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Impact of a Jahn-Teller-like correlation coupling on the properties of mixed-valent SmB
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In previous studies a new type of Jahn-Teller coupling in doped 3maB presented both in a molecular and
in an extended semiconductor model. The conventional role of configurational distortions is taken over by a
symmetry-adapted electronic-correlation coupling, which takes advantage of the electronic properties of the
host crystal. Within this model electron spin-resonance measurements of the systergsG&tHBand
SmB;:Er** can be explained in a natural way. In this paper we examine the impact of this coupling-type on the
properties of the band states. This results in a strong “softening” of the band states at the edge of the
semiconducting gap and a contribution to the specific heat, which could serve as an additional experimental
proof for the unconventional mechanisf80163-182@08)04340-9

I. INTRODUCTION low-energetic Sm # excitations characterized by the huge
partial density of 4 states at the band edges of the small
In preceding papers? a species of a Jahn-Teller phenom- band gap. The case of the Gd defect was modeled by the
enon was considered, in which spatially degenerate defedtclusion of a transfer coupling between the defect states and
states are coupled to symmetry-adapted electronic excitsurrounding Sm 8 states. Within this model the unconven-
tions in a mixed-valent host crystal. The experimental moti-tional Jahn-Teller coupling offers the following mechanism
vation for this model is based on electron spin-resonancéor the electron capture in thg, crystal-field state of the Gd
(ESR measurements in the systems: Sg“rEByr (Ref. 3 and  5d orbital. If the uncoupled state lies within the conduc-
SmB;:GP',* where unexpected spectra were measured aion band near the band edge of the band gap, the correlation
temperatures below 5-6 K. In the case of the’Gikfect a  coupling leads to an energetic lowering of the defect level
multiline spectrum could approximately be explained by theand beyond a critical coupling strength to an effective state
hypothesis of an electron capture in a Gd &rbital. As a  within the band gap. Since &4, which substitutes a Sm ion,
result, the low-temperature spectrum was interpreted by #troduces an electron into the conduction barthis local-
Gd?* ground-state configuration. The spectrum in the Er deized defect level is occupie@lectron capture With increas-
fect case can be explained bya crystal-field ground state, ing temperature the energetic lowering decreases and the
which in the mixed-valent host crystal SmBes energeti- level is shifted back into the range of the conduction band
cally below al's state. This is in contrast to the situation in Where the electron is delocalized. This behavior is in quali-
isostructural compound®Bg (R=Ba, Ca, and Yh where a  tative agreement with experimental results where the multi-
I'y state forms the ground state. Since the observed une¥ne ESR spectrum connected with the captured electron van-
pected features were characteristic for the host crystalSmBshes with increasing temperature.
a coupling mechanism was suggested, which takes advantage In this paper we consider the impact mainly of the corre-
of the remarkable electronic properties of this host crystallation coupling on the crystal properties. In the next section
valence-fluctuating transitions and a very small band gap ote present the doped semiconductor model. In Sec. III the
3—4 meV® Electronic transitions are in this surrounding, Green’s function of the band states is calculated, in Sec. IV
“softer” than corresponding excitations of optical phonons We examine the change of the effective one-particle density
(21 meV),® and, therefore, adopt the role of the configura-of states, in Sec. V we examine the effect of the correlation
tional distortion in the conventional Jahn-Teller effect. coupling on the specific heat, and in Sec. VI the charge dis-
Within a molecular model the energetic lowering of the tribution is considered.
I's ground state of the Bf defect and its unusual isotropic
E_SR spectrum could be exp_lained by the corre]ation cou- Il. MODEL HAMILTONIAN
pling mechanisnt. The extension to a doped semiconductor
modef revealed that the strongest energetic lowering is ac- In the ideal host crystal SmBhe two Sm configurations
complished by a direct local coupling of the degenerate def4f )6(5d)° and (4f )°(5d)? are energetically almost de-
fect states to the localized Snf 4tates of the host crystal. generate and virtual transitions between them take place. We
This kind of coupling takes advantage of the magnitude oimodel the electronic structure of this system as described in
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Ref. 2 considering a strongly localized 4tate and a delo- sz)\[(CgclJr clco)(ala,—ala;)
calized 5 state at each site of the octahedral Sm lattice.
Within the slave-boson method in the mean-field approxima- +(Cl{Co+Clcy)(ajas +alay)]
tion we receive a band structure of hybridized states with
self-consistantly determined parameters. This leads to alow-  —\> (cfc, +c',c)[£&(k)&1(x')(aba,—alay)
ering of the effective Sm # level energy, to a remarkable “
reduction of the hybridization constant, and consequently of ot T
the band gap. In this one particle picture the density of states +éo(rk)x(r")(Aza1+2187) ] @
shows strong maxima near the band gap of mairflychar-
acter.

To be complete we give here the formulas for the ban
structure of the ideal host crystébr details see Ref.)2

H, describes the uncoupled defect system. It consists of the
d—|band and the operatora a; (i=1,2) of theEy defect states
with the potential energ¥.

Hy, describes the transfer coupling between Eyedefect

states and theé; states of the surroundingC(td, Citd,i

Hpand® > &kiChioCkio+ AgaN(r2+1), (1 =12), which are established by the Snd States.¢;; , i

klo =1,2 are the corresponding coefficients of the projection of
the local states of the defect onto the surrounding band
states. In the case of the Er defect the relevant orbital is
derived from a strongly localized ¢4)'* configuration.
Therefore, a strong Coulomb interactibhis effective. We
consider the limitJ — o by the introduction of a slave-boson
field with operators’, b, and the corresponding constraint

Bra=3(er—Aggte— W),
Ero=3(er— Asgt et W), 2

Wi={[ex—(e1— Asp) [P+ 4(rV) %2 3 b'b+ S, ala-1. ®
i=12

&, Is the d|sperS|on relation of the hybridized band statesrys restriction limits the Hilbert space of possible defect
with operatorsc! , c,, (k=k1k2;o0==13),s; is the po- states to the unoccupied and the singly occupied stités.
tential energy of the pure Smf 4tates, and, is the disper- be consistent with Eq(8) the transfer coupling for the Er
sion relation of the pure Smdbstates. Energy values are case has to be modified in the following way:

measured with respect to the chemical potentia(e;=¢;

—u). Agg andr, respectively, are the Lagrange multiplier r_ Tt

and the thermal expectation value of bose operators derived _tdE [gltd(K)C b'ay

from the slave-boson method, which together with the bt

chemical potential are determined self-consistently. +éx,(k)cbla+H.c]. €)
The Gd and Er defects substitute a Sm ion and, therefore,

obey octahedral symmetry. To keep the model simple wdlthough the cases of the Gd and the Er defects differ with

assume at the defect site two states with the same physictgspect to the transfer coupling we will combine the calcula-

properties as the replaced Sm states and, additionally, a JaHifns for both models in this paper and point out the emerg-

Teller activeE, orbital. Because only spatial degrees of free- ing differences.

dom are relevant in our coupling, we neglect the spin indi- H, describes the unconventional Jahn-Teller coupling,

ces. In this way thé, states can represent both the Gl 5 where defect states are coupled to transitions between 4

Crysta| -field state and the Spat|a| part of the[%rstate states of the next Sm nelghbors which form linear combina-
The model Hamiltonian of the doped semlconductortlons transformmg aAqg (Cl.Co) and Ey representation
model consists of the following three parts: (C Ci,i=1,2). The analogy to the convention&®e

Jahn Teller problem is obvious, because the operators
ClCy+H.c. andCJ+C,+H.c. show the same transforma-

H=Hot+H,+H,, ) tion behavior as th&€; and Q, modes in the conventional
coupling.
with
Ill. GREEN'S FUNCTION OF THE BAND STATES
Ho= E % cfe + 2 an‘Tai , (5) To reveal the changes of the band-state properties induced

by the transfer and the correlation coupling of the Er or Gd
defects, respectively, we calculate the one-particle Zubarev
Green'’s function of the band states by means of Mori’s for-

H¢ th(CLdaﬁ Cgtda2+ H.c) malism. For this purpose we define the Mori scalar product
in the following way:

“laX et a(OodHel @ [ADIAL)I=(AMDATE)+ATIAD).  (10)
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The anticommutator Green’s function in the Fourier space is Since we consider only second-order terms dgy, this
linked to the corresponding Mori scalar product in theresults in
Laplace space by

- wo=—¢ ,+0O(W3). (25)
t = — ~
(AlAD)e 2m (z—i/: AA)Z_iE' (D In the calculation of the self-energyl(z) the operators
QLc, are of first order inw. In the case of the transfer-
L=[H,-], coupling term we approximate the projected Liouvillian
(120  QLQ in the resolvent byC. In this way we can reduce the
A=A(0), E=wzxie, h=L1 expression for the corresponding self-energy i (E)

The Mori scalar product in Eq(11) obeys the evolution !0 the Green’s function of the defect states
equation of Mort®

. (AA) s Mo (E)=t3eE (027 ((AwtAled)e.  (26)

AlA - =~ ,
Z—iwg+M(2)

z—iLl

whereM(E)=—iM (z= —iE). The operatoA, is defined
by Age=a; in the Gd case or bfAs.=b'a; in the Er casé,
wo=(LAJA)(AIA) T, (14) ~ respectively. _
In the calculation of the self-energy term derived from the
~ 1 correlation coupling, we consider only second-order terms in
M(z):(m QEA‘QEA) (AJA) L (15 w and, therefore, replad®£Q by £°. This results in

where

M o (E) =\*(Oger

Q=1-P, (16
E5(r) ER (1) + E5( 1) ER(K)
PX=(X|A)(A|A)"A. 17) x > 0E — e (2
K’ —E

For the calculation of the Green’s function of the band states . .
we choose the observable=c,. The static Mori scalar Where(Ogepy is defined by
product, therefore, yie~Idsc§|cK)=1. The Mori frequency
wq and the self-energiv .(z) cannot be calculated exactly. ot T - o
We calculate the terms to second order in the coupling con- (Odepr=(a181 882~ 22,858,81)7- (28)

stantsw=tg, \. ~
To determinawy andM (E) we subdivide the Liouvillian The Green'’s function of the band states now reads
L according to the three pariy, Hi, andH, in the Hamil-

tonian and find

1 1
0. _ _~ clee=————= - . (29
Fom el 18 e & [+ W (B
£lic, = —tqf 1ty (k)agt&a (K)az], (19
The calculation 0ofOgep leads to different results in the
\ Gd and Er cases, because in the latter the defect occupation
LN =—\ 2 (8, Cort By rCpor) number is restricted. In Appendix A the thermal expectation
Ko values for the Er defect are determined in the limit of an
X[fo(K’)él(K”)(aZaz—aIal) infinitely strong Coulomb repulsion at the defect site. This
leads to
+éo(k")E(K") (abas +ajay)]. (20

In the case of the Er defect we have, correspondingly, 2 0 for 550
€o

, O =—= ~ for T=0 K. 30
£, = —ty &y (0blay+Ex (b)), ) ORI GEm 5T for 3y<0 (30

We receivewq by forming the scalar products ) _ .
In the case of the Gd ion the defect occupation number is

(L%,|c,)=—"%,, (22)  hot rest_ricted in our model. From symmetry r_equirements_ the
correlation coupling is effective only for a singly occupied
(Llc,|c,)=0, (23)  defect level, which transforms like B, reBresentation. In
this case the level is lowered in energy 8¥,. The doubly
(Lrc,|c)=—N&o(k)&(k)(aba,—ala;)r occupied defect level, however, transforms likéarepre-

" " sentation without spatial degeneracy and, therefore, the Jahn-
+éo(k)éa(k)(azar+ajazrl. (24 Teller-like correlation coupling is ineffective. We take into
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account this behavior in the calculation (®yet in the 1o T
following way (see Appendix A
1000 |
o 2
< def>T_eﬂ(;0_5EO)+2+e_B;O 500 |
~ ~ Appand
0 for eg— 8go>0 . -
=<1 for gg—6e9<0, £,>0 for T=0 K.
0 for ;O<0 -500 F
(31
i i 1000 -0.9 0.8 -0I.7 »ol.e -ol.s
Equations(30) and (31) show that the correlation cou- Energy w (eV)

pling is effective at temperatur€=0 K only for a singly

occupied defect level. This is in agreement with the de- FIG. 1. Change of the effective one-particle density of states

scribed symmetry considerations above, and with our result8 Pvand @) induced by the correlation coupling in the Er defect case.

in the calculation of the Green'’s function of the defect statesBand-continuum rangg~—3,~3]; dotted line, band gap. Defect
The changes in the Green’s functions of the band stateRarameterseo=eo+u=—1.8=0.2,t4=0.1,u=~-0.73kT=0.

expressed by the self-energy terms are of ofdgk/N) (N is

the number of lattice sit¢sbecause we consider only one ¢omes very soft under the influence of this coupling, leading
defect ion in the system. To make the impact of the defecf, 4, instability at the edges of the band gdphn-Teller
coup!ings to the _band states more visible we consider thfhstability).
density of states in the next section. In Fig. 2 the change in the density of band states for the
Gd defect(full line) is compared with the corresponding
IV. DENSITY OF STATES change in the Er defect cagdotted ling. Since the self-

The one-particle density of states is defined by the tracENergy termMm,, is independent of the potential energy of
taken with the difference between the retarded and the adl® defect level, the same shapeay,and ) appears in the
vanced one particle Green’s functions of the system. ForPand ranges close to the band edges in both cases. Within the
mally, we can separate the trace according to the HilbefP@nd gap, however, a sharp peak shows up, which is located
space of the undisturbed defect and band states. In this se&t the energy of the energetically lowered defect state. This

tion we consider the change in the density of band stategontribution is caused by the transfer coupling and leads to
which is defined by admixtures of the band states to the effective defect state

within the band gap.
1 To show the analytical behavior &g ,,{ @) near the
band edges we consider the cége 0 eV and transform Eq.

E—%.,~M(E) (32) into

] _[']E—w—is}- (32
KIE=w+ie

Equation(32) is the starting point of our numerical calcu-
lations and the main results are shown in Fig. 1 for the Er
and in Fig. 2 for the Gd defect case, respectively.

In our model we consider a band structure of the undis-
turbed system with a total bandwidth &~=6 eV (ranged
from ~—3to~3 eV), and a band gaR,,s~0.1 eV centered sof
around —0.7 eV. The parameters were chosen because of
numerical reasons and give a qualitative picture of the band
structure of the host crystal SrgBn Fig. 1 the change in the 100
density of states in the energy range of the band gap for the
Er defect case is shown for the defect parameter values
=0.2 eV andty=0.1 eV. The figure shows huge maxima at FIG. 2. Comparison of the change in the effective one-particle
the edge of the band gap, which are generated by the corréensity of states\ pp,,{ @) induced by the correlation and by the
lation coupling. They are energetically located in the rangearansfer coupling for the Gd defect cadall line) and for the Er
of the high Sm 4 partial density of states. We will show, defect casédotted ling. Band-continuum range~—3,~3]; dotted
below, analytically that in the thermodynamical limit theseline, band gap. Gd parametersiy=zy+ u=—0.58 =0.2,t,
maxima diverge fole— 0, . Huge changes in the density of =0.2. Er parameters: gg=co+u=—1.8.=0.2,t4=0.2,1
states as shown in Fig. 1 indicate that the band system be--0.73 kT=0.

i
AQpand @) = ; 2 [

100

1

E—%¢

50 |

Apoand

-0.75 07 -0.65 06 055
Energy w (eV)
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1 &(w)~(lo—EY? (38)
AQbant{w): - ; Im

| &(w)~(lo—E])¥2 (39)

4
% E _ M K)\(NE ) _
“ (E'-2)[E'-¢,—M KA(ET)]‘ £t Because @/dw) &3~ (|o—Ej|) ¥ is valid the divergen-
cies are exclusively due to the coefficient of thg, state of
the defect surrounding. These are at the band edge, propor-
tional to the density of states. The coefficients of the corre-
q?ondingEg states of the surrounding show a different ana-
t

ical behavior and, therefore, exhibit no divergency.

wtie

(33

Since the self-energyl ., (E) is of the ordeiO(1/N), the
denominator can be developed into a series in the self-ener
(e finite). Because of the summation oveithe zeroth-order
term remains finite while all other terms vanish in the ther-
modynamic limit N—<). When we convert the summation V. SPECIEIC HEAT
into an integration over the energy by the transformation _ _ _ _ _
S, —[%.3 . 8(w—72,), e receive In this section we determine the change in the internal
energyAU and the resulting change of the specific he@,

M J(ET) induced by the Jahn-Teller-like correlation coupling0;
AQpand ®)=— — Im J do’ ————, (34  1g=0). The internal energy) of the considered system is
(E"—w') determined by the thermal expectation value of the Hamil-
~ t i
whereM , is defined by onian
Y 2 2 ’ * ” gé(w,’) U:<H> :E E <CTC > + 2 E <a.Ta->
Mo/ (E)=AXOgedr| (") | do” —— 1= & SACCITT &, Sol@ AT
£5(w") A {&o( )&k (Cle+ele,)
+ do” —— 1, 35  LSOMISIRIE AL BT T R B
T — @9 2
with X (ajay—ajay))r+ Eo(K) Ex(x')

X{(cle+cl c)(abas+aja))r.  (40)

E(w)=2 Sw—3,)E3(«),

The expectation value($ch>T and in the Gd defect case of

(36 (aiTai> can be determined by integration over the spectral
E(w)= 2 Sw—F ) E(k)+E5(K)]. function. This is defined in the following way fqAB)+:
With the relation @/dw)[E—w] '=[E—w] 2 and by B
means of partial integration we receive (AB)r= Y do exp(Bw)+ 1
X[{(BIA))E—((BIA))E], (41)
d §e(w")
AQypand @) =A*Ogept {a &(w) PJ do’ PR where g is the inverse temperature multiplied with the
o Boltzmann constant. In the Er defect case, where the restric-
d o gg(w/) tion in Eq.(8) has to be obeyed, the expectation value of the
+|— gé(w) Pf dw - defect occupation number can be determined using the defect
do - w—o Green’s function((b'a;|a/b))e defined in Eq.(26). This is
d T possible because
N
+gg(w)Pf do’ ————— (ala))r=(ala;(bbT—b'h));
g : =(byrajab!,)r. (42
. do’ &w)
+§2(w)Pf do’ - @ - 37) In Eq. (42 the constrainfEqg. (8)] was used. To stay within
E w—o' ' the scope of this paper we consider the Er defect case at low

temperatures where the assumption of a singly occupied de-
In Eq. (37) the change in the density of states is dependentect level holds (ala;)t=2, (Ogepr=1).
on the derivatives of the coupling coefficiergﬁw) Near To calculate the expectation value of the correlation cou-
the band edgeg; of the gap the analytical behavior can be pling operator we exploit the equation of motion for
determined approximately and gives ((cdct))e:
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1

(E-E0((cdch)e
1
=t 3 &K éa(k)+ ol k) Ex(K)]

X ((c(ata,—alar)|c))e+[Eo(k)Ex(k)
+&(k")E(r)((cp(ala;—alay)|c,))el-
(43)

Using Eq.(43) we can reduce the calculation of the internal
energy of the interacting system to one particle Green'’s func-
tions

ACy [k

Temperature kT (eV)

FIG. 3. Correlation-induced change in the specific e@t,(T)
) for the Er defect case for different values of the coupling constant.
+E Jw q | A=0.25(full line), A=0.2 (broken ling, and\ =0.15(dotted ling,

~ ) _. W o tq=0,1 (arbitrary units for both axgs

U= > Folaa)r
i=1,2

X o[ {({Cet)) prie—((Cleh))uoicl. (44)  the effect of only one defect site. We can sum up these
contributions for many sites in the limit of low-defect con-
To compare this result with the outcome of the perturbacentrations, where we can neglect the defect-defect interac-
tion theory we introduce the one-pole approximation for thetion. In this way the correlation coupling-induced maximum
self-energyM . (w="%,). In this way we receive for the in- in the specific heat should be measurable in dependence of
ternal energy the defect concentration. Thus, additionally to the ESR spec-
tra, we have a measurable quantity for the evidence of the

U:i;lzgo<arai>T+z [%,+Re Mn(@)] Jahn-Teller-like correlation-coupling mechanism.

~ ~ ~ VI. CHARGE DISTRIBUTION
Xf(e,+ReM,,(g,),T). (45)

L ~ ~ Since the coefficients of the correlation coupling depend
In the thermodynamic "m'tf(ReMKA_(fK)D:f(?mT) ap-  on crystal directions, we are interested in spatial effects of
plies, wheref (s, T) =[exp(Bs,s)+1] ~ For asingly ocCu-  this mechanism. For this purpose we calculate the change in
pied defect level the correlation coupling results in theyhe charge density of the defect surroundings. This also en-
change of the internal energy with ables us to determine the range of validity of the assumption
of independent defect sites.

2 2 ’ 20 1\ g2
AU=-\PS gO(K)gE('i )+§°(K )6e(x) We consider the thermal expectation valte{®') de-
r! P fined by
Xf(e, T[1-f(e,,T)]. (46) A9 =(dld, _I|:10+W_<di1“di $0,
For T=0K the same result is received for a second-order (48
perturbation calculation in the coupling constantAt very An'f ):<fini>!|'_'0+W_<fini>¢0,

low temperatures only virtual transitions between
conduction-band and valence-band states are possible in E\Nhered? , d; andfiT’ f; are the creation and annihilation op-
(46). Transitions between states close to the band gap witBrators of electrons in the Smd%nd Sm 4 states at crystal
strong effective coupling coefficieng$(«) lead to the stron-  site i, respectively. The perturbatiol consists only of the
gest contributions taAU. Therefore, the direct coupling to correlation couplingty=0). We can express E8) by the
the possible low-energeticfdexcitations in SmBis advan-  operators of the hybridized band states, yielding
tageous for the correlation coupling mechanism.

The change of the internal energy results in a change of af o D)k
the specific heat defined by AN*D =3 (aldM)*xe kig!S ! ek

J Ho+W H
ACy=—= AU (47) X[(che o = (cle ). (49

The CoefficientS)zfjj'f ) are given in Appendix B. The thermal
H=Hg+

In Fig. 3 the change of the specific heatC,, for the gxpectation valueéclc,(, H W is defined by

considered Er defect case is shown for different values of th
coupling constant.. The correlation coupling shifts the 1
maximum of the specific heat to lower temperatures than the Ta \H_ t —pBH - —BH

. . : c.C.)t=3 Tr{c,c.e , Z=Tr{e . (50
maximum of the ideal system &~ Eg,,. Figure 3 shows (CCu)r z {CcCu } { b 50
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Applying a perturbation expansion W to the thermal-
density operator (Z)exd — B(Hy+W)] we take into account

terms in the second order in This results in

H0+W_<

(cle, c,C /):'0

B H Ho
. dB'W(B’)[<CZCKf>T°—CJLCKr]>

| T
B Ho
+<f dB’W(B’)>
0 T
< ;

B
. B'W(B")[(cle, $°—CICK/]>

T

+< f:dﬂ' foﬁ'dﬂ"wwwww")

Ho
+0(W?%), (51
.

H
X[clckf—<cchl>T°]>

W(B)=13 efCxexcle,,

X [&(x,k")(afa,—alay) + &k, ") (ahas +alay)],
(52)

&k, k)= E(R)E(K ) + (K E(K), 1=1,2. (53
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(Che) P =2*(Ouedr 2 [€x(,x")
X & (K" k") + E(k, k") (K" k)]
eﬁsk( eBEK, — eBEK”) — eﬁsx”-l,- eﬁsx
(SKH_SK)(SKH_SK/)
BS ”( IBSK’_eIBSK) e:BEK—eBSK,
J’_
(K e)e—ewm) (e—e)(e—Em)
S 5

Expression(55) does not diverge for any, =« . because
of the corresponding contributions of the three summands.
We can insert Eq(55) into Eq. (51) and into Eq.(49) and
receive for the change in the charge distribution, finally,

AR*D=\2 X (Ogepr(al®)* a5 TT  codk;iy)

Kk K j=xy.z
x cog k| ij)[£1(x, k") Ex(K", &)
&, k") (K k)]
fll=fa)(1—fo)  (1-f)(A—ff,
(e~ )(Ee—En) * (er—e)(Er—E,m)
1—f ) (1=
N (I-f)f(1-1,) _
(SK//_SK)(SK//_SK/)
In Eq. (56) the evenness of the-dependent functions was
utilized. The symmetry of the coefficien&,-,z(x) (i=0,1,2)

leads under the summation ovef to the following simpli-
fication:

(56)

Within this expansion expectation values that are of the
first order inW(3) are zero, because of the appearmg ther-> [, (k, k") E1(K" k") + Ex( 16, k") Ex( K" k") IF (K, k" k")
mal expectation values(aja,—a al)T and (aja, K
+a{az)T°. With the help of the theorem of Bloch and De
Dominicis!* we can calculate the second-order term

=2 {E(KEa(R) Ea(k") + Eal k) xlK")]

(clc,/){?) of the expansion. This yields

B
(clen) P 2203, [ ap

X f 2 4B Er (k" B i)
0

e, K" Ep K K ) ][ €F (e g (e o)
X ( 1_f_;<)(1_f_;<n)f_;<r + eﬁl(s"”_s")eﬁ//(s", e

X (1= f o],
(54)

f=f(8,,T).

Integrating overd’ and 8" we receive

+ (k) ER(K") Eo( k)M (1, K" k). (57)
Equation (57) shows thatAﬁid'f is invariant under the
symmetry operations of the octahedral group. For the tem-
peratureT =0 K the change in the charge density is only due
to virtual transitions between the valence-band and
conduction-band states. The low-energetic SneAcitations
are, as in the lowering of the internal energy, the most im-
portant contributions.

It is noteworthy that Eq(56) can also be derived by the
calculation of the corresponding Green'’s functions with the
help of a matrix version of the formalism of Mori's formal-
ism. Equation(56) in this case is reestablished in the ther-
modynamic limit.

In Fig. 4 the change in the charge density in the defect
surrounding is shown foAn{") [Fig. 4a)] and An{?¥ [Fig.
4(b)], respectively. The full and shadowed circles indicate
the positive and negative sign, respectively, while the area is
proportional to the absolute value &h{"?® . The first octant
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z, pendent on the crystal directions. If we assume that the de-
: fect sites build a regular lattice, the defect-defect interaction
can be neglected up to a distance~eb lattice constants.

VIl. CONCLUSION

In this paper we have examined the impact of a correla-
tion coupling and of a transfer coupling on the band states of
a doped mixed-valent semiconductor. The correlation
mechanism establishes a Jahn-Teller-like coupling, where
electronic excitations adopt the role of the configurational
distortion in the conventional case. The calculation of the
internal energy showed that for temperatidre O K virtual
transitions between valence-band and conduction-band states
lead to a lowering of the energy. Since the host crystal SmB
has a very small band gap &;,;~3—4 meV and a very
huge partial density of Smf4states at the corresponding
band edges, this electronic coupling-type is very effective
when the low-energetic f4excitations are involved. This is
in agreement with the result of the calculation of the defect
Green’s function. In the host crystal SgBhe electronic
coupling is, therefore, more probable than the conventional
type of configurational coupling.

For higher temperatures, conduction-band states become
populated and, therefore, the effective number of possible
low-energetic excitations decrease. This leads to a decrease
of the coupling-induced energetic lowering of the internal
energy and, consequently, to a typical change of the specific
heat. This change of the specific heat has a maximum value
for kT~0.5E4,,. This peak could be measurable in depen-
dence of the defect concentration and provides an additional
means to proof the unconventional coupling mechanism.

The effect of the correlation coupling on the charge dis-
(b) tribution falls off rapidly with increasing distance between
the defect and the Sm ions. There are strong changes of the

i ihd \ . .
FIG. 4. Change of the partial Sm charge dendity"® of the  artial 4 charge density, which are to some extent compen-

defect surrounding induced by the correlation coupling in the Ersated by the changes of the partial Bharge density at the
defect case. Shown is the first octant with the defect at the origin

- S _ same crystal site.
Full (positive and shadowednegative circles show the sign, the y
circle area indicates the absolute val@®. Partial Sm 4 charge

density, maximum value at site=(1,0,0), An{,}/x?=0.28. (b) ACKNOWLEDGMENT
szg)al fm ® charge density, maximum value at site(1,0,0), The authors would like to thank the Deutsche Forschungs-
AnjgfA°=—0.07. gemeinschaft for financial support.

of the defect surrounding is shown with the defect site at the
origin. The strongest increase off £harge densityFig.
4(a)] appears at the nearest-neighbor sites. With the corre- we calculate the expectation value&'a;)r and
sponding local states the correlation coupling was built up inafafa, a,); with the Hamiltonian

the local picture. Because these states are part of the hybrid-

ized band states the charge density is changed also at other H=Ho+Hy, with Hy=Uala}a,a;. (A1)
sites and, additionally, in the partiatischarge density. With ) ! , .
increasing site distance the effect of the correlation couplin{‘0 is defined in Eq(5). Our procedure is analogous to the
falls off very rapidly, with the exception of the crystal axes roof of the theorem of Bloch and De Dominicis. For this
where a small oscillation of the charge density appears. APUTPOSe we need

the defect site, where we have assumed two states with the  s(Ho+Hy) 5 a—B(Ho+Hy)

same properties as the surrounding Sm states, additionally to !

APPENDIX A: CALCULATION OF (Ogep

the Jahn-Teller activiey states, the # charge density is =e350[a?+(5i 1a{a£a2+ 5 ZaZaZal)(eBU—l)].
decreased. The effect of the correlation coupling on the 4 ' '
charge density is partially compensated by the change of the (A2)

5d contributions as shown in Fig(H). It should be stressed With the help of the anticommutator relation for the Fermi
that, althoughAn{®") is invariant under symmetry transfor- operators and with EqA2), we receive the following rela-
mations of theOy, group, it is not radially isotropic, but de- tion between the considered expectation values:
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- of the defect Green’s functiodsy=M ge(zo) <02 In this
(21838187)7 - case we have to replace the parameters in the preceeding

(A3)  calculation witheo—eq+ M ge(50) andU — M gef(z0).

1 (efV—1)efeo
1+ePeo efro+1

(afay)r=

For Eq.(A3) the property of cyclic interchangeability of op-
erators under the trace was used.

Applymg analogous steps to the expectation value The coupling coefficients of the symmetrized states of the
(alazazal)T yields a second relation between the requestedefect surrounding are defined by
expectation values

APPENDIX B: COUPLING COEFFICIENTS

N b=, 0 = {5 o125
K
1+ ePeogBU (ajay)T. (A4) 0 Aig JN [y for 1=2
(B1)
With Egs.(A3) and (A4) we finally receive for 1=1
()= &(k)r[f: o

<a1a;a2a1>T=

(aIal>T: <a£a2>T

eB(;o+U)+1 i=1,2 with
~ B(2e07U) 4 ehleotU) 41 (A9) V2 osk K k
. gAlg— ‘/—j (cosk,+cosk,+cosk,),
Tt _ _ _
(aja3a1)7 B2 U3 2P0t U111 (A6) .
In the case of the Er defect we have to take the libit b6, = Vi (2 cosk;— cosky—cosky), (B2)
—o0 in agreement with the applied slave-boson method. This
yields ée,= 7 (cosk,—cosk,),
1
T _ and
aa)=——, (A7)
< i |>T 6'8804-2
~\ 112
Tt V= 1(1 ak_sf)
= k= 2|+~ :
(a;a3,a1)7=0. (A8) 2 W,
In the case of the Gd defect we take the energetic lower- ~\ 112 (B3)
ing of the singly occupied defect level into account. We fix k— &t v
g9 aly pie Llevel B=—131+ ) sgnV)
the value of the energetic lowerings, with the self-energy k
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