PHYSICAL REVIEW B VOLUME 58, NUMBER 16 15 OCTOBER 1998-II

Full-potential spin-polarized relativistic Korringa-Kohn-Rostoker method implemented
and applied to bcc Fe, fcc Co, and fcc Ni
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The full-potential spin-polarized relativistic Korringa-Kohn-RostoK&P-SPR-KKR method of band-
structure calculation has been implemented in a self-consistent way. This scheme deals with the nonspherical
potential as well as spin polarization and all relativistic effects on the same level. Technical details of this
approach as well as its formal extension to account for the so-called orbital polarig@®pmechanism are
described in some detail. Results of corresponding applications to the elemental ferromagnets bcc-Fe, fce-Co,
and fcc-Ni are presented with an emphasis on the consequences of nonspherical and OP-potential terms.
[S0163-182608)05540-4

I. INTRODUCTION nonspherical but also spin dependent and includes a vector
potential contribution has been studied in great detail by

The KKR method of band-structure calculation has beerTamura®
introduced already in the 1940s by Korrirtgand Kohn and Practical applications, however, have been restricted until
Rostoker? While this scheme was not very popular in its now to the spin-polarized relativist(SPR case leading to
original form it became extremely important in connectionthe FP-SPR-KKR that has been implemented so far only in a
with multiple-scattering theory as a way to get access to th@on-self-consistent modé. On the other hand, self-
electronic Green's functiofKKR-GF). This development consistent calculations have been performed recently for the
opened the way to deal with solids with reduced symmetryparamagnetic caséR-KKR) using the KKR-method in its
such as, for example, impurities in an otherwise ordered hostariational form™* In addition it is worth to mention here
material. Another important application is the investigationalso the use of the FP-SPR-KKR scheme within the one-step
of randomly disordered alloys by adding some adequate alodel of photoemission theory by Fluchtmaginal * Simi-
loy theory as for example the coherent potential approximalar work has been done also by Krewer and F&tler the
tion (KKR-CPA). case of spin-polarized LEED.

Originally the KKR as well as its extensions mentioned In the following, we report on a self-consistent implemen-
above have been formulated on the basis of the so-calle@tion of the FP-SPR-KKR Green’s-function method. This
muffin-tin construction for the charge and potential distribu-includes an extension of the scheme to account for the spin-
tion. First steps towards a full-potentiéFP) scheme were orbit-induced orbital polarizatiofOP) due to Brooks’ OP
undertaken by Anthony and Bross by using a warped muffinmechanisrtP!® (FP-OP-SPR-KKR or FP-SOPR-KKRIn
tin potential® However, the extension of the KKR to a true the next section, the technical details of an implementation
FP-scheme by a corresponding proper treatment of the nowf the FP{OP-)-SPR-KKR scheme will be presented. This is
constant interstitial potential between the muffin tins hagfollowed by a presentation and discussion of results that have
been discussed in the literature for a rather long time and ikeen obtained for the elemental ferromagnets bcc Fe, fcc Co,
a very controversial way. Now, it is generally accepted thaiand fcc Ni as a test case.
the scheme proposed among others by Zeller and Dederichs
supplies a sound basis for FP-KKR band structure calcula-
tions. In practice, this scheme essentially consists in using a Il. THEORETICAL FRAMEWORK
Wigner-Seitz partitioning of the space and using within the AND TECHNICAL DETAILS
corresponding atomic cells for all relevant quantities a rep-
resentation in terms of spherical harmonics; i.e., for the wave
functions, the Green’s function as well as for the charge and The investigations to be presented below have been per-
potential distribution. Since its first implementation by Drit- formed within the framework of the relativistic version of
tler et al* the FP-KKR has been applied with great successpin-density-functional theorySDFT). The corresponding
mostly to impurity system3-8 While this work was done in Dirac equation for the four-component single-particle wave
a nonrelativistic or scalar relativistic way the extension to thefunction ® and energyE:
relativistic case has been investigated by Taniuvsiang
et al,'® and Lovatt, Gyorffy, and Gudt The corresponding
construction of the Green’s function for the most general Co 11 2 > > >
case that the potential entering the Dirac equation is not only [ @Vt (1= e+ V() | i(r) =E®i(r) @

A. Kohn-Sham-Dirac equation
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has been introduced by MacDonald and Vd¢kand  ric vector potential normalized according to Hf) and the
Rajagopaf® (atomic Rydberg units used throughout; i&., use of atomic units. Formally the OP term has therefore a
=1m=1/2e?=2). In this Kohn-Sham-Dirac equation, the form to be expected from current-density-functional
potentialV, theon?*2°(CDFT), which should provide a sound and rigor-
. ous basis for investigating any properties connected with or-
V=V, +Vy+V,.+ BoB, (2)  bital magnetisnf® However, one has to note that the physi-

) ] ) cal justification for Brooks’ OP term is quite different from
contains the Coulomb potential due to the nuckj)and  he exchange-correlation vector potential occurring within
the other electrons\y). The contribution due to exchange cpgET27
and correlation has been split into a spin-averaged pag)(

and a spin-dependent par,Bo?Ls;). The effective magnetic B. Solution of the single-site problem

field B occurring in the latter term stems from the depen-  To deal with the above Dirac equation for the case of a
dence of the exchange-correlation enefgy. on the spin  nonspherical potential we have adopted the scheme devel-

magnetization densitgﬁ: oped by Zeller and Dederich&®during recent years for the
R nonrelativistic or scalar relativistic case. This implies that in
. JE d n,m] a first step space is subdivided into nonoverlapping, space-
Bett(r)=Bexdr +&rﬁ—® () filling polyhedra usually realized by means of the Wigner-

Seitz construction. The shape of these Wigner-Seitz cells is
with n the particle density. In the calculations presented berepresented by the so-called shape functi@ng) with

low the local exchange-correlation potential of Moruzzi,

Janak, and Williams has t_Jee_n lﬂs"@et\ possible contrlbytlon OwdN= 6.(NI(F), @)

from an external magnetic field,,; has been added in Eq. L

(Il A). Finally, the quantitiesy; (i=1,...,3) andB occur-

fing in Eqs.(1) and(2) are the standardx4 Dirac matrices where the step functio®ygis 1 forr within the cell and 0

and theor (i=1 3) are thePauli spin matrices in their otherwise. The functiong) are real spherical harmonics
relativisticl: forméd Y with L standing for (,m). In addition one defines the radius

The spin-dependent term in E¢@) strongly reduces the Tcr Of the smallest circumscribed sphere, for whigk,«(r)
symmetry for the above Dirac equati®hOne of the many =0 forr>r¢,. Multiplying the potentialV of the extended
consequences of this is that inclusion of spin-orbit couplingsystem in Eqg.(1) with the functlon®WS(r) centered at an
leads for a spin-polarized system to a finite orbital magneti@tomic siten leading to the single-site problem. To solve the
moment. However, compared to experiment this is oftercorresponding single-site Dirac equation the ansatz
found to be up to approximately 50% too snfallTo cure .
this problem Brook¥**has proposed a so-called orbital po- R ga(r,E)xa(r)
larization (OP) term that is meant to account for Hund’s O(r,E)= it E)y—(F
second rule. Originally, this heuristic term has been added to A B)XA(T)
the Hamiltonian matrix of a conventional band-structureis made. Hereg andf are the radial wave functions of the
scheme that works on a nonrelativistic or scalar relativistionajor and minor components. The functiopg are the con-
level with the spin-orbit coupling treated as a perturbation inventional spin-angular functiorfS:
the variational step. Recently, Ebert and Battocetterived

a corresponding potential term that can be added to the :2 CMsy#~Ms ©)
above Dirac equation. Fal-electron systems it is given by XA AT Xmg

8

A

Hop= =Bl ({1 )m 12815 (4 with C{*=C(l,3,j;x—m,m,) the Clebsch-Gordon coeffi-
cients, Y|" complex spherical harmonics aadn the two-
Here (I,)m, is the expectation value of the orbital angular component Pauli spin functiod8 The spin-orbit and relativ-
momentum operator for the spin subsystem with charactestic quantum numbersg and w, respectively, have been
ms and combined toA = (k,u), with A=(—«,u). Inserting® into
the single-site Dirac equation leads to a set of coupled radial

2 . .
r Dirac equations:

2 <
B (1) = 44J dr4wr’2(9:——5r )pdm(r) (5)

> >
K
stems from a Racah parametef® In Eq. (5) pym_ is the FrPAa= = Pt o2 - t1Q 2 ViaarQar
averaged charge density fordeelectron and _ (r..) stands
for the smaller(largen of r andr’. ObviouslyHqyp can be
cast into the form - —2 AL Qur (10
HOP:_AOPp¢n (6) 9
wherep, is the azimuthal component of the momentum op-  gr Qx= QA EPA+ AA’ P AA'

erator andA°P=r sin B3 (1 )m 4, is a rotationally symmet- (11)
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Here the arguments and E have been suppressed for the r0
radial wave functions for which we used the auxiliary func- O \(r,E)=2, @, a(1,E) — ®,(T,E). (17)
tions A

After having solved all systems of coupled equations for the
PA(r,E)=rgx(r,E), (120 wave functionsd, one gets the corresponding single-dite
matrix by introducing the auxiliary matricesandb:

Qu(r,E)=crf,(r,E). (13 RPT .
aya(E)=—iprihy(pr), @\ (F.E)][i—r,, (18

The potential matrix elementg; ,, are defined by
baa (E)=ipr?[hy(pr), @ (r,B)]li=r - (19

Vaar(D=CxealVer= 0Blx= ). 19 Here p=E(L+E/c? is the relativistic momentufi and

.. .], denotes the relativistic form of the WronskinThe
functionsh, are the relativistic version of the Hankel func-
tions of the first and second kirfd:

These are straightforwardly evaluated by expanding the p
tential into real spherical harmonics:

V(F)=§ VL(DW(D), (15) ) T hi"(Pr)x(T)
hi(pr)= ipcS, . . (20)
! 2 | 2 ~hr (PP xa(r)
E+c

B(r)=>, B.(N.(r), with B(r)=B(r)B. (16 _
") EL: MR (r)=8(r) (19 with the angular momenturh=1—S, for the minor compo-

) nent corresponding te- k and S,=sign(x). Evaluating all
Here it has been assumed tiBapoints everywhere along the functions in Eqs(18)—(19) atr=r., one finally has

same directionB. In the following applications8 will be i

oriented along the crystallographicaxis of a bcc or fcc t(E)ZZ_[a(E)_b(E)]b—l(E). (21)

system. However, these are not necessary restrictions for the p

f_ormallsm; i.e., treatment of other orientations or noncoI-By a superposition of the wave functiods, according to
linear magnetic states can be stralghtfng\)Nardly accounteghe boundary conditions

for. Finally, the potential matrix elemen#s;,,(r) are con-

nected to the operatGiyp in Eq. (6) and are defined analo-
gously toVy ,,(r) in Eq. (14).

Restricting the above expansion for the potentiao L
=(0,0) and settingB=0 obviously leads to the standard —iphX(F,E) (22)
radial Dirac equation for a spherical potent&llowing V ) ] )
to have nonspherical contributions wiB=0 one has the ©ONé _gets an alterna'qve se_t of I.|nearly mdependent regular
paramagnetic case investigated recently by Bei der Kelle§olutionsZ, to the single-site Dirac equation. These func-
and Freema®? Retaining forV and B only the termL tions are normalized in analogy to nonrelativistic multiple-
—(0,0) leads to the equations for spin-polarized systems gescattering theory according to the convention of Faulkner
rived by Doniach and Sommefd, Feder, Rosicky, and and Stock® and allow us straightforwardly to set up the
Ackermanf® and Strange Staunton’ and éyoi’ﬂ‘ynat 'have electronic Green’s functior{see below. The additionally
been used routinely for several years. For this caséqjge  needed irregular solutior, are fixed by the boundary con-
term of B already leads to a coupling of an infinite number of dition
partial waves P, ,Q,) for the same quantum number. F—rer
Fortur)atel)élit is well justified to restrict the coupling d JA(FE) — ju(r,E) (23)
=|—1"=0.""Inclusion of nonspherical terms WandB lead ] _ _ ) ) )
to further coupling. In practice, however, the number ofand are obtained just by inward integration. The functipps
coupled partial waves is restricted tol 2¢,+1)2 by fixing ~ occurring in Eqs(22) and(23) are the relativistic version of
an upper limitl . for the angular momentum expansion of the sEhzeoncaI Bessel functions defined in analogy to(EQ).
the wave function in Eq(8). For example, fol,,,=2 one  for hy. . _ _
may have up to 18 partial waves coupled; i.e., one has to AS an alternative to the direct solution of the above
solve up to 36 coupled equations for the functidhs and ~ coupled radial differential equations one can also apply the
Q, . However, for a cubic system witB=2 and |, ,,=2 scheme proposed by Drittfe¥* for the scalar relativistic

. ) max H 1 i
one has at most 3 partial waves coupled due to the high@S€- FOr this purpose the Green sfunc@&for the single -
symmetry of the system. site system is determined in a first step with the nonspherical

Using the above radial differential equations a set ofpotential terms ignored; i.e., by settivg =0 andB, =0 for
2(Imaxt 1)? linearly independent regular solutiods, can L+ (0,0). Here it is advantageous to set G, using the
be created by initializing the outward integration with a se-regular and irregular solutioR® andH°, respectively, nor-
lected spin-angular charactex dominating close to the malized according to the convention used by tHeecgroup
nucleus; i.e., one demands that (see below. Fixing R® andH° by the boundary conditions

r>rer

ZA(FE)=2 Zya(FLE) — X jadfE)XE)
AV A!
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girA(f,E)XA'(F) for t.h_e complex transposition operati()see also beloy In
RY(rE)=2, o ) addition, one should note that in contrast to the scalar rela-
A\ (L E) xar(r) tivistic case the wave functiorﬁg and HR consist of up to
two magnetic partial waves due to the magnetic potential
. termB, for L=(0,0). In the next step the solution to the full

potential problem is obtained by making use of the
Lippmann-Schwinger equation. For the regular and irregular
solutions,R, andH, , respectively, this leads to the follow-

— JA(LE)=ipX hy (FLE)tyA(E), (24
A!

gA,A(r E)XA'(V) r>re ing set of coupled radial integral equations:
H(rE)=2 — hX(r,E),
A’ |fA,A(r E)xa (1) o
(25) PA’A PA’A PA’A
with t$,, the corresponding single-sitematrix, the Green’s Qaa|~| Q}s +gs 3., Anpst
function has the compact form
PO
A Apg 29
+
g ~0 Apsh [ 0
Godr.rE)=—ip2 {RY(FEHY (T, E)O(r'—r) Qi
+HY (M E)RY(r,E)®(r—r")} (26 _ 0 50
i PA'A PA’A A'Ans
with (~ ):(~o + 2 0 Chpet
QA'A QA’A AnS QA,AnS
0
R} E [0 A (P E)xh ()i =i $ A (rE)x L] Pii,.
+ o Da, (30
(27 YN

and As before[see Eqs(10)—(13)] we have introduced the aux-

iliary functions P, Q, P°, Q% P°, andQ°. For the sake of
. ~ ~ _ clarity the arguments and E have been suppressed for all
HY(FE)=2 (O A(r,E)xh (1); =i i,A(F,E)X%)- functions and the terms connected to the OP potential term in
A 29) Eqg. (6) have been omitted. The and E-dependent phase
functional matrice#\, B, C, andD (Ref. 35 occurring in the
Here and in the followingx designates the left-hand solu- above equations are given by the following integral equa-
tions of the corresponding Dirac-Hamiltonian while T standstions:

ATAM™

i Ter ~ 1. _
AAnSA(r):_Ipfr dr’ E |P?\”Ans(l")AVX,,AW(I")PAmA(r')+?Q?\,,Ans(r’)AVA,,A,,,(I")QAmA(I”)], (31)

1 _
B, sA(r)——lpf dr’ [Pg,,Ans(r’)AVX,,A,,,(r’)PAmA(r’)Jr?Qi,,Ans(r’)AVA,,A,,,(r’)QAmA(r’)]. (32

ATAM™

Ter ~ ~ 1. _ ~
CAnSA(r):—ipfr dr' X {Pi,,AnS(r’)AVX,,A,,,(r’)PAWA(r’)JrgQX,,AnS(r’)AVA,,A,,,(r’)QA//,A(r’)], (33

ATAM

ATAM

Ter 1 _ ~
DAnSA(r):ipfr dr’ > {Pi,,AnS(r’)AVX,,A,,,(r’)PAWA(r’)JrgQg,,Ans(r’)AVA,,A,,,(r’)QA,,,A(r’)], (34)

where again the argumehlt has been suppressed. The per-coupled integral equatior(9) and(30) can be solved itera-
turbation termAV is the nonspherical part of the potential, tively to the required accuracy by making use of Born's se-
i.e., without the(0,0) terms in Egs.(15) and (16), and its ries expansion. As for the scalar relativistic case one gets
matrix elements are defined in analogy to Ef4). The finally the single-sité matrix for the full potential case from
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tAA’(E):t?\Ar(E)+AtAA’(E)a (35)  axis, as investigated here. Fortunately, this is still true if the
OP term is included in the Dirac equatidh) because here
with the correctiomAt, ,. given by*® the relation[Eqg. (11) in Ref. 9] for the vector potential cor-

responding to the OP-potential term in E§) holds.
Finally, the quantityry y, in Eq.(37) is the so-called scat-
tering path operatot® For an ordered system the site diago-
C. Multiple scattering Green’s function nal scattering path operatef" can be obtained from the BZ
The problem of setting up the electronic Green’s functionint€gration,
G(r,r 'E) for a solid on the basis of relativistic multiple-

—ipAtaa/(E)=Bypr(rer, E). (36)

1 . _
scattering theory for arbitrary scalar and vector potentials has T?\?\/:Q_ d3k[t(E)”*1—G(k,E)]Ai,, (39
been investigated in great detail by Tam@r&he corre- BZJ gz
sponding expression fdg(r,r ',E) is given by where G(k,E) is the matrix of the relativistic structure
constantg?

G(r,r',E)=2, Z\(r,E)/\Y (E)ZX(r,E)
AA’ D. SCF cycle
no> nX > , With the Green’s functiorG(r,r ',E) available more or
_; {ZA(rB)I(rB)O(r'—r) less all quantities of interest can be calculated. In particular,
the charge and spin density are obtained via
+IN(LE)ZY(r ' E)O(r—1")} 8y (37) L .
> F > >
for r (r’) within the celln (m). Here again the normaliza- n(r)=- ;ImTr f dEG(r.r,B), (40
tion in analogy to the nonrelativistic formalism of Faulkner
and Stock®® for the wave functionZ , andJ, has been used - 1 Er -
[see Eqgs(22) and(23)]. The reason that we used in contrast m(r)=——ImTr j dEBo,G(r,r,E). (41)
to Eq. (37) the Jiich convention for the single-site Green’s
function Ggs in Eq. (26) is that it gets more compact in that In practice, the energy integration is performed using a
way. Using forGgs also the convention Eq37) is based on contour integration in the complex plane.
would lead to two sums instead of just one. As a result, Eqs. Obviously the SCF problem connected with the Dirac
(29)—(35) would get much more complex and would require equation(1) is just the same as for the nonrelativistic case. In
more computer time to solve. On the other hand using in Eqgfact the scheme developed by Drittler and co-worketSto
(37) the convention of Faulkner and Stocks; i.e., expressingleal with the potential construction and the SCF cycle has
the Green’s function in terms of the scattering path operatobeen adopted without any changes. In short, this means that
71,, does not increase the numerical effort and leads tdhe Coulomb part of the potential has been split into an in-
some advantages when combining the KKR-GF method witirasite and intersite part. The former is obtained by straight-
the coherent potential approximati¢BPA) alloy theory?”  forward solution of the Poisson equation in real spherical
Of course both conventions are connected to each other jusrmonics. The intersite contribution is essentially a Made-

as for the case of spherical potentiggse Eq(4) in Ref. 3g:  lung sum of multipole potentials derived from the same rep-
resentation of the charge distribution on the neighboring
G=t) "oty 1-( L. (38  sites. In analogy to nonrelativistic spin-density-functional

theory the spin-dependent exchange-correlation potentials
The boldface notation used indicate here matrices with rey!(l) are obtained from the local charge and spin-
spect to the cite indices and the spin-angular charatter magnetization density according to the adopted parametriza-
The matrixG is the structural Green’s function matrix used tion. For these an expansion into real spherical harmonics in
within the Jiich formulation. The most important point to analogy with Eqs(15) and (16) is obtained via numerical

note is that in Eq(37) the signX indicates that the wave | ; : : oy
. X ~ integration. The corresponding potential tering, andB_
functionsZ* and J* are the left-hand side regular and ir- 5 o then obtained from

regular solutions of the corresponding modified Dirac
equatior® Fortunately, these are obtained from the same ra-
dial differential equations as the conventional right-hand side
solutionsZ, andJ, ; i.e., from Eqs.(10) and (1) with the
potential matrix eIements\/iA, replaced byVi,A. For

highly symmetric systems one may have the situation that Finally, in the SCF iterations the Broyden method is used
Vi, =V, In this caseZ* andJ* are obtained fronZ  to accelerate the convergerice.

and J by simple complex conjugation and transposition as At the end of this section it is appropriate to mention
indicated in Eqgs(24), (25), (27), and (28) since left- and some practical aspects. Because close to the nucleus the non-
right-hand side solutions are identical with respect to theirspherical contributions t& andB are extremely small, these
radial parts. This applies, in particular, to the single-sitehave been ignored far<r g, with r,s set to 0.2 a.u(see
problem with spherically symmetric potential tervisndB, below). By restricting the angular momentum expansion for
but also to cubic systems with the magnetization alongzthe the major component of the wave functionl g, one gets a

Ve L= %(V)T(C,L—i_V)JEC,L)’

Bxc,Lz %(Vlc,L_V}(c,L)- (42)
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‘ tions with A’'=(—3,+1/2) andA’=(—1,+1/2) admixed.

40 /”\\ 1 The former one had character as the diagonal partial waves
[\ : and is primarily due to the magnetic potential teBn The

' | later contribution withs character, on the other hand, stems
\ exclusively from the nonspherical potential terms and is
about three orders of magnitude smaller than the others.

30

\

\ . .
AN B. Dispersion relation and density of states

Pomaan N ] Lovatt, Gyorffy, and Guo have calculated the dispersion

N Qiiinae >
P e i relation E(k) for bcc-Fe using the FP-SPR-KKR together

-
322412 e T — e m—

0.0 — T e i with  potentials supplied by self-consistent LAPW

P2 Lswnann calculationst! The results forE(K) using a self-consistent
: ‘ potential created with the FP-SPR-KKR schefsee below

00 1.0 20 3.0 is very similar to theirs. In particular, the electronic bands
r(au) show the same hybridization effect, avoidance of band cross-

. . ) . ings and anisotropy with respect to the orientation of the

FIG. 1. Radial wave functionB,,» andQ, 1 (in atomic unit 0o netization, which is typical of band-structure calcula-

?;rtk;e g:”'f‘)'tevﬁ‘gig '&‘E :oonglgl;tln?hfoanv(\:/ggnfs\ _fo(rX 2:(1_/ 21) tions for spin-polarized systems with the spin-orbit coupling
+112) havpe been scaled up’ by é factor of 2C° for display ' accounted for. AII_ of these men_tioned featl_Jres are found in
' full accordance with corresponding calculations based on the

rather natural cutoff for the expansion of all other quantitiesgté,)omr'](:j s4p1here approximatidASA) (see, for example, Refs.

relevant for the SCF cycle. Because of E@) and(41) the - . . . .
: : o . A direct comparison of the dispersion relations calculated
expansion fgr the charge and spin magnetization denSItIe?J’sing a full andpASA potential repspectively leads to differ-
n(r) andm(r), respectively, are restricted t0@max. AC-  gnces of up to 107 Ry.%® Accordingly the corresponding
cordingly, the expansion for the potential should also be reyengity of state¢DOS) curves are found nearly identical for
stricted {0 21,44 Finally, the construction of the Coulomb 5| hree systems investigated. Here it seems worth mention-
potential, as sketched above, implies that one has 10 SUPP|¥g that for the case of the FP calculations an angular mo-
the shape functions, (r) up t0 4xly,ay. Most of these re-  menym decomposition of the DOS is somewhat ambiguous
strictions stem from the triangle condition for the coupling of yocause of the inclusion of the intersite region.
two angular momenta.

PA’A,QA’A

[
|
)
!
'l
20 'l \\Qz+1/2:2+1/2
I
|
|
1.0 1
|
|
|

C. Charge and potential distribution

A Calculation of the wave functions The c_harge-density distribution fo_r bcc-Fe based on non-
' selfconsistent FP-SPR-KKR calculations have been given al-

Both schemes presented above to solve the radial Diraeady by Lovatt, Gyorffy, and Gut:. Performing such cal-
equations(10) and (11) have been implemented. For the di- culations in a self-consistent way does not lead to any
rect solution of these equations the Bulirsch-Stoerqualititative changes. For the nonspherical potential terms
algorithnf® has been used. Setting the internal tolerance pav,, and B,, corresponding self-consistent results are shown
rameter to 10° the Wronski relations connecting the various in Fig. 2. The kinks observed in these curves are connected
wave functions were fulffilled better than 10 An accuracy to those of the shape functiorts , which possess a kink
of 107 1% could be achieved by setting the tolerance t6f0  whenever a cell-centered expanding sphere crosses a plane
Using the Born series procedure inst¢ael., Eqs(29—(35]  bounding the Wigner-Seitz cell. Accordingly, the first kink
with five iterations led to an accuracy of 19for the Wron-  occurs at the muffin-tin radius,,, which is the radius of the
ski relations. However, the computational time for this waslargest inscribed sphere within the cell.
about 40% higher than using the Bulirsch-Stoer algorithm For comparison the results stemming from scalar relativ-
with an accuracy of 10°. istic linear augmented plane-wave.APW) calculations

Because the Bulirsch-Stoer algorithm seems to be supdrave been added to Fig. 2. For this purpose the LAPW po-
rior with respect to accuracy and efficiency it has been usetential represented in the interstitial region, i.e., for<r
throughout for the following applications to the elemental<r., by means of plane waves have been expanded into
ferromagnets bcc-Fe, fcc-Co, and fcc-Ni. real spherical harmonics according to E(kb) and (16).

For all of these calculations the angular momentum ex- The agreement of both data sets in Fig. 2 is quite satisfy-
pansion for the wave functions has been restrictedtg  ing. The differences observed may be ascribed to the men-
=2. As a consequence of the cubic lattice and the magnettioned reexpansion of the LAPW potential, the restriction of
zation oriented along theaxis there are at most three partial the angular momentum expansion 1@,,,=2 for the
waves coupled fol,,,= 2. Corresponding results are shown FP-SPR-KKR calculations, and, last but not least, the inclu-
in Fig. 1, where the various wave functions contributing tosion of spin-orbit coupling for the latter. However, a more
Z, with A =(+2,+1/2) are shown for a Fe potential and an important consequence of the inclusion of spin-orbit cou-
energyE=0.6 Ry. Of course, the diagonal patt,,, with  pling is that the symmetry of the system is reduced compared
A=A dominates, but there are also appreciable contributo the scalar relativistic LAPW calculations. With the mag-

IIl. APPLICATION TO bcc Fe, fcc Co, AND fcc Ni
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FIG. 2. Nonspherical potential term(r) andB,q(r) for bec FIG. 4. The OP potential terB;” for bce Fe as calculated by
the self-consistent FP-OP-SPR-KKR.

Fe as obtained from self-consistent FP-SPR-KKR and LAPW cal-

culations. )
therefore hardly affect the scalar potentiddsand B. For

netization pointing along the axis the symmetry is effec- bcc-Fe, the spin-resclved OP-potential terB%: obtained
tively tetragonaf? Accordingly, there are now axial contri- from a self-consistent calculation are shown in Fig. 4. As one
butions to the nonspherical potential as, for example, th&otes, both curves are very similar. Their simple radial de-
termsV,, andB,y shown in Fig. 3. Although these terms are pendence of course stems from their connection with the
about three orders of magnitude smaller than those shown fiadial charge distribution for the electrons[see Eq.(5)].
Fig. 2 they have nevertheless an important consequence. TA&€ir sign and magnitude, on the other hand, is primarily
Coulomb pariv$, of V., at the nuclear site is proportional to determined by the expectation vallig)q,m. This quantity
the electric-field gradien®&FG) that can be probed for nuclei obviously has different signs for the majority and minority
having a quadrupole moment. As is demonstrated by the respin systems and is bigger in magnitude for the latsere
sults in Fig. 2 accounting for the nonspherical potential onlyalso below. The most important point to note with respect to
for r>r ¢ is well justified. However, on the other hand, this the curves in Fig. 4 is that the radial variation of the orbital
numerical simplification prevents the EFG to be determineddolarization-vector potential is extremely different from that
directly from the limit lim_ ,V,o(r). As an alternative the occurring within a CDFT calculatioff. This is of course not
EFG can also be calculated from the corresponding nonsurprising because the physical mechanism behind both
spherical charge distribution termy(r) within the central schemes is quite different.
Wigner-Seitz cell and a Madelung contribution stemming
from the multipoles on the neighboring sit€s’’ D. Orbital current-density distribution

The results shown above have been obtained ignoring the
OP-potential term. This additional term primarily affects the
orbital magnetic momentsee below. Its inclusion will

An important consequence of the inclusion of spin-orbit
coupling within a band-structure calculation for a spin-
polarized solid is that its orbital angular momentum is no
more quenched. This corresponds to the occurrence of a fi-

nite paramagnetic orbital current densfty (the adjective
paramagnetic will be omitted in the following because exter-
nal magnetic fields were assumed to be absent; i.e., the
physical and paramagnetic current densities are ideptical
Together with the spin-resolved particle dengity this
quantity supplies the basic variable within CDFT as formu-
lated by Vignale and Rasdif.Although this scheme has not
been used herdor a recent application of CDFT to magnetic
solids see Ref. 2%the current densit}'7p has been calculated
in a spin-resolved way, because it enters in this form the
so-called Vignale-Rasolt equations of CDFT, which replace

the Kohn-Sham equations of SDFT. This means fg@thas
been obtained from

0.00010

0.00000

-0.00010

V20,B 20 (Ry)

—0.00020 [

—-0.00030 " ' :
T 1.0 2.0 Tur 3.0

" r(a.u.)

— —
>

1 Er 1 N
jo,=——ImTr dE-[V-V]P,G(r,r ",E)|;=;/,
FIG. 3. Nonspherical potential term¥s(r) andB,y(r) for bec Ip.o T f i [ 1P.G( M=
Fe as obtained from self-consistent FP-SPR-KKR calculations. (43
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FIG. 5. Orbital current den§itj7p for bce Fe in the(00)-plane FIG. 7. Magnitude oﬁ2fp for bcc Fe in the(100 plane (in
(in arbitrary unitg. For displayj, has been weighted with?. arbitrary unitg. Starting from one of the innermost kidney-shaped
isolines|r2fp| decreases monotonously in constant steps when go-
with the spin projection operatd® ,= %(1+,30'z) ing outwards from one isoline to the adjacent one.
p =+ .

Results obtained that way for the spin-integrated orbitabi
current density ,= = ], of bce Fe are shown in Fig. 5. Here

the direction and magnitude 5@ is represented by arrows
for the (001) plane with thez and magnetization axes point-

ned with the time inversioff result in true symmetry op-
erations T C,,) for the ferromagnetic staf&.

The distribution of the current densiﬂg within the (100)
plane, which includes the magnetization axis, is shown in

ing upwards. At first sight the current-density dIStI‘IbUtIOHIEig. 7, where the magnitude o?fp is represented by means

seems to be rotational symmetric. However, a closer look @ "’ o L
reveals that it has in fact a lower symmetry. This is demon-Of isointensity lines. As could already be seen in Fig. 5 the

~ current is strongly concentrated in the inner region of the
strated in Fig. 6, which gives the radial component]pf gy g

L . . atom for any direction in space. In addition, one notes that
within the (001) plane (this component is about 2—3 orders o ¢ rrent density weighted witt: takes its maximum on

of magnitude smaller thayy, itself and has been scaled by a the (001) plane at about O distance from the nucleus.
factor of approximately 350 with respect to Fig. s one  This is demonstrated once more in Fig. 8 where the magni-

notes, there is only a_fourfold symmetry axis along zfzeis. tude of rzfp averaged with respect té within the (001)
For the paramagnetic state tReandy axes as well as the

diagonal axes in between would be twofold symmetry axes. 0.03 \
Obviously, the corresponding symmetry operatiGs is
missing here because of the ferromagnetic state and the spin- N | FP P
orbit coupling accounted for. However, one can also clearly 002 [/ N~ T ASA-CDFT
see from Figs. 5 and 6 that this symmetry operations com-
0.01
3 — vz
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RRAARAA AL Vv v L L LY
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3333 rER KRR aAved /el 7772
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2 LTI
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B S N I T FIG. 8. Magnitude ofr°j, for bcc Fe in the(100 plane and
3 LD S Mkl averaged with respect to it$ dependence. The various curves
-3 2 -1 0 1 2 3 show results stemming from FP-SPR-KKRP) calculations based
r (a.u.) on the plain SDFT-Dirac equatiofl), calculations including the

OP term (FP-OB and work done within CDFT using the ASA-
FIG. 6. Radial component of the orbital current densfi,;yfor SPR-KKR (ASA-CDFT) (Ref. 27. In addition the decomposition
bcc Fe in the(001) plane(in arbitrary unit$. For displayj*p has  of the FP result into its spin-projected contributiojﬁ,é“ is given
been weighted withi2. marked byl FP, | FP.
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TABLE I. Spin- and orbital-magnetic momentg,i, and e Er ..
Morb» Fespectively, for bee Fe, fce Co, and fce Ni using the various Mspin=— —ImTr j dEj d3r Bo,G(r,r,E) (44)
calculation schemes mentioned in the text. The experimental values m
have been taken from Refs. 47 and 48.

and
Fe Co Ni
Mspi o . . MB Er 3 > >
spin orb Mspin Morb Mspin Morb Morp=——ImTr dE| d°rBl,G(r,r,E) (45)
n

FP 2240 0.050 1585 0.073 0.565 0.046
ASA 2282 0.054 1.580 0.075 0.579 0.047 have been used. Of coursgen is nothing but the spin
FP-OP 2240 0.080 1585 0.113 0.566 0.062 magnetization density integrated over the Wigner-Seitz cell.
ASA-OP 2284 0.085 1580 0.117 0582  0.057 The connection ofu,, and the orbital current density,
Expt. 213 008 152 014 057 005 discussed above is less straightforward. According to the

Gordon decomposition of the total electronic currq’?&,t,is
plane is shown. The decrease of the current densityr for connected with the orbital angular momentiivia the equa-
=1a, is roughly proportional ta ~3. This is in line with the  tjon
crude estimation,(r)~[n(r)1/r, which is based on the fact
that fp is by far dominated by itgp component. f = ﬁﬁﬁx I (46)

As one can already guess from the radial wave functions P
shown in Fig. 1Ip is primarily connected to the electrons. where external magnetic fields have been assumed to be ab-
This expectation is confirmed by a detailed angular momensent. For a rotational symmetric current distribution with
tum analysis that shows thgg is indeed by far dominated by |, , as the only nonvanishing component jgfthis implies
its d-electron contribution. Calculating the current dengijy ~ the simple relationship
in a spin-projected way, one finds that there is also a small
contribution toj )" arising froms-like wave functions lead- A 1
ing to a small plateau for the corresponding curves in Fig. 8. (BIAr)=—"=(rjp4(0.1)). (47)
These contributions are a pure relativistic effect because they 2\2
stem from the minor component of tisdike wave functions
having p character. Summing both spin contributionsﬁp
one can see from Fig. 8 that these contributions cancel ea
other to a large extent. The spin decompositonf,pfalso
demonstrates that the orbital current for Fe stems primaril
from the minority spin system. This imbalance of the two

The results for the orbital current shown for bce-Fe in Fig. 8
ae quite typical for the late@elements. This means that the
minority spin contribution exceeds that of the majority spin
system throughout the Wigner-Seitz cell leading altogether
Yo a positive orbital magnetic moment, i.e., an orbital mo-

. bsvst ; h ing f Fe t ent aligned parallel to the spin moment. As can be seen
Sp'; lfly sys ems ter:/en m_cr_etasesb\év e(r; gotlng rom ed O “Pom Table I, this applies to all three metals and the various
and I, bécause the majority subband gets more and motg.pemeg applied. The corresponding calculations have been

filled. Because there is a direct relationship between the Oserformed in all cases using an angular momentum expan-
bital current and the orbital magnetic momexy,,, (see be-

o . ; : - = sion up tol .= 2.
low) it is obvious thatu,, is also dominated by the minority Table | ";"F‘]XOWS that the difference between the FP and

spin Contﬂﬁ’“tion- This has also been foupd before'by Er_ikSASA calculations are quite small. Forg,;, the difference is
sonet al.;”* who used the LMTO-ASA with the spin-orbit at most 2%, while foru,, it reaches about 9%. As found

coupllr?g accounted for in a varlat|or.1a| stgp.. ) before for SPR-KKR calculations using the ASA, one notes
In Fig. 8 the results of FP calculations fiyincluding the  that also for the FP case the inclusion of the OP-potential
OP. tgrm(FP-OF) have begn added. As one can see, th@erm has only a minor influence QB pin- FOr wor,, ON the
variation of the corresponding curve with the distané®m  ther hand, inclusion of this correction term is essential to
the nucleus is just the same as for the calculation based ofthieve good agreement with experiment. As found also by
thg plain .Dirac equatioifl). This. also holds for_results pb- Trygg et al,*® who performed FP-LMTO calculations with
tained using the SPR-KKR within current-density-functionalthe spin-orbit coupling included in the variational step, it is
theory and using the ASA' This implies that the radial de- found that there is no conflict between the FP mode and
pendence of the vector potential included in the Dirac equagsing the OP term, which was expected sometimes. From
tion does not have much influence on that of the orbitalrgple | one can clearly see that the OP term leads for the
current. Its absolute magnitude, however, is quite differenjasa as well as for the EP calculations to nearly the same
for the three sets of calculations. According to this one getganhancement of the orbital moments.
for the plain FP, the FP-OP, and the ASA-CDFT calculation  The magnetization density of a magnetically ordered solid
an orbital magnetic moment of 0.05, 0.08, and @@7re-  gives rise to a magnetic hyperfine fielg; at the sites of the
spectively(see Table | and Ref. 27 nuclei. The most natural way to calculate this field is sup-
plied by Breit's hyperfine interaction Hamiltonian, which
gives the nuclear Zeeman energy caused by the total elec-
For the calculation of the spin and orbital magnetic mo-tronic current-density distribution. Within the Green's-
ments, wspin and e, respectively, the conventional function formalism used here, this implies for the hyperfine
expressiorns field the expression

E. Magnetic moments and hyperfine fields
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TABLE II. Hyperfine fieldsBy; for bcc Fe, fcc Co, and fcc Ni using the ASA- and FP-SPR-KKR. In both
cases a decomposition into core and valence-band contribution is given, with the latter splitspi, itsnd
d parts. The experimental data have been taken from Refs. 47 and 48.

Fe Co Ni
FP ASA Expt. FP ASA Expt. FP ASA  Expt.

S -33.2 -37.8 —48.1 —-55.2 —-18.4 -16.0

0.8 0.7 1.6 1.7 0.8 0.9
d 19.2 21.0 43.9 45.0 37.0 37.4
Val. —-13.2 —-16.0 —2.7 —8.6 19.5 22.3
Core —-252.5 —248.7 —185.6 —-180.9 —69.6 —69.6
Tot. —265.7 —264.7 —-339 —188.3 —-189.5 —-215 —-50.1 —-47.3 —-75

. total energy E;,;) calculations performed using the FP-SPR-
= G(r,r,E), KKR. For this purpose the conventional expression

(48)

1 Ep -
Bpi=— 7TImTrf dEf drea-

n

MmnX

N
Emt:i; ei—f d3r[V(r)n(r)+B(r)m(r)]

where u,, is the nuclear magnetic moment. Corresponding
results for bcc Fe, fcc Co, and fcc Ni are summarized in
Table Il for calculations based on the FP and the ASA mode. f & f g3 nontr ) (r)n(r )
Here the fields have been split into their core and valence
electron contributions. In addition, the latter are decomposed
with respect to the angular momentum. For the various conhas been used.
tributions one finds changes up to around 10% when going To determine the equilibrium lattice constamf, we fit
from the ASA to the FP mode. However, for the total fieldsthe total energyE,.:(V), calculated for several volumas,
these changes nearly cancel each other leading to rathtr an analytic formula
small differences between the ASA and FP result. Accord-
ingly, the discrepancy of the theoretical and experimental B B
hyperfine fields for the puredelements Fe, Co, and Ni is E(V):n}::l A (50)
not removed by performing the calculations in a FP mode.
Here it seems to be appropriate to emphasize that the contrand determinea,, by minimizing theE(V) of Eq. (50).
bution of thep- and d-valence electrons t8,,; are of rela- The results are given in Table Il together with some other
tivistic origin; i.e., these spin-orbit-induced contributions theoretical as well as experimental data. Obviously there is
cannot be accounted for within a nonrelativistic or scalarquite good agreement among the various theoretical lattice
relativistic calculation. Although the- and d-hyperfine  parameters and also with experiment. Nevertheless it should
fields could also come from the nuclear spin-electron spirbe noted that the difference between the FP-KKR and the
interaction, an analysis clearly shows that it stems nearlfrP-SPR-KKR data is not only due to the inclusion of rela-
exclusively from a coupling of the nuclear spin to the elec-tivistic effects in the latter case but also due to the different
tronic orbital magnetic moment®.Alternatively, and in line  angular momentum expansion used.
with Breit's formula, one can say that these contributions to Concerning the bulk modulus the situation is less favor-
Bhf are a direct consequence of the orbital current densitpble as for the equilibrium lattice constafsee Table V.
Here, one finds as for all other previous calculations values
that are by around 60% too small compared to experiment.
This is a typical error of the LDA approximation, leading to
an overbinding of the system with a too large cohesion en-
The theoretical equilibrium lattice constarag, of bcc  ergy, a slightly too small lattice constant, and a too large
Fe, fcc Co, and fcc Ni have been determined on the basis dfulk modulus. This discrepancy could be removed by using a
gradient corrected exchange-correlation potential. Without

—=—=,— tExdnm] (49
Ir—r"|

4

Jp

F. Lattice properties

TABLE Ill. Equilibrium lattice constantsin a.u) for bcc Fe and
fcc Ni from various calculations as well as experiment. TABLE IV. Bulk modulus (in 10° Pa) for bcc Fe and fcc Ni
from various calculations as well as experiment.

bcc-Fe fcc-Ni
ASA-LMTO (Ref. 49 5.44 bec-Fe fec-Ni
FP-LAPW (Ref. 50 5.22 ASA-LMTO (Ref. 49 170
KKR (Ref. 19 5.27 6.55 FP-LAPW (Ref. 50 251
FP-KKR (Ref. 51) 5.205 KKR (Ref. 19 220 230
FP-SPR-KKR 5.332 6.636 FP-SPR-KKR 220 222

Experiment 5.406 6.658 Experiment 172 186
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doubt, this would also happen for the FP-SPR-KKR calculaization mechanism are accounted for. For the magnetic mo-
tions. However, it is a how common experience that thements and hyperfine fields of bcc Fe, fcc Co, and fcc Ni the
available gradient-corrected parametrizations are not suitabienpact of the FP-mode was found to be relatively small.
for heavy elements for which relativistic effects are moreNevertheless, these applications revealed several details of
pronounced than for the systems studied here. For that reghe electronic structure and demonstrated the feasibility of
son these corrections have not been included in the deveelf-consistent FP-SPR-KKR calculations. In fact, corre-
oped program package so far. sponding calculations have been done now for disordered
alloys using the CPA’
IV. SUMMARY

The theoretical basis of the FP-SPR-KKR method has ACKNOWLEDGMENTS
been sketched and the most important details of a corre- Support of this work by the Deutsche Forschungsgemein-
sponding implementation have been discussed. A number aichaft within the Schwerpunkt Theorie relativistischer Ef-
results have been presented, that were primarily meant tiekte in der Chemie und Physik schwerer Elemente is also
illustrate the consequences for the electronic properties of gratefully acknowledged. The paper has profited from col-
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