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Full-potential spin-polarized relativistic Korringa-Kohn-Rostoker method implemented
and applied to bcc Fe, fcc Co, and fcc Ni
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The full-potential spin-polarized relativistic Korringa-Kohn-Rostoker~FP-SPR-KKR! method of band-
structure calculation has been implemented in a self-consistent way. This scheme deals with the nonspherical
potential as well as spin polarization and all relativistic effects on the same level. Technical details of this
approach as well as its formal extension to account for the so-called orbital polarization~OP! mechanism are
described in some detail. Results of corresponding applications to the elemental ferromagnets bcc-Fe, fcc-Co,
and fcc-Ni are presented with an emphasis on the consequences of nonspherical and OP-potential terms.
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I. INTRODUCTION

The KKR method of band-structure calculation has be
introduced already in the 1940s by Korringa1 and Kohn and
Rostoker.2 While this scheme was not very popular in i
original form it became extremely important in connecti
with multiple-scattering theory as a way to get access to
electronic Green’s function~KKR-GF!. This development
opened the way to deal with solids with reduced symme
such as, for example, impurities in an otherwise ordered h
material. Another important application is the investigati
of randomly disordered alloys by adding some adequate
loy theory as for example the coherent potential approxim
tion ~KKR-CPA!.

Originally the KKR as well as its extensions mention
above have been formulated on the basis of the so-ca
muffin-tin construction for the charge and potential distrib
tion. First steps towards a full-potential~FP! scheme were
undertaken by Anthony and Bross by using a warped muf
tin potential.3 However, the extension of the KKR to a tru
FP-scheme by a corresponding proper treatment of the
constant interstitial potential between the muffin tins h
been discussed in the literature for a rather long time an
a very controversial way. Now, it is generally accepted t
the scheme proposed among others by Zeller and Dede
supplies a sound basis for FP-KKR band structure calc
tions. In practice, this scheme essentially consists in usin
Wigner-Seitz partitioning of the space and using within t
corresponding atomic cells for all relevant quantities a r
resentation in terms of spherical harmonics; i.e., for the w
functions, the Green’s function as well as for the charge
potential distribution. Since its first implementation by Dr
tler et al.4 the FP-KKR has been applied with great succ
mostly to impurity systems.5–8 While this work was done in
a nonrelativistic or scalar relativistic way the extension to
relativistic case has been investigated by Tamura,9 Wang
et al.,10 and Lovatt, Gyorffy, and Guo.11 The corresponding
construction of the Green’s function for the most gene
case that the potential entering the Dirac equation is not o
PRB 580163-1829/98/58~16!/10236~12!/$15.00
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nonspherical but also spin dependent and includes a ve
potential contribution has been studied in great detail
Tamura.9

Practical applications, however, have been restricted u
now to the spin-polarized relativistic~SPR! case leading to
the FP-SPR-KKR that has been implemented so far only
non-self-consistent mode.11 On the other hand, self
consistent calculations have been performed recently for
paramagnetic case~R-KKR! using the KKR-method in its
variational form.12 In addition it is worth to mention here
also the use of the FP-SPR-KKR scheme within the one-s
model of photoemission theory by Fluchtmannet al.13 Simi-
lar work has been done also by Krewer and Feder14 in the
case of spin-polarized LEED.

In the following, we report on a self-consistent impleme
tation of the FP-SPR-KKR Green’s-function method. Th
includes an extension of the scheme to account for the s
orbit-induced orbital polarization~OP! due to Brooks’ OP
mechanism15,16 ~FP-OP-SPR-KKR or FP-SOPR-KKR!. In
the next section, the technical details of an implementat
of the FP-~OP-!-SPR-KKR scheme will be presented. This
followed by a presentation and discussion of results that h
been obtained for the elemental ferromagnets bcc Fe, fcc
and fcc Ni as a test case.

II. THEORETICAL FRAMEWORK
AND TECHNICAL DETAILS

A. Kohn-Sham-Dirac equation

The investigations to be presented below have been
formed within the framework of the relativistic version o
spin-density-functional theory~SDFT!. The corresponding
Dirac equation for the four-component single-particle wa
function F and energyE:

S c

i
aW ¹W 1 1

2 ~12b!c21V~rW ! DF i~rW !5EF i~rW ! ~1!
10 236 © 1998 The American Physical Society



e

e

n

be
zi

.

r

in
et
te

o-
’s
d
re
ti
i

th

ar
ct

p

e a
al
r-
or-
i-

in

f a
vel-

in
ce-
r-
s is

s
s

e

e

-

n

dial

PRB 58 10 237FULL-POTENTIAL SPIN-POLARIZED RELATIVISTIC . . .
has been introduced by MacDonald and Vosko17 and
Rajagopal18 ~atomic Rydberg units used throughout; i.e.,\
51,m51/2,e252). In this Kohn-Sham-Dirac equation, th
potentialV,

V5Vn1VH1V̄xc1bsW BW , ~2!

contains the Coulomb potential due to the nuclei (Vn) and
the other electrons (VH). The contribution due to exchang
and correlation has been split into a spin-averaged part (V̄xc)
and a spin-dependent part (bsW BW ). The effective magnetic
field BW occurring in the latter term stems from the depe
dence of the exchange-correlation energyExc on the spin
magnetization densitymW :

BW e f f~rW !5BW ext~rW !1
]Exc@n,mW #

]mW ~rW !
~3!

with n the particle density. In the calculations presented
low the local exchange-correlation potential of Moruz
Janak, and Williams has been used.19 A possible contribution
from an external magnetic fieldBW ext has been added in Eq
~II A !. Finally, the quantitiesa i ( i 51, . . . ,3) andb occur-
ring in Eqs.~1! and~2! are the standard 434 Dirac matrices
and thes i ( i 51, . . . ,3) are thePauli spin matrices in thei
relativistic form.20

The spin-dependent term in Eq.~2! strongly reduces the
symmetry for the above Dirac equation.21 One of the many
consequences of this is that inclusion of spin-orbit coupl
leads for a spin-polarized system to a finite orbital magn
moment. However, compared to experiment this is of
found to be up to approximately 50% too small.22 To cure
this problem Brooks15,23 has proposed a so-called orbital p
larization ~OP! term that is meant to account for Hund
second rule. Originally, this heuristic term has been adde
the Hamiltonian matrix of a conventional band-structu
scheme that works on a nonrelativistic or scalar relativis
level with the spin-orbit coupling treated as a perturbation
the variational step. Recently, Ebert and Battocletti16 derived
a corresponding potential term that can be added to
above Dirac equation. Ford-electron systems it is given by

HOP52Bms

OP~r !^ l̂ z&ms
l̂ zd l2 . ~4!

Here ^ l̂ z&ms
is the expectation value of the orbital angul

momentum operator for the spin subsystem with chara
ms and

Bms

OP~r !5
2

441E0

r

dr84pr 82S 9
r ,

2

r .
3

25
r ,

4

r .
5 D rdms

~r 8! ~5!

stems from a Racah parameter.15,23 In Eq. ~5! rdms
is the

averaged charge density for ad electron andr , (r .) stands
for the smaller~larger! of r and r 8. ObviouslyHOP can be
cast into the form

HOP52AOPpf , ~6!

wherepf is the azimuthal component of the momentum o
erator andAOP5r sinuBms

OP^l̂ z&ms
dl2 is a rotationally symmet-
-

-
,

g
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n

to
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e
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ric vector potential normalized according to Eq.~6! and the
use of atomic units. Formally the OP term has therefor
form to be expected from current-density-function
theory24,25 ~CDFT!, which should provide a sound and rigo
ous basis for investigating any properties connected with
bital magnetism.26 However, one has to note that the phys
cal justification for Brooks’ OP term is quite different from
the exchange-correlation vector potential occurring with
CDFT.27

B. Solution of the single-site problem

To deal with the above Dirac equation for the case o
nonspherical potential we have adopted the scheme de
oped by Zeller and Dederichs4,6–8during recent years for the
nonrelativistic or scalar relativistic case. This implies that
a first step space is subdivided into nonoverlapping, spa
filling polyhedra usually realized by means of the Wigne
Seitz construction. The shape of these Wigner-Seitz cell
represented by the so-called shape functionsuL(r ) with

QWS~rW !5(
L

uL~r !YL~ r̂ !, ~7!

where the step functionQWS is 1 for rW within the cell and 0
otherwise. The functionsYL are real spherical harmonic
with L standing for (l ,m). In addition one defines the radiu
r cr of the smallest circumscribed sphere, for whichQWS(rW)
50 for r .r cr . Multiplying the potentialV of the extended
system in Eq.~1! with the functionQWS(rW) centered at an
atomic siten leading to the single-site problem. To solve th
corresponding single-site Dirac equation the ansatz

F~rW,E!5(
L

S gL~r ,E!xL~ r̂ !

i f L~r ,E!xL̄~ r̂ !
D ~8!

is made. Hereg and f are the radial wave functions of th
major and minor components. The functionsxL are the con-
ventional spin-angular functions:20

xL5(
ms

CL
msYl

m2msxms
, ~9!

with CL
ms5C( l , 1

2 , j ;m2ms ,ms) the Clebsch-Gordon coeffi
cients, Yl

m complex spherical harmonics andxms
the two-

component Pauli spin functions.20 The spin-orbit and relativ-
istic quantum numbers,k and m, respectively, have bee
combined toL5(k,m), with L̄5(2k,m). InsertingF into
the single-site Dirac equation leads to a set of coupled ra
Dirac equations:

]

]r
PL52

k

r
PL1F E

c2
11GQL2

1

c2(
L8

VLL8
2 QL8

2
1

c2(
L8

ALL8
OP QL8 , ~10!

]

]r
QL5

k

r
QL2EPL1(

L8
VLL8

1 PL81(
L8

ALL8
OP PL8 .

~11!
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Here the argumentsr and E have been suppressed for th
radial wave functions for which we used the auxiliary fun
tions

PL~r ,E!5rgL~r ,E!, ~12!

QL~r ,E!5cr f L~r ,E!. ~13!

The potential matrix elementsVLL8
6 are defined by

VLL8
6

~r !5^x6LuVe f f6sW BW ux6L8&. ~14!

These are straightforwardly evaluated by expanding the
tential into real spherical harmonics:

V~rW !5(
L

VL~r !YL~ r̂ !, ~15!

B~rW !5(
L

BL~r !YL~ r̂ !, with BW ~rW !5B~rW !B̂. ~16!

Here it has been assumed thatBW points everywhere along th
same directionB̂. In the following applicationsB̂ will be
oriented along the crystallographicz axis of a bcc or fcc
system. However, these are not necessary restrictions fo
formalism; i.e., treatment of other orientations or nonc
linear magnetic states can be straightforwardly accoun
for. Finally, the potential matrix elementsALL8

OP (r ) are con-
nected to the operatorHOP in Eq. ~6! and are defined analo
gously toVLL8

6 (r ) in Eq. ~14!.
Restricting the above expansion for the potentialV to L

5(0,0) and settingB50 obviously leads to the standar
radial Dirac equation for a spherical potential.20 Allowing V
to have nonspherical contributions withB50 one has the
paramagnetic case investigated recently by Bei der Ke
and Freeman.12 Retaining for V and B only the term L
5(0,0) leads to the equations for spin-polarized systems
rived by Doniach and Sommers,28 Feder, Rosicky, and
Ackermann29 and Strange, Staunton, and Gyorffy30 that have
been used routinely for several years. For this case the~0,0!
term ofB already leads to a coupling of an infinite number
partial waves (PL ,QL) for the same quantum numberm.
Fortunately it is well justified to restrict the coupling toD l
5 l 2 l 850.31 Inclusion of nonspherical terms inV andB lead
to further coupling. In practice, however, the number
coupled partial waves is restricted to 2(l max11)2 by fixing
an upper limitl max for the angular momentum expansion
the wave function in Eq.~8!. For example, forl max52 one
may have up to 18 partial waves coupled; i.e., one ha
solve up to 36 coupled equations for the functionsPL and
QL . However, for a cubic system withB̂5 ẑ and l max52
one has at most 3 partial waves coupled due to the h
symmetry of the system.

Using the above radial differential equations a set
2(l max11)2 linearly independent regular solutionsFL can
be created by initializing the outward integration with a s
lected spin-angular characterL dominating close to the
nucleus; i.e., one demands that
o-

he
-
d

n

e-

f

f

to

h

f

-

FL~rW,E!5(
L8

FL8L~rW,E!→
r→0

FLL~rW,E!. ~17!

After having solved all systems of coupled equations for
wave functionsFL one gets the corresponding single-sitet
matrix by introducing the auxiliary matricesa andb:

aLL8~E!52 ipr 2@hL
2~prW !,FLL8~rW,E!#ur 5r cr

, ~18!

bLL8~E!5 ipr 2@hL
1~prW !,FLL8~rW,E!#ur 5r cr

. ~19!

Here p5AE(11E/c2) is the relativistic momentum20 and
@•••# r denotes the relativistic form of the Wronskian.32 The
functionshL

6 are the relativistic version of the Hankel func
tions of the first and second kind:20

hL
6~prW !5A11E/c2

c2 S hl
6~pr !xL~ r̂ !

ipcSk

E1c2
hl̄

6
~pr !xL̄~ r̂ !D ~20!

with the angular momentuml̄ 5 l 2Sk for the minor compo-
nent corresponding to2k and Sk5sign(k). Evaluating all
functions in Eqs.~18!–~19! at r 5r cr one finally has

t~E!5
i

2p
@a~E!2b~E!#b21~E!. ~21!

By a superposition of the wave functionsFL according to
the boundary conditions

ZL~rW,E!5(
L8

ZL8L~rW,E! →
r .r cr

(
L8

j L8~rW,E!t~E!L8L
21

2 iphL
1~rW,E! ~22!

one gets an alternative set of linearly independent reg
solutionsZL to the single-site Dirac equation. These fun
tions are normalized in analogy to nonrelativistic multipl
scattering theory according to the convention of Faulk
and Stocks33 and allow us straightforwardly to set up th
electronic Green’s function~see below!. The additionally
needed irregular solutionsJL are fixed by the boundary con
dition

JL~rW,E! →
r→r cr

j L~rW,E! ~23!

and are obtained just by inward integration. The functionsj L

occurring in Eqs.~22! and~23! are the relativistic version o
the spherical Bessel functions defined in analogy to Eq.~20!
for hL

6 .20

As an alternative to the direct solution of the abo
coupled radial differential equations one can also apply
scheme proposed by Drittler4,34 for the scalar relativistic
case. For this purpose the Green’s functionGss

0 for the single
site system is determined in a first step with the nonspher
potential terms ignored; i.e., by settingV̄L50 andBL50 for
LÞ(0,0). Here it is advantageous to set upGss

0 using the
regular and irregular solution,R0 andH0, respectively, nor-
malized according to the convention used by the Ju¨lich group
~see below!. Fixing R0 andH0 by the boundary conditions
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RL
0 ~rW,E!5(

L8
S gL8L

0
~r ,E!xL8~ r̂ !

i f L8L
0

~r ,E!xL̄8~ r̂ !
D

→
r .r cr

j L~rW,E!2 ip(
L8

hL8
1

~rW,E!tL8L~E!, ~24!

HL
0 ~rW,E!5(

L8
S g̃L8L

0
~r ,E!xL8~ r̂ !

i f̃ L8L
0

~r ,E!xL̄8~ r̂ !
D →r .r cr

hL
1~rW,E!,

~25!

with tLL8
0 the corresponding single-sitet matrix, the Green’s

function has the compact form

Gss
0 ~rW,rW 8,E!52 ip(

L
$RL

0 ~rW,E!HL
03~rW 8,E!Q~r 82r !

1HL
0 ~rW,E!RL

03~rW 8,E!Q~r 2r 8!% ~26!

with

RL
03~rW,E!5(

L8
@gL8L

0
~r ,E!xL8

†
~ r̂ !;2 i f L8L

0
~r ,E!xL̄8

†
#

~27!

and

HL
03~rW,E!5(

L8
~ g̃L8L

0
~r ,E!xL8

†
~ r̂ !;2 i f̃ L8L

0
~r ,E!xL̄8

†
!.

~28!

Here and in the following3 designates the left-hand solu
tions of the corresponding Dirac-Hamiltonian while † stan
er
l,
s

for the complex transposition operation~see also below!. In
addition, one should note that in contrast to the scalar r
tivistic case the wave functionsRL

0 andHL
0 consist of up to

two magnetic partial waves due to the magnetic poten
termBL for L5(0,0). In the next step the solution to the fu
potential problem is obtained by making use of t
Lippmann-Schwinger equation. For the regular and irregu
solutions,RL andHL , respectively, this leads to the follow
ing set of coupled radial integral equations:

S PL8L

QL8LD 5S PL8L
0

QL8L
0 D 1(

Lns
H S PL8Lns

0

QL8Lns

0 D ALnsL

1S P̃L8Lns

0

Q̃L8Lns

0 D BLnsLJ , ~29!

S P̃L8L

Q̃L8L
D 5S P̃L8L

0

Q̃L8L
0 D 1(

Lns
H S PL8Lns

0

QL8Lns

0 D CLnsL

1S P̃L8Lns

0

Q̃L8Lns

0 D DLnsLJ . ~30!

As before@see Eqs.~10!–~13!# we have introduced the aux
iliary functions P, Q, P0, Q0, P̃0, and Q̃0. For the sake of
clarity the argumentsr and E have been suppressed for a
functions and the terms connected to the OP potential term
Eq. ~6! have been omitted. Ther- and E-dependent phase
functional matricesA, B, C, andD ~Ref. 35! occurring in the
above equations are given by the following integral eq
tions:
ALnsL
~r !52 ipE

r

r cr
dr8 (

L9L-
H P̃L9Lns

0
~r 8!DVL9L-

1
~r 8!PL-L~r 8!1

1

c2
Q̃L9Lns

0
~r 8!DVL9L-

2
~r 8!QL-L~r 8!J , ~31!

BLnsL
~r !52 ipE

0

r

dr8 (
L9L-

H PL9Lns

0
~r 8!DVL9L-

1
~r 8!PL-L~r 8!1

1

c2
QL9Lns

0
~r 8!DVL9L-

2
~r 8!QL-L~r 8!J . ~32!

CLnsL
~r !52 ipE

r

r cr
dr8 (

L9L-
H P̃L9Lns

0
~r 8!DVL9L-

1
~r 8!P̃L-L~r 8!1

1

c2
Q̃L9Lns

0
~r 8!DVL9L-

2
~r 8!Q̃L-L~r 8!J , ~33!

DLnsL
~r !5 ipE

r

r cr
dr8 (

L9L-
H PL9Lns

0
~r 8!DVL9L-

1
~r 8!PL-L~r 8!1

1

c2
QL9Lns

0
~r 8!DVL9L-

2
~r 8!Q̃L-L~r 8!J , ~34!
e-
ets
where again the argumentE has been suppressed. The p
turbation termDV is the nonspherical part of the potentia
i.e., without the~0,0! terms in Eqs.~15! and ~16!, and its
matrix elements are defined in analogy to Eq.~14!. The
-coupled integral equations~29! and~30! can be solved itera-
tively to the required accuracy by making use of Born’s s
ries expansion. As for the scalar relativistic case one g
finally the single-sitet matrix for the full potential case from
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tLL8~E!5tLL8
0

~E!1DtLL8~E!, ~35!

with the correctionDtLL8 given by36

2 ipDtLL8~E!5BLL8~r cr ,E!. ~36!

C. Multiple scattering Green’s function

The problem of setting up the electronic Green’s funct
G(rW,rW 8E) for a solid on the basis of relativistic multiple
scattering theory for arbitrary scalar and vector potentials
been investigated in great detail by Tamura.9 The corre-
sponding expression forG(rW,rW 8,E) is given by

G~rW,rW 8,E!5 (
LL8

ZL
n ~rW,E!tLL8

nm
~E!ZL8

m3
~rW 8,E!

2(
L

$ZL
n ~rW,E!JL

n3~rW 8,E!Q~r 82r !

1JL
n ~rW,E!ZL

n3~rW 8,E!Q~r 2r 8!%dnm ~37!

for rW (rW 8) within the celln (m). Here again the normaliza
tion in analogy to the nonrelativistic formalism of Faulkn
and Stocks33 for the wave functionsZL andJL has been used
@see Eqs.~22! and~23!#. The reason that we used in contra
to Eq. ~37! the Jülich convention for the single-site Green
function Gss

0 in Eq. ~26! is that it gets more compact in tha
way. Using forGss

0 also the convention Eq.~37! is based on
would lead to two sums instead of just one. As a result, E
~29!–~35! would get much more complex and would requ
more computer time to solve. On the other hand using in
~37! the convention of Faulkner and Stocks; i.e., express
the Green’s function in terms of the scattering path opera
tLL8

i j does not increase the numerical effort and leads
some advantages when combining the KKR-GF method w
the coherent potential approximation~CPA! alloy theory.37

Of course both conventions are connected to each other
as for the case of spherical potentials@see Eq.~4! in Ref. 38#:

G5~ t!21t~ t!212~ t!21. ~38!

The boldface notation used indicate here matrices with
spect to the cite indices and the spin-angular characterL.
The matrixG is the structural Green’s function matrix use
within the Jülich formulation. The most important point t
note is that in Eq.~37! the sign3 indicates that the wave
functionsZ3 and J3 are the left-hand side regular and i
regular solutions of the corresponding modified Dir
equation.9 Fortunately, these are obtained from the same
dial differential equations as the conventional right-hand s
solutionsZL andJL ; i.e., from Eqs.~10! and ~11! with the
potential matrix elementsVLL8

6 replaced byVL8L
6 . For

highly symmetric systems one may have the situation
VLL8

6
5VL8L

6 . In this caseZ3 and J3 are obtained fromZ
and J by simple complex conjugation and transposition
indicated in Eqs.~24!, ~25!, ~27!, and ~28! since left- and
right-hand side solutions are identical with respect to th
radial parts. This applies, in particular, to the single-s
problem with spherically symmetric potential termsV andB,
but also to cubic systems with the magnetization along thz-
as

t

s.

q.
g
r
o
h

st

-

-
e

at

s

ir
e

axis, as investigated here. Fortunately, this is still true if
OP term is included in the Dirac equation~1! because here
the relation@Eq. ~11! in Ref. 9# for the vector potential cor-
responding to the OP-potential term in Eq.~6! holds.

Finally, the quantitytLL8
nm in Eq. ~37! is the so-called scat

tering path operator.33 For an ordered system the site diag
nal scattering path operatortnn can be obtained from the BZ
integration,

tLL8
nn

5
1

VBZ
E

VBZ

d3k@ t~E!n212G~kW ,E!#LL8
21 , ~39!

where G(kW ,E) is the matrix of the relativistic structure
constants.10

D. SCF cycle

With the Green’s functionG(rW,rW 8,E) available more or
less all quantities of interest can be calculated. In particu
the charge and spin density are obtained via

n~rW !52
1

p
Im Tr EEF

dEG~rW,rW,E!, ~40!

m~rW !52
1

p
Im Tr EEF

dEbszG~rW,rW,E!. ~41!

In practice, the energy integration is performed using
contour integration in the complex plane.

Obviously the SCF problem connected with the Dir
equation~1! is just the same as for the nonrelativistic case.
fact the scheme developed by Drittler and co-workers34,4,5 to
deal with the potential construction and the SCF cycle
been adopted without any changes. In short, this means
the Coulomb part of the potential has been split into an
trasite and intersite part. The former is obtained by straig
forward solution of the Poisson equation in real spheri
harmonics. The intersite contribution is essentially a Ma
lung sum of multipole potentials derived from the same re
resentation of the charge distribution on the neighbor
sites. In analogy to nonrelativistic spin-density-function
theory the spin-dependent exchange-correlation poten
V↑(↓) are obtained from the local charge and sp
magnetization density according to the adopted parametr
tion. For these an expansion into real spherical harmonic
analogy with Eqs.~15! and ~16! is obtained via numerica
integration. The corresponding potential termsV̄xc,L andBL
are then obtained from

V̄xc,L5 1
2 ~Vxc,L

↑ 1Vxc,L
↓ !,

Bxc,L5 1
2 ~Vxc,L

↑ 2Vxc,L
↓ !. ~42!

Finally, in the SCF iterations the Broyden method is us
to accelerate the convergence.39

At the end of this section it is appropriate to mentio
some practical aspects. Because close to the nucleus the
spherical contributions toV andB are extremely small, thes
have been ignored forr<r ns , with r ns set to 0.2 a.u.~see
below!. By restricting the angular momentum expansion
the major component of the wave function tol max one gets a
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rather natural cutoff for the expansion of all other quantit
relevant for the SCF cycle. Because of Eqs.~40! and~41! the
expansion for the charge and spin magnetization densi
n(rW) andm(rW), respectively, are restricted to 23 l max. Ac-
cordingly, the expansion for the potential should also be
stricted to 23 l max. Finally, the construction of the Coulom
potential, as sketched above, implies that one has to su
the shape functionsuL(r ) up to 43 l max. Most of these re-
strictions stem from the triangle condition for the coupling
two angular momenta.

III. APPLICATION TO bcc Fe, fcc Co, AND fcc Ni

A. Calculation of the wave functions

Both schemes presented above to solve the radial D
equations~10! and ~11! have been implemented. For the d
rect solution of these equations the Bulirsch-Sto
algorithm40 has been used. Setting the internal tolerance
rameter to 1026 the Wronski relations connecting the vario
wave functions were fulfilled better than 1027. An accuracy
of 10210 could be achieved by setting the tolerance to 10210.
Using the Born series procedure instead@i.e., Eqs.~29!–~35!#
with five iterations led to an accuracy of 1026 for the Wron-
ski relations. However, the computational time for this w
about 40% higher than using the Bulirsch-Stoer algorit
with an accuracy of 1027.

Because the Bulirsch-Stoer algorithm seems to be su
rior with respect to accuracy and efficiency it has been u
throughout for the following applications to the elemen
ferromagnets bcc-Fe, fcc-Co, and fcc-Ni.

For all of these calculations the angular momentum
pansion for the wave functions has been restricted tol max
52. As a consequence of the cubic lattice and the magn
zation oriented along thez axis there are at most three parti
waves coupled forl max52. Corresponding results are show
in Fig. 1, where the various wave functions contributing
ZL with L5(12,11/2) are shown for a Fe potential and a
energyE50.6 Ry. Of course, the diagonal partZL8L with
L85L dominates, but there are also appreciable contri

FIG. 1. Radial wave functionsPLL8 andQL8L ~in atomic units!
of the partial wavesZL8L contributing toZL with L5(12,11/2)
for a Fe potential andE50.6 Ry. The functions forL85(21,
11/2) have been scaled up by a factor of 43103 for display.
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tions with L85(23,11/2) andL85(21,11/2) admixed.
The former one hasd character as the diagonal partial wav
and is primarily due to the magnetic potential termB. The
later contribution withs character, on the other hand, stem
exclusively from the nonspherical potential terms and
about three orders of magnitude smaller than the others.

B. Dispersion relation and density of states

Lovatt, Gyorffy, and Guo have calculated the dispers
relation E(kW ) for bcc-Fe using the FP-SPR-KKR togeth
with potentials supplied by self-consistent LAPW
calculations.11 The results forE(kW ) using a self-consisten
potential created with the FP-SPR-KKR scheme~see below!
is very similar to theirs. In particular, the electronic ban
show the same hybridization effect, avoidance of band cro
ings and anisotropy with respect to the orientation of
magnetization, which is typical of band-structure calcu
tions for spin-polarized systems with the spin-orbit coupli
accounted for. All of these mentioned features are found
full accordance with corresponding calculations based on
atomic sphere approximation~ASA! ~see, for example, Refs
36 and 41!.

A direct comparison of the dispersion relations calcula
using a full and ASA potential, respectively, leads to diffe
ences of up to 1022 Ry.36 Accordingly the corresponding
density of states~DOS! curves are found nearly identical fo
all three systems investigated. Here it seems worth ment
ing that for the case of the FP calculations an angular m
mentum decomposition of the DOS is somewhat ambigu
because of the inclusion of the intersite region.

C. Charge and potential distribution

The charge-density distribution for bcc-Fe based on n
selfconsistent FP-SPR-KKR calculations have been given
ready by Lovatt, Gyorffy, and Guo.11 Performing such cal-
culations in a self-consistent way does not lead to a
qualititative changes. For the nonspherical potential ter
V40 andB40 corresponding self-consistent results are sho
in Fig. 2. The kinks observed in these curves are conne
to those of the shape functionsuL , which possess a kink
whenever a cell-centered expanding sphere crosses a p
bounding the Wigner-Seitz cell. Accordingly, the first kin
occurs at the muffin-tin radiusr mt , which is the radius of the
largest inscribed sphere within the cell.

For comparison the results stemming from scalar rela
istic linear augmented plane-wave~LAPW! calculations
have been added to Fig. 2. For this purpose the LAPW
tential represented in the interstitial region, i.e., forr mt<r
<r cr , by means of plane waves have been expanded
real spherical harmonics according to Eqs.~15! and ~16!.

The agreement of both data sets in Fig. 2 is quite satis
ing. The differences observed may be ascribed to the m
tioned reexpansion of the LAPW potential, the restriction
the angular momentum expansion tol max52 for the
FP-SPR-KKR calculations, and, last but not least, the inc
sion of spin-orbit coupling for the latter. However, a mo
important consequence of the inclusion of spin-orbit co
pling is that the symmetry of the system is reduced compa
to the scalar relativistic LAPW calculations. With the ma
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netization pointing along thez axis the symmetry is effec
tively tetragonal.42 Accordingly, there are now axial contri
butions to the nonspherical potential as, for example,
termsV20 andB20 shown in Fig. 3. Although these terms a
about three orders of magnitude smaller than those show
Fig. 2 they have nevertheless an important consequence
Coulomb partV20

C of V20 at the nuclear site is proportional t
the electric-field gradient~EFG! that can be probed for nucle
having a quadrupole moment. As is demonstrated by the
sults in Fig. 2 accounting for the nonspherical potential o
for r .r ns is well justified. However, on the other hand, th
numerical simplification prevents the EFG to be determin
directly from the limit limr→0V20(r ). As an alternative the
EFG can also be calculated from the corresponding n
spherical charge distribution termn20(r ) within the central
Wigner-Seitz cell and a Madelung contribution stemmi
from the multipoles on the neighboring sites.43,37

The results shown above have been obtained ignoring
OP-potential term. This additional term primarily affects t
orbital magnetic moment~see below!. Its inclusion will

FIG. 2. Nonspherical potential termsV40(r ) andB40(r ) for bcc
Fe as obtained from self-consistent FP-SPR-KKR and LAPW
culations.

FIG. 3. Nonspherical potential termsV20(r ) andB20(r ) for bcc
Fe as obtained from self-consistent FP-SPR-KKR calculations.
e
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therefore hardly affect the scalar potentialsV and B. For
bcc-Fe, the spin-resolved OP-potential termsBms

OP obtained

from a self-consistent calculation are shown in Fig. 4. As o
notes, both curves are very similar. Their simple radial
pendence of course stems from their connection with
radial charge distribution for thed electrons@see Eq.~5!#.
Their sign and magnitude, on the other hand, is prima
determined by the expectation value^ l z&d,ms

. This quantity
obviously has different signs for the majority and minori
spin systems and is bigger in magnitude for the latter~see
also below!. The most important point to note with respect
the curves in Fig. 4 is that the radial variation of the orbi
polarization-vector potential is extremely different from th
occurring within a CDFT calculation.27 This is of course not
surprising because the physical mechanism behind b
schemes is quite different.

D. Orbital current-density distribution

An important consequence of the inclusion of spin-or
coupling within a band-structure calculation for a spi
polarized solid is that its orbital angular momentum is
more quenched. This corresponds to the occurrence of
nite paramagnetic orbital current densityjWp ~the adjective
paramagnetic will be omitted in the following because ext
nal magnetic fields were assumed to be absent; i.e.,
physical and paramagnetic current densities are identica!.

Together with the spin-resolved particle densityns this
quantity supplies the basic variable within CDFT as form
lated by Vignale and Rasolt.24 Although this scheme has no
been used here~for a recent application of CDFT to magnet
solids see Ref. 27! the current densityjWp has been calculated
in a spin-resolved way, because it enters in this form
so-called Vignale-Rasolt equations of CDFT, which repla
the Kohn-Sham equations of SDFT. This means thatjWp,s has
been obtained from

jWp,s52
1

p
Im Tr EEF

dE
1

i
@¹
→

2¹
←

#PsG~rW,rW 8,E!urW5rW 8 ,

~43!

l-

FIG. 4. The OP potential termBms

OP for bcc Fe as calculated by
the self-consistent FP-OP-SPR-KKR.
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with the spin projection operatorPs5 1
2 (16bsz).

Results obtained that way for the spin-integrated orb
current densityjWp5(s jWp of bcc Fe are shown in Fig. 5. Her
the direction and magnitude ofjWp is represented by arrow
for the ~001! plane with thez and magnetization axes poin
ing upwards. At first sight the current-density distributio
seems to be rotational symmetric. However, a closer l
reveals that it has in fact a lower symmetry. This is dem
strated in Fig. 6, which gives the radial component ofjWp
within the ~001! plane~this component is about 2–3 orde
of magnitude smaller thanjWp itself and has been scaled by
factor of approximately 350 with respect to Fig. 5!. As one
notes, there is only a fourfold symmetry axis along thez axis.
For the paramagnetic state thex and y axes as well as the
diagonal axes in between would be twofold symmetry ax
Obviously, the corresponding symmetry operationC2 is
missing here because of the ferromagnetic state and the
orbit coupling accounted for. However, one can also clea
see from Figs. 5 and 6 that this symmetry operations co

FIG. 5. Orbital current densityjWp for bcc Fe in the~001!-plane

~in arbitrary units!. For displayjWp has been weighted withr 2.

FIG. 6. Radial component of the orbital current densityjWp for

bcc Fe in the~001! plane ~in arbitrary units!. For display jWp has
been weighted withr 2.
l

k
-

s.

in-
y
-

bined with the time inversionT result in true symmetry op-
erations (TC2') for the ferromagnetic state.42

The distribution of the current densityjWp within the ~100!
plane, which includes the magnetization axis, is shown
Fig. 7, where the magnitude ofr 2 jWp is represented by mean
of isointensity lines. As could already be seen in Fig. 5
current is strongly concentrated in the inner region of
atom for any direction in space. In addition, one notes t
the current density weighted withr 2 takes its maximum on
the ~001! plane at about 0.5a0 distance from the nucleus
This is demonstrated once more in Fig. 8 where the mag
tude of r 2 jWp averaged with respect tof within the ~001!

FIG. 7. Magnitude ofr 2 jWp for bcc Fe in the~100! plane ~in
arbitrary units!. Starting from one of the innermost kidney-shap

isolinesur 2 jWpu decreases monotonously in constant steps when
ing outwards from one isoline to the adjacent one.

FIG. 8. Magnitude ofr 2 jWp for bcc Fe in the~100! plane and
averaged with respect to itsf dependence. The various curve
show results stemming from FP-SPR-KKR~FP! calculations based
on the plain SDFT-Dirac equation~1!, calculations including the
OP term ~FP-OP! and work done within CDFT using the ASA
SPR-KKR ~ASA-CDFT! ~Ref. 27!. In addition the decomposition

of the FP result into its spin-projected contributionsjWp
↑(↓) is given

marked by↑FP, ↓FP.
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plane is shown. The decrease of the current density for
*1a0 is roughly proportional tor 23. This is in line with the
crude estimationjWp(r )'@n(rW)#/r , which is based on the fac
that jWp is by far dominated by itsf component.

As one can already guess from the radial wave functi
shown in Fig. 1,jWp is primarily connected to thed electrons.
This expectation is confirmed by a detailed angular mom
tum analysis that shows thatjWp is indeed by far dominated b
its d-electron contribution. Calculating the current densityjWp
in a spin-projected way, one finds that there is also a sm
contribution toj p

↑(↓) arising froms-like wave functions lead-
ing to a small plateau for the corresponding curves in Fig
These contributions are a pure relativistic effect because
stem from the minor component of thes-like wave functions
having p character. Summing both spin contributions tojWp
one can see from Fig. 8 that these contributions cancel e
other to a large extent. The spin decompositon ofjWp also
demonstrates that the orbital current for Fe stems prima
from the minority spin system. This imbalance of the tw
spin subsystems even increases when going from Fe to
and Ni, because the majority subband gets more and m
filled. Because there is a direct relationship between the
bital current and the orbital magnetic momentmorb ~see be-
low! it is obvious thatmorb is also dominated by the minorit
spin contribution. This has also been found before by Eri
son et al.,44 who used the LMTO-ASA with the spin-orbi
coupling accounted for in a variational step.

In Fig. 8 the results of FP calculations forjWp including the
OP term ~FP-OP! have been added. As one can see,
variation of the corresponding curve with the distancer from
the nucleus is just the same as for the calculation base
the plain Dirac equation~1!. This also holds for results ob
tained using the SPR-KKR within current-density-function
theory and using the ASA.27 This implies that the radial de
pendence of the vector potential included in the Dirac eq
tion does not have much influence on that of the orb
current. Its absolute magnitude, however, is quite differ
for the three sets of calculations. According to this one g
for the plain FP, the FP-OP, and the ASA-CDFT calculat
an orbital magnetic moment of 0.05, 0.08, and 0.07mB , re-
spectively~see Table I and Ref. 27!.

E. Magnetic moments and hyperfine fields

For the calculation of the spin and orbital magnetic m
ments, mspin and morb , respectively, the conventiona
expressions22

TABLE I. Spin- and orbital-magnetic moments,mspin and
morb , respectively, for bcc Fe, fcc Co, and fcc Ni using the vario
calculation schemes mentioned in the text. The experimental va
have been taken from Refs. 47 and 48.

Fe Co Ni
mspin morb mspin morb mspin morb

FP 2.240 0.050 1.585 0.073 0.565 0.04
ASA 2.282 0.054 1.580 0.075 0.579 0.047
FP-OP 2.240 0.080 1.585 0.113 0.566 0.06
ASA-OP 2.284 0.085 1.580 0.117 0.582 0.05
Expt. 2.13 0.08 1.52 0.14 0.57 0.05
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mspin52
mB

p
Im Tr EEF

dEE d3rbszG~rW,rW,E! ~44!

and

morb52
mB

p
Im Tr EEF

dEE d3rb l zG~rW,rW,E! ~45!

have been used. Of course,mspin is nothing but the spin
magnetization density integrated over the Wigner-Seitz c
The connection ofmorb and the orbital current densityjWp
discussed above is less straightforward. According to
Gordon decomposition of the total electronic current,jWp is
connected with the orbital angular momentumlW via the equa-
tion

jWp5A2b¹W 3 lW, ~46!

where external magnetic fields have been assumed to be
sent. For a rotational symmetric current distribution w
jWp,f as the only nonvanishing component ofjWp this implies
the simple relationship

^b l z~rW !&5
1

2A2
^r jWp,f~u,r !&. ~47!

The results for the orbital current shown for bcc-Fe in Fig
are quite typical for the late 3d elements. This means that th
minority spin contribution exceeds that of the majority sp
system throughout the Wigner-Seitz cell leading altoget
to a positive orbital magnetic moment, i.e., an orbital m
ment aligned parallel to the spin moment. As can be s
from Table I, this applies to all three metals and the vario
schemes applied. The corresponding calculations have b
performed in all cases using an angular momentum exp
sion up tol max52.

Table I shows that the difference between the FP a
ASA calculations are quite small. Formspin the difference is
at most 2%, while formorb it reaches about 9%. As foun
before for SPR-KKR calculations using the ASA, one no
that also for the FP case the inclusion of the OP-poten
term has only a minor influence onmspin . For morb , on the
other hand, inclusion of this correction term is essential
achieve good agreement with experiment. As found also
Trygg et al.,45 who performed FP-LMTO calculations with
the spin-orbit coupling included in the variational step, it
found that there is no conflict between the FP mode a
using the OP term, which was expected sometimes. F
Table I one can clearly see that the OP term leads for
ASA as well as for the FP calculations to nearly the sa
enhancement of the orbital moments.

The magnetization density of a magnetically ordered so
gives rise to a magnetic hyperfine fieldBh f at the sites of the
nuclei. The most natural way to calculate this field is su
plied by Breit’s hyperfine interaction Hamiltonian, whic
gives the nuclear Zeeman energy caused by the total e
tronic current-density distribution. Within the Green’
function formalism used here, this implies for the hyperfi
field the expression

s
es
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TABLE II. Hyperfine fieldsBh f for bcc Fe, fcc Co, and fcc Ni using the ASA- and FP-SPR-KKR. In b
cases a decomposition into core and valence-band contribution is given, with the latter split into itss, p, and
d parts. The experimental data have been taken from Refs. 47 and 48.

Fe Co Ni
FP ASA Expt. FP ASA Expt. FP ASA Expt.

s 233.2 237.8 248.1 255.2 218.4 216.0
p 0.8 0.7 1.6 1.7 0.8 0.9
d 19.2 21.0 43.9 45.0 37.0 37.4
Val. 213.2 216.0 22.7 28.6 19.5 22.3
Core 2252.5 2248.7 2185.6 2180.9 269.6 269.6
Tot. 2265.7 2264.7 2339 2188.3 2189.5 2215 250.1 247.3 275
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Bh f52
1

mnp
Im Tr EEF

dEE d3reaW •S mW n3
rW

r 3D G~rW,rW,E!,

~48!

where mn is the nuclear magnetic moment. Correspond
results for bcc Fe, fcc Co, and fcc Ni are summarized
Table II for calculations based on the FP and the ASA mo
Here the fields have been split into their core and vale
electron contributions. In addition, the latter are decompo
with respect to the angular momentum. For the various c
tributions one finds changes up to around 10% when go
from the ASA to the FP mode. However, for the total fiel
these changes nearly cancel each other leading to ra
small differences between the ASA and FP result. Acco
ingly, the discrepancy of the theoretical and experimen
hyperfine fields for the pure 3d elements Fe, Co, and Ni i
not removed by performing the calculations in a FP mo
Here it seems to be appropriate to emphasize that the co
bution of thep- and d-valence electrons toBh f are of rela-
tivistic origin; i.e., these spin-orbit-induced contribution
cannot be accounted for within a nonrelativistic or sca
relativistic calculation. Although thep- and d-hyperfine
fields could also come from the nuclear spin-electron s
interaction, an analysis clearly shows that it stems ne
exclusively from a coupling of the nuclear spin to the ele
tronic orbital magnetic moment .46 Alternatively, and in line
with Breit’s formula, one can say that these contributions
Bh f are a direct consequence of the orbital current den
jWp .

F. Lattice properties

The theoretical equilibrium lattice constantsaeq of bcc
Fe, fcc Co, and fcc Ni have been determined on the basi

TABLE III. Equilibrium lattice constants~in a.u.! for bcc Fe and
fcc Ni from various calculations as well as experiment.

bcc-Fe fcc-Ni

ASA-LMTO ~Ref. 49! 5.44
FP-LAPW ~Ref. 50! 5.22
KKR ~Ref. 19! 5.27 6.55
FP-KKR ~Ref. 51! 5.205
FP-SPR-KKR 5.332 6.636
Experiment 5.406 6.658
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total energy (Etot) calculations performed using the FP-SP
KKR. For this purpose the conventional expression

Etot5(
i 51

N

e i2E d3r @V~rW !n~rW !1B~rW !m~rW !#

1E d3r E d3r 8
n~rW !n~rW 8!

urW2rW 8u
1Exc@n,m# ~49!

has been used.
To determine the equilibrium lattice constantaeq we fit

the total energyEtot(V), calculated for several volumesV,
to an analytic formula

E~V!5 (
n51

4

bnV2~2/3!~n22! ~50!

and determineaeq by minimizing theEtot(V) of Eq. ~50!.
The results are given in Table III together with some ot
theoretical as well as experimental data. Obviously ther
quite good agreement among the various theoretical la
parameters and also with experiment. Nevertheless it sh
be noted that the difference between the FP-KKR and
FP-SPR-KKR data is not only due to the inclusion of re
tivistic effects in the latter case but also due to the differ
angular momentum expansion used.

Concerning the bulk modulus the situation is less fav
able as for the equilibrium lattice constant~see Table IV!.
Here, one finds as for all other previous calculations val
that are by around 60% too small compared to experim
This is a typical error of the LDA approximation, leading
an overbinding of the system with a too large cohesion
ergy, a slightly too small lattice constant, and a too la
bulk modulus. This discrepancy could be removed by usin
gradient corrected exchange-correlation potential. With

TABLE IV. Bulk modulus ~in 109 Pa) for bcc Fe and fcc N
from various calculations as well as experiment.

bcc-Fe fcc-Ni

ASA-LMTO ~Ref. 49! 170
FP-LAPW ~Ref. 50! 251
KKR ~Ref. 19! 220 230
FP-SPR-KKR 220 222
Experiment 172 186
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doubt, this would also happen for the FP-SPR-KKR calcu
tions. However, it is a now common experience that
available gradient-corrected parametrizations are not suit
for heavy elements for which relativistic effects are mo
pronounced than for the systems studied here. For that
son these corrections have not been included in the de
oped program package so far.

IV. SUMMARY

The theoretical basis of the FP-SPR-KKR method h
been sketched and the most important details of a co
sponding implementation have been discussed. A numbe
results have been presented, that were primarily mean
illustrate the consequences for the electronic properties
spin-polarized system if in addition to relativistic effects al
the nonspherical shape and eventually also the orbital po
id
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ization mechanism are accounted for. For the magnetic
ments and hyperfine fields of bcc Fe, fcc Co, and fcc Ni
impact of the FP-mode was found to be relatively sma
Nevertheless, these applications revealed several detai
the electronic structure and demonstrated the feasibility
self-consistent FP-SPR-KKR calculations. In fact, cor
sponding calculations have been done now for disorde
alloys using the CPA.37
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