spectra is examined for semiconductors.
Due to the finite band gap, the Anderson orthogonality does not occur, and thus spectra near the band edge can
be calculated without the shakeup contribution. For semiconductors, and not only for metals, we investigate
whether the remaining many-particle dynamic exchange effect of the MND model, or so-called replacement,
can significantly alter x-ray spectral shapes near the band edge from those obtained from a straightforward
final-state rule. For both emission and absorption, in the absence of shakeup, an exact formulation suitable for
materials with band structure is discussed. A numerical model for a semiconductor with a 1-eV band gap
demonstrates the band-edge modifications, and shows a 50% effect at the band edge, indicating that this
dynamic exchange effect can be significant and should be considered in any specific emission or absorption
calculation for a semiconductor. Although the ineffectiveness of the orthogonality theorem in semiconductors
is emphasized, a suppression near the band edge also remains a possibility. Included is a discussion on the
breakdown of the final-state rule. In addition, connection is made to the determinantal approach of Ohtaka and
Tanabe.@S0163-1829~98!01040-6#
ay
y
m

y
di
nt
ge
le
te
n
tr

de
w

ay
tio
si

n
o-

-
be
-
th
t

on
he

ion
the

ures
al-

ny-
fi-
ets

he
the
on
be-
de-
of
The
ac-

usly
ntal
the
nge

he
on
his
po-
gle-

b-
abe
n
een
ob-
ge,
I. INTRODUCTION

Since the recognition of the edge singularity in the x-r
spectra of metals,1,2 and the Anderson orthogonalit
theorem,3 much effort has been extended to obtaining i
proved theoretical descriptions of core spectroscopies
metals within the Mahan-Nozie`res–DeDominicis~MND!
model.4,5 This model embodies the most significant man
body effects in core-spectroscopies. Its most curious pre
tion for metals is that in certain cases one expects an i
grable divergence at the emission or absorption ed
Another surprising result is the so-called final-state ru
which specifies what effective single-particle electron sta
used in a single-particle calculation, best reflect the ma
particle spectra. Disentangling these many-particle spec
modifications is of course important to the experimental
termination of the independent electron structure. Here
will address the modifications occurring in the soft x-r
spectra of semiconductors. In particular, there is the ques
of whether the edge enhancement occurring in metals is
nificant in nonmetals.

For metals, Nozie`res and DeDominicis~ND! @Ref. 2# use
a contact potential and calculate the appropriate respo
function in obtaining the spectral asymptotic limit. Their s
lution quantitatively predicts a power-law behavioruv
2v0ua in terms of the photon energyv, measured from the
absorption or emission thresholdv0 . The exponent is given
by

a522@d l /p#1(
l 8

2~2l 811!@d l 8 /p#2. ~1!

The partial-wave phase shiftsd l 8 for each angular momen
tum componentl 8, evaluated at the Fermi energy, descri
the core-hole potential. The componentl specifies the angu
lar momentum for the valence electron that is active in
transition to or from the core state, and that thus satisfies
PRB 580163-1829/98/58~16!/10484~10!/$15.00
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dipole selection rule with that core state. The ND soluti
incorporates two competing effects in the edge region. T
first term in the above exponent is the diverging contribut
discovered by Mahan, the other gives a suppression of
edge spectra, related to the Anderson orthogonality. Feat
away from the edge region were later noted to follow a fin
state rule.6–9

Alternatively, the MND model is equivalent10,11 to calcu-
lating the x-ray spectra using Slater determinantal ma
particle states constructed from self-consistent initial and
nal single-particle electron states. Thus two orthonormal s
of single-particle states are noted,uc i& for the undistorted
states,uf i& for the distorted states in the presence of t
core-hole. The transition rate is then formulated through
Fermi golden rule in terms of the many-particle transiti
matrix elements. In this approach, one makes distinction
tween a primary transition and a shakeup transition. We
fine a primary transition as one resulting in the transfer
just a single electron between a valence and a core state.
shakeup transitions instead appear as primary transitions
companied by one or more valence electrons simultaneo
promoted to unoccupied valence states. The determina
approach emphasizes that the divergent behavior of
MND edge feature is a consequence of a dynamic excha
process during the x-ray transition. Friedel10 pointed out that
the divergence occurs due to the contribution of what
named ‘‘replacement terms,’’ which arise in the transiti
element due to the antisymmetrization. We distinguish t
dynamic exchange feature from the exchange-correlation
tentials used to calculate self-consistent independent sin
particle electron states.

The most complete theoretical solution to the MND pro
lem to date has been obtained by Ohtaka and Tan
~OT!.5,12 Unlike the ND solution, their method is based o
determinants, where all shakeup contributions have b
summed. For a simple contact potential, the OT solution
tains analytic results throughout the complete spectral ran
10 484 © 1998 The American Physical Society
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PRB 58 10 485CORE X-RAY SPECTRA IN SEMICONDUCTORS AND . . .
not just in the edge region. In the determinantal approach
metals, the focus of summing all shakeup contributions
be traced to the Anderson orthogonality theorem for met
By direct evaluation,3 Anderson has shown that the overla
r5^C0uF0& between the ground states of two many-parti
states,uC0& and uF0&, constructed from Slater determinan
of plane and scattered single-electron wave functions, v
ishes asN increases. The Anderson theorem implies that
N particles, any one particular transition, primary or shake
occurs with vanishing probability asN increases to infinity.
Hence, to obtain a finite analytic result for 1023 electrons, all
transitions to infinite shakeup order are required. We see
in metals the contribution purely from primary transitio
alone are then overwhelmed by the shakeup contribut
However, the information in the primary spectrum is not lo
it is convoluted in a complicated manner with the shake
contributions. The total result is, from what one may exp
from the primary transitions alone, that the shape of the
sulting total spectrum is only largely modified from the p
mary spectrum near the edge regions, and also in the
energy tail for emission. Except in the case of the ed
suppression in metals, the spectrum obtained from the
mary transitions alone does include the dominant ma
particle effect. The Mahan edge singularity, as also the fin
state rule, are in fact identified with the primary spectrum
is the complicated convoluting of the shake-up processes
may or may not suppress the edge singularity in metals
the ND formula, Eq.~1!, indicates.

The Anderson orthogonality is important in metals. Ho
ever, this report will instead primarily concern itself with th
influence of the many-particle effects in the spectra of fil
band materials with small to moderate band gaps, suc
semiconductors. In materials with a finite band gap, the
thogonality theorem will not be effective, and hence t
spectra can be to a large degree described by the prim
transitions alone. To recognize this, we need only note
periment. If the orthogonality were to apply to filled ban
materials, then an additional spectral gap, beyond the en
gap, would appear between emission and absorption in
same material. For if the orthogonality were to block a p
mary transition from the top of a filled band in emissio
then only shakeup transitions would allow for the larg
emission transition energy, diminishing the photon energy
at least the band-gap energy required to simultaneously
mote the shakeup electron. On the other hand, in absorp
the least energetic threshold photon would not only prom
an electron from the core to the lowest unoccupied state,
also an electron across the gap. This would increase the
quired photon energy by at least a band-gap energy. Thu
additional spectral gap of at least twice the energy gap wo
occur between the emission spectra and absorption spe
This is never observed. In both emission or absorption,
overall relaxation energy shift contributes to the photon
ergy in the same way, and would not have an effect w
regard to any spectral energy gap. Thus near the band ed
the spectra of semiconductors, the Anderson suppres
does not enter, only the Mahan divergent effect does, wh
could then provide a remnant of the edge singularity found
metals.

There is evidence13 that shakeup in semiconductors is ce
tainly not negligible, but when it is significant, it does n
or
n
s.
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contribute at energies near the boundary between occu
and unoccupied states. This is in contrast to the case of m
als. To understand this, we focus on the case of emission
mentioned, the shape of the spectral contribution from
shakeup can be viewed approximately as a convolution
the primary transition spectrum with a function that chara
terizes the energy dependence of the single-particle sha
probabilities. The shakeup energy is the energy gain an e
tron obtains in jumping to an unoccupied state. The proba
ity amplitudes for such shakeup processes are related to
single-particle overlapsSi j [^c j uf i&, where statei and j lie
on opposite sides of the Fermi level. In metals, the funct
that determines the shakeup probability energy depende
is characterized by a relatively narrow function of ener
located near zero shakeup energy. This is because
shakeup probability to unoccupied single-particle states
cays with energy measured from occupied states. Sinc
metal lacks a band gap, the most significant shakeup ene
are the closest, small energies. In metals, covoluting the
mary spectrum with this narrow function produces litt
change from the primary spectrum, except at the Fermi ed
and also in the formation of a low-energy tail for emissio
In contrast, for filled band materials, the appropriate char
teristic function to convolute with is offset from zero by
least the energy gap. Its centroid is further offset because
density of unoccupied states right above the gap is small
only then increases. Finally, the centroid of the primary sp
trum in semiconductors is largest not near the unoccup
states, but lower in energy. Thus the approximate convo
tion leading to the resulting shakeup contribution is expec
to peak at the lower energy end of the emission spectr
Therefore, the shakeup contribution remains insignificant
much of the high-energy end of the emission band. It is
course rigorously zero within a band gap from the band ed

It should be noted that near the edge emission in a se
conductor, unlike in metals, the single-particle density
states for a nonmetal approaches zero. Contrary to me
then, any many-body enhancement of the spectra, giving
viation from what one would expect from the final-state ru
is not strikingly apparent from experiment without a detail
comparison to calculated final-state spectra. Likewise, in
sorption, the distinction between a many-particle dynam
exchange enhancement and an excitonic enhancemen
simply to a final-state attractive potential, also requires
closer examination. Here, we address the question of
such band-edge modifications in nonmetals, and develo
straightforward formalism for their understanding within th
framework of ordinary band-structure calculations.

II. PARTIALLY INVERTED INITIAL STATES

Having recognized that the primary spectrum can be
pected to dominate in the x-ray spectra of semiconduct
we omit in the following the shakeup contribution, and on
consider the primary spectrum. This, however, will retain t
major dynamic exchange effect of the MND model. It w
become apparent that the spectral behavior discussed
whether for emission or absorption, will be better understo
through an emission process. Thus, we shall remain focu
on the emission problem, although much of the discuss
will also be relevant to absorption. The extensions to abso
tion are discussed in Sec. IV.
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10 486 PRB 58PETERIS LIVINS
In the determinantal description of the emission proc
one considers transition matrix elementsTf i between the ini-
tial and final many-particle states with energiesEi and Ef ,
respectively. By the Fermi golden rule, the transition rate
a function of photon energy is proportional to a functi
I (v) given by

I ~v!5(
f

uTf i u2d~v1Ei2Ef !. ~2!

For x-ray photons, the slowly varying factor involving th
photon frequency is here suppressed for the relatively nar
band energy range. Since we omit the shakeup contributi
the final many-particle states for emission are limited
those with a single vacant level somewhere within the o
narily filled band. The many-particle transition matrix el
mentsTf i will involve determinants of matrices composed
single-particle overlaps and single-particle transition ma
elements.10 An exact simplified analysis occurs for each su
many-particle matrix element when one employs the sing
particle states13 uf̄n& given by

uf̄n&5 (
i 5occ

sni
21uf i&, ~3!

wheres21 is the inverse matrix for the occupied submat
snm5Snm[^cmufn& ~n,m occupied! of the full unitary ma-
trix S. These partially inverted initial states, so called b
cause they represent an incomplete transformation from
tial distorted stateufn& to final undistorted stateucn&, are
orthogonal to alloccupied undistortedstates. Observe tha
the Kronecker delta

d i j 5 (
k5occ

sik
21sk j5^c j u (

k5occ
sik

21ufk&5^c j uf̄ i&, ~4!

for i and j occupied. However, the statesuf̄n& are not nor-
malized.

To verify the simplification introduced by such singl
particle states, we consider the many-particle transition
trix elementTn5^C(n)uSmtmuF0&, wheretm represents the
optical transition operator for particlem. For instance, the
dipole operator. HereC(n) is the N particle state with a
valence hole in staten, but with the core stateucore& filled.
Implicit within the MND model is a ‘‘frozen core’’ approxi-
mation, in which the overlapŝcoreuc& and^coreuf& are con-
sidered negligible for both orthonormal sets. Hence, the
evant many-particle transition matrix elementTn reduces to
calculating the determinant of a single matrixMn con-
structed from elements which are single-particle overl
Snm and single-particle transition matrix elemen
^coreutufn&[^c̃ufn&. Following Friedel,10 the matrix Mn
has the form

Mn5S ^c1uf1& ... ^c1ufn& ... ^c1ufN&

^c2uf1& ... ... ... ^c2ufN&

] ] ] ] ]

^c̃uf1& ... ^c̃ufn& ... ^c̃ufN&

] ] ] ] ]

^cNuf1& ... ^cNufn& ... ^cNufN&

D ,

~5!
s

s

w
s,

i-

x
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s

where the single-particle transition matrix elements repl
the nth row.

In considering the determinant of this matrix, we note th
detMn5det(Mn

T)5det(s)det(s21Mn
T). Furthermore, due to the

orthonormality condition of Eq.~4!, the matrixs21Mn
T has

off-diagonal elements that are zero, except for columnn. For
all elements with kÞn, (s21Mn

T) ik5( j 5occsi j
21^ckuf j&

5( j 5ocĉ ckusi j
21uf j&5^ckuf̄ i&, while for the casek5n,

(s21Mn
T) in5( j 5ocĉ c̃usi j

21uf j&5^c̃uf̄ i&. Thus s21Mn
T is

similar to the matrixMn
T , but where the elements have be

constructed with all statesuf i& replaced by the transforme
statesuf̄ i&.

This last observation leads to a trivial evaluation
det(s21Mn

T), giving

Tn5det~s!~21!n11^c̃uf̄n&^c1uf̄1&

3^c2uf̄2&¯~nô cnuf̄n&!¯^cNuf̄N&. ~6!

It now appears that the passive electron over
^c1uf̄1&^c2uf̄2&¯(nô cnuf̄n&)¯^cNuf̄N&, with further n
dependence, remains. However, the mentioned orthonor
ity assures that in the diagonal product of Eq.~6!, we have
^c i uf̄ i&51, thus voiding anyn-dependent passive overlap
For each casen, the transformation on the distorted stat
introduces thecommonfactor det(s)5^C0uF0&5r, giving the
simplified result

uTnu25uru2z^coreutuf̄n& z2. ~7!

As anticipated, the Anderson factoruru2 enters. This effec-
tive single-particle matrix element then provides the ex
transition probability within the MND model when shakeu
is negligible. It is such an analysis of emission, rather th
absorption, that leads to the particularly simple result of E
~7!, due to a common transformation factor. We distingu
here the orthogonalized final state~OFS! of Davis and
Feldkamp,14 which, however, does not give an exact effe
tive state, particularly in the edge region. As a consequen
the OFS state predicts a logarithmic edge singularity
metals,15 instead of a power law.

The final-state rule specifies that the best effective sing
particle states to use in a one-particle description of emiss
or absorption are those appropriate to the final-state po
tials. In emission this will imply the undistorted statesucn&.
The partially inverted initial state, as defined by Eq.~3!,
provides a natural theoretical explanation.13 The imposed or-
thogonalization exhibited by the stateuf̄ i& forces it to ap-
proach its corresponding undistorted stateuc i&. This occurs
most strongly to occupied statesi that are far in energy from
unoccupied states. In these cases the componentsSi j to un-
occupied statesj are relatively small, such that the distorte
statei can be effectively spanned by states within the sub
of occupied undistorted states. This then allows for an
proximate orthonormalization within all the undistorte
states, and thus the transformed state must be very simil
its corresponding undistorted state. This orthonormalizing
fect will slowly diminish as the energy of the statei ap-
proaches unoccupied states. We show below, that slo
means approximately logarithmically with the energy diffe
ence to unoccupied states. This initial logarithmic dep



e

po
om

r

ec

-
ic
it
T
g

s
d

ng
de
it

tu

n
s

a
s

is-
dis-
e

d

er-

er
re

te
as a
ion,

u-

n
orre-

nt,

a
be-
the
bot-
the

the

rgy,
e

on

PRB 58 10 487CORE X-RAY SPECTRA IN SEMICONDUCTORS AND . . .
dence eventually begins turning to a more rapid spectral
hancement upon nearing the edge region, even
semiconductors. Hence, the effect of replacement is res
sible for both the final-state rule, as well as deviations fr
it, in the form of an edge enhancement.

III. BAND-EDGE MODIFICATIONS

Further interpretation of the stateuf̄n& is obtained when
written in terms of the undistorted statesuc j&. Expanding in
the complete setuc j&, and invoking the resulting Kronecke
delta, gives

uf̄n&5 (
i 5occ

sni
21S (

j 5occ
Si j uc j&1 (

j 5unocc
Si j uc j& D

5ucn&1 (
i 5occ

sni
21 (

j 5unocc
Si j uc j&. ~8!

The first term conforms to the final-state rule, while the s
ond term contains elementsSi j , which only couple between
occupied statesi and unoccupied statesj. Besides the con-
stant factorr, it is now evident that deviation from indepen
dent electron behavior is reflected in the second term, wh
arises from both the effective interaction of the electron w
the core hole and the requirements on particle exchange.
emission at the energy corresponding to a transition leavin
sole valence hole in the single-particle staten will be deter-
mined by

uTnu25r2U^c̃ucn&1 (
i 5occ

sni
21 (

j 5unocc
Si j ^c̃uc j&U2

. ~9!

In a metal where the ions are modeled with a uniform po
tive background, different angular momentum states are
coupled, and thus would make a separate contribution toTn .
Normalized delocalized undistorted states of the same a
lar momentum have dipole matrix elements with magnitu
that vary slowly with energy. Actual solids of course exhib
an energy-dependent hybridization of angular momen
states, and this will increase the energy variation of^c̃ucn&.
However, it will help to elucidate Eq.~9! if we set the single-
particle transition matrix elements^c̃ucn& to the constant fac-
tor 1, and consider instead

uTnu25r2u11 (
i 5occ

sni
21 (

j 5unocc
Si j u2[Ln . ~10!

The only loss of generality comes from the constant mag
tude of^c̃ucn&, since we may always choose the state pha
so that the transition matrix elements^c̃ucn& are real and
positive. We denote the second term in Eq.~10!, which we
call the mixing term, by

hn5 (
i 5occ

sni
21 (

j 5unocc
Si j 5 (

i 5occ
sni

21gi , ~11!

wheregi5( j 5unoccSi j .
The introduction of the core-hole potential produces

impurity scattering problem for the distorted wave function
We write H5H01vh andH0 for the single-particle Hamil-
n-
in
n-

-

h
h
he
a

i-
e-

u-
s

m

i-
es

n
.

tonians that include and exclude the core-hole potentialvh ,
respectively. Then the distorted stateuf i&5(k5allSikuck&
satisfies

Huf i&5 ẽ i uf i&, ~12!

and the undistorted states satisfy

H0uc i&5e i uc i&, ~13!

wheree i and ẽ i are the energies of the undistorted and d
torted states, respectively. Substitution of the expanded
torted state into Eq.~12! leads to the standard eigenvalu
problem. For eachj,

(
k5allÞ j

v jkSik1~v j j 1e j !Si j 5 ẽ iSi j , ~14!

where v jk5^c j uvhuck&, which become uniquely specifie
with the above-mentioned phase restriction.

For a general understanding and illustration of the em
gence of the edge singularity from Eq.~10!, we deduce the
behavior of the mixing term. For this purpose, first-ord
perturbation theory will suffice. The overlap elements a
specified to first order by

Si j 'zi S d i j 1
v j i

~e i2e j !
D . ~15!

The factorzi is the normalization factor for the distorted sta
i. It can always be chosen real and positive, and it then h
value that is ordinarily close to 1. For the present discuss
it is assumed that the single-particle matrix elementv j i for
the attractive potential is a negative constantv52uvu. Con-
sider the summation defininggi . Since the energy of the
unoccupied statej is always greater than the energy of occ
pied statei, and v is negative,gi is always positive. To
discern how the factorgi behaves with the energy of statei,
consider the integral approximation*eg

C Si j n0de j to the defin-

ing sum forgi , using a constant density of statesn0 , and an
integration cutoffC@ue i u. Hereeg is the energy gap betwee
occupied and unoccupied states, thus the energy zero c
sponds to the highest occupied state. Insertion of Eq.~15!
shows thatgi varies with e i typically like zn0uvu ln„(C
1ue i u)/(ue i u1eg)…'zn0uvu@ ln(C)2ln(ueiu1eg)#, where the
average value forzi is z'1. Thus, gi varies slowly with
energye i until the edge region is approached, at which poi
if eg is not finite, gi diverges logarithmically. Figure 1~a!
gives an example ofgi from the numerical model to follow
~Sec. V!, which uses a 10-eV occupied bandwidth with
1-eV energy gap beginning at zero energy. The abrupt
havior shown at the bottom of the band deviates from
above-mentioned logarithmic behavior because near the
tom of a band the states are not perturbed weakly, and
above first-order perturbation relation forSi j becomes in-
valid. The rise at the top of the band marks the onset of
logarithmic divergence.

To obtainhn from Eq. ~11!, the termgi is summed with
the inverse matrix elementsni

21 over occupied statesi. Since
the matrix s is a submatrix of a unitary matrix in which
elements only strongly couple states that are near in ene
we expect thatSin* should give an approximation to the valu
for sni

21. Indeed,Sin* is the leading term for a series expansi
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10 488 PRB 58PETERIS LIVINS
for sni
21 developed in the Appendix. The leading term

itself is most accurate for the diagonal and near-diago
elements, which are the most important terms when eval
ing hn , since these are the largest terms. The behavior ofsni

21

as a function ofi is then clear from the perturbation expre
sion Eq.~15!, for Sin* . It consists of a single positive term
with magnitude near 1 fori 5n, otherwise the energy de
nominator decays with both positive and negative coun
parts, similar to the numerically determinedsni

21 of Fig. 1~b!.
Sin* can always be chosen to be zero for statesn degenerate
with statei.

With Sin* 'sni
21, and if there are sufficient occupied term

above and below in energy from staten in the sum overi
defininghn , then we observe in thei summation of the prod-
uct sni

21gi thatsni
21 has the approximate effect of a Kroneck

deltadni picking out just the one term belonging to staten.
This is because the decaying energy denominator wings
cancel whengi exhibits the slow logarithmic variation with
e i . Thenhn effectively reflects the behavior ofgn , which for
much of the spectrum varies slowly withen .

As the staten moves towards the bottom of the band
would appear that removing the positive wing of the fir
order expression toSin* 'sni

21, together with the variation o
gi there, would produce structure tohn . This will not be the
case, since the orthogonalizing effect ofs21, leading to the
final-state rule, must result for these states that are fa
energy from unoccupied states. Here, as mentioned abov
is expected thatsni

21'Sin* deviates from the simple behavio
for Sin* given by first-order perturbation theory, enough so
to prevent any rapid variation tohn . On the other hand, a
the staten moves closer in energy toward unoccupied sta
the negative wing ofsni

21 will start to be removed. Here
within the one-body problem for metals, the quantitiesSi j

FIG. 1. An example of the behavior ofg(e i) and s21 for the
numerical model of Sec. IV, whereNv522 eV with a 1-eV band
gap starting ate i50. In ~a!, gi is plotted vse i . In ~b!, sni

21 is plotted
vs e i for n580 (en525.049 eV).
al
t-

r-

ill

-

in
, it

s

s,

are not sensitive to where the occupation boundary is,
thus Eq.~15! is expected to hold. Also, at least for semico
ductors,sni

21 still does not deviate considerably fromSin* ,
since a finite band gap tends to keeps closer to a unitary
matrix ~see Appendix!. Now, near the unoccupied states, t
removal of the negative wing forsni

21 further enhances the
emerging logarithmic divergence ofgn . In metals, this sharp
cutoff at the Fermi energy is critical for the transformatio
from the logarithmic behavior ofgn to a power-law diver-
gence. If the system is a metal without an energy gap,
Mahan asymptotic power law divergence for metals arise
unoccupied states are approached.

Using the previously discussed edge behavior forgi , we
check this assertion by examininghn near threshold (en
50). Summing the mixing term while maintaining the a
proximationsni

21'Sin* gives

hn5 (
i 5occ

sni
21gi' (

i 5occ
Sin* gi ~16!

'z (
i 5occ

S d ingi2
uvugi

e i2en
D . ~17!

Near threshold,

hn}2zn0uvu lnuenu1~zn0uvu!2PE
A

0 lnue i ude i

e i2en
, ~18!

where P indicates the principal value, andA is some lower
integration limit. The diverging contributions16 give

Ln}r2z11 lnuenu2zn0uvu1 1
2 ~ lnuenu2zn0uvu!2z2, ~19!

which is recognized to contain the first few terms in t
series for exp(lnuenu2zn0uvu), as similarly done in Ref. 1, thus
pointing to the power-law expression,

Ln}r2uenu2z2n0uvu. ~20!

For the threshold behavior in a metal,n0 should correspond
to the density of statesnF at the Fermi energy. Furthermore
nFuvu can be identified withdF /p in the Born approxima-
tion.

This analysis is of course not exact given the lower-or
approximations, but it does lead beyond the logarithmic
vergence, and to the power-law divergence for metals.
deed, in their analysis to demonstrate the final-state rule,
Barth and Grossman8 treat a metal with a contact potential i
an approximation that ignores shakeup, and thus equivale17

to the use of the partially inverted initial state. They obta
the power-law form of the Mahan edge singularity for t
asymptotic limit of the edge region. Here we have inste
developed and maintained a general discussion where Eq~9!
remains suited for the analysis of semiconductors, which
course includes band structure, and without further Fou
transformation of a many-body response function.

In summary, throughout most of the spectrum, away fr
the band edge,hn varies slowly with the energy, as Fig. 2~a!
illustrates for the factorLn . Thus, producing an approxi
mately uniformly enhanced final-state spectrum, reflectin
final-state rule. The above discussion points out that i
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small gap exists, the aborted divergence can still leave
enhanced band edge@Fig. 2~b!#. We will find that both the
band-edge enhancement, and the approximate uniform
hancement, are not expected to be negligible.

IV. ABSORPTION

Within the MND model, it has been demonstrated
Mahan7 that absorption may be analyzed as the emission
holes from the unoccupied states. In such instance, the in
states for holes are the corresponding undistorted elec
states, since the core-hole does not exist initially in the c
of absorption. According to the prescription given here
emission, corresponding to Eq.~8!, the appropriate partially
inverted initial stateuc̄n& to use in hole emission to describ
electron absorption to the unoccupied staten is then is given
by

uc̄n&5ufn&1 (
j 5occ

~ s̄†!ni
21 (

i 5unocc
Si j

† uf j&

5ufn&1 (
j 5occ

~ s̄21! in* (
i 5unocc

Sji* uf j&, ~21!

where s̄ denotes the submatrix ofS corresponding to the
unoccupiedstates only. Within the discussion of hole em
sion, one could define a matrix elementSji8 5^f i uc j&5Sji*

FIG. 2. The model calculation~a! for the factorL is plotted vs
the energye for several values ofv with eg51 eV. For those in-
stances whereNv is positive, the specified value forv represents
the interband matrix element only, while22 eV is used for the
intraband matrix element. In~b! we show the corresponding emis
sion ~points! for the caseNv522 eV. The associated occupie
density of states~solid! also gives the relative emission using th
final-state rule.
n

n-

of
ial
on
se
r

5Sji
† , in direct correspondence to the case of electron em

sion, but the unecessary definition is avoided with the adjo
operation.

For the MND problem, the initial formulation of Ohtak
and Tanabe12 is based from the viewpoint of absorption
Later,18 an accounting for emission is obtained. Here w
have instead taken the opposite approach. The OT resul
the primary emission19 is easily seen to conform with Eq
~3!. The connection for absorption is not so obvious, sin
here we have described absorption using the inverse of
unoccupied submatrix, whereas the corresponding OT ef
tive single-particle stateucn

OT& used to calculate absorption
given by

ucn
OT&5ufn&2 (

m5occ
Snm (

j 5occ
sm j

21uf j&, ~22!

which instead involves the inverse of the occupied subm
trix.

The two relations Eq.~21! and Eq.~22! can be shown to
be equivalent by using two identities20 for partitioned matri-
ces. For the matrixA, written in partitioned block form

A5S A11 A12

A21 A22
D , ~23!

the identities are

@A222A21A11
21A12#

215~A21!22, ~24!

and

@A21A11
21A122A22#

21A21A11
215~A21!21. ~25!

Here (A21)21 denotes the lower left block for the inverse
the full matrix A, whereasA11

21 denotes the inverse of th
submatrixA11

Upon partitioning the unitary matrixS between occupied
and unoccupied parts, the first identity implies

FSin2 (
k,p5occ

Sikskp
21SpnG21

5Sin
† 5 s̄in

† , ~26!

or

Sin2 (
k,p5occ

Sikskp
21Spn5~ s̄†! in

215~ s̄* !ni
21. ~27!

Here, the indicesi and n necessarily refer to unoccupie
states, andj refers to occupied states. With the second ide
tity we have

(
m5occ,n5unocc

F (
k,p5occ

Sikskp
21Spn2SinG21

Snmsm j
215Si j

†

~28!

or

(
m5occ,n5unocc

2Sni* Snmsm j
215Sji* , ~29!

whereSni* was substituted from the first identity. Multiplying
both sides of Eq.~29! by (s̄* ) i l

21 ~l unoccupied!, then sum-
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ming the indexi over unoccupied states and noting the
sulting Kronecker delta, one obtains the desired connect

2 (
m5occ

Snmsm j
215 (

i 5unocc
~ s̄* ! in

21Sji* . ~30!

Substitution of this result into Eq.~21! demonstrates the
equivalence of Eqs.~21! and ~22!.

Equation~9! for the primary emission is missing from th
OT analysis. There,5 it was lamented that the final-state ru
for emission could not be clearly argued from their analy
results with the contact potential for a partially filled condu
tion band, because an analogous expression as for ab
tion, Eq.~22!, was not available for the case of emission. W
can obtain this counterpart relation by invoking a compan
identity of Eq.~25!, which is

A11A12
21@A21A11

21A122A22#
215~A21!21. ~31!

In a similar procedure that lead to Eq.~30!, this last identity
yields

2 (
i 5occ

sni
21Si j 5 (

m5unocc
Smn* ~ s̄* ! jm

21. ~32!

Substitution of this relation into Eq.~8! gives

uf̄n&5ucn&2 (
m5unocc

Smn* (
j 5unocc

~ s̄* ! jm
21uc j&, ~33!

which is the missing analogous expression to absorption,
~22!, for the case of emission. We note that this is precis
what one would obtain using the OT absorption relation E
~22!, but where one views emission as the absorption
holes. As far as recognizing which single-particle states
most suitable for a single-particle calculation, and obtain
an elementary understanding of the edge behavior, it se
here that an original viewpoint based on the emission p
cess, Eqs.~3! or ~8!, rather than the absorption process, h
been generally more illuminating for both the cases of em
sion and absorption, in semiconductors.

V. A TWO-BAND MODEL

To address the question of whether the edge enhance
is significant in ordinary semiconductors, some reasona
estimates for the matrix elementsv i j will be needed, as wel
as a model system to study. Previously,5,21 numerical calcu-
lations within the MND model have often used a partia
filled single band when modeling a metal. It is there o
served that the emission spectra tend to exhibit quite dif
ent behavior dependent on the band filling. Such numer
calculations have indicated that the transition rate for acom-
pletelyfilled band reflects the final-state single-particle tra
sition matrix elements, exactly, throughout the band. In lig
of Eq. ~9!, this is to be expected, since all unoccupied sta
have been exhausted, and thus the second term is zero
other extreme is a band that is only slightly filled, and whe
initial-state single-particle transition matrix elements a
peared appropriate.22 In this case, we have thatall occupied
states are near in energy to unoccupied states. From
viewpoint taken here, one might be inclined to conclude t
there are relatively few occupied components to orthogo
-
n

-
rp-

n

q.
y
.
f

re
g
ms
-

s
-

ent
le

r-
al

-
t
s
he

e
-

he
t
l-

ize with, leaving the distorted state essentially unaltered, t
suggesting an initial-state rule for the case of a slightly fill
band. However, near the band minimum, the mixing betwe
the two orthonormal sets due to the impurity potential is n
as simple as the first-order perturbation relation would s
gest. At least for the numerical model to be used here,
overlap elementsSi j near the band minimum tend to hav
more weight toward statesj of lower energy from statei.
Thus, orthogonalization to the few occupied states still m
alter the initial distorted state significantly, yet the part
transformation is not complete enough to form a final sta
Thus no part of the spectra need reflect the final-state
initial-state single-particle wave functions, and invoking
initial-state rule can be misleading. Therefore, no such c
clusion is drawn here from the exact relations Eq.~3! or Eq.
~8!.

In actual semiconductors, there are unoccupied st
across a band gap. A two-band model is then appropri
where one band is completely occupied. We employ t
energy bands separated by a specified band gap@Fig. 3~a!#.
Each band has an elliptical density of states~DOS! n(e)
given by

n~e!5
2s

B F S B

2 D 2

2~e2e0!2G1/2

, ~34!

whereB is the bandwidth ande0 is the center of the band
The parameters controls the strength of the density of stat
and thus the total number of states. In the model calcula
here, we use 161 states per band, which for a finite band

FIG. 3. Comparison~a! of the model emission and absorptio
for Nv522 eV. Also included is the TDOS for absorption
whereas here the TDOS for emission follows the DOS. In~b! we
show the distorted state transition matrix elementsz^f(e)uc̃& z2 con-
sistent with^c̃uc(e)&51.
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easily exceeded what is needed for satisfactory converg
of the spectral shape with regard to the level spacing. Gi
energiese i that conform to the modeled density of states, a
appropriate matrix elementsv jk , the eigenvalue problem o
Eq. ~14! is solved numerically, yieldingSi j . The submatrixs
can then be numerically inverted, and the resulting spe
constructed.

The model parameters are chosen here with a semi
ductor similar to silicon in mind,B510 eV for each band
separated in energy byeg51 eV. As for the matrix elements
v i j for the simple model here, we only desire to obtain so
representative results using sensible numbers. For typ
values of the matrix elementsv i j , we again rely on a nega
tive constant quantityv, as done in the Koster-Slater23

model. This is what tight-binding Bloch wave functions

c i~r !5A1

N (
R

exp~k i•R!x~r2R! ~35!

for N lattice sites would have when the core-hole site is at
arbitrary origin, and the screened core potential is locali
to the core-hole site. Herex(r2R) is a localized wave func-
tion about each lattice siteR, andk i is the crystal momentum
for statei.

To obtain a typical estimate forv, we employ self-
consistent silicon 3s and 3p radial atomic wave functions24

for x(r2R). One approach to the screening is to use
simple effective-mass impurity potential2e2/kr , wherek is
the static dielectric constant typical of a semiconductor. A
other simple approach uses a Thomas-Fermi scree
(2e2/r )exp(r/l) with screening lengthl.

In the effective mass approximation usingk510, whether
evaluating matrix elements betweens states,p states, or be-
tween s and p states, these atomic wave functions yie
strengths forv of ;1.5 eV. For Fermi-Thomas screenin
with a screening length of 0.5 Å,25 one obtains strengths o
;3 eV or larger. We shall take the value ofNv522 eV as
typical for all matrix elements.

We define the undistorted and distorted transit
density of states ~TDOS! with n(e)u^c̃uc(e)&u2 and
n(e)u^f(e)uc̃&u2, respectively. Figure 2~a! shows the factor
Ln from the model calculation for several values ofv. This
factor is the enhancement factor that multiplies the und
torted final-state TDOS, which for this case where we cho
^c̃ucn&51, is identical to the modeled DOS. ForNv5
22 eV, we observe forLn , a slow rise of 25% within the
lower 70% of the band, then an additional 50% gain j
within the remaining band-edge region with a range of 3 e
Significant effects occur even forNv521 eV. Diminishing
the band gap, as well as narrower bandwidths, will incre
the effect also.

Calculations for the emission spectra of silicon26,27 have
always lacked enough strength near the band-edge re
when efforts are invoked to sensibly select the ener
dependent valence-hole lifetime broadening to help fit
calculation to the remaining experimental spectrum. T
model calculation indicates that the band-edge modifica
can be significant even for semiconductors, and that ba
structure calculations need to include the contributions of
second term of Eq.~9! in calculating emission and near-edg
absorption spectra from single-particle self-consistent w
ce
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functions. Here we see that the missing emission stren
near the band edge could very well be accounted for by
band-edge enhancement.

Even with a tight-binding model in mind, the interban
matrix elements, as well as the intraband matrix eleme
from different bands, need not be the same constant. It i
course the matrix elements that couple between occupied
unoccupied states, which are most significant with regard
the spectral shape modifications discussed here. In semi
ductors these will be interband matrix elements, in contr
to metals where the intraband matrix elements are most
portant. In a tight-bonding model the intraband matrix e
ments are necessarily negative for an attractive poten
However, the interband matrix elements need not be ne
tive. This will depend critically on the screening distanc
since this length will determine the range of integration
determiningv i j . If the interband elements were to be pr
dominantly positive, the band-edge enhancement instead
comes a suppression@Fig. 2~a!# of the band edge.

A modified screening may be an important effect in t
interpretation of data for x-ray resonant inelas
scattering,28,29 since both the ordinary emission process d
cussed here, and the resonant scattering occur with com
rable contributions. The x-ray resonant scattering is a sin
coherent absorption and emission process, unlike the o
nary incoherent two-step process that has been addre
here. The resonant scattering typically occurs for photon
ergies that would promote the core electron to a localiz
core exciton state. Such a final state will produce a differ
screening than that obtained by self-consistent delocal
states. The formalism described here shows that a mod
screening can strongly alter the emission spectra. Whe
the modified screening suppresses or enhances the edg
gion, it would be important to the analysis of the resona
inelastic scattering to understand any modifications for
subtraction of the incoherent contribution.

Although band structure plays a lesser role in absorpt
well above threshold, as recognized in the theory of exten
x-ray absorption fine structure~EXAFS!, near threshold
where the photoelectron mean free path is relatively lar
the two-band model calculation is still relevant. Results fro
the model calculation forNv522 eV for both emission and
absorption, are also shown in Fig. 3. For the model calcu
tion of absorption, using the effective single-particle sta
defined with Eq.~21!, the matrix elementŝfnuc̃& should be
consistent with the choicêc̃ucn&51. Hence

^fnuc̃&5 (
k5all

Snk* ^ckuc̃&5 (
k5all

Snk* . ~36!

Thus here, for absorption, the distorted state TDOS is dif
ent in Fig. 3~a! from both the DOS and the exactly calculate
absorption. The threshold enhancement for absorption a
band edge, beyond the final-state distorted TDOS, is evid
Furthermore, since in semiconductors the shakeup is ab
at the edge region, there exists a clear distinction between
edge enhancement in absorption due to the final-state in
actions, and the many-particle dynamic exchange enha
ment. For both emission and absorption, the model calc
tion predicts large effects beyond the final-state TDO
particularly with regard to the absolute transition rates. E
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perimental data rarely measure absolute rates, therefore
the spectral shapes near the band edges that will ordin
reveal the band-edge modifications described here. If the
act absorption is normalized to the same area as the disto
TDOS of absorption, the model calculation withNv5
22 eV still shows a;25% threshold enhancement due
the dynamic exchange effect.

Figure 3~b! shows the matrix elementsz^f(e)uc̃& z2 con-
sistent with the choicê c̃ucn&51. The figure aides in the
appreciation of the final-state rule in emission, while F
2~a! indicates to what extent the uniform enhancement~or
suppression! factor relevant to the final-state rule is consta
over most of the band.

VI. SUMMARY AND CONCLUSION

In emphasizing that the Anderson orthogonality is not
pected to occur for filled band materials, we have discus
for semiconductors, a simple and rather complete descrip
within the MND model of x-ray spectra from electronic tra
sitions alone. The shakeup contribution is not at all criti
within the x-ray edge regions, and can then be addressed
distinct smaller effect further away from the edge regions
both emission and absorption. The many-particle modifi
tion from the final-state TDOS in the core spectra of se
conductors is described within a formalism, embodied in
~9!, which is based on single-particle wave functions and
impurity scattering problem. The formalism is thus practic
for materials with band structure, and not restricted to
model scattering matrix elements used here. The pre
model calculation has illustrated these spectral modificati
in a simple two-band picture, and demonstrates that th
effects can be significant, thus indicating that any realis
calculation of emission or absorption for a filled band ma
rial with a relatively small band gap should include the m
ing term contribution of Eq.~9!. A treatment for the case o
silicon is currently in progress. We have also clarified t
connection for absorption to the determinantal technique
Ohtaka and Tanabe with the approach used here.

For semiconductors, a calculation that yields good s
consistent wave functions for both occupied and unoccup
states, using matrix elements modified according to Eq.~9!,
would be expected to obtain better agreement with emis
spectral shapes in the band-edge region. If realistic calc
tions indeed obtain good agreement in the band-edge
gions, the formalism should be particularly important in e
perimental analysis for the scaling of data to theoreti
calculations, since near the edge regions in semiconduc
unknown factors from other physical processes such as
valence-hole lifetime broadening and shakeup are absen
minimized. A confident scaling using this region of data c
begin to distinguish and clarify these other many-parti
contributions to core x-ray spectra that occur in other sp
tral regions. Hence, further many-body effects can be exp
mentally investigated. The formalism also makes a clear
tinction between an exitonic versus a many-particle dyna
exchange enhancement in absorption edges of filled b
materials. Finally, the effective single-particle state used h
should also be relevant to the calculation of near-edge x
absorption fine structure.
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APPENDIX

It is of analytic interest to have a series expansion
s21. The unitary condition

(
n5occ

Sin* Skn1 (
n5unocc

Sin* Skn5d ik ~A1!

may be written, fork and i occupied, as

(
n5occ

Sin* Skn5 (
j 5occ

si j* ~s* ! jk
212 (

n5unocc
Sin* Skn . ~A2!

Multiplying by (s* )pi
21, with p occupied, and summing ove

occupied statesi gives

(
n5occ

Skn (
i 5occ

~s* !pi
21Sin* 5 (

j 5occ
~s* ! jk

21 (
i 5occ

~s* !pi
21Si j*

2 (
i 5occ

~s* !pi
21 (

n5unocc
Sin* Skn ,

~A3!

or

(
n5occ

Skndpn5 (
j 5occ

~s* ! jk
21dp j

2 (
i 5occ

~s* !pi
21 (

n5unocc
Sin* Skn , ~A4!

and hence

skp
215Spk* 1 (

i 5occ
spi

21 (
n5unocc

SinSkn* . ~A5!

By defining the matrixf ik5(n5unoccSinSkn* , and retiterating
Eq. ~A5!, one obtains the series expansion

sp j
215Sjp* 1~ f s! jp* 1~ f 2s! jp* 1~ f 3s! jp* 1¯ . ~A6!

In comparing to the model calculations used here,
series convergence properties will depend on the ratio ofNv
to the band gap. For numerical calculations withNv5
22 eV and a 1-eV band gap, all elements converge rapi
particularly the diagonal and near-diagonal elements. C
vergence is poorest for elements that are the least diag
elements that also are next to the energy boundary with
occupied states. With only the second series term includ
the percentage deviation from the exact inverse was foun
be 1% for the poorest converging terms, and two orders
magnitude better for the diagonal terms. As might be
pected, when the energy gap closes, as for a metal, con
gence becomes less rapid. Nevertheless, for energy
equal to the energy level spacing, andNv522 eV, numeri-
cal examination for larger and larger systems, with sma
level spacing, indicates that the two-term truncated se
sum remains accurate to 1% for the diagonal inverse ma
elements. Furthermore, inclusion of the third term gives
least 10% accuracy for the least convergent inverse ma
elements.
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