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Impact of a Jahn-Teller-like correlation coupling on the properties of mixed-valent SmB6
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In previous studies a new type of Jahn-Teller coupling in doped SmB6 was presented both in a molecular and
in an extended semiconductor model. The conventional role of configurational distortions is taken over by a
symmetry-adapted electronic-correlation coupling, which takes advantage of the electronic properties of the
host crystal. Within this model electron spin-resonance measurements of the systems SmB6:Gd31 and
SmB6:Er31 can be explained in a natural way. In this paper we examine the impact of this coupling-type on the
properties of the band states. This results in a strong ‘‘softening’’ of the band states at the edge of the
semiconducting gap and a contribution to the specific heat, which could serve as an additional experimental
proof for the unconventional mechanism.@S0163-1829~98!04340-9#
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I. INTRODUCTION

In preceding papers,1,2 a species of a Jahn-Teller phenom
enon was considered, in which spatially degenerate de
states are coupled to symmetry-adapted electronic ex
tions in a mixed-valent host crystal. The experimental mo
vation for this model is based on electron spin-resona
~ESR! measurements in the systems: SmB6:Er3† ~Ref. 3! and
SmB6:Gd3†,4 where unexpected spectra were measured
temperatures below 5–6 K. In the case of the Gd3† defect a
multiline spectrum could approximately be explained by
hypothesis of an electron capture in a Gd 5d orbital. As a
result, the low-temperature spectrum was interpreted b
Gd21 ground-state configuration. The spectrum in the Er
fect case can be explained by aG8 crystal-field ground state
which in the mixed-valent host crystal SmB6 lies energeti-
cally below aG6 state. This is in contrast to the situation
isostructural compoundsRB6 (R5Ba, Ca, and Yb!, where a
G6 state forms the ground state. Since the observed u
pected features were characteristic for the host crystal S6
a coupling mechanism was suggested, which takes advan
of the remarkable electronic properties of this host crys
valence-fluctuating transitions and a very small band gap
3–4 meV.5 Electronic transitions are in this surroundin
‘‘softer’’ than corresponding excitations of optical phono
~21 meV!,6 and, therefore, adopt the role of the configu
tional distortion in the conventional Jahn-Teller effect.

Within a molecular model the energetic lowering of t
G8 ground state of the Er31 defect and its unusual isotropi
ESR spectrum could be explained by the correlation c
pling mechanism.1 The extension to a doped semiconduc
model2 revealed that the strongest energetic lowering is
complished by a direct local coupling of the degenerate
fect states to the localized Sm 4f states of the host crysta
This kind of coupling takes advantage of the magnitude
PRB 580163-1829/98/58~16!/10421~9!/$15.00
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low-energetic Sm 4f excitations characterized by the hug
partial density of 4f states at the band edges of the sm
band gap.5 The case of the Gd defect was modeled by
inclusion of a transfer coupling between the defect states
surrounding Sm 5d states. Within this model the unconven
tional Jahn-Teller coupling offers the following mechanis
for the electron capture in theEg crystal-field state of the Gd
5d orbital. If the uncoupledEg state lies within the conduc
tion band near the band edge of the band gap, the correla
coupling leads to an energetic lowering of the defect le
and beyond a critical coupling strength to an effective st
within the band gap. Since Gd31, which substitutes a Sm ion
introduces an electron into the conduction band,7 this local-
ized defect level is occupied~electron capture!. With increas-
ing temperature the energetic lowering decreases and
level is shifted back into the range of the conduction ba
where the electron is delocalized. This behavior is in qu
tative agreement with experimental results where the mu
line ESR spectrum connected with the captured electron v
ishes with increasing temperature.

In this paper we consider the impact mainly of the cor
lation coupling on the crystal properties. In the next sect
we present the doped semiconductor model. In Sec. III
Green’s function of the band states is calculated, in Sec
we examine the change of the effective one-particle den
of states, in Sec. V we examine the effect of the correlat
coupling on the specific heat, and in Sec. VI the charge
tribution is considered.

II. MODEL HAMILTONIAN

In the ideal host crystal SmB6 the two Sm configurations
(4 f )6(5d)0 and (4f )5(5d)1 are energetically almost de
generate and virtual transitions between them take place.
model the electronic structure of this system as describe
10 421 © 1998 The American Physical Society
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Ref. 2 considering a strongly localized 4f state and a delo
calized 5d state at each site of the octahedral Sm latti
Within the slave-boson method in the mean-field approxim
tion we receive a band structure of hybridized states w
self-consistantly determined parameters. This leads to a
ering of the effective Sm 4f level energy, to a remarkabl
reduction of the hybridization constant, and consequently
the band gap. In this one particle picture the density of sta
shows strong maxima near the band gap of mainly 4f char-
acter.

To be complete we give here the formulas for the ba
structure of the ideal host crystal~for details see Ref. 2!:

Hband5 (
k,l ,s

«̃klckls
† ckls1LSBN~r 211!, ~1!

«̃k15 1
2 ~ «̃ f2LSB1 «̃k2Wk!,

«̃k25 1
2 ~ «̃ f2LSB1 «̃k1Wk!, ~2!

Wk5$@ «̃k2~ «̃ f2LSB!#214~rV !2%1/2. ~3!

«̃k is the dispersion relation of the hybridized band sta
with operatorscks

† , cks (k5k1,k2; s56 1
2 ), «̃ f is the po-

tential energy of the pure Sm 4f states, and«̃k is the disper-
sion relation of the pure Sm 5d states. Energy values ar
measured with respect to the chemical potentialm ( «̃ i5« i
2m). LSB and r, respectively, are the Lagrange multipli
and the thermal expectation value of bose operators der
from the slave-boson method, which together with t
chemical potential are determined self-consistently.

The Gd and Er defects substitute a Sm ion and, theref
obey octahedral symmetry. To keep the model simple
assume at the defect site two states with the same phy
properties as the replaced Sm states and, additionally, a J
Teller activeEg orbital. Because only spatial degrees of fre
dom are relevant in our coupling, we neglect the spin in
ces. In this way theEg states can represent both the Gdd
crystal-field state and the spatial part of the ErG8 state.

The model Hamiltonian of the doped semiconduc
model consists of the following three parts:

H5H01Htd
1Hl , ~4!

with

H05(
k

«̃kck
†ck1 (

i 51,2
«̃0ai

†ai , ~5!

Htd
5td~C1td

† a11C2td
† a21H.c.!

5td(
k

@j1td
~k!ck

†a11j2td
~k!ck

†a21H.c.#, ~6!
.
-
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Hl5l@~C0
†C11C1

†C0!~a2
†a22a1

†a1!

1~C0
†C21C2

†C0!~a2
†a11a1

†a2!#

5l (
k,k8

~ck
†ck81ck8

† ck!@j0~k!j1~k8!~a2
†a22a1

†a1!

1j0~k!j2~k8!~a2
†a11a1

†a2!#. ~7!

H0 describes the uncoupled defect system. It consists of
Hband and the operatorsai

†ai ( i 51,2) of theEg defect states
with the potential energy«̃0.

Htd
describes the transfer coupling between theEg defect

states and theEg states of the surrounding (Cit d

† , Cit d
, i

51,2), which are established by the Sm 5d states.j i t d
, i

51,2 are the corresponding coefficients of the projection
the local states of the defect onto the surrounding b
states. In the case of the Er defect the relevant orbita
derived from a strongly localized (4f )11 configuration.
Therefore, a strong Coulomb interactionU is effective. We
consider the limitU→` by the introduction of a slave-boso
field with operatorsb†, b, and the corresponding constrain

b†b1 (
i 51,2

ai
†ai51. ~8!

This restriction limits the Hilbert space of possible defe
states to the unoccupied and the singly occupied states.8,9 To
be consistent with Eq.~8! the transfer coupling for the E
case has to be modified in the following way:

Htd
8 5td(

k
@j1td

~k!ck
†b†a1

1j2td
~k!ck

†b†a21H.c.#. ~9!

Although the cases of the Gd and the Er defects differ w
respect to the transfer coupling we will combine the calcu
tions for both models in this paper and point out the eme
ing differences.

Hl describes the unconventional Jahn-Teller coupli
where defect states are coupled to transitions betweenf
states of the next Sm neighbors, which form linear combi
tions transforming aA1g (C0

† ,C0) and Eg representation
(Ci

† ,Ci , i 51,2). The analogy to the conventionalE^ «
Jahn-Teller problem is obvious, because the opera
C0

†C11H.c. andC0
†1C21H.c. show the same transforma

tion behavior as theQ1 and Q2 modes in the conventiona
coupling.

III. GREEN’S FUNCTION OF THE BAND STATES

To reveal the changes of the band-state properties indu
by the transfer and the correlation coupling of the Er or
defects, respectively, we calculate the one-particle Zuba
Green’s function of the band states by means of Mori’s f
malism. For this purpose we define the Mori scalar prod
in the following way:

@A~ t !uA~ t8!#5^A~ t !A†~ t8!1A†~ t8!A~ t !&T . ~10!
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The anticommutator Green’s function in the Fourier spac
linked to the corresponding Mori scalar product in t
Laplace space by

^^AuA†&&E5
2 i

2p S 1

z2 iL AUAD
z52 iE

, ~11!

L5@H,•#,
~12!

A5A~0!, E5v6 i e, \51.

The Mori scalar product in Eq.~11! obeys the evolution
equation of Mori10

S 1

z2 iL
AUAD 5

~AuA!

z2 iv01M̃ ~z!
, ~13!

where

v05~LAuA!~AuA!21, ~14!

M̃ ~z!5S 1

z2QLQ
QLAUQLAD ~AuA!21, ~15!

Q512P, ~16!

PX5~XuA!~AuA!21A. ~17!

For the calculation of the Green’s function of the band sta
we choose the observableA5ck . The static Mori scalar
product, therefore, yields (ckuck)51. The Mori frequency
v0 and the self-energyM̃k(z) cannot be calculated exactly
We calculate the terms to second order in the coupling c
stantsw5td , l.

To determinev0 andM̃k(E) we subdivide the Liouvillian
L according to the three partsH0 , Htd

, andHl in the Hamil-
tonian and find

L0ck52 «̃kck , ~18!

Ltdck52td@j1td
~k!a11j2td

~k!a2#, ~19!

Llck52l (
k8,k9

~dk,k8ck91dk,k9ck8!

3@j0~k8!j1~k9!~a2
†a22a1

†a1!

1j0~k8!j~k9!~a2
†a11a1

†a2!#. ~20!

In the case of the Er defect we have, correspondingly,

L8tdck52td@j1td
~k!b†a11j2td

~k!b†a2#. ~21!

We receivev0 by forming the scalar products

~L0ckuck!52 «̃k, ~22!

~Ltdckuck!50, ~23!

~Llckuck!52l@j0~k!j1~k!^a2
†a22a1

†a1&T

1j0~k!j2~k!^a2
†a11a1

†a2&T#. ~24!
is

s

n-

Since we consider only second-order terms forv0 , this
results in

v052 «̃k1O~w3!. ~25!

In the calculation of the self-energyM̃ (z) the operators
QLck are of first order inw. In the case of the transfer
coupling term we approximate the projected Liouvillia
QLQ in the resolvent byL. In this way we can reduce th
expression for the corresponding self-energy termM̃ktd

(E)
to the Green’s function of the defect states

M̃ktd
~E!5td

2jEtd
2 ~k!2p^^AdefuAdef

† &&E , ~26!

whereM̃ (E)52 iM̃ (z52 iE). The operatorAdef is defined
by Adef5ai in the Gd case or byAdef5b†ai in the Er case,2

respectively.
In the calculation of the self-energy term derived from t

correlation coupling, we consider only second-order terms
w and, therefore, replaceQLQ by L0. This results in

M̃kl~E!5l2^Odef&T

3(
k8

j0
2~k!jE

2~k8!1j0
2~k8!jE

2~k!

E2 «̃k8

, ~27!

where^Odef&T is defined by

^Odef&T5^a1
†a11a2

†a222a1
†a2

†a2a1&T
0. ~28!

The Green’s function of the band states now reads

^^ckuck
†&&E5

1

2p

1

E2 «̃k2@M̃ktd
~E!1M̃kl~E!#

. ~29!

The calculation of̂ Odef& leads to different results in the
Gd and Er cases, because in the latter the defect occup
number is restricted. In Appendix A the thermal expectat
values for the Er defect are determined in the limit of
infinitely strong Coulomb repulsion at the defect site. Th
leads to

^Odef&T5
2

eb«̃012
5H 0 for «̃0.0

1 for «̃0,0
for T50 K. ~30!

In the case of the Gd ion the defect occupation numbe
not restricted in our model. From symmetry requirements
correlation coupling is effective only for a singly occupie
defect level, which transforms like aEg representation. In
this case the level is lowered in energy byd«̃0. The doubly
occupied defect level, however, transforms like aA2 repre-
sentation without spatial degeneracy and, therefore, the J
Teller-like correlation coupling is ineffective. We take int
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account this behavior in the calculation of^Odef&T in the
following way ~see Appendix A!:

^Odef&T5
2

eb~«̃02d«̃0!121e2b«̃0

5H 0 for «̃02d«̃0.0

1 for «̃02d«̃0,0, «̃0.0

0 for «̃0,0

for T50 K.

~31!

Equations~30! and ~31! show that the correlation cou
pling is effective at temperatureT50 K only for a singly
occupied defect level. This is in agreement with the d
scribed symmetry considerations above, and with our res
in the calculation of the Green’s function of the defect stat

The changes in the Green’s functions of the band st
expressed by the self-energy terms are of orderO(1/N) ~N is
the number of lattice sites!, because we consider only on
defect ion in the system. To make the impact of the def
couplings to the band states more visible we consider
density of states in the next section.

IV. DENSITY OF STATES

The one-particle density of states is defined by the tr
taken with the difference between the retarded and the
vanced one particle Green’s functions of the system. F
mally, we can separate the trace according to the Hilb
space of the undisturbed defect and band states. In this
tion we consider the change in the density of band sta
which is defined by

D%band~v!5
i

2p
(
k H F 1

E2 «̃k2M̃k~E!

2
1

E2 «̃k
G

E5v1 i e

2@•#E5v2 i eJ . ~32!

Equation~32! is the starting point of our numerical calcu
lations and the main results are shown in Fig. 1 for the
and in Fig. 2 for the Gd defect case, respectively.

In our model we consider a band structure of the und
turbed system with a total bandwidth ofB'6 eV ~ranged
from '23 to '3 eV!, and a band gapEgap'0.1 eV centered
around20.7 eV. The parameters were chosen becaus
numerical reasons and give a qualitative picture of the b
structure of the host crystal SmB6. In Fig. 1 the change in the
density of states in the energy range of the band gap for
Er defect case is shown for the defect parameter valuel
50.2 eV andtd50.1 eV. The figure shows huge maxima
the edge of the band gap, which are generated by the co
lation coupling. They are energetically located in the ran
of the high Sm 4f partial density of states. We will show
below, analytically that in the thermodynamical limit the
maxima diverge fore→01. Huge changes in the density o
states as shown in Fig. 1 indicate that the band system
-
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comes very soft under the influence of this coupling, lead
to an instability at the edges of the band gap~Jahn-Teller
instability!.

In Fig. 2 the change in the density of band states for
Gd defect ~full line! is compared with the correspondin
change in the Er defect case~dotted line!. Since the self-
energy termM̃kl is independent of the potential energy
the defect level, the same shape ofD%band(v) appears in the
band ranges close to the band edges in both cases. Withi
band gap, however, a sharp peak shows up, which is loc
at the energy of the energetically lowered defect state. T
contribution is caused by the transfer coupling and leads
admixtures of the band states to the effective defect s
within the band gap.

To show the analytical behavior ofD%band(v) near the
band edges we consider the casetd50 eV and transform Eq.
~32! into

FIG. 1. Change of the effective one-particle density of sta
Drband(v) induced by the correlation coupling in the Er defect ca
Band-continuum range@'23,'3#; dotted line, band gap. Defec

parameters:«05 «̃01m521.8l50.2,td50.1,m520.73,kT50.

FIG. 2. Comparison of the change in the effective one-part
density of statesDrband(v) induced by the correlation and by th
transfer coupling for the Gd defect case~full line! and for the Er
defect case~dotted line!. Band-continuum range@'23,'3#; dotted

line, band gap. Gd parameters:«05 «̃01m520.58l50.2,td

50.2. Er parameters: «05 «̃01m521.8l50.2,td50.2,m
520.73,kT50.
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D%band~v!52
1

p
Im

3(
k

M̃kl~E1!

~E†2 «̃k!@E†2 «̃k2M̃kl~E†!#
U

E†5v1 i e

.

~33!

Since the self-energyM̃kl(E) is of the orderO(1/N), the
denominator can be developed into a series in the self-en
~e finite!. Because of the summation overk the zeroth-order
term remains finite while all other terms vanish in the th
modynamic limit (N→`). When we convert the summatio
into an integration over the energyv by the transformation
(k→*2`

` (kd(v2 «̃k), we receive

D%band~v!52
1

p
Im E

2`

`

dv8
M̃v8~E1!

~E12v8!2
, ~34!

whereM̃v is defined by

M̃v8~E!5l2^Odef&TH j0
2~v8!E

2`

`

dv9
jE

2~v9!

E2v9

1jE
2~v8!E

2`

`

dv9
j0

2~v9!

E2v9
J , ~35!

with

j0
2~v!5(

k
d~v2 «̃k!j0

2~k!,

~36!

jE
2~v!5(

k
d~v2 «̃k!@j1

2~k!1j2
2~k!#.

With the relation (d/dv)@E2v#215@E2v#22 and by
means of partial integration we receive

D%lband~v!5l2^Odef&T
H F d

dv
j0

2~v!GPE
2`

`

dv8
jE

2~v8!

v2v8

1F d

dv
jE

2~v!GPE
2`

`

dv8
j0

2~v8!

v2v8

1j0
2~v!PE

2`

`

dv8

F d

dv8
jE

2~v8!G
v2v8

1jE
2~v!PE

2`

`

dv8

F d

dv8
j0

2~v8!G
v2v8

J . ~37!

In Eq. ~37! the change in the density of states is depend
on the derivatives of the coupling coefficientsj i

2(v). Near
the band edgesEi of the gap the analytical behavior can b
determined approximately and gives
gy

-

nt

j0
2~v!;~ uv2Ei u!1/2, ~38!

jE
2~v!;~ uv2Ei u!5/2. ~39!

Because (d/dv)j0
2;(uv2Ei u)21/2 is valid the divergen-

cies are exclusively due to the coefficient of theA1g state of
the defect surrounding. These are at the band edge, pro
tional to the density of states. The coefficients of the cor
spondingEg states of the surrounding show a different an
lytical behavior and, therefore, exhibit no divergency.

V. SPECIFIC HEAT

In this section we determine the change in the inter
energyDU and the resulting change of the specific heatDCV
induced by the Jahn-Teller-like correlation coupling (lÞ0;
td50). The internal energyU of the considered system i
determined by the thermal expectation value of the Ham
tonian

U5^H&T5(
k

«̃k^ck
†ck&T1 (

i 51,2
«̃0^ai

†ai&T

1l(
kk8

$j0~k!j1~k8!^~ck
†ck81ck8

† ck!

3~a2
†a22a1

†a1!&T1j0~k!j2~k8!

3^~ck
†ck81ck8

† ck!~a2
†a11a2

†a1!&T%. ~40!

The expectation valueŝck
†ck&T and in the Gd defect case o

^ai
†ai& can be determined by integration over the spec

function. This is defined in the following way for^AB&T :

^AB&T5E
2`

1`

dv
ı

exp~bv!11

3@^^BuA&&E
r 2^^BuA&&E

a #, ~41!

where b is the inverse temperature multiplied with th
Boltzmann constant. In the Er defect case, where the res
tion in Eq.~8! has to be obeyed, the expectation value of
defect occupation number can be determined using the de
Green’s function̂ ^b†ai uai

†b&&E defined in Eq.~26!. This is
possible because

^ai
†ai&T5^ai

†ai~bb†2b†b!&T

5^b08ai
†aib08

† &T . ~42!

In Eq. ~42! the constraint@Eq. ~8!# was used. To stay within
the scope of this paper we consider the Er defect case at
temperatures where the assumption of a singly occupied
fect level holds (̂ai

†ai&T5 1
2 , ^Odef&T51).

To calculate the expectation value of the correlation c
pling operator we exploit the equation of motion fo
^^ckuck

†&&E :
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~E2«k̃!^^ckuck
†&&E

5
1

2p
1(

k8
$@j0~k!j1~k8!1j0~k8!j1~k!#

3^^ck8~a2
†a22a1

†a1!uck
†&&E1@j0~k!j2~k8!

1j0~k8!j2~k!#^^ck8~a2
†a12a1

†a2!uck&&E%.

~43!

Using Eq.~43! we can reduce the calculation of the intern
energy of the interacting system to one particle Green’s fu
tions

U5 (
i 51,2

«̃0^ai
†ai&T

1(
k
E

2`

`

dv
i

ebv11

3v@^^ckuck
†&&v1 i e2^^ckuck

†&&v2 i e#. ~44!

To compare this result with the outcome of the pertur
tion theory we introduce the one-pole approximation for
self-energyM̃k(v5 «̃k). In this way we receive for the in
ternal energy

U5 (
i 51,2

«̃0^ai
†ai&T1(

k
@«̃k1Re M̃kl~ «̃k!#

3 f „«̃k1Re M̃kl~ «̃k!,T…. ~45!

In the thermodynamic limitf „ReM̃kl(«̃k),T…5 f ( «̃k,T) ap-
plies, wheref ( «̃k8,T)5@exp(b«̃k8)11#21. For a singly occu-
pied defect level the correlation coupling results in t
change of the internal energy with

DU52l2P(
kk8

j0
2~k!jE

2~k8!1j0
2~k8!jE

2~k!

«̃k82 «̃k

3 f ~ «̃k,T!@12 f ~ «̃k8,T!#. ~46!

For T50 K the same result is received for a second-or
perturbation calculation in the coupling constantl. At very
low temperatures only virtual transitions betwe
conduction-band and valence-band states are possible in
~46!. Transitions between states close to the band gap
strong effective coupling coefficientsj i

2(k) lead to the stron-
gest contributions toDU. Therefore, the direct coupling t
the possible low-energetic 4f excitations in SmB6 is advan-
tageous for the correlation coupling mechanism.

The change of the internal energy results in a change
the specific heat defined by

DCV5
]

]T
DU. ~47!

In Fig. 3 the change of the specific heatDCV for the
considered Er defect case is shown for different values of
coupling constantl. The correlation coupling shifts th
maximum of the specific heat to lower temperatures than
maximum of the ideal system atkT;Egap. Figure 3 shows
l
c-

-
e

r

q.
th

of

e

e

the effect of only one defect site. We can sum up the
contributions for many sites in the limit of low-defect con
centrations, where we can neglect the defect-defect inte
tion. In this way the correlation coupling-induced maximu
in the specific heat should be measurable in dependenc
the defect concentration. Thus, additionally to the ESR sp
tra, we have a measurable quantity for the evidence of
Jahn-Teller-like correlation-coupling mechanism.

VI. CHARGE DISTRIBUTION

Since the coefficients of the correlation coupling depe
on crystal directions, we are interested in spatial effects
this mechanism. For this purpose we calculate the chang
the charge density of the defect surroundings. This also
ables us to determine the range of validity of the assump
of independent defect sites.

We consider the thermal expectation valueDn̄i
(d, f ) de-

fined by

Dn̄i
~d!5^di

†di&T
H01W

2^di
†di&T

H0,

~48!
Dn̄i

~ f !5^ f i
†f i&T

H01W
2^ f i

†f i&T
H0,

wheredi
† , di and f i

† , f i are the creation and annihilation op
erators of electrons in the Sm 5d and Sm 4f states at crysta
site i, respectively. The perturbationW consists only of the
correlation coupling (td50). We can express Eq.~48! by the
operators of the hybridized band states, yielding

Dn̄i
~d, f !5(

kk8
~ak

~d, f !!* e2 ikiak8
~d, f !eik8 i

3@^ck
†ck8&T

H01W
2^ck

†ck8&T
H0#. ~49!

The coefficientsak
(d, f ) are given in Appendix B. The therma

expectation valuêck
†ck8&T

H5H01W is defined by

^ck
†ck8&T

H5
1

Z
Tr$ck

†ck8e
2bH%, Z5Tr$e2bH%. ~50!

FIG. 3. Correlation-induced change in the specific heatDCV(T)
for the Er defect case for different values of the coupling consta
l50.25~full line!, l50.2 ~broken line!, andl50.15~dotted line!,
td50,1 ~arbitrary units for both axes!.
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Applying a perturbation expansion inW to the thermal-
density operator (1/Z)exp@2b(H01W)# we take into accoun
terms in the second order inl. This results in

^ck
†ck8&T

H01W
5^ck

†ck8&T
H0

1K E
0

b

db8W~b8!@^ck
†ck8&T

H02ck
†ck8#L

T

H0

1K E
0

b

db8W~b8!L
T

H0

3K E
0

b

b8W~b8!@^ck
†ck8&T

H02ck
†ck8#L

T

H0

1K E
0

b

db8E
0

b8
db9W~b8!W~b9!

3@ck
†ck82^ck

†ck8&T
H0#L

T

H0

1O~W3!, ~51!

W~b!5l(
kk8

eb~«̃k2 «̃k8!ck
†ck8

3@ j̃~k,k8!~a2
†a22a1

†a1!1 j̃~k,k8!~a2
†a11a1

†a2!#,

~52!

j̃ i~k,k8!5j0~k!j i~k8!1j0~k8!j i~k!, i 51,2. ~53!

Within this expansion expectation values that are of
first order inW(b) are zero, because of the appearing th
mal expectation values ^a2

†a22a1
†a1

†&T
H0 and ^a2

†a1

1a1
†a2&T

H0. With the help of the theorem of Bloch and D
Dominicis,11 we can calculate the second-order te
^ck

†ck8&T
(2) of the expansion. This yields

^ck
†ck8&T

~2!5l2^Odef&T(
k9

E
0

b

db8

3E
0

b8
db9@ j̃1~k,k9!j̃1~k9,k8!

1 j̃2~k,k9!j̃2~k9,k8!#@eb8~«k82«k9!eb9~«k92«k!

3~12 f̄ k!~12 f̄ k9! f̄ k81eb8~«k92«k!eb9~«k82«k9!

3~12 f̄ k! f̄ k9 f̄ k8#,
~54!

f̄ k5 f ~ «̃k,T!.

Integrating overb8 andb9 we receive
e
-

^ck
†ck&T

~2!5l2^Odef&T(
k9

@ j̃1~k,k9!

3 j̃1~k9,k8!1 j̃2~k,k9!j̃2~k9,k8!#

3Feb«k~eb«k82eb«k9!2eb«k91eb«k

~«k92«k!~«k92«k8!

1
eb«k9~eb«k82eb«k!

~«k2«k8!~«k2«k9!
1

eb«k2eb«k8

~«k82«k!~«k82«k9!
G

3 f̄ k f̄ k9 f̄ k8 . ~55!

Expression~55! does not diverge for any«̃k5 «̃k8 because
of the corresponding contributions of the three summan
We can insert Eq.~55! into Eq. ~51! and into Eq.~49! and
receive for the change in the charge distribution, finally,

Dn̄i
~d, f !5l2 (

k,k8,k9
^Odef&T~ak

~d, f !!* ak8
~d, f ! )

j 5x,y,z
cos~k j i j !

3cos~k j8i j !@ j̃1~k,k9!j̃1~k9,k8!

1 j̃2~k,k9!j̃2~k9,k8!#

3F f̄ k~12 f̄ k9!~12 f̄ k8!

~«k2«k8!~«k2«k9!
1

~12 f̄ k!~12 f̄ k9! f̄ k8
~«k82«k!~«k82«k9!

1
~12 f̄ k! f̄ k9~12 f̄ k8!

~«k92«k!~«k92«k8!
G . ~56!

In Eq. ~56! the evenness of thek-dependent functions wa
utilized. The symmetry of the coefficientsj i

2(k) ( i 50,1,2)
leads under the summation overk9 to the following simpli-
fication:

(
k9

@ j̃1~k,k9!j̃1~k9,k8!1 j̃2~k,k9!j̃2~k9,k8!# f ~k,k9,k8!

5(
k9

$j0
2~k9!@j1~k!j1~k8!1j2~k!j2~k8!#

1j0~k8!jE
2~k9!j0~k8!% f ~k,k9,k8!. ~57!

Equation ~57! shows thatDn̄i
d, f is invariant under the

symmetry operations of the octahedral group. For the te
peratureT50 K the change in the charge density is only d
to virtual transitions between the valence-band a
conduction-band states. The low-energetic Sm 4f excitations
are, as in the lowering of the internal energy, the most
portant contributions.

It is noteworthy that Eq.~56! can also be derived by th
calculation of the corresponding Green’s functions with t
help of a matrix version of the formalism of Mori’s forma
ism. Equation~56! in this case is reestablished in the the
modynamic limit.

In Fig. 4 the change in the charge density in the def
surrounding is shown forDn̄i

( f ) @Fig. 4~a!# and Dn̄i
(d) @Fig.

4~b!#, respectively. The full and shadowed circles indica
the positive and negative sign, respectively, while the are
proportional to the absolute value ofDn̄i

( f ,d) . The first octant
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of the defect surrounding is shown with the defect site at
origin. The strongest increase of 4f charge density@Fig.
4~a!# appears at the nearest-neighbor sites. With the co
sponding local states the correlation coupling was built up
the local picture. Because these states are part of the hy
ized band states the charge density is changed also at
sites and, additionally, in the partial 5d charge density. With
increasing site distance the effect of the correlation coup
falls off very rapidly, with the exception of the crystal axe
where a small oscillation of the charge density appears
the defect site, where we have assumed two states with
same properties as the surrounding Sm states, additiona
the Jahn-Teller activeEg states, the 4f charge density is
decreased. The effect of the correlation coupling on thef
charge density is partially compensated by the change of
5d contributions as shown in Fig. 4~b!. It should be stressed
that, althoughDn̄i

(d, f ) is invariant under symmetry transfo
mations of theOh group, it is not radially isotropic, but de

FIG. 4. Change of the partial Sm charge densityDn̄i
( f ,d) of the

defect surrounding induced by the correlation coupling in the
defect case. Shown is the first octant with the defect at the ori
Full ~positive! and shadowed~negative! circles show the sign, the
circle area indicates the absolute value.~a! Partial Sm 4f charge
density, maximum value at sitei5(1,0,0), Dn̄100

( f )/l250.28. ~b!
Partial Sm 5d charge density, maximum value at sitei5(1,0,0),
Dn̄100

(d) /l2520.07.
e

e-
n
id-
her

g

t
he
to

he

pendent on the crystal directions. If we assume that the
fect sites build a regular lattice, the defect-defect interact
can be neglected up to a distance of'5 lattice constants.

VII. CONCLUSION

In this paper we have examined the impact of a corre
tion coupling and of a transfer coupling on the band state
a doped mixed-valent semiconductor. The correlat
mechanism establishes a Jahn-Teller-like coupling, wh
electronic excitations adopt the role of the configuratio
distortion in the conventional case. The calculation of t
internal energy showed that for temperatureT50 K virtual
transitions between valence-band and conduction-band s
lead to a lowering of the energy. Since the host crystal Sm6
has a very small band gap ofEgap'3–4 meV and a very
huge partial density of Sm 4f states at the correspondin
band edges, this electronic coupling-type is very effect
when the low-energetic 4f excitations are involved. This is
in agreement with the result of the calculation of the def
Green’s function. In the host crystal SmB6 the electronic
coupling is, therefore, more probable than the conventio
type of configurational coupling.

For higher temperatures, conduction-band states bec
populated and, therefore, the effective number of poss
low-energetic excitations decrease. This leads to a decr
of the coupling-induced energetic lowering of the intern
energy and, consequently, to a typical change of the spe
heat. This change of the specific heat has a maximum v
for kT'0.5Egap. This peak could be measurable in depe
dence of the defect concentration and provides an additio
means to proof the unconventional coupling mechanism.

The effect of the correlation coupling on the charge d
tribution falls off rapidly with increasing distance betwee
the defect and the Sm ions. There are strong changes o
partial 4f charge density, which are to some extent comp
sated by the changes of the partial 5d charge density at the
same crystal site.
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APPENDIX A: CALCULATION OF ŠOdef‹

We calculate the expectation valueŝai
†ai&T and

^a1
†a2

†a1a2&T with the Hamiltonian

H5H01HU with HU5Ua1
†a2

†a2a1 . ~A1!

H0 is defined in Eq.~5!. Our procedure is analogous to th
proof of the theorem of Bloch and De Dominicis. For th
purpose we need

eb~H01HU!ai
†e2b~H01HU!

5eb«̃0@ai
†1~d i ,1a1

†a2
†a21d i ,2a2

†a2
†a1!~ebU21!#.

~A2!

With the help of the anticommutator relation for the Fer
operators and with Eq.~A2!, we receive the following rela-
tion between the considered expectation values:

r
n.
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^ai
†ai&T5

1

11eb«̃0
2

~ebU21!eb«̃0

eb«̃011
^a1

†a2
†a1a2&T .

~A3!

For Eq.~A3! the property of cyclic interchangeability of op
erators under the trace was used.

Applying analogous steps to the expectation va
^a1

†a2
†a2a1&T yields a second relation between the reques

expectation values

^a1
†a2

†a2a1&T5
1

11eb«̃0ebU
^a1

†a1&T . ~A4!

With Eqs.~A3! and ~A4! we finally receive

^a1
†a1&T5^a2

†a2&T

5
eb~«̃01U !11

eb~2«̃01U !12eb~«̃01U !11
, ~A5!

^a1
†a2

†a2a1&T5
1

eb~2«̃01U !12eb~«̃01U !11
. ~A6!

In the case of the Er defect we have to take the limitU
→` in agreement with the applied slave-boson method. T
yields

^ai
†ai&T5

1

eb«̃012
, ~A7!

^a1
†a2

†a2a1&T50. ~A8!

In the case of the Gd defect we take the energetic low
ing of the singly occupied defect level into account. We
the value of the energetic loweringd«̃0 with the self-energy
A.
e
d

is

r-

of the defect Green’s functiond«̃05M̃def( «̃0),0.2 In this
case we have to replace the parameters in the precee
calculation with«̃0→ «̃01M̃def( «̃0) andU→M̃def( «̃0).

APPENDIX B: COUPLING COEFFICIENTS

The coupling coefficients of the symmetrized states of
defect surrounding are defined by

j0~k!5jA1g
~k!

1

AN
H bk for l 51
gk for l 52,

~B1!

j i~k!5jEi
~k!

1

AN
H bk for l 51
gk for l 52,

i 51,2 with

jA1g
5
&

)
~coskx1cosky1coskz!,

jE1
5

1

)
~2 coskz2coskx2coskz!, ~B2!

jE2
5 1

2 ~coskx2cosky!,

and

gk5F 1
2 S 12

«k2 «̃ f

Wk
D G1/2

,

~B3!

bk52F 1
2 S 11

«k2 «̃ f

Wk
D G1/2

sgn~Ṽ!.
.
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