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Elementary excitations in the coupled spin-orbital model
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The elementary excitations of a model Hamiltonian that captures the low-energy behavior of a simple
twofold-degenerate Hubbard Hamiltonian, with Hund’s rule coupling, is studied. The phase diagram in the
mean-field limit and in a two-site approach reveals a rich variety of phases where both the orbital and the spin
degrees of freedom are ordered. We show that, besides the usual spin waves~magnons!, there also exist orbital
waves~orbitons! and, most interestingly, in a completely ferromagnetically coupled system, a combined spin-
orbital excitation which can be visualized as a bound state of magnons and orbitons. For a completely degen-
erate system the bound states are found to be the lowest-lying elementary excitations, both in one and two
dimensions. Finally we extend our treatment to almost-degenerate systems. This can serve as an example that
elementary excitations in orbitally degenerate strongly correlated electron systems in general carry both spin
and orbital character.@S0163-1829~98!10839-1#
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I. INTRODUCTION

The d and f wave functions of free atoms or ions ar
besides Kramers~spin! degenerate, also fivefold and seve
fold orbital degenerate. In crystals this degeneracy may
lifted by the crystal field~interactions with the ligands!.
There are, however, interesting situations where this deg
eracy is only partially lifted, so that in a high-symmetry sit
ation d or f levels remain degenerate. The best known
amples are Cu21 (d9), Mn31 (d4), and Cr21 (d4) in
cubic symmetry~in an octahedral surrounding!. According to
the famous Jahn-Teller theorem,1 this degeneracy should b
lifted in the ground state. In a concentrated system this le
to a phenomenon known as the cooperative Jahn-Telle
fect, or orbital ordering.2,3 An interesting aspect of this phe
nomenon is the strong interplay between the orbital and s
~magnetic! ordering. The orbital occupation determines t
character of the magnetic exchange interaction~the
Goodenough-Kanamori-Anderson rules!,4 and, vice versa,
modification of the magnetic structure, e.g., by an exter
field, may change orbital occupation and lead to a chang
the crystal structure.3,5

The existence of orbital degrees of freedom, strongly
teracting with the spins, not only determines the orbital a
spin structure in the ground state. It should also have imp
tant consequences for the elementary excitations of such
tems. Thus, in addition to the collective excitations of t
magnetic subsystem—magnons or spin waves—orb
excitations—orbitons—also may exist in this case. This w
pointed out in Ref. 3, and was studied for a specific mo
for the manganites in Ref. 6. Because of the intimate c
nection of spin and orbital degrees of freedom, one can
expect strong interaction and possible mixing of these
types of excitations. This problem was not addressed u
now, and it is one of the aims of the present study.
PRB 580163-1829/98/58~16!/10276~7!/$15.00
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The systems with orbital degeneracy form a rather spe
class of compounds with very interesting and rich propert
Among them are, in particular, many compounds contain
Cu21 ~such as high-Tc superconductors!, manganites of the
type La12xSrxMnO3 with a colossal magnetoresistance, a
many other transition-metal compounds containing va
dium (LiVO2, CaV4O9),7,8 trivalent nickel (PrNiO3),9 etc.
The study of the elementary excitations in these compoun
besides being of interest in itself, may shed some light
their unusual properties.

In this work we consider the typical situation of materia
containing localized electrons with spinS5 1

2 with doubly
degenerate orbitals. We can describe this situation by
doubly degenerate Hubbard model

H5Ht1HU1HJ , ~1!

with

Ht5 (
^ i j &,s,a,b

t i j
abcias

† cj bs , ~2!

HU5 (
i ,s,s8,a,b

Uabniasnibs8~12da,bds,s8!, ~3!

HJ5 (
i ,a,b

2JH
abSia•Sib~12da,b!, ~4!

in which, besides the usual terms~electron hopping and on
site Coulomb repulsion!, we also added the on-site~Hund!
exchange interaction.

In realistic situations the hopping matrix elementst i j
ab de-

pend on the type of orbital involved.3–6 This leads to enor-
mous technical complications. As here we are interested
10 276 © 1998 The American Physical Society
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the basic typical features of the excitation spectrum of
system, we treat a simplified symmetric model, assuming

t i j
ab5t i j dab , ~5!

keeping only the nearest-neighbor hopping for equal orbit
At the end of this paper we comment upon which modific
tions of our results should occur for a more general choice
hopping integrals. In the case of strong interactiont!U,
only the degrees of freedom of the localized electrons w
spin 1

2 and the orbitals are left. Consequently we can red
the electronic model@Eq. ~1!# to a model describing couple
spins and orbitals. For the doubly degenerate case we
describe the orbital degrees of freedom by an effective ps
dospinT5 1

2 , so that, e.g., an occupied orbitala corresponds
to Tz5 1

2 and orbitalb to Tz52 1
2 . The effective Hamil-

tonian has the generic form

H52Js(̂
i j &

Si•Sj2Jt(̂
i j &

T i•T j24Jst(̂
i j &

~Si•Sj ! ~T i•T j !,

~6!

where for the model witht i j
ab given by Eq.~5! the exchange

constants have definite values.3 Thus for this particular
choice of hopping matrix elements and for vanishing Hun
rule exchange the model~1! reduces to a double-spin Heise
berg model.

The characteristic feature of our situation is the existe
and strong interplay of ‘‘spins’’SandT which emerge due to
the third term of Hamiltonian~1!. As we shall see, this in
teraction leads to a significant mixing of spin and orbi
degrees of freedom, giving rise, even, to the possibility of
formation of spin-orbiton bound states. Note that the form
the interaction between the spins and orbitals in Eq.~1! is a
consequence of the Coulomb-Hund’s rule interaction
tween electrons, and is different from what one expects fr
simply coupling two Heisenberg spin systems. As we w
to study the generic features of the coupled spin-orbital s
tem, we consider a general case, treating arbitrary value
the exchange parametersJs , Jt , and Jst . It is explicitly
shown that a spin-orbital bound state exists when all
change parameters are ferromagnetic, and we show tha
same mechanism that leads to a bound state for ferrom
netic exchange parameters is also operative in a system
antiferromagnetic exchange parameters.

Notice that in the general situation with Hund’s rule e
change included and with realistic values of the hopping
tegralst i j

ab , the resulting spin-orbital Hamiltonian of type~6!
can contain terms anisotropic in theT operators,3 and even
terms linear inT. However, even with the more realist
hopping integrals there may exist situations10 in which the
symmetry in orbital space remains similar to that of Ham
tonian ~6!. For simplicity we consider such a symmetr
double-Heisenberg model because, as it turns out, the co
tions for the existence of the bound spin-orbital excitatio
are the most stringent exactly in this case, and if, as we
show, they exist in this case, it will be even more so with
T anisotropy taken into account.
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II. GROUND STATE

If our aim is to calculate the elementary excitations o
system described by the Hamiltonian~6!, we first have to
know the ground-state wave functions. We can easily ca
late a phase diagram within two different approximation
the mean-field and the two-site approximation. In the lat
only two interacting spins and pseudospins are conside
so that the ground state is described in a way similar t
valence-bond state, which is a good starting point for lo
dimensional spin systems. Starting from ground-state w
functions obtained within one of these approximations, o
can test the stability of the ground state by calculating
response to, for instance, spin waves and combined or
and spin excitations.

A. Mean-field solution

A common method used to gain some understanding
Hamiltonian is a mean-field approximation. In our case it
possible to separate spin and orbital degrees of freedom
replacing operators we want to exclude from our consid
ation by the averages of their correlation function that a
pears in the Hamiltonian. In this way we generate two me
field Hamiltonians

Hs
MF52Js(̂

i j &
Si•Sj24Jst(̂

i j &
^T i•T j&Si•Sj52Js8(̂

i j &
Si•Sj

~7!

and

Ht
MF52Jt(̂

i j &
T i•T j24Jst(̂

i j &
^Si•Sj&T i•T j

52Jt8(̂
i j &

T i•T j . ~8!

In Hamiltonian~7! the orbital degrees of freedom are in
tegrated out, and in Hamiltonian~8! the average over the
spin degrees of freedom is taken. In this way the spin a
orbital degrees of freedom are decoupled. After doing
mean-field averaging6 we have, in some sense, thrown aw
the interesting part of our problem and returned to a ren
malized Heisenberg model, where the ground-state pro
ties and elementary excitations are well known. Nevert

FIG. 1. Phase diagram of the model Hamiltonian in the me
field approximation. FF: both spin and pseudospin are ferrom
netically ordered; FA: spin ferro, pseudospin antiferro; AF: sp
antiferro, pseudospin ferro; AA: both spin and pseudospin are a
ferro ordered.Js andJt are in units ofuJstu.
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10 278 PRB 58J. van den BRINKet al.
less, as in a first approximation this is still a useful approa
The phase diagram in this approximation is given in Fig.

B. Two-site solution

In a mean-field approximation the short-range interacti
are averaged out, and if we want to go beyond this appr
mation and gain insight into local properties it is more use
to consider a few interacting particles. This is especially i
portant here because the transformation properties of t
terms of Hamiltonian~6! are different, and a more accura
account of the real singlet correlations~as compared to the
mean field, essentially Ising-like, treatment! is essential. To
this end case we consider two spins and two pseudosp
and obtain the Hamiltonian

H1,252JsS1•S22JtT1•T224Jst~S1•S2!~T1•T2!. ~9!

This simple case can be treated exactly, and using thes
sults, we obtain the modified phase diagram. The comb
tions of ~pseudo!spin operators can either be singlet or tri
let, and the ground-state energy of the various combinat
correspond to the different phases in Fig. 2, forJst.0 and
Jst,0, respectively. The character of the first excited st
for the various phases forJst.0 is shown in Fig. 3. A simi-
lar picture can be made forJst,0. In spite of the relative

FIG. 2. Phase diagram of the two-site solution of the mo
Hamiltonian. In phase 11, both spin and pseudospin are in a tr
state; in phase 10, the spin is triplet and pseudospin singlet; in
phase the spin is singlet, and the pseudospin is triplet; and in
phase both the spin and pseudospin are in a singlet state.Js andJt

are in units ofuJstu.

FIG. 3. Character of the first excited state in the two-site syst
Js andJt are in units ofuJstu.
.
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simplicity of the Hamiltonian, there is a rich variety o
ground and first excited states, even in the two-site appro

In the white, central part of this figure, the ground state
singlet, both in the spins and orbitals. The first excited sta
however, is not just the change of one singlet into a trip
but corresponds to the state where both the spins and orb
are in a triplet configuration. This is due to the interacti
between the spin and orbital degrees of freedom, and
very simple example shows that some of the excitations o
system with such an interaction, in this case the lowest o
carry both spin and orbital character.

III. FERRO-FERRO SYSTEM

When Js , Jt , andJst are chosen in a range where bo
the spins and pseudospins order ferromagnetically, a fe
ferro phase, we can obtain exact analytical expressions
the elementary excitations. In a ferromagnetic Heisenb
model the exact ground state is the state with all spins po
ing in the same direction, as opposed to a Heisenberg Ha
tonian with an antiferromagnetic exchange where quan
fluctuations affect the Ne´el spin order. The coupling betwee
the spins and pseudospins can lead to the formation of bo
states of spin and pseudospin excitations. This is illustra
for a one-dimensional~1D! ferro-ferro system in the uppe
part of Fig. 4. Let us consider Ising spins~and pseudospins!,
and examine the energy of an excitation of one spin plus
pseudospin. If the two excited spins are far away from e

l
et
1
0

.

FIG. 4. Excitation energy for Ising spins and pseudospins fo
completely ferro and a completely antiferro 1D system in the
gime whereJst,Jt,Js . When the spin and orbital are close to
gether, the excitation energy is lower than in the case when they
far apart.
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other, the part of the excitation energy due to the spin ps
dospin interaction@the third term in Eq.~6!# is 2Jst . When
the excited spins are close to each other, on the nea
neighbor sites or on the same site, this excitation energ
Jst and 0, respectively. The same argument holds if the s
tem has antiferromagnetic exchanges. In the lower par
Fig. 4 the same attraction between the spin and the orb
excitation is found for a completely antiferromagnetica
coupled system in the regime whereuJstu.uJtu.uJsu ~see the
phase diagrams Figs. 1 and 2!. One can easily check that th
situation is the same also for other types of ordering. T
means that a magnon and an orbiton~orbital wave! have an
attractive interaction and that, in principle, depending on
dimensionality and strength of the attraction, the magnon
orbiton can form a bound state.

A. Equations of motion

In order to establish whether it is indeed possible to obt
bound states that are combinations of orbital and spin wa
in the excitation spectrum of the model system, we use
equation of motion method, which provides a simple, and
the ferromagnetic case exact, way to calculate bound-s
energies. Before addressing this issue, let us first exami
single ~pseudo!spin excitation.

Starting from Hamiltonian~6! and with a ground stateu0&
with energyE0 where all ~pseudo!spins are aligned in the
positive-z direction, a single spin is excited~the derivation
for single orbital excitations is equivalent!. The equation of
motion for this excitation is

~H2E0!Sm
2 u0&[vsSm

2u0&5@H,Sm
2#u0&. ~10!

The evaluation of the commutator and transformation
Fourier-space yields the following Goldstone modes:

vs~Q!52~Js1Jst!(
a

~12cosQ•a!, ~11!

v t~Q!52~Jt1Jst!(
a

~12cosQ•a!, ~12!

where the lattice vectors are denoted bya. The presence o
the coupling between the spin and orbital degrees of fr
dom, parametrized byJst , thus merely renormalizes th
spin/orbital wave spectrum.

The equation of motion for a combined spin and ps
dospin excitationSm

2Tn
2 is

~H2Eo!Sm
2Tn

2u0&[vSm
2Tn

2u0&5@H,Sm
2Tn

2#u0&. ~13!

We find, for the Fourier transform of the equation of motio

$v2g~Q,q!%A~Q,q!

528JstS a

2p D d

(
a

~cosQ•a/22cosq•a!

3E dk~cosQ•a/22cosk•a!A~Q,k!, ~14!

with
u-

st-
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s-
of
al

is

e
d

in
es
e

n
te
a

o

e-

-

,

A~Q,q!5SQ/22q
2 TQ/21q

2 u0&, ~15!

g~Q,q!5vs~Q/21q!1v t~Q/22q!, ~16!

whered is the dimensionality of the system. The total m
mentum of the excitation isQ, and the relative momentum
of the combined spin and pseudospin excitation isq. In order
to check if there is a self-consistent solution of the equat
of motion, Eq.~14! is iterated once. Then a set of equatio
is found that can be represented in a matrixuMa,bu of order
d for hypercubic lattices. In a three-dimensional syste
a,b5x,y,z. The set of equations has a solution if, and on
if,

Detuda,b2Ma,bu50, ~17!

with

Ma,b~Q!528Jst S a

2p D d

3E dk
~cosQa/22coska!~cosQb/22coskb!

v2g~Q,k!
.

~18!

If the system is one dimensional the condition above redu
to

152
8Jst

2p E
2p

p

dk
~cosQ/22cosk!2

v2vs~k1Q/2!2v t~k2Q/2!
,

~19!

where the lattice spacing is set to unity. This expression
sembles the condition for the existence of a two-magn
bound state in a pure ferromagnetic Heisenberg model.11

B. Bound states

We restrict ourselves to the ferro-ferro phase, i.e., acco
ing to Fig. 2, 2Jst,Js1Jt and Jst.0, and determine the
bound-state energies from conditions~17! and ~18!. The in-
tegrals appearing in the latter equation are, as in the t
magnon problem, by no means trivial, and can only be
termined analytically in special cases. In general th
equations can be solved numerically.

Before examining the integrals in detail, let us first turn
the excitations that lie in the continuum. The continuum
excitations starts at the energyvc(Q), where the denomina
tor of the matrix elementsMa,b starts to diverge. The con
dition for this is

vc~Q!5Mink@es~Q/21k!1e t~Q/22k!#. ~20!

The single~pseudo!spin-wave excitation energyalways lies
in the two-particle continuum,

vs~Q!>vc~Q!,

v t~Q!>vc~Q!.

The explanation for this is that in a combined spin and
bital excitation the momentum is distributed over the tw
subsystems, and, because the excitation spectrum in
ferro-ferro case is nonlinear and concave (@12cos#-like!, the
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energy of two excitations with smaller momenta can
lower than the energy of one excitation with large mome
tum.

First we consider theone-dimensionalcase. The integra
in Eq. ~19! can be reduced to the form

E ~a2cosk!2

11b cosk1c sink
dk, ~21!

which is known analytically. The condition that the integr
be equal to unity is given by the roots of a third-order po
nomial. Not so much is gained following this procedure,
the resulting expressions are very long and complicated
let us consider some special momenta in the Brillouin zo

Q50. For Q50, condition ~19! for a bound state atv
50 reduces to 2Jst5Js1Jt , which is exactly at the phas
boundary of the ferro-ferro phase in the two-site phase
gram ~Fig. 2!. A bound state at negativev appears when
2Jst.Js1Jt . This simply means that the ground state is n
stable~by exciting it, energy is gained!, which can be ex-
pected as the two-site phase diagram shows that
antiferro-antiferro phase is the ground state in this param
range. The ferro-ferro ground state is found to be exa
stable in the parameter ranges shown in Fig. 2, indica
that the two-site approximation gives a good prediction
the ground-state spin and orbital order, whereas the m
field solution fails to predict the right ordering.

Q5p. By treating this special case, we can prove t
there isalways a bound state in the ferro-ferro system,
least in one dimension. WhenQa5p for all a, at the corner
of the Brillouin zone, the equations simplify considerab
The off-diagonal matrix elements in Eq.~17! vanish, so that
Ma,b5Dda,b . This yields

vb
1d~p!52~Js1Jt!2~Js2Jt!

2/4Jst , ~22!

vc
1d~p!54~Min@Js ,Jt#1Jst!. ~23!

From these equations follows thatvb
1d(p),vc

1d(p) for any
Js , Jt , and Jst , except whenJst5uJs2Jtu, wherevb

1d(p)
5vc

1d(p). This proves that atQ5p there is always a bound
state.

At v(Q)→vc(Q) in one dimension. For energies ap-
proaching the continuum@v(Q)→vc(Q)#, the integrand in
Eq. ~19!, diverges ask21 ~except forQ50), making the
integral logarithmically divergent. We can conclude fro
this that for anyQ ~except forQ50) there is always a poin
between2`,v,vc(Q) where the integral is equal t
unity.

From the considerations above we can conclude that
the one-dimensional system in the range 0,Q<p a spin-
orbital bound state always exists, and that this bound sta
the lowest-lying elementary excitation of the ferro-fer
phase of model~6!. It is by definition lower in energy than
the spin-orbital continuum, which in turn is lower than th
single~pseudo! spin excitations. Before illustrating the stat
ment above with numerical examples, let us consider
more special case, namely:

Js5Jt5Jst . For these parameters the system is exactl
the phase boundary of the ferro-ferro ground state. Now
~19! takes a particularly simple form, and the solution for t
bound state for the one-dimensional system is
e
-

l
-
s
o

e.

a-

t
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g
r
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t
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or
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e
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vb* ~Q!52Jst~12cosQ!. ~24!

For the lower bound of the continuum, the single-spin a
single-orbital excitations, in this case one obtains

vc* ~Q!58Jst~12cosQ/2!, ~25!

vs* ~Q!5v t* ~Q!54Jst~12cosQ!. ~26!

In Fig. 5 the dispersion relations of these excitations
shown. The spin-orbital bound state is always the low
energy excitation of the system. Note that for smallQ the
spin-orbital continuum and the bound state are very clos
energy, and their energy difference is of the order
(Jst/16)Q4.

The numerical solution of the bound-state equation fo
one-dimensional system is shown in Fig. 6 for two parame
sets. For small momenta the bound state is always very c
to the two-particle continuum. WhenJst is reduced, the
single spin, single orbital, and continuum shift down in e
ergy, approaching the bound-state energy. This can be
pected, since in the case whenJst50 andJs5Jt the lower
bound of the continuum and the single-spin and sing
orbital excitation spectra all coincide.

In the right part of Fig. 6 a case is shown where th
single-spin and single-orbital excitations have a different d
persion, i.e.,JsÞJt . The single-orbital excitation is shifted
up in energy with respect to the single-spin excitation. T
bound state, continuum, and magnon excitations are clos
energy, and in the limit thatJt→` all three coincide, as can
be expected.

In Fig. 7 a typical result for a two-dimensional system
shown. It is found numerically that there always exists
least one bound state, also in two dimensions. Similar to
1D case, the bound state is only well separated from
continuum at the edge of the Brillouin zone. IfJs5Jt it can
be shown that

vb~p,0!54~2Js12Jst2A2Jst
2 12JsJst1Js

2! ~27!

and

FIG. 5. Dispersion of the spin-orbital bound state, spin-orb
continuum, and single-spin and single-orbital excitations in a o
dimensional ferro-ferro system whereJs5Jt5Jst . The single spin
and single orbital excitation energies coincide in this case. The
of energy isJ5Js .
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vb~p,p!54~2Js1Jst!, ~28!

so that at these points the bound state is considerably lo
than the continuum.

C. Almost degeneracy

In the subsections above we assumed that the two ato
levels are completely degenerate. Crystal fields gener
split the two levels. Within the approach above it is fair
easy to treat this energy splitting. Suppose the energy dif
ence between the orbitalsa andb is D. The Hamiltonian to
be added to Eq.~1! is

HD5D/2(
i ,s

~ni ,s,b2ni ,s,a!5D(
i

Ti
z , ~29!

where the last equality follows from the definition of theT
operators.

The level splitting manifests itself in the pseudospin la
guage as a magnetic field for the orbitals. Carrying throu
the calculation for the excitations leads to renormalized s
waves, orbital waves, and bound states:

FIG. 6. Dispersion of the spin-orbital bound-state, spin-orb
continuum, and single-spin and single-orbital excitations in a o
dimensional ferro-ferro system. The unit of energy isJ5Js .

FIG. 7. Dispersion of the spin-orbital bound state and sp
orbital continuum, and single-spin and single-orbital excitations
two-dimensional ferro-ferro system. The unit of energy isJ5Js .
er

ic
lly

r-

-
h
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v̄s5vs ,

v̄ t5v t1D,

v̄st5vst1D. ~30!

The spin-wave spectrum is not affected, but the ‘‘magne
field’’ for the orbitals causes a gap in the orbital excitati
spectrum. This can be expected since, due to the magn
field, there is no breaking of a continuous symmetry in t
orbital case, and hence no Goldstone mode. This is refle
in the bound-state energy being gapped. The equalities ab
permit a convenient generalization of the results derived
the fully degenerate system to the situation where the le
are nondegenerate or almost degenerate, as illustrated in
8, where the dispersion of the bound state in the case o
orbital energy splitting ofD52Js is shown.

From the results in this section one can also underst
what will be the situation in the general case discussed at
end of Sec. I. That is, the orbital part of the effective-sp
pseudospin Hamiltonian is in the general case anisotro
containing both terms of the type~29! and Ising-like terms
Ti

zTj
z . The situation then will be simular to the one discuss

above: there will appear a gap in the orbiton spectrum~see
also Ref. 6!. The spin-orbital bound state can still exist b
low the combined spin-orbital continuum~but in general
above pure spin waves!, and one can show that the cond
tions for their existence will be even less stringent than in
case of gapless orbitons. However, as can be seen from
8, these bound states will not be the lowest excitations in
system, at least not in the whole Brillouin zone. Neverthel
they will lie lower than the orbital waves themselves, a
they definitely have to be taken into account in a gene
treatment of properties of such systems. Note also that
orbital spectrum may still be gapless, even with realistic h
ping integralst i j

ab due to the orbital-lattice symmetry; thi
can lead to particular features of such systems like quan
disorder;10 the nature of the elementary excitations plays
crucial role in this problem.12

l
-

-
a

FIG. 8. Dispersion of the spin-orbital bound state, spin-orb
continuum, and single-spin and single-orbital excitations for an
most degenerate 1D ferro-ferro system whereD/25Js5Jt5Jst .
The unit of energy isJ5Js .
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IV. DISCUSSION

We studied the low-energy excitations of a twofo
degenerate Hubbard model in the strong-coupling limit w
on average, one electron per site and symmetric hop
integrals. We observe that, besides the separate spin an
bital excitations, combined excitations~spin-orbiton bound
states! can exist, and can even be the lowest-lying elem
tary excitation of the system. In general overlap integr
depend explicitly on the symmetry of the orbitals; this,
gether with Hund’s rule coupling, may break the continuo
rotational symmetry of the orbital channel. In this case o
can expect that the eventual spin-orbital bound states, w
are gapless in the simplest case, become gapped and m
the lowest-lying excitation only at larger momenta.

If not all interactions are ferromagnetic, there isa priori
no reason to expect that the orbital and spin-orbital bo
states behave qualitatively different from the ferro case,
though the quantum fluctuations might, or might not, dest
long-range order.10,12,13This interesting aspect of the syste
with antiferromagnetic interactions still deserves furth
study.

The low-energy collective modes of the orbitally dege
erate Hubbard model certainly contribute to the thermo
namic properties of the system, and should be observabl
for instance, susceptibility and specific-heat measureme
It should be stressed, however, that elementary excitat
with predominantly orbital character are in general gapp
and therefore lead only to moderate changes in therm
namic quantities. Experiments that are sensitive to hig
energy scales might give direct evidence for the existenc
orbitons and spin-orbital bound states. Orbital excitatio
however, are strongly coupled to phonons, and it might
difficult to distinguish between these two contributions
i
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experiment. One of the possibilities to pin them down m
be connected with the possible anomalies of the phon
dispersion relations induced by the orbital degrees of fr
dom. Another possibility might be that, since the orbital e
citations also couple to the spin degrees of freedo
variations in the spin order, for instance induced by an
ternal magnetic field, will be reflected in the energy and d
persion of the orbital related excitations, and consequentl
the properties of the phonons mixed with orbitons.

In conclusion, we studied a model Hamiltonian that ca
tures the low-energy behavior of a twofold-degenerate H
bard Hamiltonian. We presented the phase diagram in
mean-field limit and in a two-site approach, revealing a ri
variety of phases where both the orbital and spin degree
freedom can be ordered~anti!ferromagnetically. We have
shown that in this case there may exist, besides the u
spin waves~magnons!, orbital waves~orbitons! and, most
interestingly, the combined spin-orbital excitation which c
be visualized as bound states of magnons and orbitons.
fully degenerate system the bound states are found to be
lowest-lying elementary excitations, both in one and two
mensions. This shows that the elementary excitations in
bitally degenerate strongly correlated electron systems
general may carry both spin and orbital character.
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