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The elementary excitations of a model Hamiltonian that captures the low-energy behavior of a simple
twofold-degenerate Hubbard Hamiltonian, with Hund'’s rule coupling, is studied. The phase diagram in the
mean-field limit and in a two-site approach reveals a rich variety of phases where both the orbital and the spin
degrees of freedom are ordered. We show that, besides the usual spin(magesns, there also exist orbital
waves(orbitong and, most interestingly, in a completely ferromagnetically coupled system, a combined spin-
orbital excitation which can be visualized as a bound state of magnons and orbitons. For a completely degen-
erate system the bound states are found to be the lowest-lying elementary excitations, both in one and two
dimensions. Finally we extend our treatment to almost-degenerate systems. This can serve as an example that
elementary excitations in orbitally degenerate strongly correlated electron systems in general carry both spin
and orbital charactefS0163-18208)10839-]|

I. INTRODUCTION The systems with orbital degeneracy form a rather special
class of compounds with very interesting and rich properties.
The d and f wave functions of free atoms or ions are, Among them are, in particular, many compounds containing
besides Kramergspin) degenerate, also fivefold and seven-Ct?* (such as highF, superconductojs manganites of the
fold orbital degenerate. In crystals this degeneracy may b#/pe La _,SL,MnO; with a colossal magnetoresistance, and
lifted by the crystal field(interactions with the ligangs many other transition-metal compounds containing vana-
There are, however, interesting situations where this degerilium (LiVO,, CaV,0;),"® trivalent nickel (PrNiQ),° etc.
eracy is only partially lifted, so that in a high-symmetry situ- The study of the elementary excitations in these compounds,
ation d or f levels remain degenerate. The best known exbesides being of interest in itself, may shed some light on
amples are G (d%, Mn®" (d*), and CF" (d*) in  their unusual properties.
cubic symmetry(in an octahedral surroundingAccording to In this work we consider the typical situation of materials
the famous Jahn-Teller theorénthis degeneracy should be containing localized electrons with spB=3 with doubly
lifted in the ground state. In a concentrated system this leaddegenerate orbitals. We can describe this situation by the
to a phenomenon known as the cooperative Jahn-Teller efloubly degenerate Hubbard model
fect, or orbital ordering:® An interesting aspect of this phe-
nomenon is the strong interplay between the orbital and spin H=H{+Hy+H;, 1)
(magneti¢ ordering. The orbital occupation determines the
character of the magnetic exchange interacti¢ime
Goodenough-Kanamori-Anderson rulésand, vice versa,
modification of the magnetic structure, e.g., by an external H.= z toBc
: ; : P t i
field, may change orbital occupation and lead to a change in (iyioap "
the crystal structuré®
The existence of orbital degrees of freedom, strongly in-
teracting with the spins, not only determines the orbital and Hu= X U%niNige(1=8,58,0), (3
spin structure in the ground state. It should also have impor- hoo'.ap
tant consequences for the elementary excitations of such sys-
tems. Thus, in addition to the collective excitations of the _ _ qaB _
magnetic subsystem—magnons or spin waves—orbital HJ_i%ﬁ I S Spl1=0ap), @
excitations—orbitons—also may exist in this case. This was
pointed out in Ref. 3, and was studied for a specific modein which, besides the usual terrfeectron hopping and on-
for the manganites in Ref. 6. Because of the intimate consite Coulomb repulsion we also added the on-sitéiund)
nection of spin and orbital degrees of freedom, one can alsexchange interaction.
expect strong interaction and possible mixing of these two In realistic situations the hopping matrix elemetﬁé de-
types of excitations. This problem was not addressed untipend on the type of orbital involvett® This leads to enor-
now, and it is one of the aims of the present study. mous technical complications. As here we are interested in

with

iTerjBa' ' (2)
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the basic typical features of the excitation spectrum of our I>0 J51<0

system, we treat a simplified symmetric model, assuming 5 1 5 1

@ aF | §
tijB:tij5aﬂy 5 FF AF FF

Js
keeping only the nearest-neighbor hopping for equal orbitals.

At the end of this paper we comment upon which modifica- A ; ; 3 5

tions of our results should occur for a more general choice of i FA | L AA Fa
hopping integrals. In the case of strong interactteaU, T 5
only the degrees of freedom of the localized electrons with

spin} and the orbitals are left. Consequently we can reduce FIG. 1. Phase diagram of the model Hamiltonian in the mean-
the electronic moddlEq. (1)] to a model describing coupled field approximation. FF: both spin and pseudospin are ferromag-
spins and orbitals. For the doubly degenerate case we cdigtically ordered; FA: spin ferro, pseudospin antiferro; AF: spin
describe the orbital degrees of freedom by an effective pseLf-nt'ferrO' pseudospin ferroi AA:.both spin and pseudospin are anti-
dospinT=3, so that, e.g., an occupied orbitalcorresponds erro ordered.J and.J; are in units ofJg.

to T?=3 and orbital 8 to T?=—3. The effective Hamil-
tonian has the generic form

Il. GROUND STATE

If our aim is to calculate the elementary excitations of a
system described by the Hamiltoni&6), we first have to
know the ground-state wave functions. We can easily calcu-
late a phase diagram within two different approximations:
(6)  the mean-field and the two-site approximation. In the latter
only two interacting spins and pseudospins are considered,
B so that the ground state is described in a way similar to a
where for the model withjj” given by Eq.(5) the exchange \5jence-bond state, which is a good starting point for low-
constants have definite valuésThus  for this particular __dimensional spin systems. Starting from ground-state wave
choice of hopping matrix elements and for vanishing Hund'sgnctions obtained within one of these approximations, one
rule exchange the model) reduces to a double-spin Heisen- o test the stability of the ground state by calculating its

berg model. . o , response to, for instance, spin waves and combined orbital
The characteristic feature of our situation is the existencgq spin excitations.

and strong interplay of “spins'SandT which emerge due to
the third term of Hamiltoniar{1). As we shall see, this in-
teraction leads to a significant mixing of spin and orbital
degrees of freedom, giving rise, even, to the possibility of the A common method used to gain some understanding of a
formation of spin-orbiton bound states. Note that the form ofHamiltonian is a mean-field approximation. In our case it is
the interaction between the spins and orbitals in @yis a  possible to separate spin and orbital degrees of freedom by
consequence of the Coulomb-Hund’s rule interaction befeplacing operators we want to exclude from our consider-
tween electrons, and is different from what one expects fronation by the averages of their correlation function that ap-
simply coupling two Heisenberg spin systems. As we wanfears in the Hamiltonian. In this way we generate two mean-
to study the generic features of the coupled spin-orbital sysfield Hamiltonians

tem, we consider a general case, treating arbitrary values of

the exchange parameteds, J;, and Jg;. It is explicitly MF_ _ o _ TAQ.Q—_ T <
shown that a spin-orbital bound state exists when all ex s Js<i2j> 35 4JSt<i2j> (T TS-S JS% 35
change parameters are ferromagnetic, and we show that the (7
same mechanism that leads to a bound state for ferromag,q

netic exchange parameters is also operative in a system with

antiferromagnetic exchange parameters.

H=—JS<Z> s-sj—Jt<_E_> Ti-T,-—4Jst<_E> (S-S) (Ti-T)),
ij ij ]

A. Mean-field solution

Notice that in the general situation with Hund'’s rule ex- H'F= _Jtz Ti’Tj_4Jstz (S-§)Ti- T
change included and with realistic values of the hopping in- ) (i)
tegralstﬁﬁ, the resulting spin-orbital Hamiltonian of ty[§6) o,
can contain terms anisotropic in tifleoperators, and even - _Jt(iEj) Ti Ty ®
terms linear inT. However, even with the more realistic
hopping integrals there may exist situatibhs which the In Hamiltonian(7) the orbital degrees of freedom are in-

symmetry in orbital space remains similar to that of Hamil-tegrated out, and in Hamiltonia(8) the average over the
tonian (6). For simplicity we consider such a symmetric spin degrees of freedom is taken. In this way the spin and
double-Heisenberg model because, as it turns out, the condirbital degrees of freedom are decoupled. After doing the
tions for the existence of the bound spin-orbital excitationsnean-field averagiffigve have, in some sense, thrown away
are the most stringent exactly in this case, and if, as we wilthe interesting part of our problem and returned to a renor-
show, they exist in this case, it will be even more so with themalized Heisenberg model, where the ground-state proper-
T anisotropy taken into account. ties and elementary excitations are well known. Neverthe-
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FIG. 2. Phase diagram of the two-site solution of the model
Hamiltonian. In phase 11, both spin and pseudospin are in a triplet

state; in phase 10, the spin is triplet and pseudospin singlet; in 01 Js, Jt, Jst < O (antiferro)

phase the spin is singlet, and the pseudospin is triplet; and in 00 ENERGY

pha_se bqth the spin and pseudospin are in a singlet Stasad J, spins ﬁﬁﬁﬁlﬁﬁﬁﬁ

are in units of|Jg. -Jg Tt
orbitals ﬁ@ ﬁ@ l@ﬁ @ﬁ

less, as in a first approximation this is still a useful approach.

The phase diagram in this approximation is given in Fig. 1. spins TTrTodTTT T3, -]
orbitals ﬁ@ﬁ@l@ﬁ@ﬁ s 77t st

B. Two-site solution
In a mean-field approximation the short-range interactions spins TTTTTTITT
are averaged out, and if we want to go beyond this approxi- obitals T1T 10T T Jg T -2t

mation and gain insight into local properties it is more useful

to consider a few interacting particles. This is especially im- G, 4. Excitation energy for Ising spins and pseudospins for a
portant here because the transformation properties of thes@mpletely ferro and a completely antiferro 1D system in the re-
terms of Hamiltonian(6) are different, and a more accurate gime whereJ,<J,<Js. When the spin and orbital are close to-
account of the real singlet correlatiof@s compared to the gether, the excitation energy is lower than in the case when they are
mean field, essentially Ising-like, treatmgrg essential. To far apart.

this end case we consider two spins and two pseudospins,

and obtain the Hamiltonian simplicity of the Hamiltonian, there is a rich variety of

ground and first excited states, even in the two-site approach.
Hio==JsS1-$=3iT1- To—43(S;- S)(T1- To). (9) In the white, central part of this figure, the ground state is

singlet, both in the spins and orbitals. The first excited state,
This simple case can be treated exactly, and using these rRowever, is not just the change of one singlet into a triplet,
sults, we obtain the modified phase diagram. The combinasut corresponds to the state where both the spins and orbitals
tions of (pseudgspin operators can either be singlet or trip- are in a triplet configuration. This is due to the interaction
let, and the ground-state energy of the various combinationsetween the spin and orbital degrees of freedom, and this
correspond to the different phases in Fig. 2, Jg>0 and  very simple example shows that some of the excitations of a
J5<0, respectively. The character of the first excited stateystem with such an interaction, in this case the lowest one,
for the various phases fd;>0 is shown in Fig. 3. A simi-  carry both spin and orbital character.
lar picture can be made fal;;<0. In spite of the relative

lll. FERRO-FERRO SYSTEM

WhenJg, J;, andJg are chosen in a range where both
the spins and pseudospins order ferromagnetically, a ferro-
[]11 ferro phase, we can obtain exact analytical expressions for
the elementary excitations. In a ferromagnetic Heisenberg
model the exact ground state is the state with all spins point-
ing in the same direction, as opposed to a Heisenberg Hamil-
o Js o1 tonian with an antiferromagnetic exchange where quantum
fluctuations affect the Na# spin order. The coupling between

| et
&\\\\\\\\\\& fct)rta on]:a—dpimens?oﬁeﬂllic)j) feprro—ferrtt:) tsyste.n;r ri]n the”up[:t>ert ‘

part of Fig. 4. Let us consider Ising spitend pseudospins
FIG. 3. Character of the first excited state in the two-site systemand examine the energy of an excitation of one spin plus one
Js andJ; are in units of Jg . pseudospin. If the two excited spins are far away from each
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other, the part of the excitation energy due to the spin pseu- A(Q,0)=Sgi—qTor2+4l0), (15)
dospin interactiorjthe third term in Eq(6)] is 2J;;. When
the excited spins are close to each other, on the nearest- YQ,q) = ws(Q/2+q) + w(Q/2—q), (16)

neighbor sites or on the same site, this excitation energy is

J.;and O, respectively. The same argument holds if the Sysv_vhered is the dimensionality of the system. The total mo-

tem has antiferromagnetic exchanges. In the lower part gfi€ntum of the excitation i, and the relative momentum

Fig. 4 the same attraction between the spin and the orbitdf the combined spin and pseu_dospin exc!tatioql. itn order ,
excitation is found for a completely antiferromagnetically to check if there is a self-consistent solution of the equation

coupled system in the regime whéd| > |J,|>|J (see the pf motion, Eq.(14) is iterated once. Then a_set of equations
phase diagrams Figs. 1 anil ®ne can easily check that the IS found that can be represented in a maltNk, 4| of order
situation is the same also for other types of ordering. Thid for hypercubic lattices. In a three-dimensional system
means that a magnon and an orbitorbital wave have an _a,,8=x,y,z. The set of equations has a solution if, and only
attractive interaction and that, in principle, depending on thdh
dimensionality and strength of the attraction, the magnon and
orbiton can form a bound state. Det Sap™ Ma,ﬂ| =0, (17)
with
A. Equations of motion

d

In order to establish whether it is indeed possible to obtainM,, 5(Q) = —8J; (Zi)
bound states that are combinations of orbital and spin waves ™
in the excitation spectrum of the model system, we use the (cosQ,/2— cosk,)(coSQ 4/2— cosk )
equation of motion method, which provides a simple, and in f — K
the ferromagnetic case exact, way to calculate bound-state ©=Q
energies. Before addressing this issue, let us first examine a (18
single (pseudgspin excitation.

Starting from Hamiltoniar{6) and with a ground stat®)
with energyE, where all(pseudgspins are aligned in the
positivez direction, a single spin is excitedhe derivation
for single orbital excitations is equivalgnfThe equation of Ovst
motion for this excitation is 2w

If the system is one dimensional the condition above reduces

8Jstf7r (cosQ/2— cosk)?

—m 00— wgk+Q/2)— w(k—Q/2)’

) ) ) (19
(H=Eo)Sy |0)=0s5|0)=[H.5;][0). (10 where the lattice spacing is set to unity. This expression re-

The evaluation of the commutator and transformation tcseémbles the condition for the existence of a two-magnon
Fourier-space yields the following Goldstone modes: bound state in a pure ferromagnetic Heisenberg mbdel.

B. Bound states
0s(Q)=2(Js+35) 2 (1-cosQ-a), (1D . .
a We restrict ourselves to the ferro-ferro phase, i.e., accord-

ing to Fig. 2, 24<Js+J; and J;>0, and determine the
bound-state energies from conditiofi&) and (18). The in-
“’t(Q):z(‘]tJ“]ﬂ)Ea (1—-cosQ-a), (12 tegrals appearing in the latter equation are, as in the two-
magnon problem, by no means trivial, and can only be de-
where the lattice vectors are denoteddyThe presence of termined analytically in special cases. In general these
the coupling between the spin and orbital degrees of freeequations can be solved numerically.
dom, parametrized bylg;, thus merely renormalizes the Before examining the integrals in detail, let us first turn to

spin/orbital wave spectrum. the excitations that lie in the continuum. The continuum of
The equation of motion for a combined spin and pseu-excitations starts at the energy.(Q), where the denomina-
dospin excitatiorS,, T, is tor of the matrix element#, ; starts to diverge. The con-

dition for this is
(H=Eo)S,T,0)=wS, T, [0)=[H,5,T,1/0). (13 _
we(Q)=Min[ es(Q/2+ k) + €(Q/2—Kk)]. (20

'The single(pseudgspin-wave excitation energgiwayslies
{0—(Q,q)}AQ,q) in the two-particle continuum,

ws(Q)=wc(Q),
(Q)=wc(Q).

We find, for the Fourier transform of the equation of motion

d
a
:—8Jst(z) 2;, (cosQ- a/2—cosq- a)

The explanation for this is that in a combined spin and or-
Xf dk(cosQ-a/2—cosk-a)A(Q,k), (14)  bital excitation the momentum is distributed over the two
subsystems, and, because the excitation spectrum in the
with ferro-ferro case is nonlinear and concay- cosl-like), the
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energy of two excitations with smaller momenta can be J=I=T,
lower than the energy of one excitation with large momen- 8J - - - —
tum. —— $-0 Boundstate i //’
First we consider thene-dimensionatase. The integral ——~ $-0 Continuum oS
in Eg. (19) can be reduced to the form 6J |- Single S/0 Exc. /’
i /
- I’ 4
1+bcosk+csink 2Y) /|\ 4 A7
i /
which is known analytically. The condition that the integral s
be equal to unity is given by the roots of a third-order poly- 2J Py
nomial. Not so much is gained following this procedure, as #
the resulting expressions are very long and complicated. So s
let us consider some special momenta in the Brillouin zone. 0 ; ' ' ;
0 0.2r 0.4x 0.6m 0.8n n

Q=0. For Q=0, condition(19) for a bound state ab —>Q
=0 reduces to 2;;=J;+J;, which is exactly at the phase
boundary of the ferro-ferro phase in the two-site phase dia- FIG. 5. Dispersion of the spin-orbital bound state, spin-orbital
gram (Fig. 2). A bound state at negative appears when continuum, and single-spin and single-orbital excitations in a one-
235> Js+ J; . This simply means that the ground state is notdimensional ferro-ferro system whedg=J,=J;;. The single spin
stable (by exciting it, energy is gainedwhich can be ex- and single orbital excitation energies coincide in this case. The unit
pected as the two-site phase diagram shows that thef energy isJ=J,.
antiferro-antiferro phase is the ground state in this parameter
range. The ferro-ferro ground state is found to be exactly wp (Q)=2J5(1—cosQ). (24)
stable in the parameter ranges shown in Fig. 2, indicatin% ) _ )
that the two-site approximation gives a good prediction forr OF the lower bound of the continuum, the single-spin and
the ground-state spin and orbital order, whereas the meafingle-orbital excitations, in this case one obtains
field solution fails to predict the right ordering.

Q=. By treating this special case, we can prove that
there isalwaysa bound state in the ferro-ferro system, at Ny %~
least in one dimension. Whe,,=  for all «, at the corner 05 (Q)=w; (Q)=4J5(1—cosQ). (26)
of the Brillouin zone, the equations simplify considerably.|n Fig. 5 the dispersion relations of these excitations are
The off-diagonal matrix elements in EGL7) vanish, so that shown. The spin-orbital bound state is always the lowest

ws (Q)=8J5(1—c0sQ/2), (25)

M, z=Dd, z. This yields energy excitation of the system. Note that for sn@lthe
d ) spin-orbital continuum and the bound state are very close in
wp (m)=2(Js+I) = (Is— )Ty, (22) energy, and their energy difference is of the order of
y . (J5/16)Q"
o (m)=4(Min[Js, 3]+ Isp). (23 The numerical solution of the bound-state equation for a

one-dimensional system is shown in Fig. 6 for two parameter
sets. For small momenta the bound state is always very close
to the two-particle continuum. Whedg; is reduced, the
single spin, single orbital, and continuum shift down in en-
ergy, approaching the bound-state energy. This can be ex-
pected, since in the case whdg=0 andJs=J, the lower
bound of the continuum and the single-spin and single-
orbital excitation spectra all coincide.

In the right part of Fig 6 a case is shown where the
i | single-spin and single-orbital excitations have a different dis-
between —»<w<wc(Q) where the integral is equal to persion, i.e.Js#J;. The single-orbital excitation is shifted

unity. up in energy with respect to the single-spin excitation. The

From the considerations above we can conclude that fop, g state, continuum, and magnon excitations are close in

the.one-dimensional system 'in the range(Q;w a spin- energy, and in the limit thal;— < all three coincide, as can
orbital bound state always exists, and that this bound state ISe expected

the lowest-lying elementary excitation of the ferro-ferro ., 'riq 7 3 tynical result for a two-dimensional system is
phase of mode(6). It is by definition lower in energy than gp,qun "t is found numerically that there always exists at

the spin-orbital continuum, which in turn is Io_wer than the least one bound state, also in two dimensions. Similar to the
single (pseudd spin excitations. Before illustrating the state- 1D case, the bound state is only well separated from the

ment aboye with numerical examples, let us consider ON@ontinuum at the edge of the Brillouin zone.J§=J; it can
more special case, namely: be shown that

Js=J;=J. For these parameters the system is exactly at
the phase boundary of the ferro-ferro ground state. Now Eq. wp(7,0)=4(2Js+ 2J5— \2I5+ 23+ J2)  (27)
(19) takes a particularly simple form, and the solution for the
bound state for the one-dimensional system is and

From these equations follows thaf%(7) < w’%() for any
Js, J;, andJg;, except whenlg=|Js—J;|, where wi%()
= id(w). This proves that a® = # there is always a bound
state.

At w(Q)— w.(Q) in one dimensionFor energies ap-
proaching the continuuw(Q)— w.(Q)], the integrand in
Eq. (19), diverges ask ! (except forQ=0), making the
integral logarithmically divergent. We can conclude from
this that for anyQ (except forQ=0) there is always a point
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FIG. 6. Dispersion of the spin-orbital bound-state, spin-orbital Q
-—>

continuum, and single-spin and single-orbital excitations in a one-

dimensional ferro-ferro system. The unit of energylisJ;. FIG. 8. Dispersion of the spin-orbital bound state, spin-orbital

continuum, and single-spin and single-orbital excitations for an al-
wp(1, ) =4(2I5+ ), (28) most dggenerate 1_D ferro-ferro system whaR=J,=J,=Jg;.
The unit of energy id=J;.

so that at these points the bound state is considerably lower —
than the continuum. Ws= Ws,

C. Almost degeneracy w=witA,

In the subsections above we assumed that the two atomic
levels are completely degenerate. Crystal fields generally Zstz wgt A. (30)
split the two levels. Within the approach above it is fairly
easy to treat this energy splitting. Suppose the energy diffe
ence between the orbitatsand 8 is A. The Hamiltonian to
be added to Eq) is

"he spin-wave spectrum is not affected, but the “magnetic
field” for the orbitals causes a gap in the orbital excitation
spectrum. This can be expected since, due to the magnetic
field, there is no breaking of a continuous symmetry in the
orbital case, and hence no Goldstone mode. This is reflected
HA:A/ZZ (Mg p=Ni o) = AE TZ, (29) in the bound-state energy being gapped. The equalities above
Lo [ permit a convenient generalization of the results derived for
the fully degenerate system to the situation where the levels
are nondegenerate or almost degenerate, as illustrated in Fig.
8, where the dispersion of the bound state in the case of an

The level splitting manifests itself in the pseudospin Ian—orbltal energy splitting of =2Js is shown.

fic field for th bitals. C ing th h From the results in this section one can also understand
guage as a magnetic fieid for the orbitals. Larrying trougil, o il pe the situation in the general case discussed at the

the calculation for the excitations leads to renormalized Spin, .y of sec. |. That is. the orbital part of the effective-spin

waves, orbital waves, and bound states: pseudospin Hamiltonian is in the general case anisotropic,
containing both terms of the typ@9 and Ising-like terms

where the last equality follows from the definition of tfie
operators.

J=d=d,, T{T?. The situation then will be simular to the one discussed
16J : FrANN ‘ above: there will appear a gap in the orbiton spectfsee
PN also Ref. 8. The spin-orbital bound state can still exist be-
127 TR | low the combined spin-orbital continuurtbut in general
s Y above pure spin wavesand one can show that the condi-
3 ,,/;'/ \ tions for their existence will be even less stringent than in the
ANV ,,'7“’ 1 case of gapless orbitons. However, as can be seen from Fig.
' 8, these bound states will not be the lowest excitations in the
A —— Boundstatd ] system, at least not in the whole Brillouin zone. Nevertheless
// | =——- Continuum they will lie lower than the orbital waves themselves, and
/2 s Single Spin they definitely have to be taken into account in a general
0.0) (nI,O) (n;n) ‘ ©0.0) treatment of properties_ of such systems. Ngte alsp t_hat the
Q orbital spectrum may still be gapless, even with realistic hop-

ping integralsti‘}ﬁ due to the orbital-lattice symmetry; this

FIG. 7. Dispersion of the spin-orbital bound state and spin-can lead to particular features of such systems like quantum
orbital continuum, and single-spin and single-orbital excitations in adisorder'® the nature of the elementary excitations plays a
two-dimensional ferro-ferro system. The unit of energyisJs. crucial role in this problem?
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IV. DISCUSSION experiment. One of the possibilities to pin them down may
be connected with the possible anomalies of the phonon-
dispersion relations induced by the orbital degrees of free-
n’dom. Another possibility might be that, since the orbital ex-
. : . Bitations also couple to the spin degrees of freedom,
mtegrals._ We observe 'ghat, beSI_de_s the separate spin and Qriations in the spin order, for instance induced by an ex-
g{ﬁg; )ég;{]agigst’ ;ﬁéﬂ2:;?ivzxnc'éa;'?ﬁ(esﬁxggﬁoﬂ bglljenn(:engernal magnetic field, will be reflected in the energy and dis-
RN ying, ersion of the orbital related excitations, and consequently in
tary excitation of the system. In general ovgrlap m'gegral he properties of the phonons mixed with orbitons.
depend gxpllcr[ly on the symmetry of the orbitals; th.|s, to- In conclusion, we studied a model Hamiltonian that cap-
geth_er with Hund’s rule couplln_g, may break the_contmuoustures the low-energy behavior of a twofold-degenerate Hub-
rotational symmetry of the orbital channel. In this case oneﬁW

can expect that the eventual spin-orbital bound states, whic ard Hamiltonian. We presented the phase diagram in the

are gapless in the simplest case, become gapped and may\Pgan—ﬂeld limit and in a two-site approach, revealing a rich

the lowest-lving excitation onlv af laraer momenta ariety of phases where both the orbital and spin degrees of
If not all )i/ntgractions are fe¥roma g:1etic thereai. riori freedom can be ordereantiferromagnetically. We have
9 ’ P &hown that in this case there may exist, besides the usual

no reason to expect that the orbital and spin-orbital bound_ . . .
states behave qualitatively different from the ferro case, al=S pin waves(magnong, orbital waves(orbitong and, most

thouah the auantum fluctuations miaht. or miaht not. destro interestingly, the combined spin-orbital excitation which can
9 d 01213t s ght, 9 ' e visualized as bound states of magnons and orbitons. In a
long-range ordet®!?13This interesting aspect of the system

with antiferromagnetic interactions still deserves furtherfu"y degenerate system the bound states are found to be the
stud 9 lowest-lying elementary excitations, both in one and two di-
Y- : . mensions. This shows that the elementary excitations in or-
The low-energy collective modes of the orbitally degen-

erate Hubbard model certainly contribute to the thermody—b tally degenerate strongly correlated electron systems in

namic properties of the system, and should be observable ilg’eneral may carry both spin and orbital character.
for instance, susceptibility and specific-heat measurements.
It should be stressed, however, that elementary excitations
with predominantly orbital character are in general gapped, This work was financially supported by the Nederlandse
and therefore lead only to moderate changes in thermodyStichting voor Fundamenteel Onderzoek der MatdF@M)
namic quantities. Experiments that are sensitive to higherand the Stichting Scheikundig Onderzoek Nederle®@N),
energy scales might give direct evidence for the existence dfoth financially supported by the Nederlandse Organisatie
orbitons and spin-orbital bound states. Orbital excitationsyoor Wetenschappelijk Onderzo@dWO). J.vdB. acknowl-
however, are strongly coupled to phonons, and it might beedges with appreciation the support by the Alexander von
difficult to distinguish between these two contributions in Humboldt-Stiftung, Germany.

We studied the low-energy excitations of a twofold-
degenerate Hubbard model in the strong-coupling limit with
on average, one electron per site and symmetric hoppi

ACKNOWLEDGMENTS

*Present address: Max Planck Institut FKF, Heisenbergstr. 1, [Sov. J. Low Temp. Phys, 99 (1980].
70569 Stuttgart, Germany. Electronic mail: brink@audrey.mpi- S. Ishihara, J. Inoue, and S. Maekawa, Physic®263 130

stuttgart.mpg.de (1996; Phys. Rev. B55, 8280(1997.
1H. A. Jahn and E. Teller, Proc. R. Soc. London, Sed &4, 220 "H. F. Pen, J. van den Brink, D. I. Khomskii, and G. A. Sawatzky,
(1937. Phys. Rev. Lett78, 1323(1997).

2G. A. Gehring and K. A. Gehring, Rep. Prog. Phgs, 1 (1975. 8S. Marini and D. I. Khomskii, cond-mat/9703180npublishedl
3K. I. Kugel' and D. I. Khomskii, Zh. Eksp. Teor. Fif4, 1429  °J. L. Garca-Muroz, J. Rodiguez-Carvajal, and P. Lacorre, Euro-

(1973 [Sov. Phys. JETB7, 725(1973]; Usp. Fiz. Naukl136, phys. Lett.20, 241(1992.
621 (1982 [Sov. Phys. Usp25, 232 (1982], and references 10| | F. Feiner, A. M. Oles, and J. Zaanen, Phys. Rev. [#§t2799
therein. (1997.
4J. B. Goodenoughylagnetism and Chemical Borithterscience, M. Wortis, Phys. Rev132, 85 (1963.
New York, 1963. 12G. Khaliullin and V. Oudovenko, Phys. Rev.35, 14 243(1997).

5K. I. Kugel’ and D. I. Khomskii, Fiz. Nizk. Temp6, 207(1980  3L. F. Feiner, A. M. Oles, and J. Zaanémpublishedl



